- 
      0
      2
      2
    
- 
          1
          0
          7
        
- 9c289971-7752-4ad3-8a4a-deedfe2bc3d8
- Shaded
- 0
- 
              255;191;191;191
            
- 
              255;191;191;191
            
- 638440181684034983
- XHG..Ω..GHX
- 0
- 
                  -1756
                  -5861
                
- 1.17283463
- 0
- 0
- 2
- Heteroptera, Version=0.7.3.0, Culture=neutral, PublicKeyToken=null
- 0.7.3.0
- Amin Bahrami [Studio Helioripple]
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- Heteroptera
- 0.7.3.4
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- 285
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 3d61b0e4-4de6-412e-930f-fc95867b87c2
- DotNET VB Script (LEGACY)
- Turtle
- 0
-     Dim i As Integer
    Dim dir As New On3dVector(1, 0, 0)
    Dim pos As New On3dVector(0, 0, 0)
    Dim axis As New On3dVector(0, 0, 1)
    Dim pnts As New List(Of On3dVector)
    pnts.Add(pos)
    For i = 0 To Forward.Count() - 1
      Dim P As New On3dVector
      dir.Rotate(Left(i), axis)
      P = dir * Forward(i) + pnts(i)
      pnts.Add(P)
    Next
    Points = pnts
- 
                          860
                          84
                          104
                          44
                        
- 
                          915
                          106
                        
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- ce317ead-faeb-4407-80c1-d99efd640ebc
- Forward
- Forward
- true
- 1
- true
- d5996e27-1db2-4cfd-81c0-ba62a76266d3
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              862
                              86
                              41
                              20
                            
- 
                              882.5
                              96
                            
- 1
- false
- Script Variable Left
- ee93da26-6275-4bd5-8137-86f21f15ac46
- Left
- Left
- true
- 1
- true
- bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              862
                              106
                              41
                              20
                            
- 
                              882.5
                              116
                            
- Print, Reflect and Error streams
- ffa7a548-a363-4ed3-b06f-1f56c34b92d9
- Output
- Output
- false
- 0
- 
                              927
                              86
                              35
                              20
                            
- 
                              944.5
                              96
                            
- Output parameter Points
- 78c464d7-84e4-4bf0-aadc-869f9b4fda82
- Points
- Points
- false
- 0
- 
                              927
                              106
                              35
                              20
                            
- 
                              944.5
                              116
                            
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 2ca7e1d3-965f-482b-aadc-124aff6b6aea
- Series
- Series
- 
                          359
                          214
                          89
                          64
                        
- 
                          403
                          246
                        
- First number in the series
- fadaf414-149e-4983-b3fa-5803240091b4
- Start
- Start
- false
- c0501684-bc40-4a82-a718-a4182ddcafd0
- 1
- 
                              361
                              216
                              30
                              20
                            
- 
                              376
                              226
                            
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 7b0495e3-bd4a-4b58-987a-df7e75e23d99
- Step
- Step
- false
- c0501684-bc40-4a82-a718-a4182ddcafd0
- 1
- 
                              361
                              236
                              30
                              20
                            
- 
                              376
                              246
                            
- 1
- 1
- {0}
- 1
- Number of values in the series
- c2336e9e-62db-4e7c-b386-10dbce7ec153
- Count
- Count
- false
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
- 
                              361
                              256
                              30
                              20
                            
- 
                              376
                              266
                            
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- e19fe4db-d765-4b53-a8f1-aad962d839f5
- Series
- Series
- false
- 0
- 
                              415
                              216
                              31
                              60
                            
- 
                              430.5
                              246
                            
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- ecdd9484-1dc5-4373-813b-a0843dff0f24
- Duplicate Data
- Duplicate Data
- 
                          350
                          57
                          102
                          64
                        
- 
                          413
                          89
                        
- 1
- Data to duplicate
- fac6ec86-8adb-4f3b-adb3-49e59eac8176
- Data
- Data
- false
- 845d88dc-f057-493a-b7e5-8c521e783992
- 1
- 
                              352
                              59
                              49
                              20
                            
- 
                              376.5
                              69
                            
- Number of duplicates
- a205ae38-8b3f-4825-ab5c-32284131d818
- Number
- Number
- false
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
- 
                              352
                              79
                              49
                              20
                            
- 
                              376.5
                              89
                            
- 1
- 1
- {0}
- 500
- Retain list order
- 1f01019d-89a2-486c-88ba-d6fb26bd72a9
- Order
- Order
- false
- 0
- 
                              352
                              99
                              49
                              20
                            
- 
                              376.5
                              109
                            
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- be464ca1-422c-476c-b2a6-f6710f1fc6f5
- Data
- Data
- false
- 0
- 
                              425
                              59
                              25
                              60
                            
- 
                              437.5
                              89
                            
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f1fbb0e1-fe5e-40d2-841e-732012e40657
- Digit Scroller
- .
- false
- 0
- 12
- .
- 11
- 1024.0
- 
                          -178
                          205
                          250
                          20
                        
- 
                          -177.0572
                          205.4425
                        
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7fbc35ee-c93d-4288-b414-b6d63a02edf6
- Digit Scroller
-  ЯR
- false
- 0
- 12
-  ЯR
- 1
- 0.11963403409
- 
                          -173
                          107
                          250
                          20
                        
- 
                          -172.3578
                          107.1254
                        
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2fc63193-0d11-4984-80d9-de58980f5096
- Digit Scroller
- °
- false
- 0
- 12
- °
- 2
- 0.0005104413
- 
                          -175
                          150
                          250
                          20
                        
- 
                          -174.4397
                          150.3848
                        
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- b8e372a5-0ec1-405a-8c3e-4d4db388b39d
- Radians
- Radians
- 
                          214
                          268
                          108
                          28
                        
- 
                          269
                          282
                        
- Angle in degrees
- 70416b1f-5eb7-4580-afa9-2c0961044fb4
- Degrees
- Degrees
- false
- f18af49f-2c36-475e-9666-3bd16c62f28a
- 1
- 
                              216
                              270
                              41
                              24
                            
- 
                              236.5
                              282
                            
- Angle in radians
- c0501684-bc40-4a82-a718-a4182ddcafd0
- Radians
- Radians
- false
- 0
- 
                              281
                              270
                              39
                              24
                            
- 
                              300.5
                              282
                            
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- c88c0b93-14b6-40b3-a27f-00ff79f7b13c
- Point
- Point
- false
- 78c464d7-84e4-4bf0-aadc-869f9b4fda82
- 1
- 
                          767
                          290
                          50
                          24
                        
- 
                          792.0005
                          302.1751
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- Relay
- false
- f9f71a55-f522-4a2a-a443-1fc9358ef7f9
- 1
- 
                          215
                          177
                          40
                          16
                        
- 
                          235
                          185
                        
- be52336f-a2e1-43b1-b5f5-178ba489508a
- Circle Fit
- Fit a circle to a collection of points.
- true
- b4af4abe-d4a8-4b3c-bee6-4c3f34202ce9
- Circle Fit
- Circle Fit
- 
                          332
                          475
                          104
                          64
                        
- 
                          377
                          507
                        
- 1
- Points to fit
- db0a3289-864c-4f55-99cb-5e0f98a661e3
- Points
- Points
- false
- c88c0b93-14b6-40b3-a27f-00ff79f7b13c
- 1
- 
                              334
                              477
                              31
                              60
                            
- 
                              349.5
                              507
                            
- Resulting circle
- 05372bd4-17e2-415c-9486-b313b5739964
- Circle
- Circle
- false
- 0
- 
                              389
                              477
                              45
                              20
                            
- 
                              411.5
                              487
                            
- Circle radius
- 0623a205-c072-466d-92db-0da0f552f93b
- Radius
- Radius
- false
- 0
- 
                              389
                              497
                              45
                              20
                            
- 
                              411.5
                              507
                            
- Maximum distance between circle and points
- 833b7ba2-ecb4-4e06-bc96-ae20ee32797a
- Deviation
- Deviation
- false
- 0
- 
                              389
                              517
                              45
                              20
                            
- 
                              411.5
                              527
                            
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- cos((4*atan(1))/N)
- true
- 4367604e-a116-40f7-8d8d-988b5d3de819
- Expression
- Expression
- 
                          413
                          396
                          215
                          28
                        
- 
                          511
                          410
                        
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 7ecdea7f-0f93-40d6-8931-a086334ae2d1
- Variable N
- N
- true
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
- 
                                  415
                                  398
                                  11
                                  24
                                
- 
                                  420.5
                                  410
                                
- Result of expression
- c7cec9be-11ae-4598-8068-2121d1ade51b
- Result
- Result
- false
- 0
- 
                                  595
                                  398
                                  31
                                  24
                                
- 
                                  610.5
                                  410
                                
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 03e5b781-f7eb-42f3-abd8-cc10f3b05609
- Scale
- Scale
- 
                          506
                          582
                          126
                          64
                        
- 
                          568
                          614
                        
- Base geometry
- 6907e204-b264-49bd-a5f1-2db17048b9df
- Geometry
- Geometry
- true
- 05372bd4-17e2-415c-9486-b313b5739964
- 1
- 
                              508
                              584
                              48
                              20
                            
- 
                              532
                              594
                            
- Center of scaling
- be76ebca-fa99-4f87-8033-b15b1fe639df
- Center
- Center
- false
- 0cd7c1cb-6524-4abc-b02f-8000b02c2e4a
- 1
- 
                              508
                              604
                              48
                              20
                            
- 
                              532
                              614
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Scaling factor
- b0afd88c-aeb5-40db-842c-94af85a4a1a5
- Factor
- Factor
- false
- c7cec9be-11ae-4598-8068-2121d1ade51b
- 1
- 
                              508
                              624
                              48
                              20
                            
- 
                              532
                              634
                            
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 345752d3-26cb-450b-bbc5-24b071eecb78
- Geometry
- Geometry
- false
- 0
- 
                              580
                              584
                              50
                              30
                            
- 
                              605
                              599
                            
- Transformation data
- 1fcd789f-dea0-49e3-a218-f22153dc209a
- Transform
- Transform
- false
- 0
- 
                              580
                              614
                              50
                              30
                            
- 
                              605
                              629
                            
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- 85df7bc1-c6a1-40db-8c89-352a1e7599c4
- Area
- Area
- 
                          320
                          592
                          118
                          44
                        
- 
                          382
                          614
                        
- Brep, mesh or planar closed curve for area computation
- bf640742-a279-4f17-bb07-9d1b84caaab4
- Geometry
- Geometry
- false
- 05372bd4-17e2-415c-9486-b313b5739964
- 1
- 
                              322
                              594
                              48
                              40
                            
- 
                              346
                              614
                            
- Area of geometry
- 3c2545f6-aac8-42fc-aefd-5e99034a2bac
- Area
- Area
- false
- 0
- 
                              394
                              594
                              42
                              20
                            
- 
                              415
                              604
                            
- Area centroid of geometry
- 0cd7c1cb-6524-4abc-b02f-8000b02c2e4a
- Centroid
- Centroid
- false
- 0
- 
                              394
                              614
                              42
                              20
                            
- 
                              415
                              624
                            
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 7f713906-b4f7-457d-b43d-f57d3d074da3
- Multiplication
- Multiplication
- 
                          631
                          494
                          70
                          44
                        
- 
                          656
                          516
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 0a2032cc-6c9a-4eca-a40f-88736807e6ee
- A
- A
- true
- c7cec9be-11ae-4598-8068-2121d1ade51b
- 1
- 
                                  633
                                  496
                                  11
                                  20
                                
- 
                                  638.5
                                  506
                                
- Second item for multiplication
- 608f7e5e-b2e4-4880-9963-416c99f1afb4
- B
- B
- true
- 0623a205-c072-466d-92db-0da0f552f93b
- 1
- 
                                  633
                                  516
                                  11
                                  20
                                
- 
                                  638.5
                                  526
                                
- Result of multiplication
- b74f0585-4293-489c-9893-889377fac93a
- Result
- Result
- false
- 0
- 
                                  668
                                  496
                                  31
                                  40
                                
- 
                                  683.5
                                  516
                                
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- .5*L*(1/SIN(π/N))
- true
- f501d46e-90e6-461c-bb9e-83beabda9ca6
- Expression
- Expression
- 
                          479
                          314
                          207
                          44
                        
- 
                          573
                          336
                        
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4172d6f8-0262-47fa-b2fa-b487930372f8
- Variable L
- L
- true
- 7fbc35ee-c93d-4288-b414-b6d63a02edf6
- 1
- 
                                  481
                                  316
                                  11
                                  20
                                
- 
                                  486.5
                                  326
                                
- Expression variable
- 893d2f38-c3ff-432d-9562-99fe91034cc4
- Variable N
- N
- true
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
- 
                                  481
                                  336
                                  11
                                  20
                                
- 
                                  486.5
                                  346
                                
- Result of expression
- 871baec3-457c-4734-ae89-c9dc38a72254
- Result
- Result
- false
- 0
- 
                                  653
                                  316
                                  31
                                  40
                                
- 
                                  668.5
                                  336
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e186075d-d2c2-449d-87c8-80fdeafbef90
- Panel
- false
- 0
- 871baec3-457c-4734-ae89-c9dc38a72254
- 1
- Double click to edit panel content…
- 
                          856
                          337
                          160
                          100
                        
- 0
- 0
- 0
- 
                          856.2946
                          337.3611
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- R/(.5*(1/SIN(π/N)))
- true
- cd4acd9d-cbdc-4d38-97c4-be071e6d8e96
- Expression
- Expression
- 
                          234
                          -17
                          224
                          44
                        
- 
                          336
                          5
                        
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 47b5aec6-b919-47fa-aa50-c4074fdd094f
- Variable R
- R
- true
- 23d9f3a2-1454-4364-a19c-8801a4aa8e4a
- 1
- 
                                  236
                                  -15
                                  11
                                  20
                                
- 
                                  241.5
                                  -5
                                
- Expression variable
- e620dac2-b443-461d-8820-8f57e0929fbd
- Variable N
- N
- true
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
- 
                                  236
                                  5
                                  11
                                  20
                                
- 
                                  241.5
                                  15
                                
- Result of expression
- 845d88dc-f057-493a-b7e5-8c521e783992
- Result
- Result
- false
- 0
- 
                                  425
                                  -15
                                  31
                                  40
                                
- 
                                  440.5
                                  5
                                
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 79214b28-9042-4fce-9bff-aefa3c8afdce
- Division
- Division
- 
                          21
                          274
                          90
                          44
                        
- 
                          66
                          296
                        
- Item to divide (dividend)
- cd12f72c-b624-4a1d-b4e0-3e7090b7a7ef
- A
- A
- false
- 0
- 
                              23
                              276
                              31
                              20
                            
- 
                              38.5
                              286
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 360
- Item to divide with (divisor)
- 39527ecc-cc31-4e87-a0f0-71398918b3ef
- B
- B
- false
- f1fbb0e1-fe5e-40d2-841e-732012e40657
- 1
- 
                              23
                              296
                              31
                              20
                            
- 
                              38.5
                              306
                            
- The result of the Division
- c60648d6-21f7-4608-9114-2716dc67c91f
- Result
- Result
- false
- 0
- 
                              78
                              276
                              31
                              40
                            
- 
                              93.5
                              296
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- bc8d16e7-6518-4d54-9e28-8feae351da64
- Panel
- false
- 0
- 0623a205-c072-466d-92db-0da0f552f93b
- 1
- Double click to edit panel content…
- 
                          526
                          -153
                          160
                          100
                        
- 0
- 0
- 0
- 
                          526.2639
                          -152.3152
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 7f113fc2-d918-4a84-a319-cc5320e0abe4
- Reverse List
- Reverse List
- 
                          434
                          152
                          66
                          28
                        
- 
                          467
                          166
                        
- 1
- Base list
- ac476c41-08df-4926-99e5-227c0b7793d9
- List
- List
- false
- e19fe4db-d765-4b53-a8f1-aad962d839f5
- 1
- 
                              436
                              154
                              19
                              24
                            
- 
                              445.5
                              166
                            
- 1
- Reversed list
- a706ad0d-f779-4309-8a67-f57c406db026
- List
- List
- false
- 0
- 
                              479
                              154
                              19
                              24
                            
- 
                              488.5
                              166
                            
- a3371040-e552-4bc8-b0ff-10a840258e88
- Negative
- Compute the negative of a value.
- true
- 8bcc8ae8-e318-42a5-9758-a25fe9ea46a2
- Negative
- Negative
- 
                          633
                          248
                          88
                          28
                        
- 
                          676
                          262
                        
- Input value
- 79828215-32cc-45c1-a351-78dceaf8a991
- Value
- Value
- false
- e19fe4db-d765-4b53-a8f1-aad962d839f5
- 1
- 
                              635
                              250
                              29
                              24
                            
- 
                              649.5
                              262
                            
- Output value
- f8ca467e-c13d-4d81-8b30-5bc5193e7bbb
- Result
- Result
- false
- 0
- 
                              688
                              250
                              31
                              24
                            
- 
                              703.5
                              262
                            
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 9a46c0d6-1b86-4536-84b4-88cc87aa997c
- Merge
- Merge
- 
                          578
                          117
                          122
                          84
                        
- 
                          639
                          159
                        
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- b5578463-fe15-4eb8-ac35-f137bf5743f4
- 1
- false
- Data 1
- D1
- true
- a706ad0d-f779-4309-8a67-f57c406db026
- 1
- 
                                  580
                                  119
                                  47
                                  20
                                
- 
                                  611.5
                                  129
                                
- 2
- Data stream 2
- ae7d37b7-f367-48cc-8f9a-45ba6583d329
- 1
- false
- Data 2
- D2
- true
- 0
- 
                                  580
                                  139
                                  47
                                  20
                                
- 
                                  611.5
                                  149
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 2
- Data stream 3
- d1b0650a-6115-4b34-95b2-d759d434da03
- 1
- false
- Data 3
- D3
- true
- f8ca467e-c13d-4d81-8b30-5bc5193e7bbb
- 1
- 
                                  580
                                  159
                                  47
                                  20
                                
- 
                                  611.5
                                  169
                                
- 2
- Data stream 4
- d9d34c99-475c-4a79-b95a-a25471df3fb7
- false
- Data 4
- D4
- true
- 0
- 
                                  580
                                  179
                                  47
                                  20
                                
- 
                                  611.5
                                  189
                                
- 2
- Result of merge
- bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca
- 1
- Result
- Result
- false
- 0
- 
                                  651
                                  119
                                  47
                                  80
                                
- 
                                  666.5
                                  159
                                
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 66885faa-16ff-4dcc-883a-2cc9528f684e
- Reverse List
- Reverse List
- 
                          511
                          -21
                          66
                          28
                        
- 
                          544
                          -7
                        
- 1
- Base list
- 4b0852c3-fa4d-4bc2-ae8d-7e187a5a9b96
- List
- List
- false
- be464ca1-422c-476c-b2a6-f6710f1fc6f5
- 1
- 
                              513
                              -19
                              19
                              24
                            
- 
                              522.5
                              -7
                            
- 1
- Reversed list
- a79dc447-c143-4e69-af36-d93bb673c4f4
- List
- List
- false
- 0
- 
                              556
                              -19
                              19
                              24
                            
- 
                              565.5
                              -7
                            
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 7e129286-32cc-4d60-9d6d-04c9446f6282
- Merge
- Merge
- 
                          675
                          -29
                          122
                          84
                        
- 
                          736
                          13
                        
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 40957671-acb8-405a-9dda-8d9bd7232911
- 1
- false
- Data 1
- D1
- true
- a79dc447-c143-4e69-af36-d93bb673c4f4
- 1
- 
                                  677
                                  -27
                                  47
                                  20
                                
- 
                                  708.5
                                  -17
                                
- 2
- Data stream 2
- b530795a-c051-456a-86c1-7a0b4ece28be
- 1
- false
- Data 2
- D2
- true
- 0
- 
                                  677
                                  -7
                                  47
                                  20
                                
- 
                                  708.5
                                  3
                                
- 2
- Data stream 3
- 5ef29980-07e3-443d-8b13-3534b6d2daa8
- 1
- false
- Data 3
- D3
- true
- be464ca1-422c-476c-b2a6-f6710f1fc6f5
- 1
- 
                                  677
                                  13
                                  47
                                  20
                                
- 
                                  708.5
                                  23
                                
- 2
- Data stream 4
- 08749507-1829-4296-8479-604964a24385
- false
- Data 4
- D4
- true
- 0
- 
                                  677
                                  33
                                  47
                                  20
                                
- 
                                  708.5
                                  43
                                
- 2
- Result of merge
- d5996e27-1db2-4cfd-81c0-ba62a76266d3
- 1
- Result
- Result
- false
- 0
- 
                                  748
                                  -27
                                  47
                                  80
                                
- 
                                  763.5
                                  13
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 21c33c2f-9fca-4a36-986e-1011355096ea
- Panel
- false
- 0
- bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca
- 1
- Double click to edit panel content…
- 
                          1020
                          -57
                          160
                          479
                        
- 0
- 0
- 0
- 
                          1020.859
                          -56.40537
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 20d638e5-5eab-4294-9eb2-e332f163c51f
- List Item
- List Item
- 
                          752
                          493
                          77
                          64
                        
- 
                          809
                          525
                        
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- dca67d8b-109c-4519-8679-2f289d90be84
- List
- List
- false
- c88c0b93-14b6-40b3-a27f-00ff79f7b13c
- 1
- 
                                  754
                                  495
                                  43
                                  20
                                
- 
                                  775.5
                                  505
                                
- Item index
- 2873bc33-81bd-45b7-9091-864600654a23
- Index
- Index
- false
- 0
- 
                                  754
                                  515
                                  43
                                  20
                                
- 
                                  775.5
                                  525
                                
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 2b291a54-118f-4855-9d9b-c247bbb61a58
- Wrap
- Wrap
- false
- 0
- 
                                  754
                                  535
                                  43
                                  20
                                
- 
                                  775.5
                                  545
                                
- 1
- 1
- {0}
- true
- Item at {i'}
- 733e62a8-108b-451e-a02f-fefecafbcf4e
- false
- Item
- i
- false
- 0
- 
                                  821
                                  495
                                  6
                                  60
                                
- 
                                  824
                                  525
                                
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 1c65cddb-9bca-4abc-a88b-4eebe341e2b8
- Deconstruct
- Deconstruct
- 
                          865
                          499
                          120
                          64
                        
- 
                          906
                          531
                        
- Input point
- e43ffa74-15cc-4939-91c8-a9bbfb57563e
- Point
- Point
- false
- 733e62a8-108b-451e-a02f-fefecafbcf4e
- 1
- 
                              867
                              501
                              27
                              60
                            
- 
                              880.5
                              531
                            
- Point {x} component
- c48f2a86-4388-4b9b-a155-5f9d30e70ed5
- X component
- X component
- false
- 0
- 
                              918
                              501
                              65
                              20
                            
- 
                              950.5
                              511
                            
- Point {y} component
- c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f
- Y component
- Y component
- false
- 0
- 
                              918
                              521
                              65
                              20
                            
- 
                              950.5
                              531
                            
- Point {z} component
- 20ab697b-7ea5-45b0-9a27-0c47130264ef
- Z component
- Z component
- false
- 0
- 
                              918
                              541
                              65
                              20
                            
- 
                              950.5
                              551
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e4a3a123-a46a-4ffe-9866-096c857bfd95
- Panel
- false
- 0
- fe9b2349-403b-4c80-bf8e-3415f7e9017a
- 1
- Double click to edit panel content…
- 
                          -110
                          -81
                          116
                          20
                        
- 0
- 0
- 0
- 
                          -109.6386
                          -80.95573
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1706b589-82a3-484e-8bb3-c9784fb4ea88
- Panel
- false
- 0
- 12a00da0-f03d-412c-99e3-24174bf36562
- 1
- Double click to edit panel content…
- 
                          -109
                          0
                          118
                          20
                        
- 0
- 0
- 0
- 
                          -108.8092
                          0.6788788
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- b241a6a3-6e71-4ff3-95dd-95c013252b2b
- Division
- Division
- 
                          1117
                          499
                          70
                          44
                        
- 
                          1142
                          521
                        
- Item to divide (dividend)
- 93b650fe-9575-4d53-a3ea-1bb3acc7ac2f
- A
- A
- false
- c48f2a86-4388-4b9b-a155-5f9d30e70ed5
- 1
- 
                              1119
                              501
                              11
                              20
                            
- 
                              1124.5
                              511
                            
- Item to divide with (divisor)
- b5d9a2c7-a217-4fe1-86b3-eb50e420e921
- B
- B
- false
- c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f
- 1
- 
                              1119
                              521
                              11
                              20
                            
- 
                              1124.5
                              531
                            
- The result of the Division
- 118e674e-db63-4847-b023-71a1ecd9c236
- Result
- Result
- false
- 0
- 
                              1154
                              501
                              31
                              40
                            
- 
                              1169.5
                              521
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- eefae472-b11a-4e30-a3af-f2edf06a8f62
- Panel
- false
- 0
- 07b602e6-3f30-4265-8f7b-014173103908
- 1
- Double click to edit panel content…
- 
                          -110
                          -40
                          116
                          20
                        
- 0
- 0
- 0
- 
                          -109.8456
                          -39.18073
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- ef7b22da-b20f-421c-87e5-2e9f24448f61
- true
- DotNET VB Script (LEGACY)
- Turtle
- 0
-     Dim i As Integer
    Dim dir As New On3dVector(1, 0, 0)
    Dim pos As New On3dVector(0, 0, 0)
    Dim axis As New On3dVector(0, 0, 1)
    Dim pnts As New List(Of On3dVector)
    pnts.Add(pos)
    For i = 0 To Forward.Count() - 1
      Dim P As New On3dVector
      dir.Rotate(Left(i), axis)
      P = dir * Forward(i) + pnts(i)
      pnts.Add(P)
    Next
    Points = pnts
- 
                          1751
                          8294
                          104
                          44
                        
- 
                          1806
                          8316
                        
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- fd045b5b-1058-41aa-b97b-59bfbe37a445
- true
- Forward
- Forward
- true
- 1
- true
- 7e67df61-227f-4e08-8fea-e7dad9589772
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              1753
                              8296
                              41
                              20
                            
- 
                              1773.5
                              8306
                            
- 1
- false
- Script Variable Left
- e27890c1-ddf5-43e8-aa7c-855130530b9f
- true
- Left
- Left
- true
- 1
- true
- 23600005-afd8-49b3-9cdc-f94db3ed139f
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              1753
                              8316
                              41
                              20
                            
- 
                              1773.5
                              8326
                            
- Print, Reflect and Error streams
- 59490336-0317-48ab-8fa9-f2f20609911c
- true
- Output
- Output
- false
- 0
- 
                              1818
                              8296
                              35
                              20
                            
- 
                              1835.5
                              8306
                            
- Output parameter Points
- 6840a0ad-a870-47ab-bde6-1fa3333a7543
- true
- Points
- Points
- false
- 0
- 
                              1818
                              8316
                              35
                              20
                            
- 
                              1835.5
                              8326
                            
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 5c241406-61cd-4678-b6c8-910e404014a9
- Point
- Point
- false
- 6840a0ad-a870-47ab-bde6-1fa3333a7543
- 1
- 
                          1848
                          8214
                          50
                          24
                        
- 
                          1873.7
                          8226.781
                        
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 63398084-0450-4259-9328-14f137aafbf6
- Interpolate
- Interpolate
- 
                          1439
                          7976
                          197
                          84
                        
- 
                          1584
                          8018
                        
- 1
- Interpolation points
- 0079b3b3-5e0d-4669-8059-717b19e83522
- Vertices
- Vertices
- false
- 5c241406-61cd-4678-b6c8-910e404014a9
- 1
- 
                              1441
                              7978
                              131
                              20
                            
- 
                              1506.5
                              7988
                            
- Curve degree
- f131594d-f681-40b3-ae43-d4d2fb1d04c5
- Degree
- Degree
- false
- 0
- 
                              1441
                              7998
                              131
                              20
                            
- 
                              1506.5
                              8008
                            
- 1
- 1
- {0}
- 1
- Periodic curve
- 167576c0-ddfd-4da2-a2b8-bc93ee9de310
- Periodic
- Periodic
- false
- 0
- 
                              1441
                              8018
                              131
                              20
                            
- 
                              1506.5
                              8028
                            
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- abb2709c-5d24-446c-be6b-d0277ec8791d
- KnotStyle
- KnotStyle
- false
- 0
- 
                              1441
                              8038
                              131
                              20
                            
- 
                              1506.5
                              8048
                            
- 1
- 1
- {0}
- 1
- Resulting nurbs curve
- 1f58aef3-68df-4afa-abcb-766ccf636dd2
- Curve
- Curve
- false
- 0
- 
                              1596
                              7978
                              38
                              26
                            
- 
                              1615
                              7991.333
                            
- Curve length
- 95a44c5f-50e2-48d0-a7c6-c7c016870137
- Length
- Length
- false
- 0
- 
                              1596
                              8004
                              38
                              27
                            
- 
                              1615
                              8018
                            
- Curve domain
- e0a12ce0-d875-401f-91ce-0007c6b27dc0
- Domain
- Domain
- false
- 0
- 
                              1596
                              8031
                              38
                              27
                            
- 
                              1615
                              8044.667
                            
- 0d2ccfb3-9d41-4759-9452-da6a522c3eaa
- Pi
- Returns a factor of Pi.
- true
- effc9ff2-741c-4863-855b-3a155ab1d9a1
- Pi
- Pi
- 
                          1034
                          8181
                          112
                          28
                        
- 
                          1097
                          8195
                        
- Factor to be multiplied by Pi
- d17006a4-ce99-41fe-8ecd-7966c23c3d7a
- Factor
- Factor
- false
- 0
- 
                              1036
                              8183
                              49
                              24
                            
- 
                              1060.5
                              8195
                            
- 1
- 1
- {0}
- 2
- Output value
- b5428967-7bc3-4973-a90b-95ea5e112e93
- Output
- Output
- false
- 0
- 
                              1109
                              8183
                              35
                              24
                            
- 
                              1126.5
                              8195
                            
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 19e600ed-4d93-474e-9270-60871e3ea572
- Division
- Division
- 
                          1241
                          8202
                          70
                          44
                        
- 
                          1266
                          8224
                        
- Item to divide (dividend)
- 09773635-d7f3-4dee-bcc5-d34fb2031ac1
- A
- A
- false
- b5428967-7bc3-4973-a90b-95ea5e112e93
- 1
- 
                              1243
                              8204
                              11
                              20
                            
- 
                              1248.5
                              8214
                            
- Item to divide with (divisor)
- e52a2212-3eda-4183-af6c-93c16d4cb773
- B
- B
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
- 
                              1243
                              8224
                              11
                              20
                            
- 
                              1248.5
                              8234
                            
- The result of the Division
- f5876fb4-0209-47b9-89c8-779610d79b15
- Result
- Result
- false
- 0
- 
                              1278
                              8204
                              31
                              40
                            
- 
                              1293.5
                              8224
                            
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- feacff2e-50e3-4537-ac1b-4450d7a3cae4
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 63.0
- 
                          506
                          8513
                          250
                          20
                        
- 
                          506.2305
                          8513.215
                        
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 95efbcb9-4866-4cc7-8946-58ac406c0650
- Duplicate Data
- Duplicate Data
- 
                          1595
                          8256
                          102
                          64
                        
- 
                          1658
                          8288
                        
- 1
- Data to duplicate
- 3714f2eb-dd48-4a34-a0aa-888903093857
- Data
- Data
- false
- f5876fb4-0209-47b9-89c8-779610d79b15
- 1
- 
                              1597
                              8258
                              49
                              20
                            
- 
                              1621.5
                              8268
                            
- Number of duplicates
- 7e939ba2-797c-4137-b8a8-d430da27e930
- Number
- Number
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
- 
                              1597
                              8278
                              49
                              20
                            
- 
                              1621.5
                              8288
                            
- 1
- 1
- {0}
- 2
- Retain list order
- 95b2b7dd-614a-42ae-bf10-1aff9572036e
- Order
- Order
- false
- 0
- 
                              1597
                              8298
                              49
                              20
                            
- 
                              1621.5
                              8308
                            
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 7e67df61-227f-4e08-8fea-e7dad9589772
- Data
- Data
- false
- 0
- 
                              1670
                              8258
                              25
                              60
                            
- 
                              1682.5
                              8288
                            
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b37d3ce8-3c7b-462a-ad59-ec77ca864ff9
- Quick Graph
- Quick Graph
- false
- 0
- 23600005-afd8-49b3-9cdc-f94db3ed139f
- 1
- 
                          2104
                          8257
                          150
                          150
                        
- 
                          2104.25
                          8257.683
                        
- -1
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- a159a761-225a-47bc-bd40-22ea126c629b
- Series
- Series
- 
                          1579
                          8345
                          122
                          64
                        
- 
                          1656
                          8377
                        
- First number in the series
- bd1dd0f1-5f6e-4438-9280-e9898072b190
- Start
- Start
- false
- 0
- 
                              1581
                              8347
                              63
                              20
                            
- 
                              1620.5
                              8357
                            
- 1
- 1
- {0}
- 0
- Step size for each successive number
- f00e9eae-ae27-417b-8d69-e7ba1904dc47
- Step
- Step
- false
- 422f40c8-6c25-44c9-bedb-da6dc0b54fd9
- 1
- 
                              1581
                              8367
                              63
                              20
                            
- 
                              1620.5
                              8377
                            
- 1
- 1
- {0}
- 1
- Number of values in the series
- 9f5b0947-9738-43af-8617-f16229f943ba
- X+1
- Count
- Count
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
- 
                              1581
                              8387
                              63
                              20
                            
- 
                              1620.5
                              8397
                            
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- a3febab5-0271-4176-b12a-837fcb0b83d6
- Series
- Series
- false
- 0
- 
                              1668
                              8347
                              31
                              60
                            
- 
                              1683.5
                              8377
                            
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- d3b99e99-94b2-4d3b-a5b9-6791f7fbcf1f
- Division
- Division
- 
                          1055
                          8433
                          70
                          44
                        
- 
                          1080
                          8455
                        
- Item to divide (dividend)
- 437989cf-f5bc-4a29-8bf3-2053b6564069
- A
- A
- false
- 087687ee-5b85-4a79-9b21-7b21c6a77520
- 1
- 
                              1057
                              8435
                              11
                              20
                            
- 
                              1062.5
                              8445
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- Pi
- Item to divide with (divisor)
- 6702514d-d709-4347-b6df-b5df7b7df591
- B
- B
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
- 
                              1057
                              8455
                              11
                              20
                            
- 
                              1062.5
                              8465
                            
- The result of the Division
- 30e03bf5-47ab-4743-8ca6-661654fa103d
- Result
- Result
- false
- 0
- 
                              1092
                              8435
                              31
                              40
                            
- 
                              1107.5
                              8455
                            
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- b02bc189-98fc-45be-8330-ec7401fd8524
- Series
- Series
- 
                          1109
                          8603
                          106
                          64
                        
- 
                          1170
                          8635
                        
- First number in the series
- f92f6d5f-73bb-41d2-8dc8-3a376687a5a9
- Start
- Start
- false
- 0
- 
                              1111
                              8605
                              47
                              20
                            
- 
                              1134.5
                              8615
                            
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 13e63881-4ca1-4f87-83da-29e52a136cb6
- Step
- Step
- false
- 30e03bf5-47ab-4743-8ca6-661654fa103d
- 1
- 
                              1111
                              8625
                              47
                              20
                            
- 
                              1134.5
                              8635
                            
- 1
- 1
- {0}
- 1
- Number of values in the series
- 9c323bdd-446a-4b22-8a2f-aca538e02cef
- Count
- Count
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
- 
                              1111
                              8645
                              47
                              20
                            
- 
                              1134.5
                              8655
                            
- 1
- 1
- {0}
- 16
- 1
- Series of numbers
- 9ba20636-1b4f-4f30-88d1-ccd070ba1f32
- Series
- Series
- false
- 0
- 
                              1182
                              8605
                              31
                              60
                            
- 
                              1197.5
                              8635
                            
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- 7f12f249-7659-48dc-8774-d8dcb4014948
- Power
- Power
- 
                          1195
                          8375
                          85
                          44
                        
- 
                          1235
                          8397
                        
- The item to be raised
- 05c526ea-ba6f-4b1f-b463-e5886b50b151
- A
- A
- false
- 9ba20636-1b4f-4f30-88d1-ccd070ba1f32
- 1
- 
                              1197
                              8377
                              26
                              20
                            
- 
                              1210
                              8387
                            
- The exponent
- 0da0f993-8b6b-4b81-85c8-6b46088bc636
- B
- B
- false
- 0
- 
                              1197
                              8397
                              26
                              20
                            
- 
                              1210
                              8407
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- A raised to the B power
- 3cd244e7-2aba-4f95-8566-03dc0fea7a2d
- Result
- Result
- false
- 0
- 
                              1247
                              8377
                              31
                              40
                            
- 
                              1262.5
                              8397
                            
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 29bec5af-d71f-4b18-b185-c780701e9c65
- Relative Differences
- Relative Differences
- 
                          1306
                          8356
                          116
                          28
                        
- 
                          1353
                          8370
                        
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 8a3e4a46-60b5-4cd7-b23c-80e2d63b0311
- Values
- Values
- false
- 3cd244e7-2aba-4f95-8566-03dc0fea7a2d
- 1
- 
                              1308
                              8358
                              33
                              24
                            
- 
                              1324.5
                              8370
                            
- 1
- Differences between consecutive items
- 6ecfdbf0-d6ed-416d-ae60-dc1cd2f30b14
- Differenced
- Differenced
- false
- 0
- 
                              1365
                              8358
                              55
                              24
                            
- 
                              1392.5
                              8370
                            
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- d496411c-0e08-4f19-8c68-12df038a1cec
- List Item
- List Item
- 
                          1464
                          8354
                          77
                          64
                        
- 
                          1521
                          8386
                        
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 2bc8b542-a3b1-49f2-8e63-0ddfd4da1235
- List
- List
- false
- 6ecfdbf0-d6ed-416d-ae60-dc1cd2f30b14
- 1
- 
                                  1466
                                  8356
                                  43
                                  20
                                
- 
                                  1487.5
                                  8366
                                
- Item index
- 80fd802f-ac9a-453e-8304-f69ee4cc0bad
- Index
- Index
- false
- 0
- 
                                  1466
                                  8376
                                  43
                                  20
                                
- 
                                  1487.5
                                  8386
                                
- 1
- 1
- {0}
- 1
- Wrap index to list bounds
- 132fbf1d-fa65-4a75-b78b-358d4a9f1143
- Wrap
- Wrap
- false
- 0
- 
                                  1466
                                  8396
                                  43
                                  20
                                
- 
                                  1487.5
                                  8406
                                
- 1
- 1
- {0}
- true
- Item at {i'}
- 422f40c8-6c25-44c9-bedb-da6dc0b54fd9
- false
- Item
- i
- false
- 0
- 
                                  1533
                                  8356
                                  6
                                  60
                                
- 
                                  1536
                                  8386
                                
- 0d2ccfb3-9d41-4759-9452-da6a522c3eaa
- Pi
- Returns a factor of Pi.
- true
- f8fd5bf9-b1ba-477c-ac09-f12dbb0d08b7
- Pi
- Pi
- 
                          885
                          8396
                          95
                          28
                        
- 
                          931
                          8410
                        
- Factor to be multiplied by Pi
- 754ee990-be8c-4cb0-a171-80cebfb39821
- Factor
- Factor
- false
- 5ce031d5-550e-4710-ac8a-f97d9d9ec811
- 1
- 
                              887
                              8398
                              32
                              24
                            
- 
                              903
                              8410
                            
- 1
- 1
- {0}
- 2
- Output value
- 087687ee-5b85-4a79-9b21-7b21c6a77520
- Output
- Output
- false
- 0
- 
                              943
                              8398
                              35
                              24
                            
- 
                              960.5
                              8410
                            
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 6227facb-1359-4bc9-8a73-12332e396c9c
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 8.0
- 
                          454
                          8377
                          250
                          20
                        
- 
                          454.3884
                          8377.877
                        
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- fa6f6ed3-8022-4333-9e94-6c5db08fe4eb
- Bounds
- Bounds
- 
                          1472
                          8569
                          110
                          28
                        
- 
                          1530
                          8583
                        
- 1
- Numbers to include in Bounds
- 6fee80bf-b69e-4deb-8ded-13a85bc7ece7
- Numbers
- Numbers
- false
- a3febab5-0271-4176-b12a-837fcb0b83d6
- 1
- 
                              1474
                              8571
                              44
                              24
                            
- 
                              1496
                              8583
                            
- Numeric Domain between the lowest and highest numbers in {N}
- 6f69003f-1e11-417d-8dce-8be904a546f9
- Domain
- Domain
- false
- 0
- 
                              1542
                              8571
                              38
                              24
                            
- 
                              1561
                              8583
                            
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 41f87425-df39-4e1f-bc61-a8f5c18e33a3
- Deconstruct Domain
- Deconstruct Domain
- 
                          1625
                          8541
                          92
                          44
                        
- 
                          1677
                          8563
                        
- Base domain
- 21c2532b-843d-4f8b-ad74-ecdefdba10c2
- Domain
- Domain
- false
- 6f69003f-1e11-417d-8dce-8be904a546f9
- 1
- 
                              1627
                              8543
                              38
                              40
                            
- 
                              1646
                              8563
                            
- Start of domain
- 65ed304d-edc4-4a09-945e-c299554c1818
- Start
- Start
- false
- 0
- 
                              1689
                              8543
                              26
                              20
                            
- 
                              1702
                              8553
                            
- End of domain
- 089c5e76-4804-4fcf-8f98-119c1fd40e7b
- End
- End
- false
- 0
- 
                              1689
                              8563
                              26
                              20
                            
- 
                              1702
                              8573
                            
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- 2/M-acos(cos(x*M/(4)^N))/pi/M*2
- true
- c19c7708-89b4-4d41-a5f6-2a51bc0d8618
- Expression
- Expression
- 
                          1766
                          8422
                          299
                          64
                        
- 
                          1919
                          8454
                        
- 3
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4f73ab90-d9c2-4189-96c3-f7ceb3560707
- Variable X
- X
- true
- a3febab5-0271-4176-b12a-837fcb0b83d6
- 1
- 
                                  1768
                                  8424
                                  13
                                  20
                                
- 
                                  1774.5
                                  8434
                                
- Expression variable
- 65f88199-8270-4b57-b0a1-ab7b5996f9f3
- Variable M
- M
- true
- 089c5e76-4804-4fcf-8f98-119c1fd40e7b
- 1
- 
                                  1768
                                  8444
                                  13
                                  20
                                
- 
                                  1774.5
                                  8454
                                
- Expression variable
- bc07ff13-3e3a-4bd7-af78-bb649c9e89ee
- Variable N
- N
- true
- e7e40e74-e4a9-4cfa-8865-866414e101d5
- 1
- 
                                  1768
                                  8464
                                  13
                                  20
                                
- 
                                  1774.5
                                  8474
                                
- Result of expression
- 23600005-afd8-49b3-9cdc-f94db3ed139f
- Result
- false
- 0
- 
                                  2057
                                  8424
                                  6
                                  60
                                
- 
                                  2060
                                  8454
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a87d0fb1-539b-41ce-a26a-b4dcf5b1b5fd
- Panel
- false
- 1
- 23600005-afd8-49b3-9cdc-f94db3ed139f
- 1
- Double click to edit panel content…
- 
                          2109
                          8442
                          160
                          427
                        
- 0
- 0
- 0
- 
                          2109.659
                          8442.332
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 97020dcf-606f-47a4-ab0d-e1e8f271fb8d
- Panel
- false
- 0
- a3febab5-0271-4176-b12a-837fcb0b83d6
- 1
- Double click to edit panel content…
- 
                          1798
                          8514
                          160
                          427
                        
- 0
- 0
- 0
- 
                          1798.659
                          8514.332
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1c950b7d-6e97-42a7-be91-b200f898b18f
- Panel
- false
- 0
- 0
- acos(cos(x*M/(4)/1))/pi/M*2
1/M-cos(x*M/4)/M*1
1/M-cos(x*M/(4)^N)/M
acos(cos(x*M/(4)^N))/pi/M*2
2/M-acos(cos(x*M/(4)^N))/pi/M*2
- 
                          2285
                          8562
                          160
                          100
                        
- 0
- 0
- 0
- 
                          2285.659
                          8562.332
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e7e40e74-e4a9-4cfa-8865-866414e101d5
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 3.0
- 
                          509
                          8636
                          250
                          20
                        
- 
                          509.7244
                          8636.291
                        
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 7589060f-5d73-4d28-9ae2-cdee4613db19
- Multiplication
- Multiplication
- 
                          818
                          8479
                          70
                          44
                        
- 
                          843
                          8501
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- f1e2ab25-8f12-4966-beaf-aabe3350f631
- A
- A
- true
- feacff2e-50e3-4537-ac1b-4450d7a3cae4
- 1
- 
                                  820
                                  8481
                                  11
                                  20
                                
- 
                                  825.5
                                  8491
                                
- Second item for multiplication
- 5457775d-df24-4b87-9fa0-0f9070a5b613
- B
- B
- true
- 1fc3214e-bc6b-438b-a612-257a7963060a
- 1
- 
                                  820
                                  8501
                                  11
                                  20
                                
- 
                                  825.5
                                  8511
                                
- Result of multiplication
- d0fd4455-ef6a-40ab-bf66-a1a06d0f359b
- Result
- Result
- false
- 0
- 
                                  855
                                  8481
                                  31
                                  40
                                
- 
                                  870.5
                                  8501
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- Relay
- false
- d0fd4455-ef6a-40ab-bf66-a1a06d0f359b
- 1
- 
                          907
                          8499
                          40
                          16
                        
- 
                          927
                          8507
                        
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 3739f329-0285-4b2e-ac4c-a8d100233f51
- Multiplication
- Multiplication
- 
                          773
                          8335
                          70
                          44
                        
- 
                          798
                          8357
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- b748839d-75e4-4877-b212-7eddb6662943
- A
- A
- true
- 6227facb-1359-4bc9-8a73-12332e396c9c
- 1
- 
                                  775
                                  8337
                                  11
                                  20
                                
- 
                                  780.5
                                  8347
                                
- Second item for multiplication
- 3541e88a-f4fd-4d36-87a1-cc0f6cdb1331
- B
- B
- true
- 1fc3214e-bc6b-438b-a612-257a7963060a
- 1
- 
                                  775
                                  8357
                                  11
                                  20
                                
- 
                                  780.5
                                  8367
                                
- Result of multiplication
- 5ce031d5-550e-4710-ac8a-f97d9d9ec811
- Result
- Result
- false
- 0
- 
                                  810
                                  8337
                                  31
                                  40
                                
- 
                                  825.5
                                  8357
                                
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- f775f8ef-72f5-4450-9f33-f67c7addf15e
- Power
- Power
- 
                          684
                          8432
                          85
                          44
                        
- 
                          724
                          8454
                        
- The item to be raised
- 6ff9cadb-ce5e-4bbe-a18e-4c62289ec994
- A
- A
- false
- 0
- 
                              686
                              8434
                              26
                              20
                            
- 
                              699
                              8444
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 6241507d-85d7-495b-8812-bb17ccd1f133
- B
- B
- false
- 390d4b65-0f4c-4379-bea3-25ff8980556d
- 1
- 
                              686
                              8454
                              26
                              20
                            
- 
                              699
                              8464
                            
- A raised to the B power
- 1fc3214e-bc6b-438b-a612-257a7963060a
- Result
- Result
- false
- 0
- 
                              736
                              8434
                              31
                              40
                            
- 
                              751.5
                              8454
                            
- 9c007a04-d0d9-48e4-9da3-9ba142bc4d46
- Subtraction
- Mathematical subtraction
- true
- ac482cf8-8042-478c-a153-b403db159440
- Subtraction
- Subtraction
- 
                          593
                          8555
                          85
                          44
                        
- 
                          633
                          8577
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First operand for subtraction
- 16deb2d3-84bc-41f7-a6a0-152e9348f5f1
- A
- A
- true
- e7e40e74-e4a9-4cfa-8865-866414e101d5
- 1
- 
                                  595
                                  8557
                                  26
                                  20
                                
- 
                                  608
                                  8567
                                
- Second operand for subtraction
- 9ea16d4f-3008-444c-b245-36c78633a93b
- B
- B
- true
- 0
- 
                                  595
                                  8577
                                  26
                                  20
                                
- 
                                  608
                                  8587
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Result of subtraction
- 390d4b65-0f4c-4379-bea3-25ff8980556d
- Result
- Result
- false
- 0
- 
                                  645
                                  8557
                                  31
                                  40
                                
- 
                                  660.5
                                  8577
                                
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
- 
                      255;255;255;255
                    
- A group of Grasshopper objects
- e4a3a123-a46a-4ffe-9866-096c857bfd95
- 1706b589-82a3-484e-8bb3-c9784fb4ea88
- eefae472-b11a-4e30-a3af-f2edf06a8f62
- 3
- a7e16223-7e7f-47a9-a6a4-1798355eced1
- Group
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 08f95884-61d8-41f8-9981-a49261f89170
- Division
- Division
- 
                          134
                          220
                          49
                          44
                        
- 
                          163
                          242
                        
- Item to divide (dividend)
- 15f59732-d55b-4064-bfcf-d92a0d4a7554
- A
- false
- f1fbb0e1-fe5e-40d2-841e-732012e40657
- 1
- 
                              136
                              222
                              15
                              20
                            
- 
                              143.5
                              232
                            
- Item to divide with (divisor)
- 13d0d6f9-cb1f-40ca-910c-0316229f403f
- B
- false
- 0
- 
                              136
                              242
                              15
                              20
                            
- 
                              143.5
                              252
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- f9f71a55-f522-4a2a-a443-1fc9358ef7f9
- Result
- false
- 0
- 
                              175
                              222
                              6
                              40
                            
- 
                              178
                              242
                            
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 8efc9f10-8cb0-403b-8685-a3d111daf33a
- Interpolate
- Interpolate
- 
                          546
                          -273
                          225
                          84
                        
- 
                          719
                          -231
                        
- 1
- Interpolation points
- 8a719936-af83-4cbf-b0ed-2084e2c21b39
- Vertices
- Vertices
- false
- 7f737f09-6227-4105-9ed2-0609a54e83ce
- 1
- 
                              548
                              -271
                              159
                              20
                            
- 
                              627.5
                              -261
                            
- Curve degree
- 83765e12-d3f7-43b5-8493-73ab54796ff6
- Degree
- Degree
- false
- 0
- 
                              548
                              -251
                              159
                              20
                            
- 
                              627.5
                              -241
                            
- 1
- 1
- {0}
- 3
- Periodic curve
- 099b5b20-3e92-4e05-8202-860af9f51fd3
- Periodic
- Periodic
- false
- 0
- 
                              548
                              -231
                              159
                              20
                            
- 
                              627.5
                              -221
                            
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 96546139-2197-41d8-a62f-50f7801e11f7
- KnotStyle
- KnotStyle
- false
- 0
- 
                              548
                              -211
                              159
                              20
                            
- 
                              627.5
                              -201
                            
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- fe2c7fd3-a20d-49fe-8b1d-09361e90e45d
- Curve
- Curve
- false
- 0
- 
                              731
                              -271
                              38
                              26
                            
- 
                              750
                              -257.6667
                            
- Curve length
- a2c92f41-aee7-4cf7-a313-7c3e8badc964
- Length
- Length
- false
- 0
- 
                              731
                              -245
                              38
                              27
                            
- 
                              750
                              -231
                            
- Curve domain
- a05c8f68-8b87-484d-9af1-b77025d32b4f
- Domain
- Domain
- false
- 0
- 
                              731
                              -218
                              38
                              27
                            
- 
                              750
                              -204.3333
                            
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
- 
                      7H0HXBNZ13dQpEpRUVAUgxXp2FFZCSEUCUVBxU4gAaIhiUlQsC0q9oaKitiwd8GOvWFby9p7X1exrdjLqnz3TmZCZjIzJA8B8nzv4/50YU7mZuZ/zj3l3nPPMQuUJKSmCMSKUvDHiMFg1AJ/raWi1CSheMgIgUwulIghKQpchmT4xxR+BLsvRMDjC2TwI7VQsgVGCg2El83Bpb7B959FD1oROeWuInKzLHWVaZRMMEIoGAnpFoBuEp0MRuHboJfDBfLkmHSpAJJrol9shdIiJLIUnghSWoCrK1euLMXuihaIBAkKAR+jCYXCUrtAQaJQLFSAt4iSSaQCmUIokGPDwr/GgTwF8j1m4Jedj1Omz51y18wyUCBPkAmlCvTl4SMyjCN4KQLstzc1Y0OCPT2f7F78cvk08O+TRfng38eLtj9etAv5Afl111r479zZyL9Zj+cuUH3yUk4E/Hl+JhxhIbzlydI1qp8fZ89/nL1A9bHHizaqRlN+TDnIy0U74fXF43Ffjd2LPhJK3Yh/vGVl3zs9F/nwTLqfczepBkT/Ra/Q3oX8jL4R8o1qD7BR9Wzoc2KPXfYZhKp8R/RLkXdHUUVGQPHB7tVEUokwirbyizBGoHxBR8OxD4UX4aynZ3BIrHkvIGFwKsixaQL/WGFX2ZJU5QSqiU0BIGxDgTCi8lMDvWwSw5MlCZBPOsGp9rW0dEAdIFn9JZIUbAZNaBzXvVYfIM64rzKHVzS+xrxXgpTLS5ekKtQ/axEsk6RKNT5cOziExRXGy3gydAoYoTOrFu6j8Iqp8nPpyDOjt9uy5HJBSrwoPShVJFKfCqyo1MREgSxRKE92Z/ZRagy/dp7e8D93JjtVpEiVCfzEglSFjCdyZ0alxouECWGC9BjJMIHYTwxGs8GG7lOmb+DIpugoJqxURbJEhl22ChcmJPMEImaULF0iqxHKx7TMyuJljYf49OHmm8wR/iq2GIWbsRZlj2lK8T11ypRFZDxknwqmPoCDlsprOLDgdRPldYhRDRQ/4+DeZbrPZ02vkwPyNwZtWGNz7vi4TwtxT1UL4ZU5WyJW8IRipR51QUcxCZDIUNWKMcaELRFJUmWYhoP/J9NVTixmEhyXKUlkBst4cnmyRAp0H1OifKsaoYGI9IC/83u9HNPvY1LEdK9Xnt9fpC4EJCOUVBp35/rD+y3CsntuH5Jz/g8LQKqBkmSjf7kXe1sG5v+R/9qxIKw+INVESU+cu/COes7gbl612eeNwMYFkIxR0vbTrBHfHR1Cjjx7NKezrfMDQKqFkj5cf1K4ql4xN+/Z80GZsZtfAJIJSlpxsJ3d9Z+1gw8Z1Sgc55TzHZBMUZI0n7t8s00XTkaD2azQluNGApIZSprw+SDD+rBxZMHBzkaX9wavASRzlDT1xMneR/6y4m7JfDK384uvboBkgZLEezxennqxjbPp0eY4X5d93wDJEiXVPDDsei3fX/55b+Y92uHV7zog1UZJ08e1/PHmRnzQAquoNx+jHPsDkhVKSvvUwNlNmhO2etwM0yVfp/UFJGuU9ONJiy4X3nTosdc32mP4yriPgGSDkn7uZy3rv2B1YK556eXVtzPNAMkWJTVtuuzcrPaPQ+YuP1O0I/j7fECqg5IWh73iHt3cmTtvj1vj5f17ugNSXZT0ZnXtxgUPbCN3xPXk33dsVgRI9VCSs/kxN++wd6zCmB9H59Zq0BmQ7FBSo4HSZXU7vQ1dYLzPcrh16CJAqo+SHrz8uH5WZoOQbceGPbXdsmQjIDVAScWtOaf+zerOPrCE5ZUw9vNjQLJHSb/PyjE78/Zn0FT3q/l/rB2fDEgOKCmxfvQ3o8ljgqYY7ZWJncOmAlJDlBSZUzghrWYEa9WQpLqvzDL/BaRGKOl0arv278dlhB98sPb2dbP08YDkiJIudpw/ct7xSz0K6q4/wDw13hWQGqOknEnX9n5flsLa+s7Zmi/OhRLVBJsORcLJde1zOFnvOW2Pc/1eAZITSup2pem1+cuPsNaO2TIhZdjoTYDUFHuvBxv6rZ/UIXJ84vN7DEZ2PCAxUdJyYUr2rtWenLW1cm8d/NVnj1lo4BCcBnGGmjlULFfwxAmC4FShSplNlP1Z6/aRGiFH9oTPenSUZ0yiNswihAnD1C8zLFgKhUwYn6pQanhUdWMqykhvKuq3KlRR7WIKF/0Ivcne0P1FJ9beKwo1FSXd1STfxDSFk3/TvcO0CS8HqqmozfkXt0148zBsR7xt3Bur7rZqKmp874hPZ9alBW2UTAuZGpB+XE1FPX29b8W74NCAaW5t5jBCmE/VVNTO/GO/Qnb3485ymlFybtFRGzUV1Tum8WmnvqWsxSfa55nH/PyopqJiujVMmdziVeSMCKOPE63CvqupqLHBCsnQtT7BB2pczXxY+8gHNRW1xC3CKejfwRHb5UuWrHcdv11NRX3PSQvcFMoI3tFght/zib3fq6mo+VM57S85jg5a1WU151nRzuZqKqrk9zp1/pwcHrIkpOmuGI82n9VUlEV4x8+XlzULye9xq/vgFtcuqKmoS1HvCzyeh3M2Nl/lZOUj91RTUdPdVqc7RnGDs9JzHXdc6bVfTUXtXVxk6mgq467re8PJ9HpRPzUV1WbXnTPvPr0Km7nynVd0X/tsNRVVw2/HvFH7xkUu/NLVr+3U0mtqKur466j3jWxcwxa7L1tmsT5oq5qK+pTfJ8gi3z9sX3OvOkm9um9VU1F3hzCF+6/3ClnqfLXXjSEHVqipqOlDWV9nnl8Ruj39Q728p+FpaiqK8VdSp6jdJQFZLd69HTSz2001FcWI7vf86LXVPXZcbbiv1ow7ddVUVK+Ofjn1ot1YuwZO6+Ey502mmoqa0nCkY+7O82EzRvPsi14PZaqpqD6pQ9jtitLDdpr6Fdh9lDVXU1Hciw6nlhXWCVp+9PfE+jvblqqpqI8+8zm+70pCdrLz9l8b1CJFTUXV+mdaKqvf9JCpPVkDLkhC/NVU1JYPkes6fW0RuNti+/tj4+fL1FRU889/vPZ3Pha81GQLc1KscT1AckZJvq4HuV7sTkHbT4d2ZA3bMQeQmqGkYUE+vU12rggYbzVp5rj7Z6EL0Bx7+JjMgZuXGgctjv+8zv7AqO6A1AIlHXJ+uzBuigNr8unsW37bDh0BpJYoKcMla1Nzp7kBB9rsj1nU/7EDILVCSeO4u/ufTtkQtDel05LZfZvaA1JrlORxl7mY/9WPM6PTMvsufeXwu1ywJ+x7xXrJiDY9ctfbtnpR1H06ILVBSQvqlEZ05I8JX/aq2Ye78vCegOSKklZ7FMy/5TnNfxYzZnJU0Zw7gOSGkpxW+/1xLiU5aNfqbbeXMTqwAckdJW006tniDDeaPflK7hDTbpZnAckDJZ2aZ2vy27uH4evWLHsUceHQIUDyxKbe5FWnalu97bGup6dtbI9mjoDkhZL+bdhhzeC2sf6HVn75i3vWXQJI3ijpy9en6y80LgmZ/Jv4clazK6MByQcl/eF+osG5mrPDj0z75PzKrO4SQGqLktZO6uS+fMDtgB1OCts/nK5BA9sOJT0btXfC/QvyHlu49qFn+KMCAKk9SlraRfqo4530oF0is71znu3wAqQOmGa71qrZ4BMDg2fX2XEu7PO8IEDqiJLkNVLtI5rY9pi3/eP2oR/2dtMwep0YFEZv0vrnsaxWZ0PGvzg908JmrLUejB40CKRG7/C6mb9t+JnfY/fRbjFnDsjr4r7LJCI1JV4gw1s9U3QoMnvmhX5SzuQxEyQikTL4g9YtUSThKYTiJKZUIhQrmGJkYDnp6xNNHdkjabw/dj0SeR7l0ggSCppEAzucIGCgXFn/eHHDsbc7R+z7c1xyuNulSZZKskbwR4BTFbsGgA/ykUtwojMyXDmMqHYnGYyQAAbjKKtWlHCEBBkHqhyGrTtn9PS2J62jYKQlVwjEikCegkcfdZoEyAAgyQw1hml+yDiKp0jGXr3maO+xxqEKQQqDUbY6ZaJEGH4Gi10ZjCx/VBxqUonDIcG6TeKf57iz3E/u9JbVHYTD3pydKhvBg4EsXiKgc2BCIRFdOSN4olSeQsBUJAuYCdgAUCR4yK8CJk8BfpRLBQnCRKGAz5TyZOA7FQKZp0mIkM8XiFV4kUoL0fuheGINgSkjaclqpgsHAAhY/R2wOiOAwGqmO6D+dtISefohQrE0FYmFTVGQyaCpw0ZeXyFhClCMSF9wzNsXrq+zV4XOHGDZtveqj+Px2gAZQ+Pl0MvlTQaiD1jByeAPEJL6o5OhhDgZLrXhMDK64xAyKgehllGYLDCBFlFKC1+SAgSvXNTmpTXP9wvrFrb1+o399jlNZHixUI2rKRZlpPLQ+9V3rqi4dm7QlJoZnt36TNmlB/SABNGgl+d3srYSPUmqAhUwExr46kchulYFHZhooxVjSeFyHDD/3kKfKP/dNo8bBV3vF40XMmQcTSFTXtaAiQwHhvY4PHJHpagbwCGPiEOsJ4dxqTseB6NycLBXTXXmCKD8JDI6JPhPzEy47BnclaG/dV7z7tIr3fVJpSDi3Z0OESA3OERqaI9IglCWIKKVjXN9b5aGrDsWvokn+qfI7om/gSBS4keHSJTfSdTWwaiW1NZ5Po93/iH7Gpbd79otrw2b7HDvVTtQOELIFzARRapp7kwpgG2D3obZNjBBgKIansoTMUUCcZIimSkXJMFdIblWxo0Yv1M/ogb6OKqWsHoDFeTdFcD6mczEZbkBqq9OJs5GZeL4yNOQvmT3ZalTbj+rHZI55fCm2aFFvwzXwEUBfGwhPkwyscsCKlrahdTAUfnLdZVeK/SGMLkghehSWp24Vg0VEcssnl3oMmrKegJE8HVIIEIulwcRMcbSA0SXfOkgAiJUzQ4xvIkJOaLGKUxjUnHKPloqEipUXIL6cphQPIwigvmjnfHy0U1DD8z6/rzB8On98OwKg/dpskt5Wd+aEvIjqzMdP0o6VQs/TOMlEpGAp1KADA3XBlMsJqyEBIFcrj48qa6BCg9uaClDTHLOLLvHM9lw8wFrVbtaf3P4PQ7jY0vEodFkDXZd77xxR9XJQDLemHki6kTD09ERlmYxPHESYCzq+iCSy9cCqd2NBRuWh81gTQy/OXXB/h6PcUiZoYNqYlVGqQy0EM1CiRbQLBpekI5oNS+LOGB0IdAaLmIwQNh1xUbVBEydVhmQIZOfEjIw+VE3qRaDwk1aMXrh9X+Kh7E3bG3z8+Kfba+TmGe8f2ROg29rygUiIDQCmTBB6Tdp5x0RrbtpOE8qFYqTMKTg6+jRmXjSzrie+f0D4bNXZA91iQzpWEFLCSM6pjlgznSSpaP+ue6cDv3NMOaYUDEn3mVy81zjw/67Y1s4bDp3uwHudW0CBQkSgJssNUHBZMkSNN3YWhRs6tpLAF5BMEK5ahPPkwuYUhFPLHBnynh8YSrgnpgP/iaJVPE4XM8RM3myBO1WbYhbTLTPrcEw4ge0jRqALTzKAYifJ3NvGcC9PcrWyb1tDL6bCcJJtjKGgm5u2YORvveDPRkvHd/1D9o3tG0WJ7LoHu69a5K9K3KxPNEkhmgVFE0GXGyAQOWxGAwpEai8NghQOi1FOAaoZAgRFSVuytiTFKjVfxptuOudFrS/aff6reVLmuD1KTJaFBxNU5+q0fStT4+6objEkulTqQeHweDouDTRSzmftMIkcPfB44dn3A+cnn2j7biRll/wzotyJE3nBb1eGVjEBdJhQZSR8hYlmCx1heIC/kJlwxPL26DwkIJiVniqnvHHfPa2t8sUL0s+P8IrfGRITYWvvFwZkDDZdJBkBGAaHYsKNTS617yx6U26/Aqa27vDDMaSfovwgh8J5k/kCOCdxGoq85oUuNZjS1IA/GDiwckHb07TTkkTN/upHkVzDpbRtPVUgE7JGgqgKwDQPSJCxwB+TIFQJ9VsGQo/pXTiSF9uyfM6v05u6x25yf5025vRPMKKZx94n6bcKC+Xp42JO9AV1MZSuK4AsSlmkewxxboi2OikjWtHIh+jQecVf1jD2v3rR+72H3Gn3dVHuQRVI5CnijRXHLDrep9X7igAX8kAKPRAAEDnlRnVvBp+ROgmjNjE3ns4UvT86YC3uDey7JkK3gWm4EiTyZ1ZLeOHFoFCObBy6XBHS6CAeivdAwskoM+bBL+BFHFi+gzl82nAjiNqYG8eLZEpItXzk0gklpj+oqXEqkYjMCyuNVB1IwDDGrDhX4JrO7Q1J2XsiJNWWKZ6qJgvSMOGg/9HWWlOxcpXfSK4xl7f2AtWnw9aGRnaHweVMRewTlM5GlMwzJktE8DdSR5TBD7OjBcoRgoEYqZipASN9rRTlcQMJ81H0mAbclUHzzUrEfVcvTU8VzADvAU6qUdb+OVM8B4yhfI9Sd+qTcOlT4xeruTMGjhh8y+rnQ54mYxG7ibfG8IRy9OXxM0nPXivUghWFJkZzgP68pJAp21IawQsAQh5qKF6uvu39rs8ngZsvNyH16vAdyZ+k4QD7iUHSo1UHkxEl1gPMAGpoYEpi6+jWVEKlXKJlBSl5JT0kF73d7O3HnGvMWn4lObaThP9mxQPVEYKWHBplOiqeSLQoHrIgkoPnV3C4/70tQ+esM7J9GXz0fjFRDMEjOhArvZRdwBeF6FAgpgyEfzKZ8anq09Yd6YCXdiDsbhyc8lzrFbKiphzSf7cmkt7GEVLjPOA0jJbBTC+RxZu+wMOmK2sBKUV0+DC1pjuQziTkizHeN20CMI7dohe0nTslJerWFEdBQB9XXkShtgkM5AJookNK3XaTnJAAMLkwoUvlCnX19qQAvV7sj1vA/c9Z8bikHq72kRZ4lVWIHazpsoqI5UHWNyRQx8cDwwMynyyoZ91Sad1egAslhYwIFHVsrmkXFyHn2nHoPpT0p244YQ5q6QBDMJL5bwmT42/wjt9NL2Qs9805NtU5922dUPFCoEMMIOTJpUBV1VtrBoesXgHnosMq+nAo9fLYysx01cPbC3Mo2Nrcl517xmWJdGVdNezUYzdP/75+xbFETPvf+3UcGGfhdVmFBmeqD4qIFv2K/BEphdqFC0ZFEaxT9Maw7K32wbsWyl623WsWQh+ZVeVDaiUNO0TK/YZqW7F5Q0mCGRwAGYiT5nYI5KIk5hChRyziOgXoXQ5M4EnBk4+U54qlYpgtmG8BBCFWIZUqhjeCg2qGDlgKxwFPoJc9GSyk6FeRRbEB0QMKktThMu+CkkSXLpSRQ/gMzCCSJHwBVoGEMTDDrSwaS6IEz6gJcNhnCbdBBhen01ioQtg2L2xMlIaHQ9+SE31suFOeLF9c/qB68v0uElDnEwVze8FCMVBhGaTqaZC4ELbbtIw0XR5BM1w8shMhCu+CGYoYOCjpJBZm0TN7rt3F2eucdAfR6ZPiKuYPq+gooCoHN1IhwqQGwNS2LokerQPTWTGyFIF7sgsxnNLKFfXCy7ent7McUwfT29y/8p0syBv45JWoZlbD9mtdGn/Fb98GqEaSHP5VI1WGaxj0rLu0gaDyAcx0snKNlGmugKTALlWlkxO4z/Nuz++Zpbj4R5bsi8e7sV7hd86rdqUV7g1gGiZEDKmMLwQLaPTvlIrfNaHTsB4+17rYNfalr38lnnRrRWX8Mv+pujAGtCoCJUBDqJsKMEBykanjabWSitVZsF1QYeftii7Zof93A0Fx+8Ht8mYrY/Ecj0gxKRFCMxp1G+rzaDw2zgsV7dSv2usDQ+cNl5Z/rYdfq0PiS2kEhGw6Jo+mxkFzh2w9QwxzIPF7uejBk+RLJOkJiWXrZTrst5KPABK+bSaK5NqRG394pYcRt5WgC8PuEkbiG7SJYBv1BYNN8kMU4/abRzYlT1WOZlGce8uN4zZlBY02zj1ROiemzPwqzd9YHEX8IWaqzcqSnkuFFExVtCFYgL0siB6Tdkk0ungymH4b9XJhaqtnL58QZJMQO5fXsizbmU2cj5nxunl2X//+uCKd5YCkRs1nSX0ur5nJ3z/ki1075+3pbqdJZVk6uAowUcWSvhYyhYpI7bM2+55qEshZ8/QvzL2x734Gy+r2ACasqqiVAYzomiZwageZmikw6qzomY5rPAME0sUwHzxEuAJSxdvPxCygsgixZ3p45eQLJHx3Zlt/eTDZQrkF3JvdaqTxdQxy/sHTj7n8zg5q/QU3q7BL4hWpJPkUqiRKoNZBZvpmBW32RBmDhxKt4NZyo1yyCxxqixeTjODsr7YZXb7raTHxCeO4hcTne5UJFSuIDuyvFFF7gDcjEtEdhz14fRuuVU3LxXV5DTeVuf8jt6Hh1wMn9PrbLi9965e1Rr2QgCObkEBuEUCAFQtOnmimClDUp5IARi53TK1Y0QrztrFdfp9tXxYQjBlyI0kpkx5vTIAKN5MA8CmUZsxR9OKQeFo/mcnzqkQ1MuJc2LNEL2eOCceZ9fHifMCihPn/Ru5c9Jf52M8sKbigc453WY0LNBrTjexRoselwaJqlQPjHi0jY4RY7ZhjLChYgQzqfmeqbOmBcw/sYW7+Nu+0fjX7SUQ8dLJGUEIK6g8g3os5kihTMCUwZHQskKkuBMzgEgeRAN3I2a5mBPzyCqaMw8wPzoMPc2UQVJugeE/DMPclgpz8+hFI9alDg3Mf/NV0Im5ER872qAxazj4RybkibTfoWhUFu1GSgXiYC4zBR1Du5CWWGeI9rE0dwAIH9A277I1CE7WQo0OXKxLGnkQHkDXrNEIbelc0SbKwldw9sMlFb4wMTFVLmAmJPPEYoGI9MVve3R4cuJejv/BDYMvjmoVdBa/3hSoHEFzvQkj6H01BUDyCEKygWw1xRbmxaytFq+zFlCuElVJsS9fvpTqEjUz8YyBa12pIp6MmSxMShaBv+Rq4dyQn39OPT4+fP2Pnwscp/w6gQ/gotFBNAM4FaUyuONPy52SNQbAndJSRqkuwXRTTopQLhcCXzABxyZMhZAyR7Jmy/IbW1aG7ao9/pVT5rODeOYoRyTJ3yijVAZz8tbQMSfKEJgD+aNLeN2JlQK/EuEJeBwQZ8sE4oR05QaQH1Mi5Q2H+0U+yG9lnyCfUT1z78qauDhy50z7/ad0e9dk/JH+GLXxNY/046iVwTwGLfMKVld3tF22qfcIt6lnXA4H/co4KE8WitPFwHUC7APsEkvgqTYf8JNIMhIhwl+9ISmFl6a8QL60FX5z6c3nXwJmbXX+slhWmkRIM0smS9tAL1cG5+JW03HOtto5B2/iM3RcJ6lbtk5CqwiXczk9g5xNAgt37Xl3dfiaWnhFSOkzlVH0zRFvT9SHgH7qGQ23ygtRhKifWodB4ac2NB4dffzAx8gjZvl/t+o42h33VtbsVLlCksJEq77j3VSIKdVpoNYsEZB0OZp5AMdANrOTBJIUgUKWzpQqB5TbhIoTRKl8Qai4l0CMnh6gdl6JlTDpnlWDDwS6NazyLZXIFEFCkUKgKnitLfYFcA97PcA+hyxXPgvula2n3K0hjaGCMWwUEgwerTx6sxq/559+0Sp4cr5oc9167ebhxRIbVVMsVZQqTnaBJ5KPQuT8yfRIlBuHIV2vUz5q/Rg1FwY5eiajKgLTxDe386MG70L3rQ0Y1LY5Ifr5j6YwASuijtDH6W1arC6tq1Kdi/WdMEVDLvgh6Ozcz7tfaiZAPT7sYoB3QGktxLYRraoZFhhgH4X/r63u9uDvYGAVJutSqTEDDbeJBXqrLNz2bk4Xbpc0rexwe/X6RvJHM+qGLJ618m+Ll4cWG0C4bducznmRNjOAmKGgoKAKwu3ipZwj9+KaBi34+3GhQOH20iDC7UvOdNzxdjYA7lRJuH3jyypb3tM37AlmK5b9PvZ+lEGE21lM2rWQpgbAHEZ1htvF05/brGY+Y2//fubliKFtpxtUuB3VlDbcdqruoM2Awu2cUN9TN5t1CNje2ybS++jgYdUcbts60VqsJtXNuUoNt2deaPm6ww1z9up3bWub2VgXGES4jfgQlOE2UISon1qP8f9BuE1sIVHN4XZeG7pw29+lasLtfnxLr26D/EInNrnbr2XD7Tv1Hm7ruZooUhC7DV0I+cilssLtvZd8J4ouPw3eKGon4br+M1jv4TZRR+gBKyBHNFjltf4/FW7bUakxAw23iZ1tqizcTt5NF26f2VnZ4bbF1PXXsvr1ZWdHzv/VbIzRSgMIt2N30zkvZrsNIGZ48OBBFYTbbXNc1nbu2TpyTlLbmmc7vN5vEOF24S467iTvMgDuVEm4fTOH67g9f0Vo9qu76U9inC0NItx2oGUO0CbVzxxGdYbbFqE7ml3ra8HKzmj2oODmrx4GFW6n7aRjnkv1MM8ww+27nVfb/jrQij3ee9aOFjZNNldzuH1rBx3npu6obs5Varht49bc2bdFbNiM6QfmdkuXbzSIcBvxISjDbaAIUT+1PuP/g3Cb2HuxmsPtuL104XbBnqoJtwPc2IuG9krvMXtJ3NUjDxu+0Xu4TUwF10MIGbWXLoRk7K2scPv5vPv1FIqYHjtvTv3XZs9v9/UebhN1hB6wAnJEg1Xcnv9T4XYDKjXG+jVC/loxLnRnUtNfUbK4GYS4VtVmiaS0KPwaqrKUTQJlPKDGeoGXkDAJo2h5RJrYFdaEK0kYJuCrbqJ9UpIIHP8BbU8MwSKDPrCSeABZhRlYuNJLQ13RNRBwVp6Ygvq97ImQqqogGkdKr2oFzi+vhnOHFwjZef1dItIZ7drTgmNQPYigAbD1oSrbiCTpeOukxppE81KkIuiFANTkQkU6Fp0FU9aqLfzt7V/FHWoHzq8r+9XwZfYftOiZBiqHJVnjQAn69k+QDDAvOoiA0BmAx4jIuA4l4ayjE3gipH4+dRnhlnaTE5udmxO2sce0kL5FLW3pBRsZkMSRRy6XJ9jE3tJ6EOwsTzqulXgYAteEDJVVsGdQWIXUbwfb7ciLCVv8M3bgtK7Lp+IdxkBhklDBjE6QwcNyOnTXbR6RmoKcp5OjtyJqUC5EyubTnW8kcopWKAiPp9WpL6oJa4aNAi9iNtwE+QLV0TVYkcQEOMeJwrSyr6gFuxaoikJbIsKXmqj2EbQWOwZZIvaNDCXntO252YLDOOoGZG4UW1Pm+vdowemw3w2LZByomM1ufd7Ld+JDbl7QyncK34b4VhVWvQQpPClTeVZUrn3f3NbK+1CuKvsI8phiwUh4CREC5aFhrawdsdU7zRNqsBtP1qGwXMEcqsJyUTBKma1TYTlrhNswRJHBxyFvlrhPlhLc/3zwxnGPVk/LOfFAjxX9iV3v9VBVLg/Cs4pM1ZnBczJzdLLhVsrnoTtIbtGsg/hMsDR4x+ewu3yWlxn+jLPyfs0zzuj18vCJOnD1pe35C9w1I1ZE9fx2uJ4e8GHQ4gPEpzpMgRlSpWeEEohuDOIf3SrNWcXwZEkCBR3TPg/quW1fL7uwfX05g2bP+YAvpmmivF+Taej1yigdFzebjiu2BsoVnZblbBCFJxXwUeVLypiwniU9zn26w80WhfXe5roQf/rHJBy5X5Mx6HV9M8bWE1UncD1Oo3N0lBeH4TJHt8IcjioMYC3UBJGwPDy+jzWyjDh7kjvr56ckTpcr7/ARAFs5gGYEgBEqA5GC2XSIdJ6N2fWGDAq7XjAv7OOArl1CJ3/8qTA7cQdfJh39Ru278HRTFXfHG3DmyGRhQjJTIE6QpEh5cjnsFMIUgRkE/XzU/GsX8DP+SuoUtbskIKvFu7eDZna7Sfa8mjKpvK5DSXfmLLSku0abHn/YpmdmRSuhNUZdDWjshcpVWligV/kkpC8uernHwrl3TOQKxciCSNcRh/DCR+XYqAhVbPxhtWtbiKF3AEk3G6YrgqFOGqsbFhcoy77gyhCLJCMFcmWPALgXDn8u8ymZoyPIW34T7Xm1Vp2B7U0QwBzIAIObEQAwdDI3oprMBlNogyhNeiq08R928KFcAAZiuGEGXaGN5BkY5o4GjzmxXr2eMLcy/r5sT0Qwa9HnFb/bj0z/q4KYl8DM4eVUmHsDzL2XY5g3psI8Ym/QxbOMInZG/4ZdhS971MGH9uFwv1EqEiYgVSY1jRcV0o7hwAcDLoEC3ClipuBG0co2TWk40jF35/mwGaN59kWvhzLpHktzBw1P11ZtwEodywCcM0l3ymB65dKTVqqqrJi3itlwC6SBHI6X8JtMkcuhfEwG+vHPzDY6Yh64/x/7cCu3epcwuhEF3VLZek1DRsyU16kHVj4P8rjwI3TBcpMgoQzoeSFwk5EVIjy/SPnjaZopGLdnQVDuvPp/txkxCN9g3oilOTtYGrPDiDA7mrw9dm9Rq3mhS4clD9s2fOOqipYRBezMgOz0ZpFEH2nwJNKyk2ogGZUDklM0bNXK1wmllCUuY+Y9fBG5ftbr6W+PiPHFqYwCNFEKKBelP9xPNDhXc3b4kWmfnF+Z1V2iB5SAWNOglLX0JCqDKlmi8y0clEkK0BnVAiCiRqzWtoGw+zUiMbBtoEaPpxAPBClUnzah0qe5hY/6TXn6NXR/4e7924c95hKqhPPEApFmw0AqNerCYkrhHWrpCUyxRCFQtpxQCNLQlozkbi73osOpZYV1gpYf/T2x/s62pSSPooEtgwxVZE22F+QivKheKJ8gnKztya0sHBpzJw5JWRd7nU+5wm/WWy6QxYDHx762ZaAkNV4kgJFjwjCkHQRfqEDfHcw6uDrwJGMdgY+q9WHiIm0rDqMkDvDRl83ImMK2COfJkoRiriARJxSWysu9YLKn+nVz5fUYiVT9KnGltxUn5U3cSRsExCiZRAprJSufyhR7KmWGKbyEbRxbwk3aUDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUm0QoQJKaofjfuK+NJyzSHUlSdqETVYNytjz7zOb7vSkJ2svP2XxvUIkVP7hZR/vXg4l6Kp3Nxo+Ix9dDU4DEn9pzVE+bEltN6wDwrmA5z22AMcyYV5j5rep0ckL8xaMMam3PHx33C90uqFSyTpErxmNfGMA+QqPdBNaKa1STOAouZBMeFZjBYxpPLkyVSoCNQhshrhAZigPVJHcJuV5QettPUr8Duo6w5IGGuIFF+AakGSiLOGECqySBvJgxIxiiptGvru++u27M2130+ucbTC3ZmoYFDcJyBGpW8eNGHyHWdvrYI3G2x/f2x8fNlJBBqmhICjxkYj5XscqZilwFZUF/Xg1wvdqeg7adDO7KG7ZijdwuqMX+Kut4btIi3LqBAOuxR73/+9KgeC3qpJYdROBWWKq00C3qnJWfijqn/HRa0GZWoGow2Hxbk09tk54qA8VaTZo67f7a+nrQ5Uf71oM39p9Npc8Z0TJs3N3jMuTGZAzcvNQ5aHP95nf2BUd0Nd2EuKo0O80sjMcxbUGH+PX7A6XYW68PXHqr5k5H8cz5ZVXXtdzacwgU8OUzDQ9ablQ2zgJ1E2/Rpt3dxyPntwrgpDqzJp7Nv+W07dESXOu/aZq3DtmSOALlCsr2LEjfgmTTSrR2tqtldihIA0jc7MXkBJ3bknsjp7f4OHpbPJzjDhpRZGAUTpCFAJSySdXZ/VwQg3Xpfllvfv4NRw3ez2NLAPZ/8kwuuzare+v6w4SECgBnZRgNsGQ0AQOdWS6q5ZaALsBkuWZuaO80NONBmf8yi/o8dqmABFkpM51yqBdhLYMJNXfy/BViUP9uGtdgwb8R4zoYBgQde7k3tpYcF2AV1SiM68seEL3vV7MNdeXjPCqqHOHhGLpdqabEQUG8truwF2BmODyN9f9vB2bxuQv2UgXIHPSzAEjM59IASEGsalDovrsQFWOKie7UuwGa5oxJDugA71QNBCtWnraj0qcH4h+O4u/ufTtkQtDel05LZfZvaa+MfkgSPle8eTt1O5x6GbMcgb23wkA/re8V6yYg2PXLX27Z6UdR9un4gT05JD+l1fzd76xH3GpOGT2mujzWtJNo1rSQMcheDh5xoNPQDOdHNqyDkUngYYBEV5NCNK1iEQd6GCvL6ifvyc0+e5Szd8mTUucZj8vBZQ5w0qUjCJ2l2WYsC4VboHVjco0zZlqfwkER9tP+7lplc83u9HNPvY1LEdK9Xnt9fpC4kfTTNhCaUoCWIj2Cfi0Mn4boMiXsGN8+8D/2H8ZBA+SCk7/aXXZB95K7LQXum9Pv8vRNniR7jIT0fGGW4gGAaAsQny3c9A6s3HdKpcWWHXgIgGkgdDL4ApvtJ5EJIZ4LnE4qYQFJUcsLkyWCDe0mKMIEUxT9N3tWwWRUWlDtt0sl6HZPwEmKu+h7Nbn1lJL2nabkgEkMD16ODBtFaUbOzNCbVWmYoeqATjV/GLkUyT8FM4Q0TMFOlyDpIPA/WBaJs67eh5pCWyzfLwxbbrk+aMWOLLaHyDDosSeUZjKL3jFkPVNgDybiX44kIu0YOsY7AOWM9aLEjhgIikKRgLXE/mJA5q1dY7nNZrNO2mfjdiv+o460ewPKmBQuIOmp/XBkU9qdP0xrDsrfbBuxbKXrbdawZPrffhgO3MWC+MNVqHFWhrn1GqlsxSwREE/wIwIDJoWgre55IIk4CsZccXZ3xxLe6lzMTeDCRlClPlYKIA3AoXgKI4H7lkKlieCvccxGretUrL3oy2cmwEzjC3wERg9TabAPLoJAkwcNq6hmqipESZgpcxNfONpbG3bn+8H6LsOye24fknP/DghY2zWPMhA/ocJ4p7SjVeSbocKQd0clW1imzlegDkb7s0LYcm6AbS0O2ch1H3txWVEePxpKogfRwZCcZIjSbbEoUAu3vcFQnY9kMJ4/ofh/EDAWMKgL2U/z4PGzslfDt1yP3x3bzi6nWFUWIypkjdKgAuTHQqkPlHV9qH5rIjJHB0lBwFuO5JZSr6wWkktQ4WEGKvPVwn3kzR00p7M3dt6Hzj9WfL13FscwiQjWQBtvUaZXBOhda1t06bKDuDN1yUpMopBsqMAlYnTxhIlTvNGv0qWcv+5gs/xA6/p54X/zRqYSNMWQ8TSWkvKz3WlAeqJYJIWMKwwvRMjqddGoVA40VQGSEQGkXdQCmYWnNS56uf3A2Zo9jZM94RYgg0YE1wzSMUBngIMqGEhygbHRqT9xaaaXKLLgu6PSYszP/hE1K6KwaD2amtbNdgA9RVMv+miFKGakyEHKhRQjMadRvc2NQ+G1nl/C4P33tgyesczJ92Xz0Ybw3ygU+GjM6kKv9wkGA6mAYzG/APGEQISaCX4Hflc4E2MoUyjbGQNmi8gp9L9R1G6uV4yQb/cu92NsyMP+P/NeOBWH1yZ9b04vGKDocEfP+jB4R03CV/KHn/Em3ZQXkAdQwIK92s6Obb5d6gSGb5v/Tm3do8kVCnQt4N0mdC+RyeZ4SUf/p4fwXEwIkJRNCJuwc9Emnw98OCECYXLjwhTJlB2ZyY3tz09KnM63GB2XU4/UvLHmyCz8tA7GbNadlGak8wHy8P7pG/r2kx/KlRluNfp1L1ANgGZ/oAAMSVS1OlNJmwM+0Y1D90TwTTlfixRLhJY1WlWXuV7SKfxc8rb64waiJJyzqImefATM4aVKZQFUGC3FqWQHRLrFtKuYAE1ibUjDtSNpJx6BM62FLLJorxuuBtY8+0rE266Ph+MdZuh0kr81V0+ekzLQzN3VvndsqcEHDKdt6tz6Ib2phzCUrsqm8qve1O09UJxWwIC+I8a0nMsVQw+jOoDCMAdfs74/otNN/64DBDjP6HMInetrBrQMFXPqEla0FsNaaQIfT015sSQqAXLmBgQzDLxsGCQ7LDk3zgZBoZRGfOHfhHfWcwd28arPPG4GNS/kPrMEO0k9p641AS3kOgF5MlpAUB4T/6B8VPUzN4qqBApcbYGIm9DYkYqYLdhAYoIcYVuQnpU6Tw9VoyUgBn9yIXEudZnfDmxe+d1HX1vtyfVzxOgapqUJy1By9Xp6OyQ5ydQ2L/i1kwfNIn3MDfdtVUMdkQXsLYTYmy+rJaYPAXNEl4ZZq7FetbiVIxHJBQioiHjDLgXx1c+R9F8bPHm4Byw9Fhw7MWNQNh6Vl2bia4S+OqG+VwHRHYRtIBtstDwQ2VCV4UKmEc9bNP/h0lIRPfv82zPPq7xxi4SGpiJcgYEakikQkuoDKYfbA7hPD+6DMCsUjeCIhXynkI4Uw/xCEKTLtNcH206wR3x0dQo48ezSns63zA5rnJCuQpEbWNtWsNYchPQvQtSTbfMuD6J6p6NxvAI0aUkZBAY/9QyUJESNPrLl44s8tV3oELZh5fE2/j89D8e4zMpCm+6y8XN50nvD5IMP6sHFkwcHORpf3Bq+p6HY7rEJzlqoKTSysQnOW0n3WEjlHFXIynKhB0SLPrjv1eEo6gxu087Rpm2vdZ3zHlz1HBYR8SwdP1fcshmgBSaJBS3qmSh0s7EHNYtKlAnUcmqudq/EMAy6tQOQJPyP3DA4ZAp3cJIGMUIkP/qmo4m6AGEjIWDAECKrTlawm5TLRMFVkklSQr3Ge6CwoIUszgwVuwCzQaSHMQVkOBfoKiK3CRJ9PXiAkPKzV1S1ZPbaljl95I/EroaIC8lYkGxPI5cqAAhFxSiiAiKOGypNh6Pk3RG2pn/wbYu6aHlKe0k7TpTx1Po1B7mXwkE89cbL3kb+suFsyn8zt/OKrm34gH/2jVYTPvTHhB/saHYzaZF+sB8hvXaGDPOcKBrk3FeQ6n5y0wSCvgpOTxGhM7eQk0T1TOzn54fqTwlX1irl5z54Pyozd/ELt5OSKg+3srv+sHXzIqEbhOKec72onJ6X53OWbbbpwMhrMZoW2HDcSkGoxyN0VQDJBSURBASRTlJTTROz9YGJyyBSHLR5GT6890DiKCYWXVPrEezxennqxjbPp0eY4X5d93/RwFNOHiv/Nwoo87m+3CFpvzI+/8cIWz/96ysV+tkgih+4isoGjfb3SZkFCeAAzGZ5YVA6AhJQwztTpIFDNA8Ou1/L95Z/3Zt6jHV79rpf7iBrgkH1IW68chIqdT4BJdots7RpmHXY+rtPataNytw3prCBBDjVLYFYgdV6Q69Q/Tz0WiiMLFlvVNm9U7/eK7LVV7jL2JYCVywnU7GqU2DsKGwgcJ/XDqbCqr0qJUMeKvPoiv4tNSdvWofMX9R3sm1jrnuGeqYIoAZmhQenoMd3OVLlHYfMKmWwIZtiUg6EelntGvVWSMtKspCFzX+SeIVl9E/s0tq/G/VxY1AoRItINOXji6tZx3dxYV9XuIYRICQ9aaBFYIJxuIq9gMzS2wb/yf0NX2SluXrgSmmIAu5YQpKnH6UDqfFy3fd2WgULlm6uWqspERlnxk1JBbTrBvPF9iWP4fpsF9X3HLmyB30XExtXcRVRRKgOd4mN06OQcwxyjtgwKw/iqTwTX2Osbe8Hq80ErI0P7ay7Ea1pCqtYdzvj9XFWq20gJusqqnSGcPq7ljzc34oMWWEW9+RjlSPJI5HsD2mZ/A8VUcBLAdp7scB4sucg4WQnbtBtNRVcapcwK2LBpaYtzD4ZOwC92IvuxFGYdRyx3m4qg4iqaCQ57HJ+kak2QB49kn9TJ1lkjYAnATKOGKrdm2Lpdvr2DFs77VOdDzDExXhNxwL3kQKmRqtglgDAxaGEqKNLxAHG5W2jEveZq20KDmgaREbiFpnHYTeqJQIPqoXZUesjwWwmkfWrg7CbNCVs9bobpkq/T+lZ6KwF/uIL5+iTsQEzik2fAlfJXem8l8PbTY8tmv1303/F1Q12bwDqN9dhK4Od+1rL+C1YH5pqXXl59O9OsoudNYacFCM8WsjkHuyPGvdZ3K4Emko5MWS1ej/H1bvfuEn9ni15bCdxo3vozl9Weta1J+6J9L2T39ICPLS0+QHwMsmi9nlsJtPKYNrp0xrrAOfuNjJ3rTWpZra0EIFekr+i4wjQorpQcwbii/1YCMQeO3Q8wfcyaaeYrSOns8rhaWwn4e6LqhLRwfgYsnP+6klsJdPRjn9rQczxnztrJc+VbGxIOP1Z5KwGIyNFXdIiEvMLsensGhV3/b2sl8ONJiy4X3nTosdc32mP4yriPldRKwPslXSuBoy+qvpXA+YH+lyXhfTgH2m3ayD929oueWwno2fgjqaQv6VoJAAyruZUA0Z5XeysBBDDKVgIAMHQyd6CazAazcUWUJj1VLCNuc+hh56qwmG7nKq0Yw7wjFeYGWlWpadNl52a1fxwyd/mZoh3B3+fTPZaeqio9AkH21/dUVZXgHkXI+/9VVUL5cym9qPOd/ZeCJ/m1tTYReT/XQ1WlG0vOzH7k3CJy6Y8a9/LjbCq8ZgJmR/F7qnpBMEEn531lV1WaL1p5ZfWFdRHbRmzxdG2fGKiHqkpTOlxiTt33hD0v/IYghrW2orvfEKUQWpS+vqvEqkrErPdqraqELHi/p6qq5OKBIIXq007/Zfp0cdgr7tHNnbnz9rg1Xt6/p3sV6dO8t3T6tOSf/+lTlD+PS9t+/vPe9KD1i3wytj/ev1EP+vTN6tqNCx7YRu6I68m/79isSA+aIustnabwf1vZ+rTP8DmhIwJSA6d3cKqxqovHaD3oU+IigR5QAmJNg1LeP5WoT4k2tNr1KSIxlPoUIIXq085U+tRgYgLidDLI+l0wJMh5QxcSxL7BIPelglznZDZrDPIqSGYjbpOoJbMR11bUktmIAZ1aMhsx0lBLZiMaTbVkNqI0qCWzET00jYw1qBVJRczZ/Jibd9g7VmHMj6NzazXorIeMtS56Y7JlFTKZWKZNjcnEKjVqTCZmuKkxmbjnr8ETYyqeNBooXVa309vQBcb7LIdbhy7SA0+6UvHEgBo6FLfmnPo3qzv7wBKWV8LYz49JHkXPLZFWOadM5t+Zzlrg/zSj88r0bdXXEinq8clKbol0kPv4v6OhQzcqUTUYs/z7rByzM29/Bk11v5r/x9rxyXpaqiPKvz6aCzyhLWX6BLPLfgaPeWL96G9Gk8cETTHaKxM7h0013OXR4qt0mG+4imH+GxXmOptJK0bVmckHLz+un5XZIGTbsWFPbbcs2ahmJonyq2YmiTNGzUwSGavmC2Xsdn94pvk5zqZTiy529Wxmp+YL7dwYMD0/4gF3W/KXNkvWtZ+hYVyh1icVpMicwglpNSNYq4Yk1X1llvmvHoxrdypOmkcvGrEudWhg/puvgk7Mje/x5e3Qjb9w8I8MqErtqwI2wrYMxcxIqUAczGWmoGNotyF4OrVd+/fjMsIPPlh7+7pZ+njax9Ksukf4gLYNKVpzGMzvcLeGDeaJxtIMiMwyvmpsEdKlSTRRijZWfRKWEEiFZTqTeWJg5EhfXC4cEt2/Ez9g5vDAwSmKFk/wG4KByhE0NwQxgt4rGMF0FgjJBsp0lm/VkjhRKwFAq1IaJSUlpboU+2PiGQPrS6WKeDJkn1EE3RdS3uSc2JYzcnnX8CM59f/t8H7zTkIRVXQQkiKqGKUyuCP9RscdpiFwB2ijUl2yi5pyUoRypGxxAo5NmAohZc6u3tK9JQNmRI4/4R3oeGLzGDxzlCOSLOKWUSqDOZe+0jEHaJPqZw7kjzpzMMtExZxOrBT4lQhPwOPIwa0CcUK6suiiH1Mi5Q2HNRp9kN/KPkE+o96dW9NvZ9qPgLWd/mn9aGcHfB2E2jFq42ueY8dRK4N53rTMe/TFcAoF4QtpGpfDQb8yDsqTheJ0MXCCAfsAu8QSMWQd+EkkGYkQ4a/ekJTCS1NeIOWjcEHTLj3X/hUx48S9FZI+QZcI1dCSydKi0cuVwbmsL3Sc8692zsGb4I6KTqkydZXr0UJxEr0i9LybcHip0DN0avLoFi/Oun3CK0JKn6mMovcFb0/Uh4ARxxkNt8oLUYSon+rPoPBTGxqPjj5+4GPkEbP8v1t1HE3YqWMrF3KiZIIRQsFIvJsKMaXKbGvNglWH5GqLQUgB2SSBJEWgkKUzpcoB5TahymyuUHEvgRiNX6id14sd54+cd/xSj4K66w8wT413pXtWzV1FPN26D/hHKpEpgoQihfKLydx9yhOmbTiM2B8A+xyy3cYs4NJu+Jcy6400Gg7GsEEOTiLPqJVH776pzrK9GY0jM69fnv77y2n4c8dm2KiaYqmilBcnE4ubVTROBsiFQOT8yfRIlBuH8fVfnRLd68eouTBMyQiBTCak6Flhbxk2uLbzTc7a2rXOTDyxrV7FpzABK6KO0ANWQI5osIr9t0p1LraOaYqGXPBD0Nm5n3e/1EyAenzYxQDvgNJaiG0jWlUzLDDAPgr/X1vd7cHfoQq3WVRq7H9F+P+jIvw5k67t/b4shbX1nbM1X5z7nRY2fRbhdyilK8Lv8KsyivDvZ+cMnXD/eI/9NSPbrGA0earH0+Z61pGwZrlZKV3N8sJfVVKEv0mdHXsO3F3CnjjUfvv0fSlh1V6EP/kXbWuCX9XtgarvOFVPEf7xyd3rrZ5VJ2Sz9zLWix5bBhlMEf4zP2n7J/z8v1GEv9aziRvPHLYLXFxyrvGfx950I+x0VnURfkTLUFZRB1qmyorwTx585se9xhnBWwP2+y6dNQ2fjVA9RfgRZUPdoeBXFRbhP3Td+/jhTacCNtRaGr750/XbBlDOAmlT8JO2TcFPLPwMYFD4bRyWq1up3zXWhgdOG68sf4svxWeJHOKTSkTAomv6bGYUOHco2yIRlt2P1sIAiMskqUnJwIeTC5ClGl1qOcwvEk6ua5/DyXrPaXuc6/eK8mk1qx6oEbXN7WvJYXgbnWIweGy46EJsuwzwnco4VcGDVXZljwWuoliQvrqpq+v6x+OiQxfIQyeuPeVVXPHeXQQXiqgYK+hCMQF6LhC9pmwS6XRw5YDRTuniQqE90PmCJJmA3L+0mmw5Pzf2Y4/MizdqW+6/1pRwQgq5keSElPK63sv+gve/xaB7/wLGKQNYrkMkUwdHCT6yUMIXJtDUtokZE2/p8WNP2HiH8dmPO/rWwssqNoCmrKoolcGMqbTMiKseZhDdH4YuOxaeYWKJApgvXgJcO3Xx9gMhK4gsUtyZPn4JyRIZ353Z1k8+XKZAfiH3Vi93em5dMPNxwOyz0ssZrJCJeLsGvyBakS4i6X9ZRqoMZnWmZZatQcwcOJRO3mr9soVucaosXk4zg9zOdixk9vFmzy1auG945s0vFQmVK9p83BtV5PCo5yWNulA+nM3vGad08lJRTU7jbYXH1uWaNJsduX3gw91/SK/tqNawFwJwlIECcIsEAKhadPJEMVNGXWQi/YdxcNxnT+7GP7v+69ig+8xqPewLAYhh0EhAnyaMU6ijyWb8d+XjdLvS9Nr85UdYa8dsmZAybPSmKsvHca95iiYfZ2ANDc9Sz/k4I5/Vqf9n/Db/XZ/fz106MivMAPJxWkBIKHc3f9SoFqWPTyq4ceNGFeTj/L7mDcvq1tbwFU/C+e1Kh3UxiHycazXouLPFELhTJfk4t4qMWp+xkHOzx5W27Nv66QGDyMfJpGXOQENgDqM683G2m3YymvdXHGunowPrL8fuzQ0qH6c9LfNqVw/zDDMfR5K1o8+HxK6RhbOiEgffGuBYzfk4T43oOHfQqLo5V6n5OItSwnPZL3xC5wjHXQnwPltsEPk4iA9BmY8DFCHqpwYy/j/Ix/n9wYZ+6yd1iByf+Pweg5EdX835OO2NT9Hk49yrSblYqtd8nMQm4fMV9gP8M9/l3AyYG5+l93wcYmyuhxwTd4gcZY6JsbHGQqme8nG4v+dwR9ik+u9bHB7eslntmnrPxyHqCD1gda8mHVa7alapzq3ufBwOlRobfkToJozYxN57OFL0/OmAt/idkp6p8OxksIwnTdY8YarD9kWLQKFcCk+PqXZz0j2Up0yZPFgzLwl+A6nkLRemZO9a7clZWyv31sFfffZQPp/mTo46UUP+zKOBCotUP4pFIpXEc09aSqVqNLLSsc9PMhgN2PAv4fzn0Nacg1uen7SKFogAwwT8UKDX07DhELYqWRlExUqdz6S5qGS78s+k2cxM75LZoU7A4SKbvZ0jasxQO5M288OHxhm3bwdnJj8b0KS5aaTambQ5Pu94AZuCIzZ7/tva1th5kdqZtHOx+8PuuC8M2H0pcZbLBa8ZamfS5tiGt1kUnBW0qsXtIbltD5WqnUm7OCjuHqfF58hN38ZNqxt4x0vtfH6XiCunF7YqCsnq21O2qMmUfLVmM3Me807F3JFy8kUNuuyP3ugDSGYoaXGTx46JU7oFbEqX3F+W5wLP2pmjpLZ/rv61PjGMs95uxoCV5ncmA5IFSjoiv/og1eJa+LTll8b5nK63A5AsUdI839S/549+GDqXN69zvVbyIECqjZLq1m3Wsr0Rs0f+pOdXQxMHTwMkK5Q02SJmWPcwfvCmB0WN5IG+lwHJGiUNGcJc/3d0u6C5s/PGvRzx5zxAskFJvufDDk4Ji4qY6ia1HzT62HBAskVJbbYmJt5ud6FHfg2THitif4UDUh2U5Hny0aEWPif8Z46Kib+6dMkFQKqLki41cZ26Z9i9oIm/fW10ZabFGECqh5JC9oekLS5JCsl/nNokp8adfYBkh5KkTdtaRVzexco5UnJlYL8GSYBUHyX9HX2k9O5Vc9YBJ6HPtx6HBwNSA5SUcOGGeZtVuZxDTd+0mfSP70RAssce/urTxNDJP7nTf+vECBx0sg8gOWDCFms3/fBiU9be7RefneqZ+DcgNURJ7XtHWg475B+x8/dfq5aNz+UBUiOUZJWw2u78uPjgwxO2nZtn3GYSIDmipJftSr7FvXoUsXL8g72no2Z3BqTGKClA0v7r8lfJgeOzmu96+21HPCA1wbh8R/Dt8pyjActNx70ad/TMdEByQkk+V6wbpL3dH7n6lMfYRrWf/wNITVHSlrb2r05crxWQ1ay92P7TOfheTJRUzC6yKz65MGBLl6HPatQ/JNM4bOnMoDhsubhuhybFDs/ZU/ztGr3tf2GwHg5bBlOpqPqJ+/JzT57lLN3yZNS5xmPy8IuJnDSpSMInySCgakzaCr1DlfOJlFqXp/BEIqCE0Cr2WqYMEBUU6aNprnOiBG1rXwELEGJ+CupXEu83yp3DKDHT8H5pm0CUZVQqH4T03drWqr3H3bGYO+PD+QSLnsN/6TGhUs9OLsOFw/CHAPHJHLczMHXQXKdsgA69gMMkQ9bu+AJYplciFyIpFOD5hCLYdFklJ0zgQTF5MORKIEXx74TGF3/rt4g90dmqzS3f35vht0BV36O5BVpG0nt5VRdEYmjgOmNmEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+V/nrqJCm8sTYs+9OXx87dT6YRVsvRYUlWyzGKvrln64EKeyAZ93I8EWHX2DHVEThnLLEHW7QWEIEkBatX/d17PuVeCZjZ5OiolaO/Jlc8jUgPYCGiTgkWEHXU/oQw/nf6QJ+nD4geepWdPsi2OEVz+sDOQidbqeXpg4eZaevSrk8N2VOrlVPTlg7j9GgsiRpID6cPZkKEKJO1+RY6Gcv/9PTByjlC1xWrhRG7J/vEPqnfdkW1nz7oRosKkBsD3SmputMHk+7ku+99mt5jzups6xUXopcZzOmD1+Z0rCsyN1B3Rs+nD543OCVetLkVe3ro8VoLVh+/XM2nDxAtQ5k+DrRMlZ0+OD0xd3P4D7PA+Xc+tvB+HtvKAE4fdKMFx85Ct5yvCp0+GNpnXZu+6d8DlqeZPKjd9TW+Bkj1nT5A5jQlQmBOo35bKIPCbzu7hMf96WsfPGGdk+nL5qMP471RpGdddCBX+4WDAHzLSNQTBhFiIvgV+F3p6n0VgbJF5RX6XqjrNlYrx4m4fkn+3JpeNEbRobWLouUpZWsXDVfJH3DgYwvdlhW06i0pmTSllaOfJGBt4V9N1zDXtyZsssO7STbZkcvleUpE/aeHvi0iCJCUTAiZbhxGYEud9s4cEIAwuXDhC2VAfAGd3Nie6795vMUYT07WgKL4ey2P4WsEmwdiN2tOyzJSeYD902f2yX39soLGX20qutE6rKIH2iFgjWkBAxJVLU6U0mbAz7RjUP3RPNJpRsNLS4SXNFo1YMb211kd0jgHnJOObdyV+KUuchgHMIOTJpUJVFt3iFPLCoh2iW1TMQeYwFqZzZxZzxpOC5/d7tmgKz0LDuiBtedb0LF2TTWxlsw/ztKtAVz5/UuDva1u1nrmHjDVplbI17Z9M6qtfynDE9VJsH+pVCO+9USmGGoYezAoDGPANfv7Izrt9N86YLDDjD6H8KWB7WDJTQVc+oTZuAK4PyzQoeuZF1uSAiBXFv5EhuGXDYMEh2XNzvhASLSyiMRtu/IfWIMdpJ/S1huBC6Y2APTiAJImaHFA+AttKnpWj8VVAwUuN8BSvtDbkIiZLlgDL4Ce8hAf/Emp0+RwNVoyUkBxAudqkItju9gFQbOb5k8X7Q63wesYpBcqSYs49Hq5+RfWfew7mHVjb+/i/nONrH3bCuqYLABzMYTZOICk7VdOGwTmii4Jt1Rjv2p1K0EilgsSUhHxgC0kyFc3a25KSes1+ERw/nV277m8Cwn4rIKycTXDXxxR7yea3FHYBpLBdssDgQ1VCWFUKuGcdfMPPh0l4ZPfvw3zvPo7h9gwWCriJQiYEakiEYkuoHKYPbD7xPA+KLNC8QieSMhXCvlIoSKZKQFhikx7TUDcpad5TrLGxmpkbVPPYClPiK4l2eZbHkTXuqJzvwE0akj7QwVs1weVJESMFIAdx9eMSCq+GjHvzajgM09MjuLdZ2QgTfdZebm86UzMSqhoOhUscwKRW0XmMsDuJY+sKd1nLZFzVCEnw4kaFC1S+BYErUx9dOFi6EE7T+7IY29e4lO1UQEh39LBU/U9iyFaQJJo0MqyrlIHC3tQs5h0qUAdh+ZqOTueYcClFYg84WfknsEhQ6CTmySQEbKE4Z+KKu4GiIGEjAVDgKA6Xclq8uRhgmGqyCSpaA9lT3QWlLDIkgq9kFmg00KYg7KNKfQVEFuFiT6fFIoJgW0t7lkEsQsP7pIlLRprTNiYgG9FsjGBXK4MKBARp4QCiDhqqLgMCkNlMHXridpSPy18KqFsvZ01mrROWrb+oxUGebjBQ07MjdMP5A4HPFpfK00MW3Frml3bb+ef6gHyonp0kK+ph0EeQQW5zlmZNhjkVZCVSZJEiWVlkiRRYlmZJEmUWFYmSRKlKitTM4kSy8okSaLEsjJJkiixrMzBIc1e1j/wzH8dn8vrazd7ikbKGxReUukjpl/qIeUtkor/zcKKPO5vtwhab8yPv/HCFs//esrFfrZIIofuIrKBo+mUm1DMtmZBQtiyJxn2uFEOgISUMM5E0xC0294nppyW+4ga4JB9SFuvHISKHy3BJLtFtnYN20EqLHVau3ZU7rYhp0EkkDUAD/ALdV7Qw4DfrzhnT/OfspAXd/r4+XUV2Wur3GXsSwCr15ao2S3ROGAPwuoCS1I/nAqr+qqUCHWsSFG6bZ4/6eG9ZpxJ3NF/p7zbztBjWsT43hGfzqxLC9oomRYyNSD9uB5QUtCi1NlSc/GBzk9zj8LmFTLZEMywKQdDPSz3jHqrZPKP/V15goecJc4pp22XK25X434ubL+ICBHphtxREAYXWermxrqqdg8hRAlqNSugBcLpJvLEStbLk38u3RIyiXfsis3YkrkGsGsJQVpKC5LCUrd93ZaBQuWbq5aqykQG2VikVlCWv04fuj7iz9DFi4L/uspcja+4Z4aNq7mLqKJUBjpcWnRaWGKOURSDwjC+6hPBNfb6xl6w+nzQysjQ/poL8ZqW0JgCXGf8fq4q1W2kRKeyccQDFtruDWib/Q0Uk7cVgO082dlHBoDtVu1K2KZNb9u3nkn6zoADM413XXWdcxy/2Insx1KYdRyxPC1OVHEVzQQHetoFghVFJmN5sC6clU62zhoBSwBmGjVUPxueu5ZtX+C/8Fm98CXdRfjG7OYccC85UGqkKnYJIExAamhgKqitm7ErfwuNuNdcbVtoUNMgMgK30DQ6CUs9EWhQPdSTSg+xW5/38p34kJsXtPKdwrdhE+I6dApPylSu05Csl1O55q2V92G7Pci5FB5TLBgJLwlkwgTUQGqlloiHu2iekGylXI2sJa7+rTmMg8xTsGoSiU+eAXOemDopKmtkG0q5uAseh/QtR7nln75yamto3trW5xat7+SNd5GQATRdJOXl8uYc8ZxbBecczEzeBeHZQlXRYSZTp2wSK+Xz0BX6Grtk8vbL5xawDmRwTl2MrdkPv/unvF9z9w+9Xh4+1zacHSdYNC3oUJMXHac+FYv0gA+fFh8gPtWRYWCGJG6MUALRjUH8o1slcKsYnixJoKBjWodlDXO791wdvte+zqqRnAOEtBDl/ZpMQ6/rfc0WcMWOliuvmxoSV0qOYFzRyXzZIApPKuCjypeUMa4X/e7u/rY0ZJZD1HLHzB5L8YwJR+7XZAx6Xd+M8fdE1QlcZtSIVzNgfWambgGZowoDJLAQCcvD48yJpv0j340OnOBgLpU+qzkCn1XLVg6gmVWLESoDkW60iDCYmF3vxaCw6wXzwj4O6NoldPLHnwqzE3c+4Hms/Ebtk2G6qSIMvAFnjkwWJiQDtxKeLeTJ5bCigSorBjX/2gUfxHPaZM+rKZPK67rkiTZF80Q1sl/8QVTXrWlFd8Abo64GNPZCZZEaeIRJ+STk3V6XBVlO+qc0MK+f1/lDm6bjDb8plWOjIlSx8UdSSSGG3mQ5GkxXBEOdNFa3CFSilGU5cQe1YD6QXLk+AEsBwp/LfErm6IixpIgS7Xm1VgWFcS0CmAMZYLAWEwAMnczRVJPZYDauiNKkpx7XxG0OPexcFTrR7VzlOGGYx1BhHrE36OJZRhE7o3/DrsKXPergq0Yh/eSlImECcixMU5FSIe0YDvwBYJ4U4E4RMwU3ilZ6kliZgu6xNItZ4enaLtzAILs5gHMm2cIN3KPIaH7KSrUaiXlOmD2xCIW6FMdL+E2myOVQPiYD/fhnZhsdMQ/c/499uJVbvUsY3YiCbhmJqBcNGTFTXqceWPk8yOPCj9AFbk2ChDKgc2B2ApLMhOcXKX+e5gy6Gv3paOik5aHxw579jm/+Z8TSnB0sjdlhRJgdnWvHdjvh3SV0Y5eh85KetVJUdM0EzI5LkJ3eZNkLMEFnQ/NTaiCVt7LkFC1IkAANrQtK/VymH/7+OTVwU8j3D3mbF1/BoxSgiVJAuSi9KCne/9F1mX92/42NzH4W9dcDShm0KMU2P4XKoEqWaLNdlPUCoWOkBUDErHe8DVMOpWnD0OuVseCNSMxXsoUmFw8EKVSf9v4v06fEcj5VpE/dm9Hp02vO/9OnKH/qmh3fN73JtIhVn3t2W3YjqVgP+pRYpkkPmqJFMzpN8cO5svXpSu66iQ2vvWKt+DtnYeGRfkv1oE+JiwR6QAmINQ1KW5wrUZ8SbWi161NEYij1KUAK1ad9qPSpwcQExOmkn2S2DkYN381iSwP3fPJPLrg2q5ceQgIXZ7qQwEwFeV8qyHVOZrPGIK+CZDaSGniYqiepgYcls5HUwMOS2Uhq4GHJbCQ18LBkNpIaeFgyG9FD08hYg1qRVMSI1fP0kLEWqzcmW1Yhk/+zOpIkRRUxJhP3/DV4YkzFE2LZQj3wpB8VT3ILH/Wb8vRr6P7C3fu3D3uMP+dXK4onFog0C7RSKTYXFlMK71CrMs0USxQCZXEhhSBNwVQWZyV9bWLdRZJH0UbbWUYnyCQiUS9oseBF9YasBE245+6EG7x+QwOO/HHSt/ePGt+pNKFZb7lAFgMeH/valoGS1HgRzNWClWBh4R++UIG+O/Aw4C7Hk4x1BJZgpXo1FqVbcRgljYAC9WUzMqawLcJ5siShmCtIxBlAS+XlXrBnh/p1c+X1GIlU/SqhBGyPVpzMfxqdskFAjJLBc4MKofKpTLGnIptQMt7IUDEflt3C4DUyhxfh1ovaJcRXF6FlhZUBAewEIuSJ2LAWlJohUsgEvBTV78Z9ZTyp6h5UVPtTiarBmGViFVA9LdUR5V8PdjnTkc4u8x0xuzzA4DEnllc13OXRODs6zP3tMMwHUmGus5m0YlSdmSSpm4uZSZK6uZiZJKmbi5lJkrq5mC/0qnad3PjflofMbsiLbdpn+DU1X4i7MDunWUyzkNVfBvRmL3Lx1TCuUOuTChKxGK8ejOsgKk4aaMsxYtHhKms5JmpN13JsaavKbjkW7XZy6vGnbuG5I+q33r03E19otXpajvFb0zVw6dbaAPomFRcXV0HLsRdvdsbPzW8UvKjz3CGHS3ZsN4iWY3a03HndygC4UyUtx6RXYn5r+sOdlWuSy/Ny+nneIFqOFbWiY85SQ2AOozpbju37MPtFpvwVu3DocIfP2efxOcfV3XJMQcs8bvUwzzBbjh3r3a7Vg3OL2dsabjuYFDoDv6NX9S3HWtBy7kfL6uYcvKnSWo5139PweaPTo9gH1x+1a9FhK74yXXW1HEN8CMqWY0ARon7qYAaFn/rf1HKM2BajmluOTXWhaznm7VJFLcc+Lejmdftb6GpOhsUps6mf9d5yjFjcTA9ttDJc6NpoxbpUVsuxMe/2BsxrODw8c1nq3biFTZ/rveUYUUfoAStvWqzMXP5PtRwbQqXG/leE/z8qwk/sJlRlRfiL29AV4U9uUxlF+PfUkTfusmlK2PSkls2uTaoboMfT5nrWkbBm+aM2dDXLC9tUSRF+8/kzA1dseNBjE2PCtTsjkjyrvQh/Fi0qQG4MJnbQ7eCP/orw//OjyaGGTn+Fz7jq57HA8uxpgynC70/LOofqYV2VF+G3vyesKz+0K3h2/C+nJle736zmIvyIlqGsog60TJUV4Q92tM69e6xn8BbRuH3XrL/htXP1FOHPogUnuU0VFuE3sr5faicJDZvZLD/tvNOA3QZQzgIi5E+LEJjTqN8Wx6Dw2zgsV7dSv2usDQ+cNl5Z/rYdvo4AcohPKhEBi67ps5lR4NyhbItEWHY/WgsDIC6TpCYlM1VNY3Wp5UDssEj5tJpVD9SI2ub2teQwZroBfHlsuOhCwPcSwPepa0UPVtmVPRa4imJB+uq1L18IGxp4KKhg0ErehaUL7Cveu4vgQhEVYwVdKCZALxOi15RNIp0OrhzGQDedXKjayunLFyTJBOT+5a1//1z06bsoPH/Otp1Tl3YVE05IITeSnJBSXtd72V/w/u1p37+2W3U7SyrJ1MFRgo8slPCFCTS1bUbvWDzR5blV+KLMD9eH7i8W4GUVG0BTVlWUymAGmKw0zDjoahDuD0OXHQvPMLFEAcwXLwGunbp4+4GQFUQWKe5MH7+EZImM785s6ycfLlMgv5B7q7n5my4t93oRub5d0b6WSW6b8XYNfkG0Il1E0v+yjFQZzMqmZZaoephFmDlwKJ281fplC93iVFm8nGYG3WEsNrF+ZhRx+M0R9z1fXaZXJFSuIDuyvFFFDo96XtKoC+XD2RzhppuXimpyGm/rDPeAqEHXVcHr1tUafVscPbpaw14IQGMMgFskAEDVopMnipky6iIT2+52tb9yxys4++eg8NwxitYEU1a1h30hAAWuNAD0SXfFHE0e478rH4fYmLvK8nGmetDl4xS6V3Y+zpdn8YP/Le4esddmhBH38OyeBpCPk+FBt7sZ62EASQV//vlnFeTjZN3ctXhAUELouqh+HezOn480iHwcb1rumBkCd6okH6fFlwV9xUuN/OfneZ0OskrcbhD5OI/c6ZgDtEn1M4dRnfk4dSS7eyaZW4dsPBuSbHz+t0EGlY+TRcu85OphnmHm4zxc0MvN6cjBoDlbd/y2YNS1TtWcj+NPyzmHaudcpebjTOvEP5DW7Ql3g6VX0uTJ0zYaRD4O4kNQ5uMARYj6qfGM/w/ycba0tX914nqtgKxm7cX2n871qeZ8nCxPunyczp5Vk49Tb7PZ9dgH4WFL/F7bb3jYYq7e83GIsbkeckymetLlmMR5VlY+jvfiSTdj5+QErtiRu2zADof3es/HIeoIPWDVmRYrW8//U/k4CVRqbPgRoZswYhN77+FI0fOnA97id0p6psKzk8EynjRZ84SpDtsXLQKFcik8PabazUn3UJ4yZfJgzbwk+A2kklfMLrIrPrkwYEuXoc9q1D8ko3w+zZ0cdaKG/JlHAxUWqX4Ui0QqieeetJRK1Wgk+TTGsDBXAzb8Szj/ObQ1Z1INp1NW0QIRYJiAHwr0eho2HMJWJSv5VKzU+Uyai0q2K/9MWoMsp8stP/3NnXCnVZT71wnv1c6kNZ0TMaSNl1WPjfXa27zZ0PKX2pm0G6U/3/m33cFZLzNKWBKddVjtTJq8D+9iHdOisAM9I+OXF48cpXYmbeeNEEn//e3Dlw+9ncTuHMFTO5P2cN2s4K/ubyInPgxmpq94/FrtfP4IhmTvZ+v+3F0zajjU+mPlTrVmM10WnG3594bJ/lv/NtlYPy07DJDMUFJ25G+3k6++CFqw71JhQuTxWYBkjpKu1VvEWTEwkLN032CrnsMvvwQkC5QUfnD++6EPIiPWfZbdX3MuyhmQLFFSiEWpjOfN48xaLXPzHfZ+JSDVRkkWdQdl/1sQF7breOCEopTb6wHJCiVljr07bljP7ICNOxoUjc58Ao/hWWNPmDDLJLbO3sDVojq1337PsAIkG5TkOrXfwKTmO8LWpJ2cHbKi7WhAssUUcj/F/TD5vMgZfzv1sj7jCTGsg5LuLukyPHFT/7C19gM9piyxyAGkuijp+JmhB1oV9gtdJ09j+opuQy7XQ0l9R3Zo/oPbOCSjfrDx7GDb5oBkh92153H0yp99glbejxmw4YoCIl8fJd33jDO9sZgROH911+n/tlyQCUgNUNKcOYse+HxpGLbN2nuaqHjYSECyR0l7v06b/uRMt+CV+2PCJwzYPAWQHFDSZbdpTWWNjrP3P3nJjTh3JguQGqKk0X4Z9icFnQMORrY5u0Z+vzsgNUJJk19GuXQc+iFwep5X1632/9wDJEeUdCFQ0uvOr/1BC20d1+XtC2oJSI1RUn6fVUuvTH/tv3Scc0zxwgtQ2JpgEmUimvPkntw/s0HPH51/uaYBkhNKWlW8zK9DZvPQrXW/BIwelykFpKYo6dnK28lpnG8Re10T/OaumgCrSzBRkpXvxjHu965z9qc3SDo8+MVbjcOWzgyKw5abpi95c885LWLCoMVzHj7OfqiHw5YCKhVVP3Fffu7Js5ylW56MOtd4TB5+MZGTJhVJ+CQZBFSNSVuhd6hyPpFS6/IUnkgElBBaxV7LlAGigiJ9NM11TpSgbe0reKrG5xTUryTeb5Q7h9HYR7cmEGUZlcoHIX03E78X+z2Xu7NXX9za1tnpgD4TKvXs5DJggVUIEJ/McTsD3LpAH52yATr0Ag6TDFm74wtgmV6JXIikUIDnE4pg02WVnDCBB8XkwZArgRRFl74F/R+ceBhQuDC5yehWNT/it0BV36O5BVpG0nt5VRdEYmjg+uhtEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+VjmlwoXjSh27hBZNb1Hs2INCOsFqODkuyWo5R9M09Ww9U2APJuJfjiQi7xo6pjsA5Y4k92KK1gAgkKVgbf33tvy32D+6MHec5ZwubF1Q8jUgPYDWmBQuIOmp/EhkU9ud/pw/+o9MHRA+9yk4fHG1Ld/rAv21lnD7wSK//NEAxN7Tweuu6Lh+DQvVoLIkaSA+nDwrb0iVrZ7WtktMHDvOCuhxsnOm/b0LsP6HZP6Oq/fRBMi0qQG4MdKfk/7F3HVBNZF8/uqgogg0QxBI7IsXeCyGEGoqAvUYSIBoIhiioqIgNBRU7Iir2hl0RUcG1YFd2bdh7XxXbrq7te28yEzKVZBmS7PdfzvEcmctMJr/73n33vfu79+ov+2DqA4evO1sfcMtWNGixsEH/3kaTfWDDqLritkbqzrCcfSD2zWpTLeGy9yzF012tXoqnGjj7ALEytPRxYGX0ln1weeAEn/S/G/pkFux/dqJD0yNGkH0QwQiOazs9Zh84D6jWXnxprueWuYP2fHUqxvc2Nlz2gQ0jQmBOo35bOIfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PA9AW7uQXCVXOEYDyqG35Ka1M05+S33uPz2hy415uRffEoLs8G6KIDtyuTRPiWj/WOjbch8CFE01CLmtgYUL0Cl2ZoMAhI0Le7FUAYYvkFMvtiHDehcfaN/BZ379v5r+Nb5+On5aumM3k6dliag0wHZf/DwhflFTj6S7L5M+5jewZQGwVEbAwIgyiBOlWjPg37Tn0P2QUzpNGXRphuiSwaoKC+NHvXO4FbD8TeHZKZmPXtRGknGAMgRx0QqJOnSHOLU8t2D7Aa3K5gATVLvuVv7slccO+yX+kWU96WfIbhZU68qoWhsDqZbKP07VrQFc6f1LX6RW9Nxu9cHj4LaB3V+9UFgYrH8pxxm1SbB/aTRpf+uMTDF0YYzg0CyMblfq3hnXea/r9sHDbJL7HcGXBraEJTeV8OgTsnElMD4s0aHrmQtfHgkgVxX+RB4jLnkMsjksaXYmBoNEqxWRGLYr/YVJ6qD8K229EXhg2gWA/tyNognaCDD4H3cua64eT6gBCjxugKV8obchj+LaYw28AHqqJD74P5VNi4Gn0fJYCU0GzoPJM9aN7pQjyE2oPursbylFeBuD9EKlaBGHXi/NxjSr8an18G+d3dbfmNvw8IF1NmW0MakAZksIs4kbRduvtFYIzGU9Em6uoX716VaoPCpGEjoWGR6whQT16ebWPotrHX1Uw3O2Sea8vi84+IrqZiXPJW9/cULWM5ocUdiGUMFW5ITAhpoEKZ1JOGfR9EPbTnK/me/f+jpfniIgNgyOlolCJVz/sTIZhS2gc5idsPui4H1wzEqjxolkUrFqkMdKlRFcOdimKLS3BMQoPcN7UjU21hBrSz1rKeD06AzQNaMKvmVCdDuVde5bw0UNaX+ohO36oJGEiNH0fLwQ2PF2Vd6MRv4jO6/yf413n5EHkd1n1eXSpjORlVBWOhVArgNEbi2VywC7l1TvTOs+a4mcnRo5BW6owaFFCV/idadqSUG/+2+9Y9s/tm77RXiqNjpAqEM6eCnbsxiiBUYSA1qHO+nVwcJe1DRkfLREE4emGpwdZ1/g0kpkzvBvYpw9vYZDJzdcoiCwhOFPWQ23NbJAQsWCR4BN9XiVqqmzKAgLU1kmSVl7KDujs6CYR0UqdEFmgU4HYTaqNqbQV0DWKmzoiymhMDVfGvPD/4XwkGRv4C3LFw8IgQn4rSgCE8jl8oACGeK0UIAhji5Uozg0C5XR1K0nWkt2WviUQ9l6105MZeu5ashHGz3kRG4cO5A3Oz/lS1TtH/yp96ZmPngY34gFyIu7M0Fe2B2DXEYHuc6szBoY5HpgZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKDFW5qxfZnmKtl51z9tRWMvq8cWhJMobHLyUo49Iv2SB8hZJp/8mviec7uyu5rHJRDzy2ouaeP3XUR3282XyGOguIgEcslNemWa2NfGQwpY9EbDHjeoByJYS7jNRGoJ24X0i5bTUVySBQ/VH2nrlYKvI7QAmWRHV2TVsB5nZXqezaztVtA3JBpFD1QA8wC/0vCBbRb+tyUNiXPc8PzHZerBLj7LE2sr3GLsQYGXTAV12i0kJ9mBbfbs9pR9Oh5WVmhKhiRUlSmaXvgaa9BvAX5Rde/6qSun1WaRFTO3r/+n0xjiPLfLZXklu44+xgBIYMwwoidvr1qTdMRCbV8hkQzDDphzc6mHcM4ZQybcO434k5nlnu7dPnMWVnjBgPBe2X0QGEWVA7ijYBhe3182NdVBHDyFEoRo1K+AKhLNNlODMn9ytefqr9byFUssmXLs6w40gaglBOt2eCaTM9rrFdZu7S1XfXH1UVTJkkMAivYGKrfe03wqz28Kk0AG/zft1+UV8FBF7LjmKqJaUBzpxjOgEtsccoygOzcL4qp+/0MTlC3/JuvMeawK8B5EP4skroQkNuI3x8Vw11S1WrlPZOGKChbaxAW3Z38AwDekIYDtPlfvIAbCZdCyHMO3FrjMC8pz7+y+7+qR2d5PmhNJ9SDyWZlnHCUuz4kQTV1YmOLDTIRCsQKoxlglcc8eOOq11FghYEjDT6KFyrbokcpDXKeF64aVxuc5r++ItkQDcSw2UhkjPLgGEyYQRptsddFvsSg+hEWPNBguhQUuDjBEYQiN1Eo52RqBB7ZCczg7xW5536TrtnjDTY807ZVfbBsRz6EhRNFd1TkNxXk7nmrdU3YdFe5C8FBE3ShILL0kU0lB0gdTKLBGTuxjekOqkXEOsJa6usIyLbwGsmkThkycA1Hf56GSoLJAwlOpwF7wOdZmAnlaLTb5348+qFb7Pq9dg/LeshDyA7CKpLpc254h5bmWcc5CZbA/hyaKr6MDx1YlNYq56H6ZCXw79fmY9e9GQt7hwdN/mfdeuxEf/VPeTo3/o9dLwqVOvrmnPxxeEG3K/Da4xq1cbFvAp8mHCBwwfQzAMTBHixjgVED04xB/dKoGbh4gU4RIlk9Jkrie3dyv66Zpj8uH75sqtCNXZVPeTlYZeZ/3MFhYTY9TKCKPSSnE+phWdlq8aiMGLlohR40upGOUSq/wJlnO8j3x7sOZa5kg7vGL8kPvJikGvs60YV2fUnMBjRtJ+NcFFwPnDR7cNmZ0aA2RjIZOWhodFRNjFMUvP87I4opOvBfPH41m1fNUDyKxaTFAeiOzyYUJE6YOt69EcmnV910Lfj4O7d/Oe+fG70vT4zQ94Has+UXsyTA/1DgO/gHNjI6ShEcCthLmFopgYWNFAzYpBl3/tNh/EPG2q9yWPSdV1XXii3ihPlMR+cQW7ul3eZY2A10ddDbjYS1VFamAKk+pNKL/4ZM9JCT7e3p6bbB/cHHzLBh/IrULn2KgFel78ESopxLANFUeD64BgqJPF6uGPjihVWU5cohbkA8WozgdgKUD4/xKfkjvRfxJ1aRvCem7QqqBwX4sAZkMFGKzFBABDJ/MYuslsNIEr4mhiqcc1MczBQuTK0ZspclVdjbmCDnP/Ax4Xz3BO8BMG2XaXvvSpha8ahfSTj5ZJQ5G0MLIhpUPazg/4A2B5UoI7ZdxI3FO0spPEyhRMr0UuZoWXa3twAzbZQn8AZwrVwQ2MUXz0KzBXn0ZinhO2nlTzhrYUp0v4SVWQy95ibAwMFJ+eVyG/qnvum7p+5q3rFGLyCjRyswDEvJDGiKnqOv2DVe+DvC78E6aNWwMPqQLYHMhOQMhMeH1R6ufIySYXjn8I8tioWLjaxmYinpJagUeeHTzS7KhAmB2dsq37pPp09ZtTv8lMr6Od4st6ZgJmhztUZxsq9gIk6NT3L9AAqbSTpYbBklA5sNC6oNRm+/pMs27Wbll5M3y7X9raC4+SGxklt1JRetVXsXF9mJPbjkJf8YXFv0ezgBIY1gwonfcrQMegeiwxsl1U9QKhY6QFQETWO34NUz2KvIah18vjwBsZMZ+pDprsnRCkUHsa8y+zp8RyPvqyp0JGe+r7nz1F9dP2QNUXue0u8LamD1w7u6h+YxbsKbFMExv2VMhoT4XlbU/T6jyevm3PQq8DCtvKozZXaMWCPSUeErBhT30Z7alvOdpT4hpqeHsqZLSnvpg9VdLZU6PZExCnEztkto4VbN/N5Ue7Z39yjdh1ZW4QC1uCDF+mLUG8GvKxdJDrTGazwCDXA5mNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKyNY03JZnpU8j+rI0lRVBFTMjHmT9KJCZ1OiGULWdBJLJ1O0nPuD5z1+LN3bs7+3N2jH+A3VZUCRVESGblAK51hs+dxo+EdGlWmuVFypURVXEgpiVNyVcVZqdk6hLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJltDxasME+9tdPJOS3k7z7b+aNrfZtG+MRBECXh/72Obu8rEjZZCrBSvBwsI/YqkS/e7Aw4BRjocJGwkqwUr1kg6lWwg4AwTAgHblcxJm8av5iRTh0iihJAy3AJqpLgfBnh2a16uqrofIozWvEkrA+rQQePUXFNRAQAxUwLxBpVT1VlWwt6KaUApRrHeUGJbdwuCtUBVehKEXjUuIry5DywqrNgSwE4hUJOPDWlAaC5FSIRFFqn836a8QRavvQYdqHN1QNZplmVgFlKWjOuL4Z2Fd/ixgWpeLBNi6PN7oMSeWVzXe49GUHkyYy3pgmE+gw1znZdKco79lkqJuLrZMUtTNxZZJirq52DJJUTcX84WKMpf3/Dhrr9uOlDomkaIqXTR8oQ7FilpmZlvcDxXvHJ1jd70iaXGFVp+6NSShGC8Li+tEOk0aacsxYtFhvbUcu9+HqeVYzT7l3XLsw0qLj53P7AtI6TDk69bEQWuNoOVYUR+mBi67+hhB36T79+/roeXYisV+Q0/MT+NleL4am/sk7qtRtBxLYtTOCGPQjl5ajh38u07C27Adfvuqv7zWp1crPH3VUC3HujAqp6YxKIdjyJZjV3sJju47UJGXPmPuz53hXvuMquXY80Am5R0NNJ5CQQZvOfYtL/JSkysz/TbtCWybeTEs0cAtx9IYNRdtcM3Bm8qt5djOoU2W/3rhT++9Ixo82/9hl4lRtBxDfAjalmPAEKJ+ajyHxk/9N7UcI7bFMHDLsW9BTC3H1gfpp+VY2yVng+TVAwS503O6zbsSdZP1lmPE4mYstNH6GMTURut8UHm1HBu0Itu8z8Y6AbNMHYdZbVi7kfWWY0QbwQJW6xmxig/6n2o5NonOjP1XhP8fFeEndhPSWxH+ISFMRfhvB5dHEf6CBa3uuVWO9Djwx+jPa0Lm49utly3bnGUbCWuWh4Qw1Sx3DNFLEf5+sx3OWG+o7TW7j7ha7eQeNQxehN+EERUwboxm76Bb4g97Rfhrm83d3MfbR5AVudV29PoI/LG9IYvw7wtmUl2KYVSn9yL87UPqC8IHB/olVl31sfaRkXwDF+FHrAxtFXVgZfRWhH9ButAu/nG6V+6gyl+W1rqCL5hlmCL8JozgAGOjvyL8ljObfKnZd4X/3MDfPrVXPMeX0zFcEX5kTtMiBOY06rdN5tD4bQKeQ+ufPa/wNt9tuOX3VW8JdQSQJL5ouQys6GSfzZQG544lIRJpyf1oLQyAuEI+NjyCq24aq0stB2KHRdq3JVc90BBqy+1rLgALMMBXxIeHLgR8CwG+A/qWNbHKsuS1wFUUC8qv/mXd6jo1pN29l7yIOHSlsC+e0fuPencRXCiiYSyjC8UF6H3uC9BrxKcYnTYOAk5hX51cqOqq6SuWhCsk1P7lmcRux94VPeGvTbLKu7mu2JOQIYXcSJEhpbrOetlf8P03M37/hL6GdpbUI1MHRwm+slQuloYy1Lbptdl72mz/YJ/Flkq/hG2Lk/FjFXsAeayqJeWhjAGMymhjGGUQ3R+OLhELZ98ouRIsX6JQeHZq36Yn2LKCnUWkI7dtz9AIuULsyG3XM2aMQon8Qu2tBk+7WlRwpqlgwcBnL4pvnJHj1zX4AcHK8TKK/pclovJQlimjsu6HGMPMgY/SyVu1KjnojhqrGBnDMIMS75hZuYwM4E8/lLko8H2n5mXZKpdRHaltUEMOUz0LSXWh2gq2Heurm5eKWnIGb+uY9WyxadWHvAMpM7K7e32eYdBtLwQgFQOgiAIAaFp08kSxpYy+yIR7/uOaMw8FuCfvvTFoT4M+9Qya7AsBaMYEQL/XIZijOYXz7+LjEBtz642P860/Ex/HsX9583G422In7s8vclv35Nc/3hZNOm4EfJyP/Zmim+f7GwGp4NSpU3rg49wcXiGnU99h7ttvKfdWD38TZxR8nPWM2ok3Bu3ohY+TH8AZ0SLA3Cu5UcKuxsuHDjIKPk4Io3IcjUE5HEPycfr8lvrk6Cm+b0Jm++SDu3aYGhUfx4RRebf7GdrZNSI+jkt1u6c1sgqE0x49aTzncNduBubj7OvHpLkUg2uuXPk4jhvF1/jXV3ku2TpvZerQvRlGwcdBfAhaPg4whKifmsD5f8DHebrmRkSc4Iv/AYfQngvWJsYbmI9jMpCJj5M1QD98nIRLGZMXn8r0TIlbPFB2oN0W1vk4xL05CxyTbwOYOCZXBpQXH2feCd8VD8cO8cheH97yxy9HN7POxyHaCBawymLEavqA/yk+zlQ6MzYmX9pa6r+VfyAvQPbs8WB8G1+zPmNh7qSnQhQdQc4w1SF80cxdGhMNs8fU0ZzxTqosU64I1swLh59AOfLMu26Jd7x9VZA73jo8b9gL+vcjR3I0haTxVzUYmLAAzVQsilFJzHvSclSqn0bBp4nwAqPSmg//EfI/R7UUeIV7FZgHS2RAYRKxN7DrcdjjELWqVJlIp0qdc9Ls1WO7/HPSFo35O/aXBv38V6Ss6jV1yqneGjlppzsuPHyviidveyert527b3mjkZNWI2y2henZ87zZ3VxSX7RvlqCRk+bR7eevf/y93W9l7QPz7kztHaORk3a/7rkRkfsceFt/bWb/efniPRo5ac3l3d9VnDaFl7kgRxqa/+ilRn5+s51PTS7/edZz7qy8b4VXuq3TaDZjlX45YOrV4T6zDvn+2Jr3pR0QmaKiQ9XHFef0PCPY1/uRvTB2fAcgqoqKXk2xdFnUoJNr0qy/pvI+bVsPRNVQ0ddpn795dVrMX3TQ6enBv7xCgcgMFdU+2bB4avYmYbLJVc/efW/sAKLqqOhs+qIqX9uLveZJqhx5ndnhFyAyR0VffG779J+y1Wd3ld1bzp7adw6ILFBRaubzopOKq15rk8T3/zDffg+IaqCiqtL1qxLzvgWs3rf3yd7Ld+Br1ERFb+p5bJx3NNEnc9jtyo+WO8LPqoWKWj4zzaqRt9VnUfvpkmWpdyOAqDYqOhlscb24w1nXLbVkzwcVLo8EojqoaHjKhjmcnk5uh/Pfzr0bZH8diCxRkcLz/N3t/jPcdvvWWBr0pU5NILJCRWfOH8tQnm3unfowv/Wr1ZkjgcgaFVWK7J5fnLrLc7NNw9xxed3DgKguKhpiP3vFsKUrAtYsuxlV9+TH00Bkg4o+LVvX5/P7TwGrsrycggbXfw5EtqjI837/Y75XN3vPvNf51Keu+7oDUT1UtKnYZeru2es9p678sbxNq1B4lx0qmp9jZtou65L/tCejugwbctoCiOqjonfSg29fdT8rSJzTvt2G77M9gagBKnpkZ9Hw5tVit5mtG+/t/ar2USBqiH2vttO6fTqRyNvnMt3KYUD4UiBqhIo6t7nT3y7Wxn/BxO6vbt65uQyIuKjI7UlkgmLF+YAZU7Y5HLrV6AIp2bIxhybZMqO43T2rufd5C0IbtXu+5IMjhdnQNdlyGp2Jsgo7uDP95BlBRtbDCefqx2fiDxMFcdEyuZiCQUDXmLQFeoea84mUWo+JFMlkwAihVey1pAwQDRTlq5HPOVGBtrWvwAoQN6wA2lcK7zcQ9nEbplsTiBJGpepFqPn4qUuqbcjt6r/j0qXI9LUvs1kkVLLs5HLsBZxoCJCYynE7Ddw6r2E6sQE6BgGHSYGc3YklsEyvPEaKUCjA+0llsOmyepxwgQfFFcEtVyglitt4XTestFP453aokpt2I/4WPgSq/hxyCLRExHp5VXtkxDDA9XmoUcSryXQ9HduGOqETTVyiLmWESAn2L6MlXOCAqNsw0cdKC2YIz/xqv5a386lb5js392WE03L0sRSn5ZiEbe3VdEIHuzuV9tKckcFOipjqCFxjjNiDHVpLiEBSglVxQU3HW5Uq+y0P4ORcuyCqVHYaEQtgcRnBAkMdXX+mc2jWn/+yD/5R9gHRQ9db9sGJ4UzZB+7DyyP74MKTYptbVZv4rfq7R+cG1c9ZsLhYEi0QC9kHh4czkbUXD9dL9kFR/Yvjn3eQea5wkPU/9jrymMGzD2SMqIBxY6SREv1lHyzdsODPj58GeSx+lH5U/jUWf65iyOyD+oyq+zjMSN0ZlrMPBqVbx8g8KwlnNx1ULTnrWRcDZx8gVoaWPg6sjN6yD5o3FNZKiRG6Hhl362f1fqYyI8g+kDGC4z5cj9kH1rEubSfdvu25oMP+82YLTI4YSfZBfUaEwJxG/bYZHBq/7cwKkfB717qeiRsbVnnZdGIe3htFetYFuwu1Pzhww7eMRD1hsEMMA78Cv2u8Zl9FYGzR8Qp9L9R1m6SV40Q8v6R+b7IXjUl0aO2SNhFt7UJylVyBBmwmlkNvyYduU2RXx2zzn1Hp9Iphue9tCEF2eDdFkB25XJqnRLR/LPRtSYUARVMNQm5rASdiok6xMxsEIGxc2IulCjB8gZx6sd16SpA9ddIk/oxffX9bd+vmJPy0dMduJk/LElFpgB25FHz7ayW+78quDfcMb+NgyQJgroyAgRFlECdKtWbAv2nPofshp3SaMujSDNElg1WNsVIOT3rq7LZzjV3Rt9+evq2NJOMAZQjiohUSdegOcWp5bsH2A1qVzQEmqDbYawtnaI9c373XPByiZvq5sqDa4glMqj09wXj841TdGsCV3r/0Q5XgxRlm7p7TXV2aLK9+IMBg/Us5zqhNgv1Lo0n7W2dkiqEL40wOzcLodqXunXGd97puHzzMJrnfEXxpYEtYclMJjz4hG1cC48MSHbqeufDlkQByVeFP5DHikscgm8OSZmdiMEi0WhGJYbvSX5ikDsq/0tYbgQemEgD6czeKJmgjwOB/Li5rrh5PqAEKPG6ApXyhtyGP4tpjDbwAeqokPvg/lU2LgafR8lgJTQbO2eMb4rlnUnxW/CZZ3dp3+BO8jUF6oVK0iEOvl2Zjqnz7YSL5e5D7fN67Hg8fCMrKv0gFMNtAmE3cKNp+pbVCYC7rkXBzDfWrT7dC5VExktCxyPCALSSoTzd967w4bsVf77O6pljgnDSkDp5VUPJc8vYXJ2Q9o8kRhW0IFWxFTghsqEmYRWcSzlk0/dC2k9xv5vu3vs6XpwiIDYOjZaJQCdd/rExGYQvoHGYn7L4oeB8cs9KocSKZVKwa5LFSZQRXDrYpCu0tATFKz/CeVI2NNcTaUs9aAp9GDNA1owq+ZUJ0Q8s6963hooa0P1TCdn3QSELEqElVAStd/1g3kLe0ws+jXxtKn+LdZ+RBZPdZdbm06UxkJZSVTgUrOULk1lK5DLB7SU0xrfusJXJ2auQUuKEGhxZ1n8Npjx4+uTrNc+Ht4E+8n7l/46na6AChDungpWzPYogWGEkMaB0N1auDhb2oacj4aIkmDk01ODvOvsCllcic4d/EOHt6DYdObrhEQWAJw5+yGm5rZIGEigWPAJvq8SpVU2qZuDCVZZKUtYeyMzoLinlUpEIXZBbodBBmo2pjCn0FZK3Chr6YEopWmSaRG+QzvJdn5wRPiVu9kxCYgN+KIjCBXC4PKJAhTgsFGOLoQpXEoVmojKZuPdFastPCpxzK1ruHMpWtb6aGfLbRQ07kxrED+VvZ4lVVTQfy9z38e0RLl8EfWYD8YwQT5FciMMjn0EGuMyuzBga5HliZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGiVHdNIpMoMVam8/3ePeeOKfLYNXhmgm0fPx6J8gYHL+XoI9IvWaC8JdPpv4nvCac7u6t5bDIRj7z2oiZe/3VUh/18mTwGuotIAIfslFemmW1NPKSwZU8E7HGjegCypYT7TJSGoF14n0g5LfUVSeBQ/ZG2XjnYKjYTgUlWRHV2DdtBrh+h09m1nSrahmSDyKFqAB7gF3pe0JR9Dc4OP2Hhn+i1s9Hew9sWlyXWVr7H2IUAq/oidNktJiXYg231/RGUfjgdVlZqSoQmVtQckLW7s1v7bvKYc3rCO+9uVaewSIuY2tf/0+mNcR5b5LO9ktzGH2MBJTBmGFCKGKFbk3bHQGxeIZMNwQybcnCrh3HP6EMl/VLPrrrQcr7n9rtjvO1ePHhrwHgubL+IDCLKgNxR2H5xhG5urIM6egghCtWoWQFXIJxtogRnZWfh9ffdj/qnXU2YK1jdZZYRRC0hSOdHMIG0foRucd3m7lLVN1cfVZUMGSSwSG+gji6XPshpE+md8+dhy5SLFyfjo4jYc8lRRLWkPNCJZ0QnZATmGKVwaBbGV/38hSYuX/hL1p33WBPgPYh8EE9eCU1owG2Mj+eqqW6xcp3KxhETLLSNDWjL/gaGacRIANt5qtxHDoDNdGQ5hGmTO/lsPD9aLFxzKfBKV3fuKvxhJxKPpVnWccLSrDjRxJWVCQ7s9AAIViDVGMuEpbhG6rTWWSBgScBMo4dqQHrjHnMD+rkn3h+xP7VpZzzrtaoA3EsNlIZIzy4BhMmUEab7It0Wu9JDaMRYs8FCaNDSIGMEhtBInYSjnRFoUDs0l84O8Vued+k67Z4w02PNO2VX2wbEc+hIUTRXdU5DcV5O55q3VN2HRXuQvBQRN0oSCy9JFNJQdIHUyiwRk7sY3pDqpFxDrCWurrAP2LgCWDWJwidPAKiPGKeTobJAwlCqw13wOtSFhj5POh++/E+3dRbnZEvW96yNd5GQB5BdJNXl0uYcMc+tjHMOMpOLIDxZdBUddo3TiU1irnofpkJfzg8+ztzU6oH7phX7TEZn1b6Ej/6p7idH/9DrpeGzd/g77+Iuv3klCMcPm7VI8hcL+CQx4gOGjyEYBqYIcWOcCogeHOKPbpXAzUNEinCJkklpnlWlMX4TrvHy70W7dLywoBCvNNX9ZKWh11k/s4VBHEat1DQqrRTnY1rRafmqgRi8aIkYNb7U27HG+RWbja7KWz3i2u2Fyyrj47+V/ZD7yYpBr7OtGFdn1JzAY0bSfjXBRcDJGKfbhsxOjQGysZBJS8PjacEI+cE/agmTLF5VbdG5Cz61rQpf9QAyqxYTlAciIxgRaTYOW9fncWjW9V0LfT8O7t7Ne+bH70rT4zc/4HWs+kTtyTA91DsM/ALOjY2QhkYAtxLmFopiYmBFAzUrBl3+tdt8EPO0qd6XPCZV13XhiY5FeaIk9osr2NWNGFvWCHh91NWAi71UVaQGpjCp3oTyi9vNvtHswIY1wqSf0Z+zq6/Dc92r0Dk2aoGeF3+ESgoxbEPF0eA6IBjqZLF6+KMjSlWWE5eoBflAMarzAVgKEP6/xKfkTvSfRIkocT03aFVQuK9FALOhAgzWYgKAoZN5Pt1kNprAFXE0sdTjmhjmYCFydVvJFLk6rMQwT6XD3P+Ax8UznBP8hEG23aUvfWrhq0Yh/eSjZdJQJC2MbEjpkLbzA/4AWJ6U4E4ZNxL3FK3sJLEyBdNrkYtZ4eXaHtzA0kvjAZwpVAc3SIxifIG5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj8bRdU2VVv11GP/psKqU51lnXD6qcAjzw4eaXZUIMyOk95/Pak+z8Qtb+8c092tClLKemYC47pQnW2o2AuQoHN+fIEGSKWdLDUMloTKgYXWBaW2G1wTZ05Z5r191K4lGaIZI/EouZFRcisVpT8tujflf77mvvzbqktVJtnFsYDSekaU4scXoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD1d8C+zp8RyPnqyp4FxTPb0c+x/9hTVz5yj3quLL/b13rXazsPq09XmbNhTQpkmFiyFVxyTpeDGlbc9nS5d97pH2ymeSx7ZWll5te3Kgj0lHhKwgBIY1gwoFcaWoz0lrqEGt6fIiKG1pwAp1J4upLOnRrMnIE4ndshsHSvYvpvLj3bP/uQasevK3CAWtgTCWKYtgaMa8kV0kOtMZrPAINcDmY2iBh5m6ilq4GFkNooaeBiZjaIGHkZmo6iBh5HZKGrgYWQ2oodGYqxBq0g5xIjV81hgrC1mTclmelTyP6sjSVFUEVMyMeZP0okJnU6IZQtZ0MkSOp2k59wfOOvxZ+/cnP25u0c/wOf5VQoURUlk5AKtdIbNnseNhndoVJnmRsmVElVxIaUkTslVFWel/NrEuosUr6KNtTMLDlXIZbIguGLBi5oNWQmW8M2ZOueb3fd1X7zg929tzjrSMqlN+8ZIFCHg9bGPbe4uHztSBrlasBIsLPwjlirR7w48DBjleJiwkaASrFQvqRlLCwHHZAwwoF35nIRZ/Gp+IkW4NEooCcMtgGaqy0GwZ4fm9aqq6yHyaM2reCtsEtRCsKPimIIaCIiBCpg3qJSq3qoK9lZUE0ohivWOEsOyWxi8FarCizD0onEJ8dVlaFlh1YYAdgKRimR8WAtKYyFSKiSiSPXvJv0Vomj1PehQXUo3VI1mWSZWAWXpqI44/llYlzePYVqXk8Zg6/Iyo8ecWF7VeI9HM6RMmMdLMczT6DDXeZk05+hvmaSom4stkxR1c7FlkqJuLrZMUtTNxXwh04X5L9OX7HWb8+7TxfaPb9TT8IUcRiVn/1rwxifncVCfqMK3zUiLK7T61KFzQjFeFhbX5XSaNNKWY8Siw3prOZY6ianl2NH48m45ltbiqumgTTO89nQKHj3vcaOVRtByLGkSUwOXEZOMoG/SjRs39NByLCA26Hpj2fuA6b+unD1BPtPMKFqOdWHUTk1j0I5eWo4tqZgz4LfJF33zvnW8FBF8c7RRtBx7Hs+kHGBNDK8cjiFbjkVWKM4IFuf65b9YOCFi0cFpRtVyLI1RedGGUZ5xthy7fOeh17evXgHZspt/Xlo3cbWBW455MWqOa3DNwZvKreUYLzTTLKS10jPpZ7fWlrb9+EbRcgzxIWhbjgFDiPqp6RwaP/Xf1HKM2BbDwC3HsiYztRwLmayflmPcWkFj/oo7KNj5N8cjSDh8Oestx4jFzVhoo7V+MlMbrfjJ5dVyLP/HvWaeL5t7LC/eNKTQq+8K1luOEW0EC1iFMGLlOPl/quXYCjoz9l8R/n9UhJ/YTUhvRfgrJzAV4U+ZUh5F+MfY/zz4zSrEb07r6ydfhG3Bk8jKlm3Oso2ENcsrJjDVLL89RS9F+B9+bxWW7Wjpt9d82lS/GhtbGrwI/74pTKiAcWM0ewfdEn/YK8I/+NFqW06vCJ/sQXv2NKnk2NpoivCLGVXXwzCq03sR/qi0mHpV5lZ3XTD41sFVHQ6lGbgIP2JlaKuoAyujtyL8LgWrW97/fYDbwsVTNiwcl13ZCIrwI8aGFpyUKXoswv+mmuWQBdIi17zYnnmbJl3ebgTlLCBCYkaEwJxG/bYMDo3fJuA5tP7Z8wpv892GW35f9bY9vo4AksQXLZeBFZ3ss5nS4NyxJEQiLbkfrYUBEFfIx4ZHcNVNY3Wp5UDssEj7tuSqBxpCbbl9zQWcIjg9RXx46ELAtxDgOz2hrIlVliWvBa6iWFB+9V/bf67c+tQj/sJRF/3aVtmG77L4j3p3EVwoomEsowvFBehdgeg14lOMTht4SpygkwtVXTV9xZJwhYTav7Ryunn/qSDTbZbZxl9znyWvJWRIITdSZEiprrNe9hd8/yzG75+WYGhnST0ydXCU4CtL5WJpKENtm2VbnwhzEz77ZUh8HzZ6368xfqxiDyCPVbWkPJQxnVEZ0YZRBtH94egSsXD2jZIrwfIlCoVnp/ZteoItK9hZRDpy2/YMjZArxI7cdj1jxiiUyC/U3mrV7dk3fMbNcZ0+vPUskwneffDrGvyAYOV4GUX/yxJReShrCKOyvIxi5sBH6eStWpUcdEeNVYyMYZhBY380aj1s5hr/QxWqvvz1etf7Zdkql1EdqW1QQw5TPQtJdaHaCvoeTNDNS0UtOYO3dURqMmFDi43eR6xuNGqckdDPoNteCEAmBkARBQDQtOjkiWJLGX2RiSZRy6eEW1dyTW5T+4RY6PDYoMm+EIBRTABs9U/AHM2VnH8XH4fYmFtvfJxrU5n4OFFTy5uPc+NVwcjtN4O8Ml832G+9a0JtI+Dj/D6VKbqZN9UISAX5+fl64OOMbnIkfcnEUGHuSw6n9avMAqPg42xl1M5SY9COXvg4ifWT6twIOO2+10O6eq/woKlR8HESGZUTZQzK4RiSj8N5/FfE9c/D/Fa9ul1BWmPIfKPi4wxiVJ6HYZRnnHycfm26JM44pPTMzjeP+97d+aWB+TjtGDXX0OCaK1c+jlVkhx5jCnJdVw8Y1+uSpIfIKPg4iA9By8cBhhD1U1dx/h/wcTq3udPfLtbGf8HE7q9u3rm5zMB8nEGJTHwc50T98HEuWe+4675ht3dSfm7K7P6K86zzcYh7cxY4Jv0SmTgmbonlxccZdPhaXceNc7xX1b9xvfP9T2dY5+MQbQQLWDkzYlUv8X+Kj7OazoyNyZe2lvpv5R/IC5A9ezwYX5verM9YmDvpqRBFR5AzTHUIXzRzl8ZEw+wxdTRnvJMqy5QrgjXzwuEnUI48tyeRCYoV5wNmTNnmcOhWowu070eO5GgKSeOvajAwYQGaqVgUo5KY96TlqFQ/jYJP4woLc1nz4T/8qBw0qqXAsoeywDxYIgMKk4i9gV2Pwx6HqFWlykw6Veqck2avHtvln5M2JLRWj2dhJwUL7n84t67dOpFGThr36+XAux9re662bbvV++u8Axo5aeZmU2Ov/VDyVg8Z1cliej2lRk7ajuNWt39kFHktWrur4eRjA4I0ctJshx/qMqZHhuesbvGHpLIm+Ro5abwB0c/vrBH4zH3ovH9y55Phmvn5jtGbEsbGuy9u2LnSqIXjBBrNZvpbvHqd1e6lz/L+A3JuLJx4DYhMUZHpzm/n91WQ+ubaJjTYlDfgKxBVRUWVB/b9i78mT7Dv6amkUSE7o4CoGipqdcd/1ZPZsQEbMn98G/ym9SkgMkNFDVr9/eH9u5Ee01e6Dje3ePsaiKqjorsP32+I+StUsCzYbNjuu+1gcQFzVCR88mzIlvXT/bPObVha8XzELSCyQEWzAiza3PIs4OUuMYla8bHSZSCqgYomVD65NLHDUY+MBRe4+wfvdQCimqio84uC8aOCQ/037nn+d6uuLj5AVAsVVaghyLpTb7vnVM+6RVcebikAotqoqLnXwIc1PeYEpEe19PHPrXUDiOqgoludxue37xfLnzkiKNmx6cqzQGSJip4cTJ9xcr6599TXjY+/W1VpPxBZoaLdl/bPrJfUQbB86avEHpWfw69sjYr6nNn6fLqysc/+uPWvTsYLnYCoLip61Glcd9frfoI9drMsq7baPwWIbFDRq0shXiN/6eOWu7rlD9fzcjjYbFFR9fj3L9L6TPGbc9Rh1PnsmRuAqB4q2rW09piYS5t8pw83WfMh0RqK7FBRo4jb3XqZt/Nf03bpjGNXT8LPqo+KPKcfbLH3ppffPDurvVUrrTUBogaoyGZn+Jttx9b5bt31+Uw9q+5pQNQQFfEfzY7bMD2Lv8HGqeeBWr13A1EjVLRRaV3r07J5PqnK5U3qVNwMX4OLirbseXn7h2CAcO3cZPtea7udICVbNubQJFuKLW3M21y657dwxNAtF/q5RFCYDV2TLdfQmSirsIM700+eEWRkPZxwrn48PjhdRRAXLZOLKRgEdI1JW6B3qDmfSKn1mEiRTAaMEFrFXkvKANFAUb4a+ZwTFWhb+wqsAN2mF0D7SuH9BjoKOBbTdWsCUcKoVL0I5Xcb5iYMqiuuyFt/z61Oy57NX7FIqGTZyeXYCzidIEBiKsftNHDrmkzXiQ3QMQg4TArk7E4sgWV65TFShEIB3k8qg02X1eOECzworghuuUIpUQx99Ml110lT/7SCoc9db38LxIdA1Z9DDoGWiFgvr2qPjBgGuP6eZhTxajJdT8e2oU7oRBOXqEsZIVKC/ctoCRc4IOo2TPSx0uBW6459syrw3VF4dcCih8d6EU7L0cdSnJZjEra1V9MJHezuVNpLc0YGOyliqiNwjTFiD3ZoLSECSV1zqGb8wsob/+JlX0znDOj3NLXsNCIWwLJgBAsMdXT9Wcv5L/uAzewDooeut+yD+9OZsg8ydVsrtcw+KL6rHLXi53uvQ3aba1eJGRzB4mJJtEAsZB/cns5E1j6t22L5T7MPvB++X9Bn5XX3fXMnNj8+QbzMoDQMJPuAERUwbow0UqK/7IOZ0x9v7WOzxy+h78feeyLfHzOa7IMURtXFGUZ1es8+aBnw5cOkDFuP3PYr7Arfrh5q4OwDxMrQ0sdPU3gp5ZV9sO57ZJOPm3bw5zawyKh/Nx5/Hmig7ANGcDKn6zH7oF29L3PPdF7veWiqjWVl/9E/jCT7IIURITCnUb9tHYfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PF6ItnYhuUqusEL5wnLoLfki1P7njo5Lvab5/NFxfrW/zxKC7PBuiiA7crk0T4lo/1jo23IfAhRNNQi5rQWc8wt1ip3ZIABh48JeLFWA4Qvk1Ivtfbcb1/Z9vC7cLBRNqzw94g1+WrpjN5OnZYmoNMAOHL+W1v5yst+MCgfbvDlaT8YCYDmMgIERZRAnSrVmwL9pz6H7Iad0mjLo0gzRJYNVPb3y1GTh9OMBe6ddWTS7ujy/NpKMA5QhiItWSNShO8Sp5bkF2w9oVTYHmKDa/tPv1Kkf9kyQ4X6s97Snzz+z0cOIUbXxBlItlX+cqlsDuNL7l76c0iKtZYeb3rOHKoN2zo1MMFj/Uo4zapNg/9Jo0v7WGZli6MK4nkOzMLpdqXtnXOe9rtsHD7NJ7ncEXxrYEpbcVMKjT8jGlcD4sESHrmcufHkkgFxV+BN5jLjkMcjmsKTZmRgMEq1WRGLYrvQXJqmD8q+09UbA4J83C4D+3I2iCdoIMPgVs8qaq8cTaoACjxtgKV/obcijuPZYAy+AniqJD/5PZdNi4Gm0PFZCk4FjF+NydHfbw26Lq+V/H2HST4q3MUgvVIoWcej10mxMsvDGx2/j2vHWPnp3Z9m2XoPLaGNSAcxzIMwmbhRtv9JaITCX9Ui4uYb61adbofKoGEnoWGR4wBYS1Kebmcd/MX9TONtjy6FDcwunD++IZxWUPJe8/cUJWc9ockRhG0IFW5ETAhtqEjbQmYRzFk0/tO0k95v5/q2v8+UpAmLD4GiZKFTC9R8rk1HYAjqH2Qm7LwreB8esNGqcSCYVqwZ5rFQZwZWDbYpCe0tAjNIzvCdVY2MNsbbUs5YCTkOIrhlV8C0ToPt+ZlnnvjVc1JD2h0rYrg8aSYgYNdfY7fT6tB8dhEvufD51v00vHt59Rh5Edp9Vl0ubzkRWQlnpVAC5ehC5tVQuA+xeUnkWrfusJXJ2auQUuKEGhxYlfAOn2bWp92BPQPLIlDXxM1vE4qna6AChDungpWzPYogWGEkMaN2dqVcHC3tR05Dx0RJNHJpqcHacfYFLK5E5w7+Jcfb0Gg6d3HCJgsAShj9lNdzWyAIJFQseATbV41WqptQycWEqyyQpaw9lZ3QWFPOoSIUuyCzQ6SDMRtXGFPoKyFqFDX0x9aL1JPt9wvZrHqlmGxqeuP8kmRCYgN+KIjCBXC4PKJAhTgsFGOLoQrWRQ7NQGU3deqK1ZKeFTzmUrc+cyVS2PlUN+Sajh5zIjWMHcknFYfvq/F3smWhSWNAmu+IeFiCPm80EecRsDPLNdJDrzMqsgUGuB1YmBYkSY2VSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2Uuyjh3NU041HPHhM9+suAxtUiUNzh4KUcfkX7JAuVtC53+m/iecLqzu5rHJhPxyGsvauL1X0d12M+XyWOgu4gEcMhOeWWa2dbEQwpb9kTAHjeqByBbSrjPRGkI2oX3iZTTUl+RBA7VH2nrlcPjqBlgkhVRnV3DdpCBM3Q6u7ZTRduQbBA5VA3AA/xCzwvqX6t4cpCbm9+2WwejAjL/LCpLrK18j7ELAVYpM9Blt5iUYA+21VEzKP1wOqys1JQITawoUTphIpt6z3lhwNbv22qGtXtYn0VaxNS+/p9Ob4zz2CKf7ZXkNv4YCygFMqLUboZuTdodA7F5hUw2BDNsysGtHsY9ow+VJEcecVjiwxcm3h4riY+a7mzAeC5sv4gMIsqA3FGwDY6boZsb66COHkKIQjVqVsAVCGebKMGpMf1Mt14JP/kbM+/WXVHXx8wIopYQJDEjSIEzdIvrNneXqr65+qiqZMgggUV6A+UYvqZnYFFvz/W1+q/c5SAwwUcRseeSo4hqSXmg04MRHfsZmGO0lUOzML7q5y80cfnCX7LuvMeaAO9B5IN48kpoQgNuY3w8V011i5XrVDaOmGChbWxAW/Y3MEzO0IU/T5X7yIFVHskHUGUP094RnehTwUPmsTfuD+Xw7KQ6+MNOJB5Ls6zjhKUeIRNMXFmZ4MBOO0CwAqnGWCZwza1n6rTWWSBgScBMo4cqzreiV/zz1YL8lpta1Ww1cTjeEgnAvdRAaYj07BJAmCoywvRGx8Wu9BAaMdZssBAatDTIGIEhNFIn4WhnBBrUDm2js0P8ludduk67J8z0WPNO2dW2AfEcOlIUzVWd01Ccl9O55i1V92HRHiQvRcSNksTCSxKFNBRdILUyS8TkLoY3pDop1xBriasrbHqVWgCrJlH45AkAda9UnQyVBRKGUh3ugteh/JZ/v+iatMk2xnPpAue293b/IHRsRB5AdpFUl0ubc8Q8tzLOOchMng7hyaKr6BCdqhObxFz1PkyFvkZnjJm6OXm9z+JLUaZ5ya3H4KN/qvvJ0T/0emn4zPrp/GzD5h/ui248Xup/s99GFvAZwogPGD6GYBiYIsSNcSogenCIP7pVAjcPESnCJUompd2q/2akw4MMv8WbXA7wXzfdjFea6n6y0tDrrJ/ZAq10YNQK16i0UpyPaUWn5asGYvCiJWLU+FIqZsHU+9ebhQ8XbluybOjmefXG4hXjh9xPVgx6nW3FuDqj5gQeM5L2qwkuAk5Yqm4bMjs1BsjGQiYtDY/nYY87e7zOd5tR4FbkMvZ3Vzyrlq96AJlViwnKAxEvRkQcUrF1PYtDs67vWuj7cXD3bt4zP35Xmh6/+QGvY9Unak+G6aHeYeAXcG5shDQ0AriVMLdQFBMDKxqoWTHo8q/d5oOYp031vuQxqbquC090PsoTJbFfXMGu7vT8skbA66OuBlzspaoiNTCFSfUm1N2iHjS3HfvD3CN9yuNFG3ZZHsEPPjrHRi3Q8+KPUEkhhm2oOBpcBwRDnSxWD390RKnKcuIStSAfKEZ1PgBLAcL/l/iU3In+k6iHEmE9N2hVULivRQCzoQIM1mICgKGTeTvdZDaawBVxNLHU45oY5mAhcjVzPlPkapwa8x10mPsf8Lh4hnOCnzDItrv0pU8tfNUopJ98tEwaiqSFkQ0pHdJ2fsAfAMuTEtwp40binqKVnSRWpmB6LXIxK7xc24MbsMm2hlTNFKqDGxijeLmgwFx9Gol5Tth6Us0b2lKcLuEnVUEue4uxMTBQfHpehfyq7rlv6vqZt65TiMkr0MjNAhDzQhojpqrr9A9WvQ/yuvBPmDZuDTykCmBzIDsBITPh9UWpn5CF7puXVljhO/3AidMTw+zww6YCjzw7eKTZUYEwO1bNe2J7+KxDQO7gKw0Hmowoa9cmDpgdtaE621CxFyBB58eCAg2QSjtZahgsCZUDC60LSg9bjvqUZ7fdfd6KRdkvC1+a41FyI6PkVipKn8133SmWBHqsOzX7ZOSm4tEsoASGNQNK1xYUoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD3d+S+zp8RyPnqyp64LmOyp5X/2FNNP/Ib+O7w/7PFdcnv4xG8O8Y9ZsKfEMk0sWIoejJbCvtztaeSYphlN83q5Lb0WHVXU02kHC/aUeEjAAkqWjChxytOeEtdQg9tTZMTQ2lNLtT3dRWdPjWZPQJxO7JDZOlawfTeXH+2e/ck1YteVuUEsbAnyUpm2BDvUZyq76SDXmcxmgUGuBzIbRQ08zNRT1MDDyGwUNfAwMhtFDTyMzEZRAw8js1HUwMPIbEQPjcRYg1aR+iSZUD2PBcbaHtaUbKZHJf+zOpIURRUxJRNj/iSdmNDphFi2kAWd7KXTydLnn1Y69U0RHjwb8Kvnz8wm+HIdJXmoeMUwxZysS0oWRcGaUOgDqpFzWmt5BAT58ULsm0xs0y1oUhPHgFZa+ZXE0o2VhfLQ0RKx+ia6r0CuOFIi0zbU0ULASUwGtq4Tn+acMyyZwr80QeGi8C8Rl4XgX6Z9T8hds2CAd/amLf6uT1rfYst/ZKx2XYIFd5xIIRWNlFFzhvpEdzy7bGGua/YqvlnHZ2dymdHvhz6KG0B2lAJKdZSINTXLWtYIaG9yMuookbPgWiDaIzpKTP6kZYmjVDLQKVG7Otq2yYexHPc9k1rcvrb7z/eMqNE5TVTHfWUNiLRFITnqSgFJdFsEEtSG7KOzIek59wfOevzZOzdnf+7u0Q/wucKVAkVREhm5yDOd+bDncaPhHRqV6rlRcqVEVaBMKYlTclUFnqlHJ6F2K8WraOMxmQWHKuQyWRD0euHFkrTx4t6EMervYvWb7d5Q110L1rp1nbhvL90YNe0bI1GEgNfHPra5u3wsnBmhMlhNGhYPE0uV6HcHuxQYKX2YsJGgR6zcN0mPYPCmzgV67MrnJMziV/MTKcKlUUJJGG5QmKkuB8G+P5rXq6quh8ijNa8Sykj7tBBcnz+3oAYCYqAC5h4rpaq3qoK9FdWirBDFekeJYek+9WivCi/C8K3GJWS/L0NLk6uMP+wmJBXJ+LCenFo1lYOVCokoUv27SX+FKLrEgKiG6n66oWo0rj2xkjBLx/3E8c+Cb//HXCbf/vZczDxkGz3mxOXEeEMs5xmTgw6rk4MO0GGus6ttztGfq01RextztSlqb2OuNkXtbczVpqi9je2nrBNGt+vYx94rO31t/boN61XW2E9N+PJy68N104SH7nf47cwm7y0kBx1afcqBRCzozYKDnkOnSSNtW0gsXK63toX3FzG1LYxbVN5tC8XNbTpMO/U2IKtdlZDbHX+RGEHbwtuLmJpAnV5kBL3XfvvtNz20LWw5aEW2eHodvwzLAe/r26TPMoq2hfsYtZNpDNrRS9vC6h+f9Pzl3nHBjN+T7x1cboJv9GyotoUpjMqJMwblcAzZtjDxbOMO34dy/PNOOq+tlbEBXx/R0G0LxYzKCzSM8oyzbaH88oU1xYU1+Hl1JZ8Cm9m0NHDbwh6MmrM3uObgTeXWtvDx9eRzH+Y/8NvvkzJ18rhRV4yibSHiQ9C2LQSGEPVTD3Jo/NR/U9tCYmsdA7ctjFrM1LbQbbF+2ha2thLyW/t8FWxODrXpmMnF9+Nmo20hsUAiC634Ri1masXXb3F5tS08sH/t/dAbC90Pn+pSbNpQblL2KUzAimgjWMDKjREr58X/U20Lc+nM2H+NPP5RIw9iRzK9NfJouISpkcddsu1koZHHqwdHz7z/u4tvdljvlLPvVj1ksWIFyzYS9j2ot4Sp70HlJXpp5CHweRPw9x/zXY+8zrqRV7sZvn68IRp5vF/MhMpd/VpDxr2DbsmD7DXyyPiccnbuuQr+KVPjvxyqN3iC0TTyOMuoumzDqE7vjTwmnqrd1vzrJWFig2HRZrPiLQzcyAOxMrSdGICV0Vsjj6mpNS7vPDDVe6PJc4dqF3i3jaCRB2JsaMEBxkZ/jTw4o/q8+TJ7i/vqXtleqRPrZhtBSRyI0FlGhMCcRv22Qxwav03Ac2j9s+cV3ua7Dbf8vupte3wtEiQROFouAys62WczpcG5Y0mIRFpyP1pPByCukI8Nj+CqG0/rUg+G2KWV9m3JlVM0hNryg5sLOMVweor48NCFgG8hwDdjSVmTMy1LXgsyiFRYUH717kfCnFYm3uPnrY0taif/FV9s9B/1/yO4UETDWEYXigvQ+wOi14hPMTptHAScIt1cqOqq6SuWhCsk1P5l4LO2SQ//+EWQ8bV4UA/nNycJWZbIjRRZlqrrrJcOB9//BOP337XE0M6SemTq4CjBV5bKxdJQhvpYh50ubMtrkxQwzWvd+/Hjh9rixyr2APJYVUvKQxkZjMpIMowyiO4PR5eIhbNvlFwJli9RKDw7tW/TE2xZwc4i0pHbtmdohFwhduS26xkzRqFEfqH2Vu+k9Ap/PHK/YPvA5LE+26sfwq9r8AOCleNlFD10S0TloSwlo7JGGMXMgY/SyVu1KjnojhqrGBnDMINeZL97NjR+oc/U3ut2vkzec6QsW+UyqiO1DWrIYbp4Iam2XFtB39909FJRS87gbRVzfT2P2WcFzDk7SbDpQfAMg257IQA5GABFFABA06KTJ4otZfSFarJ2flt7qfFuQXr9iDeFLd7UISxl+i0YAAFIZAJga9gSzNE8zPl38XH4j2bHbZiexd9g49TzQK3eu/XGx3mzlImPM3NpefNxNv3we+llUcl3oY9zu3c1P4QaAR/n5VKm6Oa1pUZAKsjJydEDH+dhvy+KQcuL/FfG9X2W8cWvhlHwcY4xameHMWhHL3yc9sX8lMA3h303LDlWFPnn3vFGwcdJZ1TOTGNQDseQfJz1wRe37fCP917QYG2aa+TaB0bFx1EwKm+YYZRnnHyc1zmH5JWGtXJNfHjsdVann5kG5uP4MGquk8E1V658HG6KPPHJaKHbylqN84f52KYZBR8H8SFo+TjAEKJ+6hHO/wM+zkalda1Py+b5pCqXN6lTcfMGA/NxFMuY+Dgey/TDx+lzt9qvi3vfEWweU9C7X09hf9b5OMS9OQsck6hlTByTQcvKi4/ziddwinX/s35zl7xdHPotYyvrfByijWABKw9GrNot+5/i4+TRmbEx+dLWUv+t/AN5AbJnjwe/xUdK+oyFuZOeClF0BDnDVIfwRTN3aUw0zB5TR3PGO6myTLkiWHczHH4C5cjbsufl7R+CAcK1c5Pte63tdoL2/ciRHE0hafxVDQYmLEAzFYtiVP7D/Gj10yj4NDawuJ81H/4j5H+Oaim4Xnd+gXmwRAYUJhF7A7sehz0OUatKlfl0qtQ5J81ePbbLPydtk6CDnaXzFf6S6EmhByq4Z2jkpF1Ly94d/7tCsG+/W9xDcdJDjZy0qzXnyubYvnY//E6i6JVxoqdGTppf20fBmQ6LBcsPTN8+6GFOA42ctKTxq6YMnMb1SzntPLz9xx5fNXLSGrw4uVRaYCfIP1T11tSXWYUaNT46LVnCETbd673lyIC5he893TQaVs3NGzSBe9bTf/vEZeETDt38CESm2APD1nVpumWt5676jd8nVvvlHhBVxUTyFbn1G05zXZB+tTbvSCMZEFXDXt52WGHkkyi/TW1Ctihn3aoJRGaoaEfwHx6ffh3vn7Rh+Ndefw9OBqLqqKj/MPm8z9mxvLUiYZcN8n2wGIY5KlqzstntKev6uU9b2rqlX73aEUBkgYpu+6XGHuh5RDhjxLW7NTvO7wVENVBR3b2nryQE3vBKHpx1t93RzXWAqCYqkldPP3K8Zxfe+lbhTT/trm8NRLVQ0buonjVXjh3ksW7vG5/aNW9sA6LaqIiTZu9XFFLZY8PxE8kB/WcOBaI6qGhbhcUTo6t8DNht18JrZ/aTZkBkiYq6ra51cr5Div/c22EX/57k9wiIrLDXeNCbG/u6ofu+pCqht3oe2gVE1qjoZ5j92+ajNvNmzoz3eT1M5gVEdVHRERFn2dpzHb3mBDV66t814TMQ2aCi0VPiR+88ONZ31q6UofefXO0GRLaoqOOT1zsTfPL95gya2W7NsecvgKgeKkoeo/QfMq2WcMagsVkLE9MCgMgOFf1a+eWlKgmWwj0dvppWyxlTBET1UZHlCJ8m7btu9Tj8/b6isdR9MRA1QEWT8yfnLE2V+Sw6fsL27P2zEPmGmL6k9dc3XX/d+/Avp37y7vvCAdAIFV3wCjwu+/iXf1KTMbbykKRlQMRFRY+mvYib/LIqb+Xp83lNkm96kJItG3Noki0zLq4wc0qc6rPt5tchl36av6cwG7omWx6lM1FWYQd3pp88I8jIejjhXP14/LasiiAuWiYXUzAI6Jobt0DvUHM+kXYNMZEimQwYIbQThpaUAaKBonw18jknKtC2fh5YAb6lFUD7SuH9BjoKOIVpujWSKWFUql6E2v93WDTsu6i234w07nDugeu9WCRUsuzkcuwFnM8QIDGV43YauHWP03RiA3QMAg6TAjm7E0tgqW95jBShUID3k8pg43b1OOECD4orgluuUEoURRkvjgm2fOKnye7KK92svxwfAlV/DjkEWiJivUSzPTJiGOA6nGYU8WoyXU/H1sNO6EQTl6hLGSFSgv3LaAkXOCDqVm4M3bgOWgb1/3rL/UiHvq07P74tIJyWo4+lOC3HJGxrr6YTOtjdqbSX5owMdlLEVEfgGmPEHuzQWkIEkrpncb+GnKxOq/xT7tW4163xS17ZaUQsgFXICBYY6uj68yvnv+wDNrMPiB663rIPNi5nyj4IW14e2Qcf/hwR9+HKVf8FVy97Hmpa+zmLiyXRArGQfbB2ORNZe95yvWQfKPjVvZOf+gvm36oStihwdlODZx9MYEQFjBsjjZToL/vgx5qxC0f1tuBnW9zZ/2DF/GZGk30QxKi6XoZRnd6zDy73rT/QNGac1+FUF4dt5+ZNN3D2AWJlaOnjwMroLftg3jK+ycqBs9zyuINlHZeuwhdMMEz2wQRGcMKW6zH7oEfDcf7JV/d4zDEZWOVNv7ghRpJ9EMSIEJjTqN92jEPjt51ZIRJ+71rXM3Fjwyovm07Ea90U6XsZ7C7U/uDADd92FvWEwQ4xDPwK/K7xmr1ZgbFFxyv0vVDXbZJWjhPx/JL6vcleNCbRoT3U7U1oeyiSq+QKNJCxqRz609au4nhOGrXLbd3p1UtyKwXWIgTZ4d0UQXbkcmmeEtH+sdD7qQgCFE01CLmtBZwTm3SKndkgAGHjwl4sVYDhC+TUi633ySO9XqzfxVvZ/nn+WfeMY/hp6Y7dTJ6WJaLSANv7a4u6kSHdAxaY7jpr3im/rDXvIWC7GAEDI8ogTpRqzYB/055D90NO6TRl0KUZoksGq8p7eitgSL8Tnmnejgsbxj/8WBtJxgHKIJdcrsxzC7Yf0KpsDjBBtfu+/Vj95inPIz2vV8LVCc0usKDaJEbVKg2kWir/OFW3JpKl90BWNnk0alATW8/VpkEbm7jm5husBzLHGbVJsAdyNGl/64xMMXRhPM6hWRjdrtS9M67zXtftg4fZJPc7gi8NbAlLbirh0Sdk40pgfFiiQ+dEF748EkCuKvyJPEZc8hhkc1jSMFEMBolWKyIxbFf6C5PUQflX2nojYPCHZADQn7tRFBgfAQZ/l4yy5urxhBqgwOMGWMoXehvyKK491gQQoKdK4oP/U9m0GHgaLY+V0GTgePtcF7SOjOMttY1Tfmj/Ft9muTLST5mizSR6vTQb8+f4Ixciv83kL+7ZZmTLb8s/lNHGpAKYAyHMJm4UZa/TWiEwl/VIuLmG+tWnW6HyqBhJ6FhkeMA2NNSnm2E9unZuZPl3wMrVKyaZFeThW9GZlTyXvP3FCVnPaHJEYRtCBVuREwIbahJO0JmEcxZNP7TtJPeb+f6tr/PlKfhjbvMgSbRMFCrh+o+VyShsAZ3D7ITdFwXvg2NWGjVOJJOKVYM8VqqM4MrBNkWhvSUgRukZ3pOqObqGWFvqWUsB5/EKgK4ZVfAtE6Cbs6Ksc98aLmpIC1UlbPkJjSREjDqlxMzm7OOPFYUHP98ImykZ1w7vPiMPIrvPqsulTWciK6GsdCpYFxYit5bKZYAdkM6voHWftUTOTo2cAjfU4NCihG9pbc9M69RKvsu2HgzpOWjrUDxVGx0g1CEdvJTtWQzRymFEa/0KvTpY2IuahoyPlmji0FSDs+PsC1xaicwZ/k2Ms6fXcOjkhksUBJYw/Cmr4bZGFkioWPAIsKker1I1pZaJC1NZJklZ+7A7o7OgmEdFKnRBZoFOB2E2qlbI0FdA1ips6IspoXibN3NJlN8brwPv7r+oX/O3RoTABPxWFIEJ5HJ5QJHDCAUY4uhCdZJDs1AZTd16orVkpw1YOZStD1vBVLa+nxryAuOHnMCNYwfyDu9GZkw8WNtn5ereH8/WkJT11AhC3msVE+TOqzDIT9FBrjMrswYGuR5YmRQkSoyVSUGixFiZFCRKjJVJQaLEWJkUJEo1K5NMosRYmRQkSoyVKQs8XVi1Wj3+Gp+omfU+Cz+SKG9w8FJvQgn0SxYob6fp9N/E94TTnd3VPDaZiEdee1ETr/86qsN+vkweA91FJIBDdsor08y2Jh5S2LInAva4UT0A2VLCfSZKQ9AuvE+knJb6iiRwqP5IW68cbBX7pYNJVkR1dg1bylqn63R2baeKtiHZIHKoGoAH+IWeF/R3WOXjq+XN3HMOj+xyLKp4UFlibeV7jF0IsApKR5fdYlKCPdhWd0in9MPpsLJSUyI0saJEafDHCfmXKih4uY8yWgQcOFSRRVrE1L7+n05vjPPYIp/tleQ2/hgLKFkzovR5OfnwgclPcwzE5hUy2RDMsCkHt3oY94w+VBL+vWXvvIyWgsRLHVeY+TarYcB4LmzhigwiyoDcUbAN7pWumxvroI4eQohCNWpWwBUIZ5uokzX9XTp//X2PT06LbasrCMfNN4KoJQTJgREk63Td4rrN3aWqb64+qioZMkhgkd5AjavTZ/TA3xf5bWt3IPmbwAnfzM4Uey45iqiWlAc6FRnReaOO6Z7h0CyMr/r5C01cvvCXrDvvsSbAexD5IJ68EprQgNsYH89VU91i5TqVjSMmWGgbG9CW/Q0M00cI23mq3EcOgO20bkuddmHavOTBl6/deOqx17lvjM1ix+r4w04kHkuzrOOEpVlxookrKxMc2OliCFYg1RjLBK75bd3WOgsELAmYafRQ3Ru1b0QVywLvVSeHP9rxZ0Eq3hIJwL3UQGmI9OwSQJhOM8K0L123xa70EBox1mywEBq0NMgYgSE0UjfyaGcEGtQOnaWzQ/yW5126TrsnzPRY807Z1bYB8Rw6UhTNVZ3TUJyX07nmLVX3YdEeJC9FxI2SxMJLEoU0FF0gtTJLxOQuhjekOinXEGvbtbSlgJOwoQBWTaLwyRMA6q4bdDJUFkgYSnW4C16H8ltOuORi7VG0znXumAorc7fvHIN3kZAHkF0k1eXS5hwxz62Mcw4yk+MhPFl0FR0iNujEJjFXvQ9ToS/BpEBR4aI1wrzQcRKPJkm/4KN/qvvJ0T/0emn4dPUb8/B7xie/gz1vn0s79uodC/iEMOIDho8hGAamCHFjnAqIHhzij26VwM1DRIpwiZJJaX+PXxSwM8fDb0HQZ/OMtOd4Knll1f1kpaHXWT+zBVpxZNSKjVFppTgf04pOy1cNxOBFS8So8aUuSZI2fkCnSB+3aWsrDzDvwDmMV4wfcj9ZMeh11ntEO6PmBB4zkvarCS4CzrANum3I7NQYIBsLmbQ0PL586mQ+gGfhm/Tjk1NDlw6N8axavuoBZFYtJigPRFwZEWmyAVvXz3Fo1vVdC30/Du7ezXvmx+9K0+M38ZEj9BO1J8P0UO8w8As4NzZCGhoB3EqYWyiKiYEVDdSsGHT5127zQczTpnpf8phUXdeFJ7oe5YmS2C+uYFd3dH1ZI+D1UVcDLvZSVZEamMKkehPq7e2TL5Wc31T33BrM+3x7+Xr8aWwVOsdGLdDz4o9QSSGGbag4GlwHBEOdLFYPf3REqcpy4hK1IB8oRnU+AEsBwv+X+JTcif6TKBElrucGrQoK97UIYDZUgMFaTAAwdDKfp5vMRhO4Io4mlnpcE8McLESuJq9nilxFqTG/QIe5/wGPi2c4J/gJg2y7S1/64OndFkg/+WiZNBRJCyMbUjqk7fyAPwCWJyW4U8aNxD1FKztJrEzB9FrkYlZ4ubYHN2CTbQGpmilUBzcwRvFwY4G5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj+jO9UtqPTbU2Fq31u2T/dnTMXppwKPPDt4pNlRgTA7WlZb85bTaIzfqju9Q/MvFR8v65kJmB3VoDrbULEXIEHnz40FGiCVdrLUMFgSKgcWWheUQtY5WnYK+NN//uJrme1jfnPHo+RGRsmtVJRmv3N8d3Vlsm+ik9PmwVkTyppdClECw5oBpYsbC9AxqB5LjGwXVb1A6BhpARCR9Y5fw1SPIq9h6PXyOPBGRsxnqoMmeycEKdSeXvyX2VNiOR892dMuG5nsafX/7Cmmn74eJ0bNaNjF44DHuJqXhg9UsGBPiWWaWLAUHRgtBbfc7Wk3s5VOqdcn+aZHDN7cfZVJFAv2lHhIwAJK1RlR+ryhHO0pcQ01uD1FRgytPa2utqeX6Oyp0ewJiNOJHTJbxwq27+byo92zP7lG7LoyN4iFLUH2BqYtwUb1mUohHeQ6k9ksMMj1QGajqIGHmXqKGngYmY2iBh5GZqOogYeR2Shq4GFkNooaeBiZjeihkRhr0CpSDjFi9TwWGGu/saZkMz0q+Z/VkaQoqogpmRjzJ+nEhE4nxLKFLOjkdzqdpOfcHzjr8Wfv3Jz9ubtHP8Dn+VUKFEVJZOQCrXSGzZ7HjYZ3aFSZ5kbJlRJVcSGlJE7JVRVnpfzaxLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJlnB6q6X+D5od909ZOHfhkfvvntFZQtO+MRJFCHh97GObu8vHjpRBrhasBAsL/4ilSvS7Aw8DRjkeJmwkqAQr1Us6lG4BdjxrgQHtyuckzOJX8xMpwqVRQkkYbgE0U10Ogj07NK9XVV0PkUdrXsVb4cq+LQTjzq8tqIGAGKiAeYNKqeqtqmBvRTWhFKJY7ygxLLuFwVuhKrwIQy8alxBfXYaWFVZtCGAnEKlIxoe1oDQWIqVCIopU/27SXyGKVt+DDtXLdEPVaJZlYhVQlo7qiOOfhXX58VqmdfnKWmxdvmL0mBPLqxrv8ehCRmJ/oprYf5UOc52XSXOO/pZJirq52DJJUTcXWyYp6uZiyyRF3VzMF1rq8aVe93gef98h3uBFQ/bxNHyh3p6u3sWDkj1yrzysm746fB1pcYVWn3IgEYvxsrC4XqPTpJG2HCMWHdZby7GizUwtx6I3l3fLsf0tU48Uxvt7LQo6rZT3T+EaQcuxK5uZGrgc3WwEfZPOnDmjh5ZjL/7gV6ux/g+f3DN90g5MamdvFC3Hshi1k2YM2tFLy7FvT/Z6u5yw8Nhdo7i3JC0XT2U0VMux6YzKiTYG5XAM2XJs7bmr8UGr+/gtr3h5acRfSW2NquXYEEbleRlGecbZcmzKi+SUygPvCab9GPis6coCjoFbjnVg1BzX4JqDN5Vby7GjJz2b2dlV8M7PHLOikfCPrkbRcgzxIWhbjgFDiPqp1zk0fuq/qeUYsS2GgVuOhW1hajnWbYt+Wo6ZuFg/nrPpOC/ResuBdVlP8XxgNlqOEYubsdBGa+QWpjZa/lvKq+XYy5r9kms8kvtsumnxcMGWPbNYbzlGtBEsYNWNEasWW/6nWo4V0Zmx/4rw/6Mi/MRuQnorwm+9lakI/zWy7WShCH90L+/WZ1te8s0+0Fq+K997D4vZ5izbSFizvPZWpprlP8g2sjyK8B/5XD+vGq+579YanRyWH8zGF5k1RBH+l1uYULmmX2vIuHfQLfGHvSL8Y+9NeD1U5ihc/du0wW2b9scX3jBkEf5jjKrbYRjV6b0If/sVb+r0rzbbY1G+KDwsqZuNgYvwI1aGtoo6sDJ6K8KfvKnKTesKNYSrr6Xer5rT08oIivAjxoYWnGtb9FiEf6p8/YPFFRt4Jhzcub53zZhTRlDOAiJ0jBEhMKdRv+0Gh8ZvE/AcWv/seYW3+W7DLb+vetseX0cASeKLlsvAik722UxpcO5YEiKRltyP1sIAiCvkY8MjuOqmsbrUciB2WKR9W3LVAw2htty+5gLOczg9RXx46ELAtxDgu3hrWROrLEteC1xFsaD86oXvwjqE+2wO2H/qTLPY07/hG9X9o95dBBeKaBjL6EJxAXqPIXqN+BSj08ZBwCncqpMLVV01fcWScIWE2r+MqdexW+Wwe6655+4dHL2xCv4opbI7ciNFhpTqOutlf8H3P8z4/TdvNbSzpB6ZOjhK8JWlcrE0lKG2jemxYbGOUZ/911n+9sfZic3u4Mcq9gDyWFVLykMZixmVkWAYZRDdH44uEQtn3yi5EixfolB4dmrfpifYsoKdRaQjt23P0Ai5QuzIbdczZoxCifxC7a1WfJVbs/K4TV47lb/cVDw5wseva/ADgpXjZRT9L0tE5aEsGaOyBhjFzIGP0slbtSo56I4aqxgZwzCDks02/8j5UNH3QMeajivdjjcpy1a5jOpIbYMacpjqWUiqC9VW0PfMVt28VNSSM3hbF5xfPaud4xuQEjoo+phlo6oG3fZCAHZhABRRAABNi06eKLaU0ReZuJB/qH3jm2d8cqZV/trkU95ywlKm32RfCMAEJgC2DtuKOZo3Of8uPg6xMbfe+DhPtzHxcSZvK28+zl2TCxfrze/qsWnz241t9o0LMwI+zsNtTNHNi9uMgFSwa9cuPfBxavzZ7MbbGt38Nn1J8ggNG/XUKPg4uYza2WgM2tELHydm4luX9SfWBGRs7Di4x1+mDkbBx1nIqJzJxqAcjiH5OLm3VuWMcH7jOquOWc3i57sSjYqPM4pRef0Mozzj5OP8YRLwNcGstvuMDOtv5zZU/WhgPo4bo+acDa65cuXjvPYZHHEy7qxPsuXBh2kfe7Y3Cj4O4kPQ8nGAIUT91Fuc/wd8nAtegcdlH//yT2oyxlYekrTMwHycUVlMfJxeWfrh47RYXhDsOGW4YOm11o9P7Pklm3U+DnFvzgLHJCyLiWMSlFVefJw+Zi1eD3zTzSfPNqnrgaq8j6zzcYg2ggWsejFi5ZD1P8XHuU1nxsbkS1tL/bfyD+QFyJ49HvwWHynpMxbmTnoqRNER5AxTHcIXzdylMdEwe0wdzRnvpMoy5Ypgzbxw+AmUI+/RtBdxk19W5a08fT6vSfJND9r3I0dyNIWk8Vc1GJiwAM1ULIpRScx70nJUqp9GwaepDgtzWfPhP/yoHDSqpWBGtfUF5sESGVCYROwN7Hoc9jhErSpV3qFTpc45afbqsV3+OWnZl+0bf7862WON89Lzn94uGa2Rk7a61wnHuqm/uB0SNcl6VN/XRiMnbfK4RG7nyt28Z7u125ErDJFp5KS9fGZ20GHxV8+9r8Q+Ez+2KNbISRuyukVNru0W3znff3nof+EPqUZOmuePU8ulE4oDUopqb/WzfDRKIz//RueligUvqwiTBwVlZfDHpms0m9n6aPYa/117eDv7x7VpERNwBIhMUVHPyM3TJr9/6bk2/veTzWuapAFRVVS0ZFzmyZDGFm75igzHb0MCNgJRNVTkUXfTFpfMrx5pM5N/y7q7JACIzFBRA6VNh3fXFbykO79Y7fPtBBPZq6OiLnUvV6jzu0K4p06vaKunqZZAZI6K+sz1KB4WfUKQ03/Z35t+9kkCIgvsezX8fbmX913/LWcrNrN8ad0eiGqgori79hsEk+vych4s/vp0wf4TQFQTFf2+YtJP8wNJHknmopA6A9vMBKJaqKhmUY+JktSKAfn7w8Yqq594BES1UdHbt08tnq835S/oWGz9blWj70BUBxX5+0RkTtkW47/mauTz+ZcPXwQiS1Tk2kIQ8LTtMt7OoUM7mYSF3AAiK1T0qtaT+e1rz/fe/Ndlvyt/1v0JRNaoqHbh1JcpL34NWNj/znTpYd9fgKguKlq8qdvJg10dhGustlccZl5hNRDZoCLn6SnrRh7/6TXnbY5bl++/bwAiW1Q0sPfrdsom7T2WpNz+PveIFdRyPVQ0LciiXe09ll5bBy+zv1xN+QWI7FCR1yLF6dNPV3vOfG0663b9s2eAqD4qCmlWw0L+wYd34PrBw9YcG4hhA1S0zKKgV5eZHTxzPs0/JAuvFw5EDVGRd2a3P5bldQhYUJwXNG7YjgVA1AgVPaxcY7JlhDcvXVlxcMvDkROAiIuKLvw+fEmfSo/9tvEOee5dtkVMSrZszKFJtmwmufZsm/MF/4ShRy4PzH89h4Vky7t0Jsoq7ODO9JNnBBlZDyecqx+fiT9MFMRFy+RiCgYBXWPSFugdas4nUmo9JlIkkwEjhFax15IyQDRQlK9GPudEBdrWvoLFw7cXQPtK4f0Gwg6w23VrAlHCqFS9COV3Wzn+zTBFhVGuSyMXxbeYaFOzLFGi8nVyOfYCThwESEzluJ0Gbp14u05sgI5BwGFSIGd3Ygks0yuPkSIUCvB+UhlsuqweJ1zgQXFFcMsVSp3jsyH66HnhG7eVk38VNe0x+iY+BKr+HHIItETEenlVe2TEMMDVY7tRxKvJdD0d24Y6oRNNXKIuZYRICfYvoyVc4ICo2zDRx0rPVr4xdoywtfeeV82s6/V14RJOy9HHUpyWYxK2tVfTCR3s7lTaS3NGBjspYqojcI0xYg92aC0hAkndevX+vrp1phxwPzLg/9i7DrgmkrcdFBXFgmCvsYIKiL0rSQi9KYi9RAgQDQkmYC9YDrti7wp20BO7goqcCtZTzt4r9oaKZ9dvZrMb2N3ZJZElyef//P28kx12s3nemfd5Z+ad5126yXxr33WFTyPiACx/VrBAV8f55y6PgX/+O33wS6cPqBG6wU4f1N/OdvrggX5cqePpA7Ppk66M25Mg2LPaO7WX3cadHJIl1QNxcPqgzna2ZO0y2w1y+iB9qU2jAe+qiKcEbe7S88fsUUY/ffDvn2yoPDAOJ+qwU2K40wdZ+8TDL4XP9Dp069vKF/Ou7zCZ0wfnWE2XaqrhDMenDzb3Cs1NmTRanDzh0cLpS+Mo9ZAMfvoA8zKM6ePAyxjs9EEnnmzIvskdvCfl7Ilp1eAMeVfdOKcPMGfDCM6DPw14+mBhhTf8UGGY156KFcae961kbiKnD86xIpSqjdvu8RjitlMrJd7fO1R1m7ypTqnnDcamkaNRrGZdgIu37gsHQnLJSDwSBjPEUPAjiLtG56+rCJwt3l9h7IWHbuN1O4dAWb9Evzc9iiZa9CjtUuYQXtqFFio5AwucPlgEtSVPPe1e16bZDeeZZiUuNJZUbUfZZId3IzbZscsFRUpU/8dB3ZaSEKBIVCfkNxPz3h3Ua++sGgYQ0S/sQmQq0H1BO5psnURdz1Z6H+15aEHdF/5de8wlD0sX4mb6sMxrKggw/zHXpJMHZwiTytdcXl34biEHgN05yAYY6FFGCaI0nAF/pxWP6Q/9SKcFiy0tMVuyeNVLfhfqZP1s6DJftS76Y906T6yxwzjAGOJRkSqpdusOC2oFwgC73k0KFwBTTCsYbtVqeN/a4riPa2dHDXnky4Fp97Gadp2RTIuKj+P0KwBXcP3S9wNOjowdlSPe1rLpvBL+Di2NVr+U54j7JFi/NJI2v3XEhhhOjPd5DMQovFT19oh2u53/7Dew2qygw2Rp4EpQcjMKLn3CbFwp3B+W6lH1rLlIGQEg1wh/Yo8JyXsMNjnMK3YWAjqJToxI3bYr+IVp5kD+lq7RCOj8WTsA6E+FiCJog0Hn37OjsGf1BN75QIHLDVDKF0YbSgXfjijgBdDTHOKD/9L4NDVcjVaOlDKcwOn7pdHCz9UTBfOLfcvode7GLbKPwWqhIkrE4dcL9DFX/nj0aste560HbpWdVGdUUiF9TByA+SyE2VyIKPu1rAkGc2GXhBvlM792dStYqVBLg6Ox7gFLSDBUnWt8JaBYu/Y+WzKldx/cHdqGnFWQ91z69JfUyPmJJnsctv4o2K45YLDhLuEBk0s4U77B+xZtlT6x7954OV6cKKYWDI6US4KlfN9ouRzhC5gCZgfiPgW8D/ZZmWKERC4L0XTykbKocL4STFNUunsC6i49y3uiChvna9Y19cxWzBsM0bVEbb7FA3RbF3rsV4GkhpU/jILl+qCThIghAWh/3a1X6a4LBEkVrfb6lq/TgBw+Yw+ih8+aywUNZ2pWQmHTqaAYIERuHSpkgNVL3Hcwhs86IldTi5yK1NVg10LvWye9HXZ/Nd83ttiooY65/hPJqdp4B0Fv6ZBbuR7FEK3WrGjxdxg0wCJe1CJwdKQ0Pw4N8uXsOHqBkFYqd4S/o3Z0cx8Eg9wwqYqSJQz/FNZxV8EIEhoWPAJMqkdrTI20MpWYCjNICltD2REfBTkCVFJhc2wU6LUQVk1TxhTGChhXEV0/BAnF+Wrly0+8qRIsmHbNpefJEj8oGxPwWyE2JrDLRQFFa1Yo+FqieshjICqT0a2nektuSvgUgWz9g2Q22foLyQTk2SYPOTU3jhvIJfV++tQdNtFtq3vJajVbOF/mAPLUXWyQJ+0iIH/EBLneWZkVCMgNkJWJSKIksjIRSZREViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiazMByvrfm25q6nPhn5hZ2bu9XGkpbzBzovsfdT0Sw5S3h4z2b++13GH2zvLuG42Dxly5ZkV2f42msV+kVyphuEitoFDD8pLMoy2+q4yWLInHNa40TwAm1LCeSaehqDb9j415bTAV6SBg/olXaNyMFW8ALeXrqHWrmE5yAXb9Vq7rqnZbcNOgyihaQAe4AfmvKAvp9SevbdUc990z2nsI8+MAYXZayvaZewsgNW57Tjt5tAO2INp9Q76hj8bVpW1KRH5sUKiFHHQ/fmrbX+KDti42bTvnliPw7SIST19P5zcNMo1UTnDfbpw9FEOUFrAilLUdv2KtNv7E+MKG2wYZsSQg1M9IveMeask8OLx5S5vh7ovGxga2/vlrbFG3M+F5RfPMe7npoNpcKqe+7lNtbuHEKLgfJoVkIFIvgm9a+kV4HLnj9Lek5q4zDvXKfGHCexaQpA2sYK0YLt++7qNXGSab65dqsrrMtjGIrODetT9S9Nhj5r6JNu4//NtzZoY8i4i8Vz6LqK2pSjQmcCKztDtRGD0hMdAjC+CfL3Nm38WLV5/1jXBz6MvfSGezoTmDODWI+/nalPdRir1ko2jHrDQdW9A1+xv4JgiYQh/FnX2kQdgc0kugm3aJcdzomLbTnFbs6Jvde+LV+6QFzux/VgGWic1FuTFqS6usJngwE/LIVj+qD4WD9WdkvXiuvIYWFIw0pih6pmxvOKhNb1dD0dtc+efsiOTXGkxuBcNVL4mA4cEECYXVpickvUju4K30Kh7zUbbQoOeBusjcAuNVkk40hGDBvdDT5n8kMj2bPMOU+56x7smvI3qUL02dR06QhLJ16zTINbLmUJzW819xG4Pdi5FwldIR8JLUpUsGCdIndwS9XAXyxuiVsrzNeuIq7OtmLc9JROqJiFi8hiAuiJFL0dVHtuG0izugtdBfss6ddf2X+jw0SM24Kjy6uCbq8ghEvYAeoikuVzQmKOecyvkmIOZyUkQnm1Mig5LUvTKJimneR82oa/ZxWcErXs2wWt3j+ctXO+PMSPv/mnup+/+4dcLwiey25h/1rTe7zLLxnPl3nr3IzjAZzIrPqD7GCPDwAJL3BihAaIzj/pHPyXwcoESVZg0is1oHY+Osr15rKRP4oVo1eqeE1+Rjaa5n240/Drna7bAKn1ZreJqUlbJOUJYRS/6qoA5vEhpCO58kYZpO3PrI3HxBcL9lqmb76UPlZAN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW82Sn6TchqajHAJhZyWUF4nDp498sSl+euhz9nDLdu8qM5OatWpHkAPauWaCgKRBSsiPinELz+jMfA6zsWeOX269TRIzb3e5TFsRvvyTbWfKLuyTCdtTMMMoHzR4bLgsNBWAnPFkrUaqhooM2Kwelft8kH9Zw26n3pfVJzXZ880RQ8T5SW/eIMZnWvDxR2B7wWHmpAspdpRGrgESbNmyC/uPjWw1tDQ146x72ucbVE1RRyKfVSTIGNtsHA5I+lkkIMnVA5GvymGIZ6eazOvniP0shykg5qwXwgtWZ9AEoBwn/nxZT8sb7j0QVUKHxuVFVQOK/FAKuGAgxqMQHA8MH8nGkwm8zGFbU3cVTjmrrNwcHO1bYDbDtXq7SYv2DC3He/67lTvOOimL7VO8mee1Ykq0Zh9eQj5bJg7FgY3ZEyIV3TB8QDgJ6iwJ1yfgTpKTr5SaoyBdtr0cWsyO26LtzAg9QwZXY2auEG7lFYHcwsp12NJCIngk/KeEBfSrIl/KRS2GWPEKIP9Ak5OdfsSGmX1NdVfco1s8ki2s0Y2i39MPdC6yMWmuvMD9a8D/a68FfYJm61XWUq4HNgdgKWzES2F9I+wV+c42tWaueT4N39Yab/jhkk+5gJ6KNDQBsdZpTR0WdqsVbb51p47a8UHeQxYOarwq6ZgNHRHprTCZW9ABN0Gh7MzAdSQStLdQKkwUrgofVB6dDCNbvqvfvpHDel4bjzonhyBqKZkI6SsECU6t9/ebBcmc+iw3X2PR76xOUuByhZsaL0LTUT74PavsSa7aLRC4SBkQ4AUbPeyRymeRSdw/DrRbHgjfWYT6iFJjsHDCncn778f+ZPqXI+BvKnoals/rRj6n/+FLfPxhEN57ey43vPPNO5kVL2cigH/pQq08SBpxiSyuYpfFOL2p8+WyGWzR0/3XtByykjq2ckzeDAn1IXCThAqSMrSo2L0p9SOdTo/hTrMYz+FCCF+9NXTP7UZOYE1OHETTJbG7Pqb+eIIl32fXAO33FpTg8OpgTZKWxTgkvaNZXXTJDrncxWnoDcAMlsCA08wtUjNPCIZDaEBh6RzIbQwCOS2RAaeEQyG0IDj0hmo0ZotIw16BWRXYyqnsdBxtobzoxsaUAj/5qOJEJUkTAydc+fZhNzJptQZQs5sEkOk01WHLjXZ1r2J4/UA3tTdw67Tz7nV8JfopDK6QKtTI7NTsCPhHfkU5nmK5RRUo24UJR0VBRfI86K/NpU3UXEq+ji7SwDglVKubwHZCx4MX9BVoon9Lrm7GBRarJw3rbRD446dbdh8oQWPdVSVSB4feJjG7koo4fIYa4WVIKFwj8hsij8u4MIA+5yPIjZRDEJIdVLW5RuDFzkPuBAO4h4MdNEZXwkqjCZwlsaSiJAS83lHrBmR/7rpTXXA5WR+a9SJGA9G4uPXdiXWQED0V8Fzw1GyTRvVYp4K9SAUklGeihCoOwWAa9ZaXgRbr3ku4TF6nJcVlgzIYCVQGQSuQhqQeUjoiiVVBKh/dm8l0oSqb0H76pvmbqqydAyVQWUo6U6av/ngJet97PxcrH9BC+/M3nMqfKqprs8+oM1sf+1NrH/PRPmetNkOZ7haBKhm0vQJEI3l6BJhG4uQZMI3VwiFjroePrGmca57tP/sJ0g4ldYkC8W2rCkbnP1aqFrSnBZf4v54Tk0coVeHz1doYjxckCuuUyWNNGSY1TRYYOVHCt5mK3k2JpDRV1yzPPHM5v7WUGCNatnO9ZzWBttAiXHih1mK+Dy+pAJ1E06evSoAUqOuW2tfnTZJ2vhthNJmV2Hu1GKuRip5NiNQ2zWyTQF6xik5NiESMcde3OvuG5zGpec8SMlxCRKju1iNc4aUzAOz5glxyrPXX7i21/7XNM2HDp9seW3QSZVcmwmq/FGGMd4pllyrMO0jCsWL90E87Ku2ueqL6cbueTYEFbL+RrdcvCmIis5NqZV55k513r5bpg37kndR2GlTKLkGBZDMJYcA44Qj1M/8Bji1P9PJceoZTGMXHJs0WG2kmPhhw1TcqxN689rhcdCfBfPW7p1/esL5D1tLkqOUcXNOCijFXeYrYzWuMNFVXIso0oj74a5sa4bIoqV+Kv4to2FH8IUrKg+ggOswlmxCjz8P1Vy7F8mN/afCP8vifBTqwkZTITfJY1NhN88rShE+HcdPTl6WmA750l/u92bODljMYenzTn2kVCz3DmNTbPcPs0gIvw37R0CJ43ycE6pPXTNj5njyMqKxhDhr8aKCug3JjN30O/gD3ci/LWjD6/p77beZ4ZqWROvyRdHmowIf85hNtPdMiyREaYzuAj/owrZ9SeN7SucfbTk6nW7enQ1sgg/5mUYVdSBlzGYCP+Pl+r+4wI+uy1+YF/9aNbVIyYgwl+NFRzzNAOK8Bd3rbfs1UBXv4QF3eIrzlekmICcBUQIG9OMCIExjcdtH3kMcZtY0LTZzy6XBFvu1Em8sOYNeenXEjvEF6mUA0anx2wWDDi3ydsikeXdj2thAMRVyuiwcL62aKw+Wg7UCouMb0tXPcjXqGtuXyMxr8oRgK9EBBddKPhmAXyP0sMkPQ9WVcp7LXAVxwL51WfsqvZ3hb9fC2PPWiSbPS/9uvC1uyghFNUxFjKE4gP0rCF6dUWI3lkNbtbqF0KV1QzfEGmYSoqOL39szjDzshN4re+ojl/50ekM5YQUdiPihJTmOueyv+D7P09j+/5XjB4saXumHoESfGWZMkQWzKJtcy2Af3RjppnPYc9px+0ONO9P7qvEA+h9VdtSFMY4ymqM7cYxBjX84emzY+HopVBGAfqSBMO1UzunLmDKCmYWEfb8Fl2Cw5WqEHt+yy7q4aoo7Ad0tCpZunTQ2/ZlfJdN9HtY9+S1ADKvwQ8IiBotR9S/zGsqCmOtYDVWrEmMHPgovaLVynkL3Ypo1RA1ywjanzHducSb827JL9fVOnb/3/KFmSoX0hxxTrgjh0c9s2i6UC3EPT/qGaXinpwl2losrfrmtFOC8EjKIf/u7bvcNOq0FwJwJw0H4BoCAOha9IpECSpjFpnwvnwx+cLYZb57k0pkn3x0Icioh30hAFvYAEianUYEmp94/7/ycaiFuQ2Wj1MpnS0fZ9uRos7HWXT+SsYZawePPU5uw/w8htU1gXwcq3S23c1vR0wgqWDLli0GyMdZu9RqZUD3Hu4HL6/y2XS/yzGTyMd5eoTNOpdMwToGycfxGzu6ZfKo2x67+3+cmf6u016TyMdJZzXONlMwDs+Y+Tg3jqbUXc5LdZ+Rmf4g2i8xyKTycZaxGm+qcYxnmvk4Lv/O+5i2Ksh5/5Derpm3Zi42cj5OJKvl+hvdckWajxMw7dUDWa/lzksa1Tg40KrvD5PIx8FiCMZ8HOAI8Tj1M+83yMd5ULLChErhHoIVUcX62R6KGGPkfJxl6Wz5OPJ0w+TjNOuXE9RxUrL3qv6pNuOqFxvNeT4OdW7OQY7JonS2HJOY9KLKx5mRkHXrwPXFgrgLGwYc/jj/KOf5OFQfwQFWclaseqf/T+XjfGFyY8OPyJrJfJNE+9P85E+y+70h75R0j4ZnJ91Ukshw+glTPbYvGrrI1JHw9Jh2N2e0g+aUKV8CNfPC4Ccge97fFwYt7l4i22er4KDb7qWJIYzvR9/Jyd9I63+lA4AL88t/FAvRK6nnnnTsldqnIfJp2kNhrioi+Jdy/nOordin7YHMcgFSOTCYNMQD+PVRxOMws2pM+ZXJlK32+Ao7NuvjnpYc4zMzJ/kqxcsD86mUco1QtR7F/9qKR4H+FazZAsWXI/FH4TUsYT7UMIUSVrMM5etVe2S9w46F1xxnOM/hB8b6H593g+2NEbxEatdDMjumYgaPd1yIyGlKh160QkYR5DQFXt5U5+E6uehg0g/FEF6PMA5zmjiuoMEHCA2GCMEKGrTStDBeBQgVtgpcPRG5D+ETal/Yvxzg3oQjEsVa48Z+qmr7Wrjnxf47TxdXJhcdL8nQUYjrnOfK2ONA8VEkA+XJ060yaAveegJVo5cULv9gCJHHHRqhH1U3HM5scc9jvvhInLjk9Gvk5Tr8YfTlOqKhKDDiW7FhRO1MxX4BI2x/C09lATgV2Ismd1ucvOqmS+Ly1xPK+mz5Rh6L8GGIsoKay0WBz73ybPg4l8/AHf83Jsff5HvVatv5xcV7hTlfpXXCyI7fEqu3yJRPyzQPqe0jlaijVZp8Vs0GjMa7Q3Vb3Zx7nfVdTp+JCHfds3779dW8NiLGt6Izd75Gfdx6JYDjUSFC3NYKuPV4G5pb1zMHo7QQ1myBACC/76x6gUemLzzju1F92GOdupkLtTCCmp4UpblakH+nOj0u/DuEapkAIckKU/wAVIz+HZmcQq1kKVPwvZEYHZ40Jf7rOBfPGSlPdy1pGL7LGktrAd9dPApM3bRBMBY+93ZoYdTtvKxmOE4wbYqG0z17DCd8aH7HhxJtaJq3yBWUP5Hlvr5t2xtmyQ2OFfeWDSHaEp6urjWoRZB3csl5sh9Py5Bn5fjWnybpRPdxy3eTaiI1TfqLRspF77gs0ax7w5PeAaLYCysGlepseYr5zeiroPlb9eiRzmUB0odQg/cetIOlXjEZXxuThaHhQOugt7sz5thYB/HGvbm17HJ4NqYbojkDwPhl8RCNrqrcFANMr7W86i6U/qKtdYYumlr6740nvW8Lksa49z+76K8wyrazYTOo4u1xNKxQAxVyKEADH6g/eAwcuuTph9UOPWd7p5z2+8vtZ3x9cjZ2nnuiL+UxLa9UyTuRouBLtQ8oQ3d1JQQOwmYtdBqZZWLXZZYt98ZzU3dHq96e9WsyvSY9aTyvTY/ajDHVMjS1GZE6nfyqGYXW6Vz2PSY1YX5vj32bE32dHzW7SdXppLYbQqfTJg8rMCBUMskQOXoYXHoy2ffbGLHP3PmO5xuWerWNbI0g/Fb+L8l0UqmSg7qIg6E1kQKUdsChpFfN0EOmU2eMeM1LLh/wwd0zdkrSP4ruwvYMGP2SSCfVDXGAEejTLBjFVMnQR6SzUp5IZ54DQKK0+f7y6uOvt/dNOT8h3KdZ1h9GFegc7ID3FaRAZ29HDCXcof5kcqhVHsxxse54XpTQ5uGR5JMjXRBsil5SrKjZb0DAySujaSLJ/uDbEzQ5IHRmv+YD4ZJjsFIO19lg/wXmCZMqsCoMGOWhE6sftDK3KX37oM/ctYuG2vm5tzVAqp12p466gQUYfkeJDLg8AxkPNwVET39TmAkNboZfkfg9bX+sypnic32OzPhQ74WF9cpfkPgtLOqDAerOK6mom/3OqE9rk8WfnvJAtMDnijRQsPGpEVCHff1TDhX1Yr8z6s9ynqbmNl3tvKhvYg2L78f7Ggn1e/UzKagX/51Rf9FTtWlDqINwe5ZXyN+LLkQaCfXOPlTUzX9n1P8t36mB6NMVl+Xf1pwvNb7mKCOhzh9NRb3E74z6p3I7budI/V3Xn5iREbE5Z5iRUI+fT0W95O+M+oy39m8vr57lNdnBYUu/bWPERkI9bhMV9VK/M+pU3XUjoX4glYq6xS+hrsk6MTjy1nlr/Hh1aPQs6Wv1NhsGtuztfDjh40PvU/ZKxLsjZknY5SLx622pkWNpJtR//LFrg42juXBf/2orNkX6oNSLyaiXKXrUdZZe/vgpe/PftXLcY7sq/omrfwGlAf0r0stlfNr++8/q+u7Jnte6DWx46W8dF1jYLOIfQbVImd/SIjF77e+ebHBGnJS59Fwnx/qVOLJIaOWAz2ax41ynme1XKep5TefAIjGXqRax/C0t8qJsxRVDuq5xn1td0rtu0PBLHFlkdu9KM9OWlxLs33nucWb30EccWIRfmcoVZX9Li1yLX94ld9pu4fbZNuYRklLtObLIP81m1FXVOCpKffDc2/fMyTgOLNK7C9Ui5X5Li1gsOPJ8xeLdwplvP5xrlX29BkcW+bB0ffdP7z74rdnm7tCjX62nHFgkfCjVIuV/S4tUiRnWsk13O/d9K9bVqlqnRkmOLPLifKD7kOLdhalrbX84n1Xu58AibWdSLVLht7TIEtfPNTqNE4j2HBT0W9h/j4AjiwybOG5Yckq017Qdswfce3S5IwcWyV1DtYjVb2kRahEKjizyi+nfbBbpu5tqkYpMFun+8K5fKfk5t7UpacUm7qtHlnwsExAuC43iw/wxslngWTumVO6afqGhMP1eIpfnJWrhKX1IXJfVVjjdmRLuPq3aNgez7Et3mF4BAa6uW40Ak5PnQfwZiErHjrQHrecKm7dXDksnjFLC44Kh6A5kc2ly920zInz2nP/LouvBGuTEM3Tung79Z+RtO953z2bCNYcDPPrHLO1cWLFJuIpwHk/co+udNAOceD5DL6UkjQWVWK9A4rItuvyCjsODRZuqJFs2fzn2Cu0YZahuwBQ2SxZ882qs3xz0EhM4Qon1QD3OlVvC2lps5daafuz0cbNVV/d1kw90sG1+jrwngVXmMhT8o86xwW9nHPhpqkiFPZagGRFQ4Y8py3fst8a+LW6N8znUy+yQf1LVp7/oKQp7gtUBdwXpzogzGjB/AwwInGCsTZhgBrrXf1754GPnTSHekl6V5k4rGoJpaJ3JQjAbKhZWnE8HgimxeolNjZ+eonltLv456p8a9bghmOJJEaN6DDzmlnxZ1HO+5O9gDgimFsSKcZznVtRPiq9AgpnRL8xzWJDKM7lEz0VpTxYcMCLBnK3I9s1BL/kdCcbt1fUSq+5U9Zk9SKQ8vrBUU+MRzDhW+AONA78RCKbaQQfbSz9DvdZem1Gp5eez2cYjGMwVMBIMGBA4wdiYMMFMKz7NTZJ02SVte1bFytnnBhQNwczuyEYwZTsagGD2Nq5d7sHeNs5zWo52Kr4+4io3BJPUfVHF9IcV3GaYx8/t+YyXwgHBTO3INs77d+SYYF7/7NZpWt+vgp2e5058TAl9bUSCac36zUEv+R0Jpowk1v6+63TfFCfFkAqtEo1IMNkd2OA/1OF/hWAanp34WWH9QzTp7qT4+w/G1TUewWCugJFgwIDACaYSE8HEz58T/dLzk9uS4VXUK2bak717SVdYJiFK9wM77TQ38NXKCCk/BPQAfrQaihtFyiXB0nClPAR0D0zsIBT7PUz4KEoSptbp4M7PTrY3316uKthq/SS2WPbflUp6K4OHSUO0N6FenZ7wr7mu65lYOzHPyQdMEouJUFIHAGInL8QBHggR5GDEAR74l3qAx/ePO10DTrxwnnpmT4zFW79L1AM8U3olTLwR2d99WXr88sfLZncl2ovx0Od0dD7gQ/1gxAEfRq8F68TjZkRvFR8oF+HdvItL2r+LG75qtnZ4YazFve4xsKsVtOsq1JnxOODqIr0NuhxDvKilIlouH6QG30ERpv2yJfN+xih3rFPHHuMRB42YbGXtmjfagqPlUdEq9DmjQ347c87tnusWGzPz4mK/SwmsJisl0jyJLoRANBSF0bK82IwGBqMxGMjcW6RxqPCWidpxj9mGGKNMZFMfviWMS2UKtVSF1VcBH0FymEhbjesd8IJ3Nk28+M9BXpcqVGtJtVUpn+goeCpMCz7lfCn8VCc6SzkVeGCsxOsZ0YI+M92ndxf0+1vp7lzYo/TAqHGebEbN8aAdGGM7VVce7+yAv6OAi0KCJ9gZ3rhMtVreUwZFbOp9OWQta0c3h56OrjuAXeU8yHLE/VK6AEHpzs2xLo5TeuXfgNI3/tHOfk2/68JddaKsTte5NN1AlM6fwEbp/HH/UTr6hGWNjWPm75/sEls33S2j676uJkfpvAlsjmTw+P89So8RZC+eMobvve5EsbijG297myClp49jMxoYjP8rlF7yZVRd5/b2okkOY2Yu27f2ksEo3Ttwav+tq8xdlw/5d1PVg2O6cUDpMWPZjHpvDOeUfrzTrQFLJZuEOyKH3ev5+ryDSVE65pcYKR10cZzSq/wGlL47UTgz2feO9/bwj01Wbmo9y0CUbnGNjdItrv5H6eiaHF9+ikV9pH4bJRfTTi7ZM9/kKP3TVTZHsuXq/x6l9x+1aWLFWuNdt14okT6nv3dFE6T03qxGszCs0YxJ6WNn9F2TmtHCa/oLvxdNeZb9DUbpv3jGhc2oB66wGTX8CueUvq5eRGzIjZmCxc7ZMe0TRm83KUrH/BIjpYMujlN61d+A0r2XLFpWP7C++/qP/XqKltp1MBClO1fJZKH09MqZ/1E6ylqx6nIPr02x8V3f7UncxchB3UyO0ttDuzI6EqsqBt1FNAlKv9EyYeg5m8nCdZ/Np/mIrzcyQUp/WpnNaGAw/q9QevDIDwr7ksW8py6+1uxaRNxlg1H6Lx6SZDPqMlajRlbO5JrS992cfEXSZ6jwyOmMDj2/FftiUpSO+SVGSgddHKf0ar8BpbfOUVW0tEx0OZiTPOxAzavFDETp37qyUfq4rv9ROtJaOVsOHx5674TXsh5e4zLGt7U2OUrP7crmSM52/d+j9Cuz1S7i9JKu8894qpbfOfPBBCl9A6vRxhnWaMak9KqNjiUnH7juHisZ0utf+arrBqP0Xzxlz2bUQFaj2nflnNLtL9eJsbvV3m369DdTvHqtrW5SlI75JUZKB10cp/TqvwGlNx06a99fma89D2T36K7IetPQQJReVs5G6bOH/UfpSGtVaKTcMTrH1nteiwOVQ6tcWGlylG4uZ3Mkt4b971G61aSWnS32NRJOk94ZXq6bfwMTpPQ9w9iMNtuwRjMmpbdLXzyp3jOl3847sk87/+hXw2CU/osyLWxGDWE1audhnFP661M2Zxve83JZNP/CN6fT9s9NitIxv8RI6aCL45Re4zeg9DGfnyc9WD/F++C91v+c2uyRaCBKfz2TjdK3z/yP0tEB2PLBt77M3yhcaFPFpfgJFTs/GIPSn89kcyRXZv7vUbrjNf/6P75Mdd/Qz37gV5fn3U2Q0o+yGm27YY1mTEoffitxwg/eA5/YdorNBxZ3rW8wSv9FnS82o65gNWrsTM4p3bd55X+q7w523jF/nbDD2D27TYrSMb/ESOmgi+OUXvM3oPRubs4eOX1nuaZeelB1xdqw9Qai9Dtr2Sh9zdr/KB1prf0Hj7/L7tjW+Y+hdv07jb55yOQo/cZaNkeSufZ/j9IlLc49nyxxEc4aN26+4Ghj9lOixqH0XaxGW2NYoxmT0le2HHN7w7utvqmegjqXglNnGIzSf1Eoks2oM1mNOmIt55Q+tckS3/sNj/nOXjBnweF7b5+YFKVjfomR0kEXxym91m9A6RuW1G2uXi10TQku628xPzzHQJTedA8bpT/f/R+lI60lldcJ3Jy1zz3N7a8Wb2qnzDE5Sm+8h82RWO/536P0KHn3Nna9/nLZPdOx5HeH/v1MkNJ/7GYzGhiM/yuU/k/aC5vDT+I9Zh2++vp074flDEbpv6g0zGbUK6xGPbqbc0r3uubsYFFqsnDettEPjjp1tzEpSsf8EiOlgy6OU3ptJkpvsaFHRr/kRNctGyqcOTrhwxKyjpSbShkdSWZ0O+1wUKpCyAJLJUVKOfhG8FJD8CP8P7LYkYAfBp8La+64qSRqdbgyMhKW4MHeVF3Mw4XoPrYpE7cPy+jjMmV+FfODTW4NBE0Eze1qNSFmyYWD3vtayz1qZv5wB03E6Nmt6Jjt/aiRaN3CMhOXJHxpBpqK401PT31+b/E+zH3qwSz7tn/nykGTOd60ruGATuLYty4JL98PG/v1RF3QVAJvejzWb/rBlk084zo+tNnQsV48aCqJN82vPrlT4t7iXjvVnqUCux07AppK4U39/6rZ4sZdB8/49WlVHskGNAdNFnjTsaE3hu/Z+1V4+JPVk7POw/4BTaXxpkk1Ol/ofPSLaGezYor78eL+oKkM3pRyofmi8Rl9XafdU8bUWjsDomGJNx2o/Hz+E8l+5zjrCmfnNbpuAZrK4k0ds1S7BIdUoqVBnyxThpw6BZrK4U13hx5/d8t9lPOGEovu/LG20RjQVB5vEp24bV/8T0vf9QmbZ7U/Zl0VNFXAmzbP3fr5cfVvfgmnFpyXxC/fD5qs8CbXFcUyGx/y8En5tmvjnwkj4VeuiDed3DL7zWr5Sec98jZ/t1/T8yVossabzvzlu+TZsEt+0/o12vxI1LwnaLLBmzzm1Kye6trPbVFum7t3/n18ATRVwpv+Fk9LvlrM1nvmW/nBOrZHbEFTZbzpRcVH81pZz/PY8vGiz6V/q/4ETVXwJrc/Du+e9NRNsKh1ibq773yCpqyKNy2oJbv3sccY8ay+QQfkjfzPg6ZqeNPaeY9GpNbc47xzWo0fpZMsA0BTdbyp7oWbI2LKevnO6d/l9uj+5yeDphp40+JOj4d0rPKv964BszolVb90GjTVxJsuPFzrPPBIkufcMNHrU9nb4QNr4U2vkuJrfB9VwiV13pEOFZ1OTQFNtfGmTfe7j9zzp69w36USk/kuXWDvrYM3jT8zWLrybm/hFGGTKstkW9+Bprp40/vHPzdV75wo2FK249mXSzMSQBMfb3p2Zkn3i3vFgsWXkg72SQuysPBwGUTyRvXAX6RTrNXy3G5pG3ev2UsqeYclH6yAcBs0L0j1azzCr2lcVB0mF1U5NCV5RcYp8aptD8acqTUunhxZiEdFypUhlJrLcOQyaS02xu/gSzRVkQGZQgXCCIlcDpwQUQTMUadZBtVBIV+NHvTgDTr6+Xu2Yp7T0UzoXxEF6/3txTzzozQlRjbWs8KqN8M4Qqp5EeR3O2KzOKjK4K4+S7wOf82oerVQdaEpYcH+jOnOJd6cd0t+ua7Wsfv/li9kWAAnXvYQoBBUWHCyiZhX7ahe8ottekhB11DLAEgh0mBlRKRSLYPtfPB+Mjmm0kn0E75EBXpSlDJCFoxEcVjW2mfyvkd8t9neOe88aDBZCLi09nNoSOZr4jpugHCZs8KV85dJiAaaFVY00AEfaCF55ooKB0FzhGSYlA8CkKhwKX+IRC3VOAKk/VI25lrUiL0hXrWx3Pxbwr86kexnEYA/lma+vBaurWflgHd2F5T1ljlinZ0EnJn+wNULAtMLGfhNGKNBlKRUIJFgvV/7Mndjn+2i2e0Xx06U/tWQDBbxTDpY2paiAMucFSzQ1XH+qcvEP0F1iw1btNNKmJIgf9NpvIU76VtVEEORUEmUlO8tVYRFhdN5qBQDxilm2lsJJgJdE/wTgAEewA+VBEcpVcDZKMFMXAa6rhz7AEf8g/B2NT9YouAPkfLV0ZGRchmw0BAlaAT3ax4ZrYC3wlU0BZzqyGVjwK9gFx35onCJIkyK2bef7wB+JLEyBZkhShkWJgejQxo1UipVYL8TNVLJjwCdQEdupEborLDR+gT1F3RVLQZceQUavDJqDW4H4Mol+nFlxTyuxF8IXTvpeOaqiFpTXA+vS1hj1rx4AodkSfVAhdUqBghdgAjNRQ2JA8D7p+lHlvVJ/RGrXqvpejhgMob6tcJNxYQua5MEMZ8Ot0w1W8QnrzkwdAviOudzaYBKEisqoN8YWce4JI/4c6+bPlrGrT1C+YGqaKk9NorJ1pKp8/sFOydHJ/4EfgtHpyZIk2WG17i9/ly4x6qt84ZPGNigMVl13Ff7IJrZ8rcVhekms5pOYRzTFRzOlGRxPLX9lWBiAikBWk0dKQ2WhUL3rmEBpHlGNV4VerPFCrfDf5awXjv+aBmyE8KeR3dCmstcGyXSAfcy7iij8JpjXoYWpbDh0TgQkhVAZIRUw4t6AHN8SsnXRxfd9EtpNfL70hk3VpGnafiD6dM0oqEowEliBWcJBZxiBYBjq2GpPAbXB52G1mVyd8lOuse0/Ox7s/PPueQpina/ij5FyWsqCoQmsyIExjQet/GZ4rZTKyXe3ztUdZu8qU6p5w3GppGjUW8Qo/EDXLx1XzgQilRSTbQmh/fikTCYIYaCH0HcNZoPsFVF8SPhiALOFu+vMPbCQ7fxuol1UdYv0e9Nj6KJFh0xjgfTwLQsgPEtISJUcgYWmJCl37IC9gL5MEB+u3mt/5lzLbm/e0xgn6XzTtwkl0YqEQDvpjspzeWCIiWq/ytkpJQOAErNwusa0johv5mYtymLFimxba1VwwAi+oVdiEwFui9oR5Nt+F7V0ucRk303z27bdGPY5VDysHQhbqYPy7ymAussVTtwadfR98LVudWLB7VcV1j1AgjYAlbAQI8yShCl4Qz4O614TH9yaEGVBYstLTFbsnjVS2V3W34/6OCR2vPNuPN/BF629lAATwmMIR4VqQJT8HzPKikQBtj1blK4AJhi2s0Z40YvXPlWuDfVOnBUreaPOTDtUFbTBhnJtKj4OK6bXqFWWe98/hxpzFczcybGpbn7xKSvdzsnuZ5FrS2hoM/uNFc5X7tzxH3SDtSe3w5HbIjhxFiPiRiFl6reHtFut/Of/QZWmxV02Jv0bSrBsrJRcOnTRRYaKlVJARRqOkkWZ8CyuUgZASDXFLfFHhOS9xhscqgpawQXlmDOj06MSN22K/iFaeZA/pau0Qjo/FMzAOhPQee/R+38g2GB0ozClkISeOcDBS43KCOlKhhtKBV8O00fV/MBehixYv/S+DQ1XI1WjpSGoElk++IBVYMtcnwPhdZOSJy4vgHZxwRh9W3oPga/XpCPafriTfEKh767T3VtOPj1X7MvF9LHxEGJWgizuRDuaVMX65pgMBd2SbhRPvNrV7eClQq1NDga6x5Y+S0klgujtyY7HfVzXXh8eM0DT9xukbC0zHsuffpLauQ808Ueh60/CrZrDhhsuEuoz+QSzpRv8L5FW6VP7Ls3Xo4XJ4pJ361cDymWYsL3jZbLEb6AKWB2IO6DeUpYn5UpRkjkshBNJx8piwrnK8E0RaW7J6Du0rO8J80K5GYd0d1hK+ZVguhaojbf4gG6T48XduxX8cBKvsFVV6kay5PDEEMCsHP3t+9jNu7xjInwuxv4WkHOPimBPYgePmsuFzScqVkJhRzOWQA5K4jcOlTI0LupmPftOGP4rCNyNbXIqUhdDXYtJHzmf5vv6XXtkfhgzWIlUpQb00nwlcU7CHpLh9zK9SiGaIGexILWpeNGSTK0CBwdKc2PQ4N8OTuOXiCklcod4e+oHd3cB8EgN0yqolRfg38K67irYAQJDQseASbVozWmRh/6pBBTYQZJIe062BEfBTkChF39m2OjQK+FsGq+GLYwVtCUisS7fgi6PESFfkuOrdztsaXBhM11HRsOoWxMwG+F2JjALhcFFFgXZ4QCdHGcqBowERU/rMG+6XNmCBce2+a9/HPKWPL3gUHeaDJBMfhipnmdjQD0MZUmfB2Np6QhgaV6S8SL0DNgCvTBi0fEZwTWKy88olpl/62/36bC+mDgN5ZAyPlwjYcKuRWIHGK1kDc0ecipuXHcQO5hvvFH1/HxgnVHgz4sLbX4LgeQK06wQT7wBAF5I86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZnXS9VyTN0hcZlyvcvD7SUONKOlvMHOi84EoaRfcpDy1pjJ/vW9jjvc3lnGdbN5yJArz6zI9rfRLPaL5Eo1DBexDRx6UF6SYbTVd5UpQrDNgWD8AdiUEs4z8TQE3bb3qSmnBb4iDRzUL+kalYOpYuwxMMiuodauI8GM3PWYXmvXNTW7bSCQjFQpsV0FJcwKZM4LaretXr/wR6UEaQ1f368hid1RmL22ol3GzgJYTT6G024O1SGlg2l1yDFkHM6EVWVtSkR+rJAoZb8tU6zVEz+/1TOuewSfOJvIYVrEpJ6+H05uGuWaqJzhPl04+igHKLmyomR3jL74wBan2fsT4wobbBhmxJCDUz0i94x5q6Tbm5Z2H4q/dF6ctXX8eatjdkbcz3WyxzsRckMOnm1THNMvjG2q3T2EEGngCVFGwMwnwEAk34QOBl7v/+dqheGea0+fqLjx3bhvJrBrCUHqywqS6zH99nUbucg031y7VJXXZbCNRWYHJTjZcvvgT9vddh1bsstV8JW8u2BBPJe+i6htKQp0WrKiU+cYERjZMhHjiyBfb/Pmn0WL1591TfDz6EtfiKczoTkDuPXI+7naVLeRSnyVVTcipB6w0HVvQNfsb+CYGsIQ/qwQsQDFA7B90o/qdNumfbUs1ubUxZ4ei/sMvOm/7OxM8mInth/LQOukxoK8ONXFFTYTHPhpPgTLH9XH4kFoXha95sQEVnkMLCkYacxQnY//5jvnwCv3DeOXjuzXL5o8EywtBveigcrXZOCQAML06RgbTNl6kl3BW2jUvWajbaFh1USP41tofFrs6IhBg/shOyY/JLI927zDlLve8a4Jb6M6VK9NXYeOkETyNes0iPVyptDcVnMfsduDnUuR8BXSkfCSVCULxglSJ7dEPdzF8oaolfJ8zTri6mwr5g05B3CtgUq9jQGo1z+nl6Mqj21DaRZ3wesgv2W5XerviyXdffck9a7t+TXSnBwiYQ+gh0iaywXuoFPOuRVyzMHM5IEQnm2oMWcFxpznOb2yScpp3gfvE0h0/rBsOGBaWiO/FMm721NHxm0h7/5p7qfv/uHXC8LnSuUGrfeku/mlVdvf6sK90ML6JIhPW1Z8QPcxRoaBBZa4MUIDRGce9Q89bYQtF7dcoEQVJo1iM5q1Inl/qeWDfOI6l2l14X0C+dxVSc39dKPh1zlfswVWKc9qlS9/m5JVco4QVtGLvipgDi9SGoI7X6RhBp+yvTOqfnWfPTPfn+l7oF8K2TA+2P10w+DXuTaMsyPuTuAyI22+GtNczHM+p9+ErKYWA2xiIZcVhEfCibjlrXvbeG/cUulHn04ralIUHzQPQCg+4A1FgUh9VkTMzxG83oSJ13cs8Mrt16mjR2zu9yiLYzfek22s+UTdk2E6a2cYZALnjwyXBYeDsBKeLZSowUw3X1YMTv+6TT6o57RR70vvk5rr+uSJ/o3nidKyX5zBrG7d34XdAa+FhxoabYtgeXQIPJbL17wJ8ot/HGk/wdbjtPPU6efvbrvxLpPc+ZgCG22DgckfSyWFGDqhcjT4TTEM9fJYnX3xHuWi6VH5D2rBfCC1Zn0gXBYWDv+dF1Pyx/qORxdHofA5RQME+xh6V8Kvc57n5oADVg0FmJMjBhg+mJua/MYVtTfpsnFlxi94CZSyzcHBztXgv9l2rvy1mDdjwtx3v+u5U7zjopi+1TvJnntWJH3V8j7R8ihZpFwWjB0LoztSJqRr+oB4ANBTFLhTzo8gPUUnP0lVpmB7LZopKO26LtzAg9TnAZyzUQs3cI/i+HmEHBjBJwg5MPhJVDkwqpwXVQ7sl+W+qDci5L6YfFNtV5kK+ByYnYAlM5HthbTPqsZ/nvxxfKzHjg4pzTa1tx5Mso+ZgD46BAVqD60LPXBk8ZuqwtQbtVOHdvzbrbBrJmB0vITmdEJlL8AEnWvnMxE6W0wg1QmQBiuBh9YHpStVWpUPbjFZuCjyeeTISgPJYgJmQjpKwgJRGj8ore3CLoN9V/Z2jLcOP/aTA5SOs6K04zxNoYk126WHVA2AgYGRDgBRs97JHKZ5FJ3D8OtFseCN9ZhPqIUmOwcMKdyf2v8/86dUOR8D+dMarP709bn//Clun6eHvPcErdrvOm1wB8m1h3XncuBPqTJNHHiKKqyeoliR+9NWNYqVa7iyn9vyzYlLD306X4YDf0pdJOAApdfn2FC6ca4I/SmVQ43uT6uw+tPX2gm+g8nPCajDiZtktjZm1d/OEUW67PvgHL7j0pweHEwJlp1jmxJM10LuyFkyW3kCcgMksyE08AhXj9DAI5LZEBp4RDIbQgOPSGZDaOARyWwIDTwimY0aodEy1qBXRHYxqnoeBxlrzTkzsqUBjfxrOpIIUUXCyNQ9f5pNzJlsQpUt5MAmTkw2WXHgXp9p2Z88Ug/sTd057D75nF8Jf4lCKifbpDSLY7MT8CPhHbjAizpKGcFXKKOkGnEhqJ7KH4EdG0N+baruIuJVdPF2lgHBKqVc3gMyFryYd+QzpxvFEyZ+cDmauGSb+5Kk4G9JXS9nM3lCi55qqQrqsxIf28hFGT1EDnO1wPtgwj8hsij8u4MIA+5yPIjZRDFJCQYH6t9YzIs5AxxoBxEvZpqojI9EFSZTeEtDSQRoqbncQxYWTrpeWnM9UBmZ/yrZC5/o3licOPFMZgUMRH8VPDcYJdO8VSnirVADSiUZ6aEIgbJbBLxmpeFFuPWS7xIWq8MEGe2lsgFQVUIiF0EtqHxEFKWSSiK0P5v3UkkitffgXbWFydMyVQWUo6U6av/ngJczz7Dx8r4zBC+3NHnMqfKqprs8uos1sX+dNrG/FWc0WY5nOJpE6OYSNInQzSVoEqGbS9AkQjeXiIWWLbw5PfY0X/jH7n/aR7qaVcgXC32fGPRhko296xaraZbZgyMu0sgVen1kR6KK8XJArq2ZLFk6YOmITdFDXZJffZK24ye+I8vb4Rt/PuA/KuAqdVcFrEFsGSr4fpFShZs3PwJ/hm4bglTRYdbXoqvuUX5Bx6Hhbyvmpf4Dd2tEYJzQlmbAzKzHP7QtQrY0idqark2oT0IJgWgo0xkuUQCSQ37xuV2ONCnWb4Rwcb8rT5a1mj6cvCHoonkCfUOQaOBcwQhAsg9CsoUpcWLdP0ZJnCgRDKDVOo3U1NSf+oj98cmGgfpS0XKJCttnlMPwBZ05Ydu2jdewwe6rey0Z0PPAU/IygkUA/hCEiCrRUhTWmctqnTGmYB3gjX7qk11UVxwhU2OyxcEkMxEuBGmcStNX9JZ3bOqVutPjxb7pL13IxtE8EbGIm9dSFMYJZTVOD1MwDrRPfuMQzMRknHaCCPiRmE3A66jBrVJF8GiN6GIXvjJSMhxqNLbAfsr7DfSIamf/ZWtihauClDaP5uyedXUn+Rx7YL7n08+xk1qLwnhdWY3X1DjG00FI07wAC3bJs6A6XKYYrQBBMDAfMJdCqYCmA/+SK0dijfBHJ9gUIRmluYC04/NztVSRvsWF+08GnVk57Z+rFDW0cFRaNH65KCxXhdVyxYxuOXgT3FHRK1XGWrMeDQsasTrC8cECu13P1nmsf3YqZGVa0h6yI2SMmfJaOF/wdsRjCDjjOEkLq5pjjhCPU9swxanVzccGHD2Y63fEIvlR47Zj7ck7dSLNQo6/SjpCJh1Jr93GlNlmK4CqQ+p8i0GYgGyYVBkhjVKN5kdqHqiu4KHJ5vJQ9JAq8PkLc/BKLYvB9q70XUVye/kg8J9IpSrKVSaP0nwwKtxnPGHaRMxzvwCwX4babYwDIW2tC4xZb8jZsBuBDXZwEntHnSL6pCXPLljta+0RF1XZ7uAw61xytySeSu+W2paC5slUcbPCzpMBci4QOWeUH/FvJuY5XdAr0b1yYL4Qhq8cIVWpZAw1Ky67VVvZxPe+MDF78tmPM5xuFH4IU9MlKD6CA6xqsWJlccGgPpdYxyyFT7ngL8Fg53b87Z8WUjziIy4KnYQ/S2DcRmVVC2JiQPwq/H/Z/GEP+Q7tdLstkxv7T4T/l0T4qdWEDCbC/+kCmwj/Abrv5ECE/22V7OVHvg91/tOjwp6xzyeSj7sU7rQ5xz4SapbnXmDTLL9H95FFIcJv1/XdWYcEO58Vz6s2MMuWOBtdhP8sKyoHDOsNWecO+h384U6EPz3WukOpld3cDp2YO6tJqfXkHQpjivBvYDVdnHFMZ3AR/nqSyzv/npMljnt4dtZIxyvzjCzCj3kZRhV14GUMJsJ/4q3HFdHLUn4z4qZatHuWu9IERPjPsoJz4IIBRfi9x/b/UzncXHiglGV5UfJmsp6M8UT4N7AiBMY0Hre1Y4rbxIKmzX52uSTYcqdO4oU1b1qRdQSwQ3yRSjlgdHrMZsGAc5u8LRJZ3v24FgZAXKWMDgsHMZxaii3V6KPlQK2wyPi2dNWDfI265vY1EvNOXwT4SkRw0YWCbxbAd8TFwh6sqpT3WuAqjgXyq5eIm/7+Up/HbnODmg45ZhWuLnztLkoIRXWMha0FDNDLhOjVFSF6ZzW4WXtRrxCqrGb4hkjDVFJ0fGk7N65nw8m1xVOzT9woXS/Tg3JCCrsRcUJKc51z2V/w/dewfv+ZF40dLGl7ph6BEnxlmTJEFsyibfMo522FF/GbxLHlnGd12rKenH1uQTyA3le1LUVhjBGsxhhiHGNQwx+ePjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerozo7vPnrdar3yrbX3o7ceXoDmdfgBwREjZYj6l/mNRWFsXxZjdXRJEYOfJRe0WrlvIVuRbRqiJplBNW8HTBHcnebx5Qzizyen7jRtDBT5UKaI84Jd+TwqGcWTReqhbjn1ov6Ram4J2eJtkJtWvWs+Km+cEvq+F7B38fXNOq0FwKwgADgGgIA6Fr0ikQJKmMWmVi1YLxiW6kXbn9uftr5mjTFhUJlhj3sCwHozwZAkvNFItBs//8sH4damNtg+TgnL7Hl4wy+VNT5OJVXuB3cW9XRb1HPOo5relwrbwL5OMcvse1u7rhkAkkFCQkJBsjHab9ylcfswefEexZaqdun8v1NIh9nFat1ppuCdQySj5PVqUST4sceuy8sN6Z4wrw1rUwiHyeK1TiDTcE4PGPm4xy/lLDZLsTVc1+WJChxwY6DJpWP481qvPbGMZ5p5uPcjdwaVvxlB989kz/739zaZZGR83EaslrOyuiWK9J8nH/iHTzOvm/iPPdioOIBL7OPSeTjYDEEYz4OcIR4nNrhd8jHef/456bqnRMFW8p2PPtyaUaCkfNxvC+z5ePwLxsmH4dfYvSyx172wj+ffSsbkfFKzXk+DnVuzkGOiftlthyT1peLKh/nYYiA92xOVZ+5nSpfXWP+6AHn+ThUH8EBVnxWrMpe/p/Kx+nI5MaGH5E1k/kmifan+cmfZPd7Q94p6R4Nz066qSSR4fQTpnpsXzR0kakj4ekx7W7OaAfNKVO+BGrmhcFPQPa8Z2eWdL+4VyxYfCnpYJ+0IAvG96Pv5ORvpPW/0gHAhfnlP4qF6JXUc0869krt0xD5NNlnQa+sIoJ/Kec/JbbiVg/PZpYLkMqBwaQhHsCvjyIeh5lVY8pOTKas8mCOi3XH86KENg+PJJ8cSV4LMhOiDVhR490RNuOV0TSRDlnhZEA7fMWVkgf1kPwvKHnoGh2YMVjJCURkcihPAUvkpgtw1Dszof7jj10bbBzNhfv6V1uxKdJnY4GnL8sUPfI6n9iknt7j6MTmL44bNouUP0m1SBcmi8TPnxP90vOT25LhVdQrZtoPIK+JusLkmSh6RMY4vdTcwFcD1tfUu4xWw5AXq9UWrpSHQDlGmBIYiv0eFg5HScLUOsUg1COSJb2VwcOkIdqbUK9OX87VXNd1t9pOzLsDwSyGSuqDouprTiLklyBEcB6HkF+Cf6nyS75/3OkacOKF89Qze2Is3vpdosovTemVMPFGZH/3Zenxyx8vm92VaCcOo/6yPBP1gxHyTEyWtoTqAbgZkdaatftYh+FbQ71jfMdmlckMdCiMtbjfDQN2vQHtugoV8sTBg+YnjVJ40hLWdxykBt9BEZbnMPJ+xlzNWKeOPcYjVKKYbGXtmjfaQEAUFa1iCFwfjGrUaNQI39SyWwXNBmStYTVZKZHmSQitY7yhKIy2i9VoawxrNMIFm3uLNA4V3jJRO+4x2xBjlCnYq++Cl76WKdRSFZZ1Bz6C5DCRtlrRveWrAbYXPRfmWDx7/jJkFtVWpXyioyRD5FoBCx5lswt+qhOdrpwK1Pr6RbpiM+pMVqOOOEnT+mItoIB3dqlGnwUJHlUmhbWjm0NPRy/TgV3lPKPUEfdL6QJEpXvn5lgXxym9KxOld39416+U/Jzb2pS0YhP31Ysl58oGhMtCo/iwriyZ1iFfMdW0rukXGgqnIhK5HC+/KoOF86B4tyMSYMd73brMGX7NdUe/2Jjq3X0ETK+AiJd0TbcHPaN/GEAqUIgqhmcv5t0KLWweWTms+i4Ym2r4wmjxhameB3oUb+obc6H60utfq9WjFnhBfsUCQ0Ivm2fHKos2eK61ChE7Tu9vU9jEe4BVIMRqmQCV+wEm+PZh+mWNaSyoxHoFEhcvdatGPuXu+eyUbT+6ObPhXdqScqhuwBR2PIFvbs76zUEvMYHlZKwH6rHHZgl1htikp446ShxFH4U+s1b37/Oz2J0X5H4J7zYU/HtC2eCfbRz4aRlihS3UrRkRMNsZfBOkRd7IF60pbdFHtOfBl8G2zfvl/qKnKOxqvgPuCtKdEQQz2AEbEDjBdDNhglm46szlZd4D3LaP+eQjDxhesWgIZsV0NoLpO90ABHP+uDrE/OQj9ylTSz6ase+rIzcEE3+seLnXWTNcEw8enJM1dVAbDghmyXS2cT55OscEM2dFlbU/vwa5zfDxOjNu0CAvIxKMgvWbg17yOxJMjRUfSvz770236U6dbnc9cX+g8QjGlRX+lsaB3wgEIy02cI/Nlxy3yeZZmU77iu0yHsFgroCRYMCAwAnG2YQJRu5/Mqt0mRqiBE9FbI1P3rlFQzCxq9kIxnW1AQjGek/rI3Z19ngmnQ8c9s3BO4Ebggnt3KFd3Upf/FavXTneMjPNkwOCmbyabZwrVnNMMDMqtRbdu7jdbenavltL+l5YYUSC6cv6zUEv+R0JZrGk6pA16a88tnTf3Wh+TunnxiOYlqzw1zEO/EYgmNZvh6wam2LtuXptt9zTFaRTjUcwmCtgJBgwIHCCEZgwwTxYWfdry11NfTb0Czszc6+PY9EQTO5ONoLZs9MABJPqkxFQZ4y9x+KRxec03fl0DzcEM6LxlYBi7dr7bMmU3n1wdygXM5icnawLRTs5Jpiuw4KOd+5w1ndFiTGv1/r1zzUiwZxk/eagl/yOBNN9U5PZq65Zio+06NZxa6VZ/Y1HMPGs8M82DvxGIBhJvZ8+dYdNdNvqXrJazRbOl41HMJgrYCQYMCBwghGaMMFcL1XLMXWHxGXK9S4Pt5c40KxoCGZTJhvBhGYagGC2jrcPPDlhqteCNa93fnmx7DY3BLMwemuy01E/14XHh9c88MTtFgcEsy6TbZzPzeSYYAZHfuz1r9cfzttq5d63vrPAxYgEM4b1m4Ne8jsSzJh3DRuZfTojXn979ZPrP1e5GY9gerDC39U48BuBYDzMN/7oOj5esO5o0IelpRbfNR7BYK6AkWDAgMAJRsREMHrXVLDTWq/oayrUvFPn7V+jJnkv+fbu49LotLR8NRUcjyU/FFep5z1L4FBnbkvBzHw1FaZN2F3rijrIc0nQ9p7Vk2/OzldT4U54i2cDVt7zSuUVj8+sGLIgX02FJm73Q17wrF3mPl4fXUkW9ClfTYXHY/2mH2zZxDOu40ObDR3rxeerLzW/+uROiXuLe+1Ue5YK7HbsCGgqhTf1/6tmixt3HTzj16dVeSQbAGtZWeBNLn3sFvZrPsRj/YHUyOBba2EFrNJ4U6snSZPir/k4p2ap5jvluvmCpjJ406fZRw8OGNBC+OekATWDts2CtSIs8SZ+n58NxU0veyzdPXHilWdTt4GmsniTvTwx5c6CEx5JWx/uWXjYJxM0lcObpi5fszFjQXFR3JaKLdztXbNBU3m8KWteywXFnq72m755i4N/7a5tQVMFvOn2xua+38xOue39ZN7n6/nNPNBkhTcFdXk798b7Vj4xfq2syn3p+hdoqog3LbL+N+mu5J3bevuKzT5nFR8CmqwJeIOKLau4X+23ZGbinS1OrSDyNsQD40onj5m/3DPxisfzbweTG4CmSnjTgiZVZ329X1G8rFf2rMYn65UGTZV5jKU4qhAPnDAx8riPnTD50vc6JRrnTARNVfEmpffnlesW3fRc8c/PR40sSkwCTdUIo9h96j5o8XW/Jb2fm/XZfbkDaKqON4VWW1im1TR795mu8ZtGzAosA5pq4E2v6r8pF1F9neuO9hueJD1aMQI01cSbqqrvpbdvs8krZogkef23kpVBUy28Kcki6+sFv2Euu32/5Nr2CQsCTbXxph7lzCKjLTeL1/5r38L8mmg0aKqDN23/GpjQxOmM8/YOZ/a9LP73LNBUF29aM97RN/d2qPfGf1+cCvvYdBRo4uNNG+qeTTv9b7xgZfmFkiXJK9/SioXU4zEUCzkszZxd4dxa0QbztFU1e1zfiXAb+hYLcWFyUZVDU5JXZJwSr9r2YMyZWuPI5a9KiUdFypUhCAUspgC4MX4Hn9AslSlgWBgBAmLghNTSsAipzpJXVAeFfDV6ZiPeoGvtVlsx7861TOhfEae3/EF4vOuaXoqgVnmKoJoXQX63mFOZ30bwu/tN2msmeCJ4u5BDQVCOD2nB7OobEKAQVO7fySZiXuY1vWLiNj2koGtgZ89DpMHKiEilWoZJgIH3k8mxqRPRT/gSFVS9VUbIgtE95MGqn522+Hrt/Tnvr9Hy8YFkCR/t59AlfPKauI4bIFy7WOFac80kIjm63KSekZwDPtBC8swVFS6J4kdIhkn5IACBcgJDJFCLg1Hrp9mTazd6Hn0n3NzVYuTpFZ3+oag94I9FqD0QLVxbz8oB7+wuKOstc8Q6O03xR0/g6hHCdITogpQKJLokcKkKx+52sBbtfDo4qH6viU8LL4PHAVi7WMECXR3nHzET//ynnv1L6tnUCN1g6tlTr7OpZ7tcLwr17BOfm52TO1sJd1UMvbutV3owh2RJ9UAcqGfHXGcTG5ZfN4h6dsq1ex992wW47ZuygNc716uv0dWze7OiAvqNiSp9FLTAxJ169oLrztZD+XddD14aeuT6znX7TEY924nVdLWMYzqDq2c3kiUdE1z44jYnPe1R9O15fCOrZ2NehlH+GHgZg6lnf1xnV0Ua6yVYO0We3vFvc/IWhnHUs3uzguNy3YDq2eVzvy1tE//KL3HeuR4uq32Gmoh6thMrQmBM43GbK1PcdmqlxPt7h6pukzfVKfW8wVjy5NzCG8Ro/AAXb90XDoSEmiEfVnQmImEwQwwFP4K4azQfYKuK0uhEA2eL91cYe+Gh23idAifq+iX6velRNNGiI8bxYBoofwIwvoXadXMGFrB/ot+yAvYC+TBAR0otKz4o3k/gsj95ZaBs4OxWlN0keDdCJAq7XFCkRPV/hYyU0gFA4U/wE/C0TshvJuYFPtFL+6UaBhDRL+xCZCrQfUE7mmwjFJXrBa1s7rk4/cm3iDsnZeRh6ULcTB+WeU0FFmS6csP7lfVSt8Wv4p/MP3ntPQeAObMCBnqUUYIoDWfA32nFY/pDL0liwWJLS8yWLF71eYJ7z5gHSo9dfabX3+CWWccaE5MHxhCPilRJtdIzWFArEAbY9W5SuACYYtryS2dsnOB2Wrh86KW0jpejfDgwbTVW05obybSo+Dium16hVlnvfP4cacyKHvNvh14t6bXKbfrpEVMahVA3/BDCdpqrnK/dOeI+aYcAsee3wxEbYjgxujERo/BS1dsj2u12/rPfwGqzgg57k75NJShAEgWXPqGarBTqG0nVdJIszoBlc5EyAkCukUHBHhOS9xhscqjJNYELS1DYQydGpG7bFfzCNHMgf0vXaAR0/pa3AOhPQee/R+38g0Hnr3KrsPkpAu98oMDlBmWkVAWjDaWCb6fp42o+QE9ThAL+S+PT1HA1WjlSyqAgX3ZlhoPAra9rXFDpnqIhPS3JPiYISzqg+xj8ekE+5kaldP8FLx95bYzxEyzz3RBVSB8TB2B2hDCbC+HBdepiXRMM5sIuCTfKZ37t6lawUqGWBkdj3QPLiULPIj51Ge57Y5Z46oChgsRRdmR5S8u859Knv6RGzuUs7HHY+qNgu+aAwYa7BHcml3CmfIP3LdoqfWLfvfFyvDhRTPpu5XpIMR0Jvm+0XI7wBUwBswNxHxQjwfqsTDFCIpeFaDr5SFlUOF8Jpikq3T0BdZee5T1pViA36yqdaCvmHb0J0LVEbb7Fw1NKNws79qt4YHl4cNVVqsbEcDDEkAD4lqhv5lOymefcL0Ne/Zw7pQs5fMYeRA+fNZcLGs7UrITCygEC5NIgcutQIUPvpmJe0k3G8FlH5GpqkVORuhrsWkj4rnZe4FkiONvtjwoPdr76+IZS+hvvIOgtHXIr16MYorWEFa3JN42iJGQRODpSmh+HBvlydhy9QEgrlTvC31E7urkPgkFumFRFSYmDfwrruKtgBAkNCx4BJtWjNaZGWplKTIUZJIW062BHfBTkoNLm/Jtjo0CvhbBqvhi2MFbQ5O/iXT8ECUXtid9KXG/0Rbg/MEVxwb5XW8rGBPxWiI0J7HJRQLGEFQrQxXGi8mAiKn5Yg33T58wQLjy2zXv555SxBSr/Mfhipnmdzip+VG+pi4ofr0AfPKlG5wudj34R7WxWTHE/Xty/sD4Y+A2Xm7jocgxNBhtEDq21kHuaPOTU3DhuIM/cFhvV48Upl7jvtXLHVJ93hQPIa91hg7zsHQJyL86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZlty9+PeXdlqevKTItXD70aWdJS3mDnRfY+avolBylv3kz2r+913OH2zjKum81Dhlx5ZkW2v41msV8kV6phuIht4NCD8pIMo62+q0wRgm0OBOMPwKaUcJ6JpyHotr1PTTkt8BVp4KB+SdeoHEwVW98Ag+wa8sQImJHn6rfNX1Oz24apmSuhaQAe4AfmvKCmgYoUUa2ZngmqjIebg5d1LMxeW9EuY2cBrJxu4LSbQysQBabV1jeQcTgTVpW1KRH5sUKiVEea1Lp2486+B69UuvK91vvzHKZFTOrp++HkplGuicoZ7tOFo49ygFLudTaUrlynLz6wxWn2/sS4wgYbhhkx5OBUj8g9Y94q+SN3Y+4AuaMwzsFfXmfUNG8j7uc62eOdCLkhBwVsa93QL4xtqt09hBAF56u5BhmI5JuQ4PxckPhh6r6awn0rrcJDQreKTGDXEoJkwQpSrp77uo1cZJpvrl2qyusy2MYis4NSf+ieeOfBU5+l+/dkf3J3OETeRSSeS99F1LYUBTr3GPd0ITpntXu6PkzE+CLI19u8+WfR4vVnXRP8PPrSF+LpTGjOAG498n6uNtVtpFKvssfUAxa67g3omv0NHNMF2KnOChELUDwA26YbRbBNK34+aqN0zRbnVXzesNNeXckV6Cyx/VgGWic1FuTFqS6usJngwE+fg2D5o/pYPAjNU/XjuvIYWFIw0pihathV2nLw6kDRhhpjHi+sU6YN2ROJwb1ooPI1GTgkgDBtYoVpwQ39yK7gLTTqXrPRttCgp8H6CNxC49NiR0cMGtwP+TL5IZHt2eYdptz1jndNeBvVoXpt6jp0hCSSr1mnQayXM4Xmtpr7iN0e7FyKhK+QjoSXpCpZME6QOrkl6uEuljdErZTna9YRV2dbMc/qUSas+omIyWMA6lnZejmq8tg2lGZxF7wO8lt6/+j2+WzV2YK0uj+k+w8PppxDwh5AD5E0lwsac9RzboUcczAzuSyEZxtqzMGKZJ+y9comKad5H7ZCteu7Rjv5THovWHz9YJsNGXOTybt/mvvpu3/49YLwOX+i7s6IUw4uC4btTlsor9iNA3yys9nwAd3HGBkGFljixggNEJ151D/0tBG2XNxygRJVmDSKzWhvru+t4eq1zn3ysKGhi9qfakg2muZ+utHw65yv2QKrHGK1yhaTskrOEcIqetFXBczhRUpDcOeLNMzobiNqJ9rO8Ni0Z9bzvR7ri5EN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW819n6TchqajHAJhZyWUF4TLFbUrv5DCv3IynDWlWr8Kw5payD5gGIsg54Q1EgkpXNhsiubILX/Zh4fccCr9x+nTp6xOZ+j7I4doMcpeCfqHsyTGftDINM4PyR4bLgcBBWwrOFErUaVuTSZsXg9K/b5IN6Thv1vvQ+qbmuT55oNp4nSst+cQazOn86r+u5A14LDzU0BSywIovwCJPmTZBffNfBF9Nu7zzsm/jqltfEiddXkjsfU2CjbTAw+WOppBBDJ1SOBr8phqFeHquzL96jNGXlSQe1YD6QWrM+AEtZw3/nxZT8sb7j0QrRFD43alV7OK/FAKuGAgzWEvXXDmZ/k9+4ovYmjip+Ubc5ONi5Kp/NtnP14yGBeXcmzH33u547xTsuiulbvZPsuSdZUL28D6kYHd2RMiFd0wfEA4CeosCdckpJO538JFWZgu216MVYye26LtzAg9SPAZyzUQs3cI9C9RhR84vgE0TNL/hJ1Jpf1Jpd1Jpfv1zTi3ojoqYXk2+q7SpTAZ+jTwnCBc03D6731Mp3seTIxq1LLSeQSxAK6KNDUGCBoW+HVk7vMKGz54KHxU5sLiN7V9g1E6jjD83phMpegAk6sY8zEcW0mED6lUKNqxrHHoqyLe58xFHy/EdpCXmpUbdCjVSUpjx/2Odr9y+us24snHN/1jguUFKxojTwMa0ME2u2i6beNQyMdACImvVO5jDNo+gchl8vigVvrMd8Qi002TlgSOH+tMf/M39KlfMxkD89+YjNn6569J8/xe3TZKvI0WH9Tt+EG7NC/3qZeo4Df0qVaeLAUxx/xOYpdjwqan/aobLnovFNGzjHbrbeNLbt+gwO/Cl1kYADlFaxojT9URH6UyqHGt2fYj2G0Z8CpHB/GmDycwLqcOImma2NWfW3c0SRLvs+OIfvuDSnBwdTAtdHbFOCtlrIAzlLZitPQG6AZDaEBh7h6hEaeEQyG0IDj0hmQ2jgEclsCA08rcQgXQOPSGajRmi0jDXoFdGTHop6HgcZaz05M7KlAY38azqSCFFFwsjUPX+aTcyZbEKVLeTAJkFMNllx4F6fadmfPFIP7E3dOew+NX9IopDK6fXpmRybnYAfCe/ABV5gWXS+Qhkl1YgLwRKpbBq2VN1FxKvo4u0sA4JVSrm8B2QseDHvyGdON4onXG/5+naNyCYuqa5S9cZi81RMntCip1qqgkVYiY9t5KKMHiKHuVrgfTDhnxBZFP7dQYQBdzkexGyimKQEgwP1byzmNX0AHGgHES9mmqiMj0QVJlN4S0NJBGipudxDFhZOul5acz1QGZn/KtkL1wtsLP7a5EFmBQxEfxU8Nxgl07xVKeKtUANKJRnpoQiBslsEvGal4UW49ZLvEharwwQZ7aWyAVBVQiIXQS2ofEQUpZJKIrQ/Y8LE2nvwrtrL5GmZqgLK0VIdtf9zwMtRD9h4OeQBwcu9TR5zqryq6S6PDmZN7PfXJvb34Ywmy/EMR5MI3VyCJhG6uQRNInRzCZpE6OYSsdCDlMFP292r5r1sZocuvEXXsvPFQoMW/HUu0SvDc//Qh7aNvMeH0MgVen1kR6KK8XJArn2ZLFk6YOmITdFDXZJffZK24yeSp0YV8I0/H/AfFXCVuqsC1iC2DBV8v0ipws2bH4E/Q7cNQaroMOtr0VX3KL+g49DwtxXzwp/C3RoRGCe0pRkwM+M9pW0RsqVJ1NZ0bUJ9EkoIREOZznCJApAc8otn1ojet/6Kg2DNgi5ntj61KU7eEHTRPIG+IUg0cK5gBCAJgZBsYUqc8H9qlMSJEsEAWq3T2LVr1099xP74ZMNAfalouUSF7TPKYfiCtE3AG8+HB7zG+ixeVMXi0wbJLYqIKv4QhIgq0VIU1unMah07U7AO8EY/9ckuqiuOkKkx2eJgkpkIF4JOpD8iut5s32nPHQ9l63J3ridvjVlonohYxM1rKQrjVGI1Ds8UjAOhy28cgpmYjNNOEAE/ErMJeB01uFWqCB6tEV3swldGSoZDjcYW2E95v8GQnn1V0tl7W1fBn8s/J9nMXxxBPscemO/59HPspNaiMN7LJ2zGu2ZCQkFkIU3zAizYJc+C6nCZYrQCBMHAfMBcCqUCmg78S64ciTXCH51gU4RklOYCWlMkS2277VVpj3V/mO2omb5+JK22DiItGr9cFJY7zmq5HUa3HLwJ7qjolSpjrVmPlinC2B3hnZCPTvtPtvHbUnbgGLOUSeTo0YIxZspr4XzB2xGPIeCM4yQtrGqOOUI8Tu3HFKdWNx8bcPRgrt8Ri+RHjduOtSfv1Ik0Czn+KukImXQkOUyFmDJlttkKoOqQOt9iECYgGyZVRkijVKP5kZoHqit4aLK5PBQ9pAp8/sIcvFLLYrC9K31XkdxePgj8J1KpinKVyaM0H4wK9xlPmDYR8/6F2C9D7TbGgZD2ND2kJSbIyNmwG4ENdnASe0edIvoKnXc1a1C7o8fm+k6ZI0+ZkbXHLIin0rultqWgeTJV3Kyw82SA3DuInDPKj/g3E/PuPNUr0b1yYL4Qhq8cIVWpZAw1K3h7PUYrpWPcFsYN+rfirPctCj+EKVhRfQQHWJ1mxWqfYUMdYh2zFD7lgr8Eg53b8bd/WkjxiI+4KHQS/iyBcRuVVS2IiQHxq/D/ZfOHPeQ7tNPt/kxu7D8R/l8S4adWEzKYCP+mZ2wi/KHPikKEf1J8j6eVFCPc97VYmubfe8tGDk+bc+wjoWb5umdsmuVznxlEhH/+qyD/Xu+2iBfwsx69XT7ulNFF+MewogL6jcnMHfQ7+MOdCH+5quq3K8bwnNe3Hrqtf6jjMpMR4e/BarquxjGdwUX4l10NvT9vbU+/rQGb43I9Z3wzsgg/5mUYVdSBlzGYCH/p9QnltncLd5s62yu07VXviyYgwj+GFZzQZwYU4V9dfUqpWndruE6zeV1vZWy40gTkLCBCPVgRAmMaj9sGMMVtYkHTZj+7XBJsuVMn8cKaN2S5d0vsEF+kUg4YnR6zWTDg3CZvi0SWdz+uhQEQVymjw8JBDAerXCtD9dJyoFZYZHxbuupBvkZdc/saiXmjngN8JSK46ELBNwvg2/B5YQ9WVcp7LXAVxwL51U+OGiBdOFngvvSk3/ZP7lnmha/dRQmhqI6xkCEUH6AXBdGrK0LVI4abtc/1K4StGb4h0jCVFB1ferZ2KZvwcL9PzLpKJw7Z/lhKOSGF3Yg4IaW5zrnsL/j+3qzfv/1zYwdL2p6pR6AEX1mmDJEFs2jbLL7PS7fiLfTao3zQr/nOfyl15ogH0PuqtqUojNGQ1RhWxjEGrTi2PjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerj7tX873qeV+8efrtXUc6Rn0l8xr8gICo0XJE/cu8pqIw1rdnbMZ6avRpBpFXo1e0WjlvoVsRrRqiZhlBSR/8e+6ZHe+Z5h8yU53bt2thpsqFNEecE+7I4VHPLJouVAtxzz7P9YtScU/OEm1Fv5y/+OWcWL+FFb6GW6Y6eRt12gsBcCYAuIYAALoWvSJRgsqYRSb+uD03qaTDN/G6pNNNpgS9aUGhMsMe9oUAlGEDIOm1NtAc+P8sH4damNtg+TgjXrDl45R/UdT5ODturh56v1yO14GF/QZmZedkmEA+juoF2+7mwBcmkFSwfPlyA+TjPOq3WW3e0sVzw+1/2tVb8CTbJPJxPFmt09YUrGOQfJxZfnW83u+299g5IfvD6kequSaRj1Of1TjlTcE4PGPm45SPsIqt/c8b52Vlc6ZstrCOMal8nC/P2Yz32OjTRBPKxwlrYsazmdDQZ1123By7iGm3jJyPc4HVcmlGt1yR5uM4f2/3ZmqDjm6Jd2we2379P/a+A6yJ5P0/eihNRFERRTFWsIDYFcsBIfQmWO7skQSJBoJJEBEL9or1VCyn2FBUFLtiw947p553NixnO3uv/5ktgd2dXRJYknx//+N5fB7Zl91sPu/MO+/MfObz7r1mEnwcLIdg5eOAQEjkqf3/L/Bxlo1yC317Mzp4zfunpwZ9aDLcyHycz0+5+DjnmSltqfBx9krsrp2sUsVv888Hcp9MWCvnnY9Dn5vzwDF5/5SLY5L/tLT4OJrr/4RXGRPqudBsUKcvHx/H8s7HoccIHrA6z4lVjmFTHWPzcQawhbGhB+VN5aHrRbsOhCn+ud/7BXWnpGsCPDvpp5LExzBPmOqxfdHAR66Oh6fHtLs5Sa74KVOhBGrmDYKfgGx5q+ucPXD6fbrXkorzJAs2L3nF+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg08y8B1qlvQj+o53/lDqLJ6beO24TKVMAh8mkASCuDycfh7kVd6WEzZX2+ak+dh4XRCva3Du4+WSiD00FA+3Aynh0R/hMYIWbKIesiMGAcfiKLyUP+iH5Yih56JodlGHxkjvIyGpCuR9YIjfXi0B9IBvq3yduXV3Fzcx7Zx+HxRnxITSyEuL0pVXpI6/ziU366T2+TmwWr99weWTfLbpHotg8kj4nNeFZ4Ee/BUPt1YunNetLXRP1heQZDTMjY51e4jcI1WDUx+tdJqhhyovVaotRKqRQjhFSAqOxv8PSYY1kkFqnHIR+RLJ8sDJqiEyqvQn16szlXPy6rrvVLmLBjNsAzLIoUh8UVQ++jZBfghDBeRxCfgn+o8svhU681SXyxFPPCWe2p1i8Csujyy+N77lizI34Pv5puemLHqbN6ELaycOoxZZnon8wQp6JzdPWUD2AcCN6D8zyw+oOc5cE7lB6tb+1+0C7kniL/90w4Ncp0K9LUSnPbHjQ/LZRCk9aw/qO/dXgO8QNKggYBb9joSbZ3SNiFEIlis1Xdr4FvQ0kRJoEFTpxfeJ3qnW3Cmc8p8RMOOxWq8s1TpeZi/AnIbSOCUNpOG0Ap9OCDes0MgSbBYvwgApvGaPt95hvyD7KluzV8yFKX8vj1DIVxroDH0EJmEhfDem6vd/IR8u89tXe3zIwqPoauq/MQxI0koEKrYCFgLbZBT/VnTlcuRep9VXM4YrLqe05ndrgNkPri7OAAtHYZbg+C7pEAE0mhbOhm8FIxyzTgV3lnVHqRsSlXC9EpXvP5lgTJ4Z0KduQ3vXe7TBzxXm/5XsOlB2zs+4kKlc2MkYerRHCurLUYR2OV2w1rR3DoqPhVESiUBDlV+WwcB4U73ZDAkwvOMj2Coh8SVe6PWgZ3W4CpLp5o4rhNRMLqt4sKY/MBqu+C/qmGr4wWh6/7uatXw7nBs4Zk/nkH/OXWfQCL8ivWGRKSC+6XlLiPTx4D7FK80JxP8AEv9NN/VhjuAeVWKtA4tLbP6397cmbRal/h0dNnLWhMWNJOVo3YEran+Chds5vDlqJCSwnYy1Qjz02a6gzxCU91T1sS0rNnyaIxvdV1jy540Y2tV3Cuw0Fv4AT/md/mwZDrKSFuvEeAdnO4JugpTpoFXeLGSlKuprvSoSCXE/EADPAFesQxAAjYxtg9NbzcdF6r/T1fDRzckcPPNnea3+t1KRFiXWTC+n5tFhyzvO3pTVC0o5OePTv9il2hfR8TrlN/uVE9JqwOW1mDjnT3zqkkJ7P0Ur7Ggx1kIetKyOa/Pq2eEkhPZ89juX84mvle+3avGJKXN8/ZhXWNmRW/iW1DRGVf8lCvYjKvxaEaVH1fn365aR7p3T/K+DhHx+gMKMlYSq/v+Iau7huwb/XO/vmQ2hQRWCyIkz1KvhufL5/XtCeMbHjJLY144DJmjD5dD0WOcr5pNfsWus/e0/e8A2YKhCm7DsjGtt3uuybGfnzXcX8vp2ByYYw3c2bWD3F+l3A8ua/nZ5Q46k/MFUkTC19le+b7/vd+/cRibl+R/y2AZMtYVobM7pm6onqQavs1o5pMLtXJWCqRJh+it1xrLbtM/GyL/3Sex8y9wamyoTp9d/bL6+LHiz6/d/YF2XXbd8ATHaE6f2zid12Onb23yWJGDIx2lIFTFUIU50uz3esPZkmWv1+dovkvPRUYKpKfq9hC2qPmKQJW2GZ12rR9MdRwFRNwCoDZU+YNnweEdNwdqBofeWfT/0lmeoATNUJ052E/V2i+/j6zn7sMPbggK+1gMmBMI29k1vmTpO2nst7NGp7otqwocBUgzB9W7Khyfpmwz33Djz+540vr9YDU03CdP+1JuOux5TAiQtqvuk14o/fgcmRMLVyOLz73otXwUumDp4XmXUEAlWLMMXc+b5swsiDXpkLOzX4s9mzxsBUmzDJ2tWf96a7d8iW5F52q5rubwhMTqS/dnQwv37zi/eaS1Gv69WKh6KddQjTPbFz4IiHKvGS5TlZnd4vmgFMQrI7RL5ZkhTpH7LLvfb4jb1GOzOEquoKWISq7it+ldQ5X8F//qe/XTxmWV3kQagqmi1EVYves3nxsVPipRvzR5ypNTKdOnUVD49XKKWI0xdsCXAj4g4heV4WK1OnjgUJMQhCRAVAHY9b0AMU8tWYs2rCoKtuuDOYVj0/DuMrYucwHBZkf65fAc2C06j4iyC/2z+1Fnd8/CDGf8XFz0fshtfZxONhVJ43COHKXmsIkBQ17zzZWCwQPtcrJ24TIQNNA+M9SWWwxJFSLceOn4D3kyuwqRPZToQSFTxxrYyVR6GZaiOSm5SpOypw7dL2d2S5O1dQ6ePaz2HSxwtMvJemccFaDAdcH/81iUyOedRRz0zOleho0gJ3aWIkGmGsZIhMCBIQbQlrdp65Rbby0Kg6W/w27zc7FhWiqENjGhKPRTANSQvf3qvkSjR2H5T30tywxs5gm+sJXF3yUBRJ+JPRgUSC5d62r1jl2Cx4WhOfkye7zaFG6mIdweIBrAqcYIGmTow/g9jGn/+UG4ql3EDP0A2m3HDrOZdywzL9xkodlRtedP7lL9vcKgE586Ujarw/d4/HwZIegXhQbrjxnOug+3H9BsviKjd0d1rfdOelwSETPtU1a2q/NsHoyg1bOVEB7cZEWaaGU27wvl+uzdy4e54rXcsFS+97DDIZ5YZpnK4bZhzXGVy5QVgmY6NyWm/RZodvUcrDU58bWbkBizKsR++PI7KU0lJuODFcaDts/s7QiTtr+q+amb/eBJQbtnKCs+y5AZUbGk20vOOySho44/2bqFsfDlGLshlPuWEaJ0KgTxN5Wwxb3nZqiST4W4fqfuMynMyf1E8+QM1Gg0GOJoz0CdZ94cBbWwwXVhMgM2EwQ4wGv4K8K0kIsFVpcI0CEGyJ9gpzLyJ1G6VT4kRfv0S/NzOLJi16lMU9/pUoi8tIlTyBByZ91W9ZAXuBQhggv12G4Eq/Q2dv+k76d77H9hFvBtJ2k+DdiAMK2OWiMiV6/OOh5u3hrwT7itEIhU3Fgk1f9eIdO2AAke3CRSpXgeYL7OjB1qK5tXDbqkchq6s/U1k5jqTKGlv6kDczu2WBqSjAxtmeW365wlPxtuz35ge7tWvIA2CLOQEDLcooSRQ+ZsC/aSVg+2HKYVlw+NIa8yVHVG1ufmb+E0nZgE1pW1an3Lz2ww4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa/eGp9UXD4kI2tz+1dvxa7NdeHCtitO1/YzkWlR+PPtnvVKtCsGF4jnSmaPv9Ljlf2q4Z1qdCxHJmdf30Tf8EIeq8Ku8r925ETEpG0UqyXbDuhgxMMrZBkbvvOo3h7Xb5pnVu5/D9B77qeIBVSH5VQOXPuFJZhnk1sv0qBjfXKSMBZDjFFzsMdKCx2CTw4JC8ZBUqtOISN+2K/qFGe5A/pWu2Qhkjr4CoD/yRhSQHwAaf/yrkvJTvIILgQKXG2AZJJhtKOOELmTxc4AeLoAE/4fHNDVcjVYmyljUS/7I7J7atslT0bJjdn/Xcl9KHW3L98BIB8wYQ1wvKsbU/HirceIH39Dtiz0aWbfovqWEMWY2JHJCmM28ESXT0xpjMJd0SbhhIfdrV7eilHFqWVQC1jwwThRaW0t45++dl4/47x5v7xnw/i614KF1wXOZ01+KkXcqZTMCtj4o2K67YrARIWEwW0g4U7H+mxZtlSGTXr8IcrsyRkz5bjYRMozDKAxNUCgQsYAtYXYl74NEWKzNyuOGSRRyKd7IE+WaGKESTFNUukcC+i49x3syvEA163psz1ksqAXRtUZtvqUDdF++LGnftw/AeHhw1VWmxojYGGJIAIa7Tfrm0W1s2IwdT8rUO3m9FzV9xh7ETJ/xy0V1ZzoroaRH0QByDhC5laiUAVZ+NXvFmj7riJyjFjkVpanBpoWE7/3mYbbz1lTxHt/++S+ffTyoSXUFooGgt3SoVr57MUQLtCQOtP5+aRQWu0W3pHhZYRzqF+LsuAWBlFamcIN/o3bz8+8Pk9xBMhWNEgd/Shq47bEBEjoWPAJMqpNwVyO9TB+YStJJSujXAW5EL3iJos2FN8d6gV4LYQ6hGLYwV8D5u0TTlyKhaDJ6yYg1N9aHjW9nVf7gsLAbtI0J+K0QGxPY5dKAAmvirFCAJk4MVEPYBiqTqflHj5b8lD8uhZJ/y15ylfybqYVcYfKQ07lx/EA+1qx8q7ke0QFLNB1X7nvq+DMPkA97wwV59BsS8ljeWJm2JOQGYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszM6psvdmS0W+C2Yc0hyxtvidQXmDjRfZ+uj0Sx4ob3Fs/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHHmC9DJriNPjIAZeegLvdauHfHdNkxJQwldA/AAv7DzgrrN/D7iYddnwWmxLhl1puRvL8leW+kuY18EWE17QQy7LxnihGBarXiBzMPZsKqmpUQUxgqJ0ryFPaL/uersub7xm/nrB03w55EWMbZ76LuTGcN9M5VT/ad4Jx3mAaVQTpTcXzAXH7jytGbhZL/COhuGGdnl4FSP5J6xb5U0mf6xzKYu/waPsz5bW9XP5rUR93PdmxGNCLkhBw9PD3uhXxrbRLt7CCGKKqT3CUcgSmxCgnMs2Sdn4JNq/nPCt81JuTq+twnsWkKQBnKCFPpCv33dhj5y/Jtrl6oKmgy2scgeoF70W9/GxTcrcK2n9WqX0O404iL5XOYuotZSGuh4cKLT6AWZGCnZBsanPUKDzZp/Es1fddZ3RVhAL+ZCPHMkNGMBty51P1dLdUtU6iW5Tz9goevegK7sbxCYmsEU/qw3YgFKAEsTMxegSr5N29rRtvefAxZ7TWgSXTmw5TNqGWZrbD+WZVinGIuK4vQQV1ImOIjTLhCscFQbSwepedWXeo11FTGwZKCnsUOl+bXB2nI71X4z/my3tadtvbPUSCQG96KBKmQycEoAYRJwwvRMz8Gu6C00+l6z0bbQYKTB2gjcQhMyckc3DBoiDsWzxSGR89nmHcbfDk73XfFK06FGbfo6dKwkXoiv0yDWy9lSc2f8PnK3BzuXIhHGyRLhJZlKHkUMkDqFJfrhLo43RK2UFzLriKuns1gw+PNxqDiNyMlTAOpNPusVqCpi21D44i54HfRy+I9RKeu83nnvfuXhJPa4RS15Wg57ADNFwi8X1efo59xK2OcgMzkawrMR1eegGmbEZ73YJDb4+3CJpP/8/MYEV4f2ASmNjv0VuKhSJnX3D7+fuftHXC8Knxp5+U+GtdocMtaviUXvfr0H84BPF058QPMxBsPAAiNuDMOB6CSg/+hXRc2mm0Q1SKbhctqTrdJ6n9dmhmV3GZLnpOwVQXUafj/TacR13tdsgVfsOb1S1qS88vIg6RW9hi9bLODFy6RE8EU65mbi0qn72m0SLXNoOSyo3ZgLVMeEYPczHUNc59sxnm5EOIHLjIz5akpzscD/s34TMkctBtjEQiEvCo/wdXVOug6dHpy5I2TrPjO7vTRJIfwBCEkhwlAaiDThRKTCZ3JcH8o2rmfPDXrbu6NHwKS33zQWR268ofoY/0TdyTCdtDMM6gAuTIyRR8WAtBKeLZSo1VANUsuKIYZ/3SYf9HPaqPdltkn8uj480U8ET5TBfvEEs7r1n0q6A16LSDVw8SRM4BceYcLfBPnF3Z7NDo9V3g2Z77TxnZ95tzbUxseW2GgNBh78MSopxNAdxdEQNsEw1CtidQolWhRe0oRyUAvygdT4+gAsowD/X5BTCpNDRyERpY/nRq2oAue1GGAOKMCgjjUAjOjMKpPfuKK3Jp7UJunbHDzsXMV84tq5+kWLuZoN89BdvudPCY6KUnrV6Ch/EliZqrgdQhFCZQZSNqQdQ0A+AIYnDbhTQZNT1SlO0pUpuF6LKQROteu6cAMPUn8BcM5ALdzAPYqzXxB6k+R4gtCbhJ9E15uk60XS9SaLrSdJvxGhJ8kWm2r7ylUg5ugjf/us8jenRpZuXjP7NT7WOafhn1T5Wy9m7/AqUtzuc5eYck3aPQtb+nJk/t1cp+UlXTMBveMtdKc7ir0ACTp3vhxHCDmygVQckeBvp25nda5XO2TGbZuVQdPrUc9X6yYSTEfpTvv6ox98lQbknHiiaNDke0k5nBCls5wo7f7CkADkZLvgtRZgYqQDQHTWO3UMwx/FHMOI66Wx4I21mI+ohSYXVwwpIp5q/sfiKV3Ox0DxtB5nPH3/+b94SvhH5i2pNlHzLHDuhujMxuXdlvEQT+kyTTxECifOSGFV6vH0uc1c8aJXwUHLW3R9UzHz8mge4il9kYAHlN5/5kIp/3MpxlP6GGr0eOrEGU/fayf4CSY/J6B3J37IbG3K1HiVKor32fnOMyY7LzWChylB+meuKcFsLeTDeCOzVSQhNwCZDaGBR4Z6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYajIrIJkZXz+OBsZbIm5OtDejk4ulIIkQVSSfT9/wZPjFj8wldtpAHnwxn88ni3Xd+nXz/Y0DO7h05W4bcpZ7zKxcuiZMpmLVR2AKbi5cwHt5RqEKXME6pkeHiQlCem0vDlq67iHgVXaKddWSUSqlQRMARC14sOPL58mdaJNzR+/ur25nlw+aoTw99PrkGK5PaortapoIC4OTHNvRRJgxUQK4WrKIDhX+kcg3x3UGGAXc58lMyaC4hyxwxCtk2EgvGfQABtINIkDJZZBUiUQ2SxwXLoikDoDV+OQLWOy183RK/3k0ZX/gqNQpX7dFIfHnsh+O2GIjhKnhuUCPH38qcfCtUh1JJEgPipFB2i4S3jCW8CLdeCl3CcnUFUZIJnxDAKqpyiUIEtaAKDUQalUwSq/0dEybW3kM01SSTH5bpKqA8LdXR2z8P4/L5D1zj8oEP5Lg8wuQxp8urmu7yaA4nsX+9ltifzNswaSMw3DCJ0M0lh0mEbi45TCJ0c8lhEqGbS+ZC0V2qRN6dVE+0d+KIr2sO1wkrlAsdHp908PrO8V4Te53vZzvy0S3G4AqjPnp9jCbGy8PgOpLNkyZarp0uOmywcu2Hv3GVa+/1rbTLtR8fsvhdWodQ3zlHzJscH/hrtAmUaz/wjav47fpvJlBzesOGDQYo1x5wzsnj2a9pYcv2318Z2WEJreKokcq1L+D0zjhT8I5ByrX/FH4pX701xvN3Qez0HYkZS02iXHscp3N6mYJzBMYs13427HxezuneXruiH5aPGHKMWpfW2OXafTmd19I4zjPNcu0HKmTVc3Bf6jVt3zrZn5ctqNWqDF+u3YnTc1ZG9xy8qdTKtXeQfai20s0xeMe8VeO7hG+makMYq1w7lkOwlmsHgZDIU0ex5an/S+Xa6WUxjFyuPfw7V7n2Bt8NU669yvuQFYfmhATse+8X67y63BDey7XTxc14KEEe/J2rBHn776VVrr3S+Ozq8yctDl3dtX2rJKfBu3kv106PETxg1YATq0rf/78q1z6aLYz9J8JfLBF+ejUhg4nwC35wifDnMmMnDyL8f3Txcp9Tr73vitGO8bI1aVR58pKdNuc5RkLN8q/fuTTLHzFjZGmI8K96eTbz+vWm/qvcnnZwWyXuYHQR/jxOVHINGw055w76HfzhT4Q/2ibv5zf7W4RMrL90T6PtTtTS9cYU4d/I6bo047jO4CL8XeYO/eVTrao+GxMnPYuocJW2q2JwEX4syrCqqIMoYzAR/uyTV09LOouCsms1/nrxQiPqzppxRPjzOMHJ/W5AEX6PYz8O7v9jjs/Gj8t622S6U6dpxhPh38iJEOjTRN42hi1vE3s1afqjc57XultOmZeXvWhF1RHADvHFKxVgRGfmbBYsOLcp2CKRF9xPaGEAxFXKhEExIIeDVa6V0XppOdArLLK+LVP1oJBRV25fQ7HgMkyTJCK46ELD9yLAd/SPkh6sqlrwWuAqgQXyqy9V966Xlv1StOywbfNq/eKpEtfFqt1FS6HogbGkxeYBeuchenVEqHrEcLP2h36FsPHuK5UNUsnQ+WXDtYsFXqMqB8+4vtFhy5FoIe2EFHYj4oQUfp132V/w/TM4v//cH8ZOlrQtU49ECb6yXCmVR3Fo24S3MVuUdHG7z/bLle9psi60o7ZV8gHMtqq1lIYzRnM6Y7BxnMEojq3PjoVbUJxSA4YvSRRcO3Vx7wymrGBmEdtM2KJzVIxSJW0mbNlZPVSlwX5BZ6s3oi4+qREa5r/k0e7AWbmtVlPHNfgBkZokBaL+ZYGpNJzVg9NZ3ibRc+Cj9MpWqxUsdMclqAaqOXrQ+KmazID8hYG7m9wakf6h8v6STJVL6I7Z7kQgh0c9LzJ0oVqIu2/7oV+WSkRyjmxrbbs7GSeOKUSrVp4+EfCsy0KjTnshAItJAK4jAIChRa9MlBzK2EUmGrb0P2rZZoPnXsu+w2aM0eyjDWWGPewLAZByAbDe/weZaKb8j/Fx6IW5DcbHiRGc4ODjtBacKGU+zsot4XU/T34UOnnsnG1r2qSsNQE+TjSEhHV3s4/ghPFJBXPmzDEAH+d62sstdk0zvSfXKNPyW4XUZSbBx4ng9I6/KXjHIHycjnVmnH6XJwzbtfuPUx0+db1oEnycLpzOaW0KzhEYk48TE3M1o4PfqtB5WwOnnukcet6k+DhNOJ0nNI7zTJOPs2i7W/uVjd/5bow+tHTYlzYNjczHsef0XAWje65U+Tgr5/VsccpOGLJg185jHr+tvGoSfBwsh2Dl44BASOSpY/8v8HHuiZ0DRzxUiZcsz8nq9H7RDCPzcdZD7Fn5OL8xU9pS4eN8SR1/qooqICTj4qaTr6qfFfHOx6HPzXngmKyDyLFyTJZRkeORj/Oumvq9v9my0O3dFrUo3+j3JN75OPQYwQNWv3FiNc2wMdfYfJxxbGFs6EF5U3noetGuA2GKf+73fkHdKemaAM9O+qkk8THME6Z6bF808JGr4+HpMe1uTpIrfspUKIGaeYPgJ6BLRka+WZIU6R+yy732+I29Rjuzvh9zJ6ewkdH+LCNBCAsrfBQL0Srp5550bJXapyH4NA8/HhcI7EXwH+38Z7SzuM+Dj8dtImUK4DCZNADE9eHk4zC34q4cz+ZK+/xUHzuPC6IVbe4d3Hwy0YemgoF2YGU8uiN8JrDCTZRDVsRgwDh8xZeSB/2QfDGUPHTNDsqweMkdZGSaL0SJ3FwvAvUJbKh/n7h1dRU3M++dfRwWZ8SHrCny9KVV6SOv84lN+uk9nk5sFrPfcHnE/i3dIxPZPJI+JzXhWeBHvwVD7dWLpzXrS10T9YXkGQ0zI2OdXuI3CNVg1MfrXSaoYcqL1WqLUSqkUI4RUgKjsb/D0mGNZJBapxyEfkSyfLAyaohMqr0J9erM5Vz8uq671S4gCEEwy6JIfVBUPeMtQn4JQgTncQj5JfiPLr8UOvFWl8gTTz0nnNmeYvEqLI8uvzS+54oxN+L7+Kflpi96mDajC2knD6MWW56J/sEIeSY2T1tD9QDCjUhvWT3tlPp3ZvPQ/TEvE/OGVM4vibf43w0Dfs2Hfl2KSnlmw4Pmb41SeNIa1nfsrwbfIW5QQcAo+B0LNcnuHhGjECpRbL6y8y3obSAh0iSo0Ilru8sN2p7rlBK0Lq9G9Qqyl/c5XWYuwp+E0DomDKXhtBxOp2UY1mlkCDYLFuEBFd4yRtvvMd+QfZQt2avnQ5S+lsepZSqMdQc+ghIwkb5aHiZz7TpqcVBG7DPzwUtuDaD7yjwkQSMZqNAKWAhom13wU92Zw5V7kVpfxRyuuJw6l9Opo98ytL44CygQjV2G67MgwaPLpHA2dDMY6ZhlOrCrvDNK3Yi4lOuFqHTv2Rxr4sSQPoltSO9673aYueK83/I9B8qO2Vl3EpUrGxkjj9YIYV1Z6rAOxyu2mtaOYdHRcCoiUSiI8qtyWDgPine7IQGmFxxkewVEvqQr3R60jE2vAVLdvFHF8JqJBXGvS8ojs8Gq74K+qYYvjPyi3rZ2z5fcehI4c8a+oXbHP4fTC7wgv2KRKSG96HpJiffw4D3EKs0Lxf0AE/wFr/VjjeEeVGKtAomLvcvbpyN72gbtHbRS2uTXr98ZS8rRugFT0v4ED7VzfnPQSkxgORlrgXrssVlDnSEu6al2it1pnnlzRfP8Z//Y0S6kD7VdwrsNBX8vTvh9jQM/gyFW0kLdeI+AbGfwTdB6P7SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigJnMNsDorefjovVe6ev59HTq1jTp8B6vFf+O6Vrtzc/BhfR88r5e/euLy1BxjrRxhR0BVg8L6fmMzr66YNn6XwJnaypPfd7i5dBCej5RTQX9H3//22tZXp58e/8+Vwrp+czNauo8O/5S4MKz/hUP3W30qpCeD6LyL6ltiKj8SxbqRVT+tSBMt4/WbGHbY0bw2E8b/q1x+sERYLIkTBbJ5Va8lz8LyVwzQJ65SwHRsCJMdzscqtHppxueqRU1/pFDHrcBJmvCdGXI09//7pEvSh0a2Hf/NafzwFSBMN3cMu90s+UXAjf4tRa0+ivvNjDZEKas5B8LPMPk3mObtTrzY55/EjBVJEz+4e2k7ufVogPSJ5nTrnVZC0y2hCm5uYUi8fZM/5xOX++lZcvnAFMlwtRum/TKP282BqfciVt059iZ2sBUmTBNe3XO6bGsfHD6qTN/5w+8bgNMdoTpbOcdF7/kVAtNa9XmYtyLAa2BqQoJb8PRZVYduxR44MyCBu+2PzoKTFUJU/kXdx60yRwi2lH9+paPV1v2AqZqAlYZKHvCNGXdgxdbIqYFbO57pN91ae0BwFSdMPnOyRv88515AZNclic7Lup4CpgcCNOEVPXRNXe6eE255D9AdeTEXmCqQZjcpm2JDk0f7LPGtezGvr2drwJTTcIk3rrj3DvF4+DJdT0qiKb2gApRjoQpoorZ+vN/XxLNPtP4zI22jZ4AUy3CVNWpvbtGecp7efOZ1XZ9fQzbRm3C9HnZyC6v+n31Tt31SLjTLHslMDkRpg7Z8og7jUf4TJeOrragvX0uMNUhTBXKNhZvrjjCd9L0uBu5i6rAzxISpk9OHmfmzmnou3ZWBf/POy+EM4Sq6gpYhKqsljc817NHc88V/TWzFuzPUfIgVDWFLURVi96zefGxU+KlG/NHnKk1kioaby4eHq9QShGnL9gS4EbEHULyvCxWpk4dCxJiEISICoA6HregByjkqzFn1YRBV91wZ7HgZZkTML4idg7DQXp8owxj55CzgGbBaVT8RZDfrcwbP/XCnm6ida+6De26ZFI5Hg+j8rxBCFf2nkOApKh558nGYsH9MowNQq6UrE2EDDQNjPcklcESR0q1HDt+At5PrsCmTmQ7EUpU8MS1MlYeha5g57Dz8LQ1+WETj4bdG7xUQi1Daqn9HCZ9vMDEe2kaF6zFcMB1sYxReBlFH3XUM5NzJTqatMBdmhiJRhgrGSITggREW8KanWfe4V7sq8pLP4RsfH46Z7GZkFrMziKSeCyCaUha+PZeJVeisfugvJfmhjV2BttcT+DqkoeiSMKfjA4kEqwZK6f8bPdcFDq3zIOJ232aUk9IFusIFg9g3eAECzR1YvyZyjb+/KfcUCzlBnqGbjDlBlHZExzKDfXL6jVW6qjc4Pgu5dsA1zOinDVnek0/ZOHC42BJj0A8KDd4QYRYD7q3K6vXYFlc5QZB/eTt80ff9Fx1qOm4zP4rrxhducGVExXQbkyUZWo45YZK//Z6d/T6u7CNWQtcBe+7Ubf8jancUIPTdbbGcZ3BlRuq98tybR6f5bXolvnVVv1ox3sNr9yARRnWo/cgyhhMueFCxsHsOYPahWV9fxB0fY2QqqtjHOUGV05w6tPAKVXlhji3T773Uw+HLfPY/aXa+DLvTUS5oQYnQqBPE3nbNLa87dQSSfC3DtX9xmU4mT+pn3yAmo0GgxxNGOkTrPvCgbe2GC6sJkBmwmCGGA1+BXlXkhBgq9LgGgUg2BLtFeZeROo2SqfEib5+iX5vZhZNWvQoi9vO8gReFpeRKnkCD1S31G9ZAXuBQhggv92/9oPape7tEpYesWjrpK9mA2i7SfBuxAEF7HJRmRI9/vFQ87YNBCge1QiFTcWCppZ68Y4dMIDIduEilatA8wV29GA79d2OF/e/HvPcVkVetck2P6oOj6UPeTOzWxaYigIsx/na7L8G9PHJvvvTlPanjuTyAFhdTsBAizJKEoWPGfBvWgnYfphyWBYcvrTGfMkRVW2f399a+5SH//oJ3du82vkwyw4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa09tSjl9d8hfITmnXV2aDbHx5sG1Npyu/clIrkXlx7N/1ivVqhBcKJ4jnbnA502ixbMOfr9LNt57HbrLm77hhzhUhV/lfe3OjYhJ2ShSSbYb1sWIgXE628DonVf95rB22zyzevdzmN5jP3XVuiokv2rg0ic8ySyD3HqZHhXjm4uUsQBynIKLPUZa8BhsclhQKB6SSnUaEenbdkW/MMMdyL/SNRsBjX/xTwD0R96IAvIDQOOf8RPr0R0dV9y8gguBApcbYBkkmG0o44QuZPFzgB4ugAT/h8c0NVyNVibKWNRLqtfO+v5Z80Q8TXn1090Z76h7J+V7YKQDZowhrhcVY2r73bQdvGmTaE3cs+fSJrOWlTDGzAYwp0GYzbwRJdPTGmMwl3RJuGEh92tXt6KUcWpZVALWPDBOFBLLFm9z86Y/3+63paKgTq+Lba9RT2QUPJc5/aUYeadSNiNg64OC7borBhsREmawhYQzFeu/adFWGTLp9YsgtytjxJTvZhMhwziMwtAEhQIRC9gSZlfyPkiExdqsPG6YRCGX4o08Ua6JESrBNEWleySg79JzvCfDC1Szrsf2nMWCgRBda9TmWzpAN7jEfd8+AOPhwVVXmRojYmOIoRuhJLyzKKO27/y8SQl+i2fWpqbP2IOY6TN+uajuTGcllPQoGkBuAERuJSplgJVfe/zEmj7riJyjFjkVpanBpoWE7830VTm1G23y3z3v5aCq38v/Sj3mTjQQ9JYO1cp3L4ZoBXOi5f2TQRMs8kUtuiXFywrjUL8QZ8ctCKS0MoUb/Bu1m59/f5jkDpKpaJQ4+FPSwG2PDZDQseARYFKdhLsa6WX6wFSSTlJCvw5wI3rBSxRtLrw51gv0WghzCMWwhbkCzt8lmr4ULcuZazm1/Zvm3nMq3frz24dqF2gbE/BbITYmsMulAUUwJxTe2oEqlW2gMpmaf/RoyU/541Io+Vf/J+LAP7Lkn6MW8pkmDzmdG8cP5NG/OfaUT9vnmdrlw8NH5uIPPEA+y4wL8slmJOSzeGNl2pKQG4CViSBRkqxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIn7w+ubzu1me/cBX+2DP+0exmD8gYbL7L10emXPFDeZrP5v17QUdebW6x815pJB159XInq/yr4Yr9IoVTDdBHbwGEm5eVZels9XzksdxwD6wPjD8CmlHCeSdAQdNvep1NOi3xFBjioP9I1KwdTxSVwf+A68sQImJEn67fN74jvtmFKGkroGoAH+IWdF3Q0sJt9/Oy5oTOeNe7cfELH0yXZayvdZeyLAKtFZYlh9yVDnBBMq6cxN/y5sKqmpUQUxgqJUtoRl6n7ct6F7Ci7oFXNa+PO8EiLGNs99N3JjOG+mcqp/lO8kw7zgFIyJ0qKsszFB648rVk42a+wzoZhRnY5ONUjuWfsWyU/7NJrLNw8IHiPi/rquWwPjRH3c92bEY0IuSEHD0/P0nM/t4l29xBCFFVI7xOOQJTYhARn45tZuaEff/LLKdds0dVh49xNYNcSgjSRE6RkPfd1G/rI8W+uXaoqaDLYxiJ7gPqY5fybIj7fPyPzqWeg7980Lh75XOYuotZSGugM5URnkHZPdw7bwPi0R2iwWfNPovmrzvquCAvoxVyIZ46EZizg1qXu52qpbolKvST36QcsdN0b0JX9DQLTEwjbWW/EApQAFoHQb6jTbZt2zo1djx+VXxU6/tuvkS2GH9xFXezE9mNZhnWKsagoTg9xJWWCw8JDEKxwVBtLB6n5Lf3GuooYWDLQ09ihepLwMLh6mp//hBavkyedH0EVc7cUg3vRQBUyGTglgDDlccJ0Ws/BrugtNPpes9G20GCkwdoI3EITMnJHNwwaIg7NZYtDIuezzTuMvx2c7rvilaZDjdr0dehYSbwQX6dBrJezpebO+H3kbg92LkUijJMlwksylTyKGCB1Ckv0w10cb4haKS9k1hFXT2exwNLiBFScRuTkKQD1x+Z6BaqK2DYUvrgLXgf5LQPLzjox/ceWgEnb6u16E5PVhJoiYQ9gpkj45aL6HP2cWwn7HGQmm0N4NqL6HFTD/GauF5vEBn8fLpH0zUPyhZkNrL03brl0pOyUE/eou3/4/czdP+J6Ufg8PNGycXiVqZ57kzN9LP5tVdJ1E4jPG3MufEDzMQbDwAIjbgzDgegkoP/oV0XNpptENUim4XLavl7lphz7bbPf2rAl2UPbfA2iOg2/n+k04jrva7bAK7c5vfKHSXnl5UHSK3oNX7ZYwIuXSYngi6658DhLsKXzCu+ZOadmtK0W5kR1TAh2P9MxxHW+HePpRoQTuMzImK+mNBcLPprrNyFz1GKATSwU8qLwWJYs3tc+rXXAjOe96o3MXyilSQrhD0BIChGG0kDksTkXIjfMyXF9Htu4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51m3zQz2mj3pfZJvHrevBEd5kTPFEG+8UTzOoymeO6njvgtYhUAxdPwgR+4REm/E2QX9xyozpy8tvGXntjY1vWlQ+gDm3mbImN1mDgwR/S53ZADN1RHA1hEwxDvSJWp1CiReElTSgHtSAfSI2vD8AyCvD/BTmlMDl0FBJR+nhu1IoqcF6LAeaAAgzqWGdqO/NvJr9xRW9NPKlN0rc5eNi5mmLOtXOVosV8Phvmobt8z58SHBWl9KrRUf4ksDJVcTuEIoTKDKRsSDuGgHwADE8acKeCJqeqU5ykK1NwvRZTCJxq13XhBh6khiP0DNTCDdyjyLE4wdSbJMcThN4k/CS63iRdL5KuN1lsPUn6jQg9SbbYVNtXrgIxRx/5226TD+XcPH5YtDjmzd6jP22sRpW/9WL2Dq8ixe1eqp1Gm4UMDlv2r/m3sGMPTpR0zQQKSUJ3uqPYC5Cgc9TiBELIkQ2k4ogE3ww+Lhs4N8R/juXpiGZO7dcXQySYjlLSr3dTK1ReHXBw6KdmfarJSsrhhCjlcKKUbXGCLgHIyXbBay3AxEgHgOisd+oYhj+KOYYR10tjwRtrMR9RC00urhhSRDxd8D8WT+lyPgaKpzLOeBr2Xzwl/TN994agFq3+9V4xq5KZ+s97N3iIp3SZJh4iRRRnpPi11ONp8uw+XV5NdQ1e4XcvZ/TqvQ15iKf0RQIeUArjRElcmvGUPoYaPZ5GccbTMG08XWjycwJ6d+KHzNamTI1XqaJ4n53vPGOy81JLKhYBpwQNLLimBLW0kKfxRmarSEJuADIbQgOPDPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDUYFdF7uDT1PB4Ya4t4c7K1AZ1cPB1JhKgi6WT6nj/DJ2ZsPqHLFvLgk8VsPlm8+86vk+9/DMjZvSNny5C71HN+5cIlcTIFszYKW2Bz8RLGwzsKVegSxik1MlxcCMpzc2nY0nUXEa+iS7SzjoxSKRWKCDhiwYsFRz5f/kyLhB2b1zhZc0pdz9n1YgSPaiaw6i5bdFfLVFAAnPzYhj7KhIEKyNWCVXSg8I9UriG+O8gw4C5HfkoGzSVkmSPGonQjsWBeeRBAO4gEKZNFViES1SB5XLAsmjIAWuOXI2C908LXLfHr3ZTxha9So3DFgEZim7nlT9hiIIar4LlBjRx/K3PyrVAdSiVJDIiTQtktEt4ylvAi3HopdAnL1RVESSZ8QgCrqMolChHUgio0EGlUMkms9ndMmFh7D9FUl5j8sExXAeVpqY7e/nkYl/eW5xqXt5Unx+WlJo85XV7VdJdHt3AS+zO1xP7feRsmbQSGGyYRurnkMInQzSWHSYRuLjlMInRzyVwo56z7md/WnRFv+WPCiGuCrg0L5UJL/ty+yOtx+4A5FeNarQkaNZoxuMKoj2xIdDFeHgbXZWyeNNFy7XTRYYOVa99hyVWufSxTSobncu0PelUqWzZlVEhaUvPU+bv6dTGBcu3bLLmK32YaRzCDWnN61apVBijX3t+1YWT0tNPixZMn9hxWW7zQJMq1L+f0znxT8I5ByrVfOl5r/WLNNM+p36LNIl5bPDCJcu3TOZ0z1hScIzBmufZVFjcVe3fleG6TXT98W1HJ1qTKtSdyOi/WhISCjF6u3f5GL2G5obdE82//dPpQ4DhHI5drj+L03K9G9xy8qdTKtQtlv1Zqst/Vd3GneLO1Fe9dMoly7VgOwVqufaxW7Gk5W576v1SunV4Ww8jl2r9acpVrf8hMaUulXLvS50KfaUv+8JleLzroX8u1O3kv104XN+OhBPlnS64S5C/1k03Uo1z7X5VblV3Rf5vP1g5pZRq3kU0qeRemYUWPETxg9ZATq78NG3ONXa49nS2M/SfCXywRfno1IYOJ8Hez4hLhb21VGiL8HYVjGh0WrhHNP3T3206zrrd4PG3Oc4yEmuURVlya5f5WBhHh/+foDY/B2V/D1pb7mnDkSL8Ao4vwd+FEBbQbk5k76Hfwhz8R/sDTZ24me57zPDjfwtGt7uezJiPC34TTdULjuM7gIvw1O/6uyNn/LmBqy777h167+p6202loEX4syrCqqIMoYzAR/uGKFX9+epQbtvJHlNXYsKgpJiDC34UTnNZWBhTh/7t5b8vtrb8HLrlYPv3zoSTq1Md4IvxNOBECfZrI21aw5W1iryZNf3TO81p3yynz8rIXrag6AtghvnilAozozJzNggXnNgVbJPKC+wktDIC4SpkwKAbkcLDKtTJaLy0HeoVF1rdlqh4UMurK7WsoFuyH+EpEcNGFhu9FgO88Zpqk58GqqgWvBa4SWKDJQv3mf7jUsmrQ+iM3uyWftqAVOitO7S5aCkUPjCUtNg/Q2wvRqyNC1SOGm7X6pVAV8O4rlQ1SydD5pXSUm+rrl7reO38/8jRhU04c7YQUdiPihBR+nXfZX/D913J+/9+NnixpW6YeiRJ8ZblSKo/i0LYZXbve+k1XBL5To3Ltl3Ub1YDaVskHMNuq1lIazpjH6YypppH+CPTZsXALilNqwPAliYJrpy7uncGUFcwsYpsJW3SOilGqpM2ELTurh6o02C/obHXch9GCldELglYMSfP9bUX/5dRxDX5ApCZJgah/WWAqDWeN4XRWgkn0HPgovbLVagUL3XEJqoFqjh7kOHP2lJH2fwfsXTD093lVJyaWZKpcQnfMdicCOTzqeZGhC9VCvCFLzyyViOQc2dYOdXh8EycHv5Tle/18WlY6ZdRpLwRgBQnAdQQAMLTolYmSQxm7yMSxF3fSUqVm/nP/qH+336w7SbShzLCHfSEAk7gA6DFcm2iu/B/j49ALcxuMj9PJmouPY2Fd2nycv553Ew/t9S14nmxj35i+zioT4ON4WHPtbrpbmwCpYNq0aQbg41jN2DvFu9MN7+WTnBP+riM5ZxJ8nEac3qllCt4xCB/nwGBxbL97PQKm9n8rqvteHWsSfBw7TudYmIJzBMbk4yyLiXRaWy8+OHXGtLONbZ0+mBQf57sVl/PeGj3ZNSE+Tv6VNe7JXjO9t0zziht6vEZTI/NxnnB67o7RPVeqfJwfHw74NW7UzmueXfukadK8zSbBx8FyCFY+DgiERJ666v8CH6dC2cbizRVH+E6aHncjd1EVY/NxRltz8XFimCltqfBxxo05FPPhRbJo71zPFhNsnV/zzsehz8154JiMtObimKisS4uPU3nHa6VZa5n34jXnPWw7Ro7lnY9DjxE8YBXDiVU/w6Y6xubjrGYLY0MPypvKQ9eLdh0IU/xzv/cL6k5J1wR4dtJPJYmPYZ4w1WP7ooGPXB0PT49pd3OSXPFTpkIJ1MwbBD8B2fI+OXmcmTunoe/aWRX8P++8EM76fsydnMJGRvuzjAQhLKzwUSxEq6Sfe9KxVWqfhuDT+EBhLnsR/Ec7/yl3Fl8WmZ+wiZQpgMNk0gAQ14eTj8PcirtyDZsr7fNTfew8LohWtLl3cPPJRB+aCgbagZXx6I7wmcAKN1EOWRGDAePwFV9KHvRD8sVQ8tA1OyjD4iV3kJHNtCBK5OZ6EahnsKH+feLW1VXczLx39nFYnBEfsqbI05dWpY+8zic26af3eDqxWcx+w+WR22Z0j6xl80j6nNSEZ4Ef/RYMtVcvntasL3VN1BeSZzTMjIx1eonfIFSDUR+vd5mghikvVqstRqmQQjlGSAmMxv4OS4c1kkFqnXIQ+hHJ8sHKqCEyqfYm1Kszl3Px67ruVruIBX7lAJhlUaQ+KKruXA4hvwQhgvM4hPwS/EeXXwqdeKtL5ImnnhPObE+xeBWWR5dfGt9zxZgb8X3803LTFz1Mm9GFtJOHUYstz0T/YIQ8E5unraF6AOFGtPjg5ycjnF9uFs9/k3vuc/e9u0riLf53w4BfxdCvS1Epz2zQhTqWM0rhSWtY37G/GnyHuEEFAaPgdyzUJLt7RIxCqESx+crOt6C3gYRIk6BCJ64nm4iXrLxXOST79R+KIe0z/+V0mbkIfxJC65gwlIbTWnA6zdmwTiNDsFmwCA+o8JYx2n6P+Ybso2zJXj0fovS1PE4tU2GsO/ARlICJ9FXiq0/Px699Hzq9dYOM7KWjBXRfmYckaCQDFVoBCwFtswt+qjtzuHIvUuurmMMVl1Nrczq1SjmG1hdnAQWisctwfRY0Z5omk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+jq2Ib3rvdth5orzfsv3HCg7Zmdd6nkQq8gYebRGCOvKUod1OF6x1bR2DIuOhlMRiUJBlF+Vw8J5ULzbDQkwveAg2ysg8iVd6fagZTSFaU43b1QxvGZigbVZSXlkNlj1XdA31fCFkV80yH3fooylB0Mnds1pMLH7BKrakBnLVywyJaQXXS8p8R5g1RhileaF4n6ACX4dM/1YY7gHlVirQOKS7d70TmOns96Tqmxssz7/sy1jSTlaN2BK2p/AN6/G+c1BKzGB5WSsBeqxx2YNdYa4pKdyd/QbXmWKzH9uK+Gw29s7HaO2S3i3oeAvwwn/B8PW9ybhZzDESlqoG+8RkO0MvgnSI/SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigMlkG2D01vNx0Xqv9PV8RKnbenm6fAvc1dB/bM/z5dWF9HxcnzcUJKWuC111wfZvzQL7zEJ6Pm0bdRodu+Kg57aLjo9y1zmXK6TncyokeXrmw8qBc5++WCnZGf53IT2f1edWPnIcPTto3Y4W4+9VOd62kJ4PovIvqW2IqPxLFupFVP61IEwtF1YN2LDtu2ha7e+HPO+mrAYmS8K00Nw3ob23PGCmz2/1T384Pw+YrAiT1cw1oeH9vUIWTth3L3zMNE9gsiZM+cNDlyd8WBKyyzatb6cX76H6YgXCNHvtyoPJYTY+B2ZMix/Yq2UAMNkQJo+frvlWfv8saGq5cxcyWg44AUwVyQeuuXdxStyN0PVrqrV/IW1nCUy2hCmm2a/dXVUtAhddLfsmtvfkEcBUiTA1jreq1l94wC9L/M1i9O24KcBUmTCpWniGC1wv+x0oe85vtPedVGCyI0ztvo4d61NeHDRuebDn53FtFwJTFcL0eL3CRhrfOyR96sdzZv/2eAtMVQlT9NHH5nuHfPaZEH/r7fW+c/4BpmoCVhkoe8J0pXeTbxVe/eaZvXpl1IJ1D7YBU3XC9Orp0SNBVmOCFg70XmrbYh4UUnQgTCN3zogJtunqt+VwnLSnh9QCmGoQpu0O5R42vJUQsjDraq3RFxceAqaahMl69F/dhiy6FrTFudHeVr5TVcDkSJjsHzxufGbOi7B5aqvKEZ6VZgNTLcI0uZdF8MSkn8XzU4e+ihv9yQyYahOmepGup/Y+Ge69vO/73fMc2kOTE2H6RTTz15Euf4ZsHyGsVCnHYREw1SFM/o01v90dXtP7tyGXWmVVSXoMTEKyE+05ePRKxsiQrHZ53rEeDmcYQlV1BSxCVTGvlPva1Dwbtkw2reHGyfVPIcKGvkJV69lCVLXoPZsXHzslXroxf8SZWiPTqVNX8fB4hVKKOH3BlgA3Iu4QkudlsTJ16liQEIMgRFQA1PG4BT1AIV+NOasmDLrqhsMSVhVOwPiK2DkMB+nxqQr6FdAsOI2Kvwi6WH2Fu1Ovtw73XTq29Yfmp+5RpehLdhiV5w1CuLJ3EwIkRc07TzYWC65U0CsnbhMhA00D4z1JZbDEkVItx46fgPeTK7CpE9lOhBIVPHGtjJVHIVHs9/jlxkkhwoAlDX5/3Tky/iGVPq79HCZ9vMDEe2kaF6zFcMB1sIJJZHLMo456ZnKuREeTFrhLEyPRCGMlQ2RCkIBoS1iz88ytruw4PN/3vCgt5tXm1629qtOYhsRjEUxD0sK39yq5Eo3dB+W9NDessTPY5noCV5c8FEUS/mR0IJFgLQ2tOXj/i6U+83+3vH/y521UHcxiHcHiAaxTnGCBpk6MPxvYxp//lBuKpdxAz9ANptzQ0oZLucHOpjSUGxwsLi4/fiw2dPnSLXXfLMttxeNgSY9APCg3uNtwHXRvZGMQ5YZl5pfXTTxpL8rJanSnajPLtkZXbqjFiQpoNybKMjWccsOFoAoBbb/EBa6rsitl1cTpvU1GucGC03XfTTWd4Vm5wWrUml6nLeaHpX8/+vn3227UGnGGV27Aogzr0XsQZQym3NDWcV7K829fxAvnS8z/zRz7wwSUG2pxgmNnY0DlhiW/VMwfvbyJ3+8OGfvqR6x/ZiLKDRacCH3X5m0b2fK2U0skwd86VPcbl+Fk/qR+8gFqNhoMcjRhpE+w7gsH3tpiuLCaAJkJgxliNPgV5F1JQoCtSoNrFIBgS7RXmHsRqdsonRIn+vol+r2ZWTRp0aMsbqOqRFlcRqrkCTxQvqp+ywrYCxTCAE2K/23b37dlY/y2L6mR02lwzCvabhK8G3FAAbtcZKZEi3881LxtUJVgXzEaobCpWFCzql68YwcMILJduEjlKtB8gR092B6J3JPZ6NQvwSsTek/JTH74ndotfcibmd2ywFQUYI9O3GlQN35O6LSHwqd7uu5owgNglTgBAy3KKEkUPmbAv2klYPthymFZcPjSGvMlR1Sd8OztxUoT/UL2V+v+MmPl1t52mJAJcIZ4eLxKpqU9Y0mtl3ekyy+NS5YA01w7UJXU4Nvsd/7bnk6tcVtlH8yDa79W4XLt6yqmkx/P/lmvVKtCcKF4jpYsW2lhN9VznueOiUtH/rns/R76hh/iUBV+lfe1OzciJmWjSCXZblgXIwbGLLaB0Tuv+s1h7bZ5ZvXu5zC9x34q0aEqJL9q4NInPMksg9x6mR4V45uLlLEAcpyCiz1GWvAYbHJYUCgekkp1GhHp23ZFvzDDHci/0jUbAY1/akUA+iNvRAH5AaDxJ1csKT/FK7gQKHC5AZZBgtmGMk7oQhY/B+jhAkjwf3hMU8PVaGWijEW9ZOAG98NVJuzxzp54aGHY8TrUssTle2CkA2aMIa4XFWNGBf95IvWcp/+0YZuCWgpu7SlhjJkNYJ4MYTbzRpRMT2uMwVzSJeGGhdyvXd2KUsapZVEJWPPAOFFILPf8tfIP7zGfPGd4Xnx6eeP4mtQTGQXPZU5/KUbeqZTNCNj6oGC77orBRoSETWwh4UzF+m9atFWGTHr9Isjtyhgx5bvZRMgwDqMwNEGhQMQCtoTZlbwPEmGxNiuPGyZRyKV4I0+Ua2KESjBNUekeCei79BzvyfAC1azrsT1nsaArRNcatfmWDtDtWOK+bx+A8fDgqqtMjRGxMcSQADQc827KWfFA39//nWIxJaY/jYyFPYiZPuOXi+rOdFZCSY+iAeTCIHIrUSkDVvm1Imv6rCNyjlrkVJSmBpsWupCL84gFoT5DA9Y8rTn5s3JJf+oxd6KBoLd0qFa+ezFEqyMnWi0qGoXFbtEtKV5WGIf6hTg7bkEgpZUp3ODfqN38/PvDJHeQTEWjxMGfkgZue2yAhI4FjwCT6iTc1Ugv0wemknSSEvp1gBvRC16iaHPhzbFeoNdCmEMohi3MFXD+LtH0pUgoBuVPcOp36ZLn+uYtN4d/TT9P25iA3wqxMYFdLg0oOnJC0UI7UG1mG6hMpuYfPVryU/64FEr+2VXkKvlnpYU82+Qhp3Pj+IH8q/zKY6tGXX3WPVQu9BeOyuUB8tG2XJAPsyUh38IbK9OWhNwArEwEiZJkZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKVueB4Vm1nxSffne0UWebZ2ZsZlDfYeNG7KzT6JQ+Ut61s/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHEa3B+4jjwxAmbkg/Xb5nfEd9swJQ0ldA3AA/zCzgsav+jql5nmqaLMn/46+bL52skl2Wsr3WXsiwCrKTbEsPuSIU4IptVJzA1/LqyqaSkRhbFCb2XctXWfEvDVc3x7x6xrDy4s4JEWMbZ76LuTGcN9M5VT/ad4Jx3mAaXBnCj1tmEuPnDlac3CyX6FdTYMM7LLwakeyT1j3yoJPHXzry5tHoTtHfPP+nsZ1f4x4n6uezOiESE35ODh6dF67uc20e4eQoiiCul9whGIEpuQ4GQ1DG/Q2mlPcOoUdYZqfLrSBHYtIUgaTpAG67mv29BHjn9z7VJVQZPBNhbZA1TbZ6lW/2z+03dmapOjbarvaU/dRSSfy9xF1FpKA50BnOj0sCETo21sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMf0LYznojFqAEALYj+g11um3Tzmh73npD6l++Oy5teHDpo98A6mInth/LMqxTjEVFcXqIKykTHMTpaxCscFQbSwep+Tn9xrqKGFgy0NPYoRo99Oq4G1a3/NbbHe6a1svJgxqJxOBeNFCFTAZOCSBMRzhh2qPnYFf0Fhp9r9loW2gw0mBtBG6hCRm5oxsGDRGHtrPFIZHz2eYdxt8OTvdd8UrToUZt+jp0rCReiK/TINbL2VJzZ/w+crcHO5ciEcbJEuElmUoeRQyQOoUl+uEujjdErZQXMuuIq6ezWPDR7gRUnEbk5CkA9et2egWqitg2FL64C14H+S2vPet/vcHh4QFZA9of+3IhfxQ1RcIewEyR8MtF9Tn6ObcS9jnITH4P4dmI6nNQDfOZnV5sEhv8fbhE0rM2pO49Mr2WaJNj5tnvccFUlSPi6zJ3/4jrReEzZNtn+cVLtr6pNy4k5NuYC3nAJ58TH9B8jMEwsMCIG8NwIDoJ6D/6VVGz6SZRDZJpuJz2cXKr/a3++dUvZYD9nciqN1tSnYbfz3QacZ33NVvglfOcXjlqUl55eZD0il7Dly0W8OJlUiL4opXw/Q9V8H3jFLZgyMaDIzKHlqc6JgS7n+kY4jrfjvF0I8IJXGZkzFdTmosF/9jpNyFz1GKATSwU8qLwGFb2+tlxc2/5bPx50aHqnzv2pEkK4Q9ASAoRhtJA5DonIqfsyHF9B9u4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51XIWjndNGvS+zTeLX9eCJZtgRPFEG+8UTzOrSmOO6njvgtYhUAxdPwgR+4REm/E2QX/yniTWmBC74HjS2/NOVPmU71qI2PrbERmsw8OAP6XOrIYbuKI6GsAmGoV4Rq1Mo0aLwkiaUg1qQD6TG1wdgGQX4/4KcUpgcOgqJKH08N2pFFTivxQBzQAEGdazTtJ15p8lvXNFbE09qk/RtDh52rhLtuHaulFrMd7FhHrrL9/wpwVFRSq8aHeVPAitTFbdDKEKozEDKhrRjCMgHwPCkAXcqaHKqOsVJujIF12sxhcCpdl0XbuBBakiZnYFauIF7FJlVEHqT5HiC0JuEn0TXm6TrRdL1JoutJ0m/EaEnyRabavvKVSDm6CN/6+WWl791hNRvbJ37sz9s//SYKn/rxewdXkWK24U3Cbo++OFZrxy/lId1L7VpXtI1E9A79kN3uqPYC5Cgs63KCYSQIxtIxREJdu2rHLPMwzkg/UDq6hkL644shkgwHaUGmX3Va++dFs+Xtj3UcOBIKx5QyuREaXkVhgQgJ9sFr7UAEyMdAKKz3qljGP4o5hhGXC+NBW+sxXxELTS5uGJIEfF09/9YPKXL+RgonnbjjKdd/ounpH8y341Pr3rtZuj+fSf61khUneQhntJlmniIFBGckcK/1ONp7ajD7Resu+27Rv7038BfN7XhIZ7SFwl4QKkLJ0qtSzOe0sdQo8fTCM542kUbT/eY/JyA3p34IbO1KVPjVaoo3mfnO8+Y7LzUCB6mBFWqcE0JrLWQ5/BGZqtIQm4AMhtCA48M9QgNPJLMhtDAI8lsCA08ksyG0MAjyWwIDTySzEbP0BiMNRgVkU2Mrp7HA2NtL29Otjagk4unI4kQVSSdTN/zZ/jEjM0ndNlCHnyyj80ni3ff+XXy/Y8BObt35GwZcpeaDZcLl8TJFMzaKGyBzcVLGA/vKFShSxin1MhwcSEoz82lYUvXXUS8ii7RzjoySqVUKCLgiAUvFhz5fPkzLRJW7H4hUNr8dVjWlzr118xsV5ktElp0V8tUUACc/NiGPsqEgQrI1YJVdKDwj1SuIb47yDDgLkd+SgbNJWSZI8aidCOxIKUyCKAdRIKUySKrEIlqkDwuWBZNGQCt8csRsN5p4euW+PVuyvjCV6lReJZ/I/GbMZVP2GIghqvguUGNHH8rc/KtUB1KJUkMiJNC2S0S3jKW8CLceil0CcvVFURJJnxCAKuoyiUKEdSCKjQQaVQySaz2d0yYWHsP0VT3m/ywTFcB5Wmpjt7+eRiX11fmGpdXVibH5QMmjzldXtV0l0fTOYn9aVpi/0HehkkbgeGGSYRuLjlMInRzyWESoZtLDpMI3VwyF9qyz7nxiXULArZfcLJWf1c1K5QLXT5y/XDDWS+CUxPDr8YeVBxiDK4w6iMbEl2Ml4fBNZfNkyZarp0uOmywcu2rq3KVa49nSsnwXK7d1mHnb8fkz0JWXf5jXKuMw6ZQrn1lVa7it2nG0UKh1pxeunSpAcq1T5s3xDIwJTZ4sXvElUl/nEo0iXLtMzm9M8EUvGOQcu2fFY0i7RquFG9X1b7XuUY4dSfdWOXaR3A6J94UnCMwZrn2udbZ8ZrNEv/FL/9yTv5wnCpLbOxy7dGczutjJA0okyzXfsS+e0pvj7nBaUGTdrgeTMgwcrn2CE7P+Rvdc/CmUivXnlzTvF5KvbiQub42Z5PsplELmxurXDuWQ7CWa4/Xij0dYstT/5fKtdPLYhi5XPvTqlzl2v9gprSlUq5dMP7PjutO3/Db1W/hX7UUUzfzXq6dLm7GQwnyx1W5SpDf1k82UY9y7R+XJ2ert1cN2zwmf0qtv/pX4L1cOz1G8IDVH5xYnTFszDV2ufbDbGHsPxH+Yonw06sJGUyEX1SNS4S/frXSEOHvOa225vnE1r4b1w2+fPic5z0eT5vzHCOhZrlXNS7N8nbVDCLCn3XpUezZi7V85wcdst03Vr3D6CL8rpyogHZjMnMH/Q7+8CfCX35S1Hb7sDz/7HOrR0YNcuhjMiL8NThdZ2sc1xlchP/qwy45Qe9CAhcMvZjxaFDaTiOL8GNRhlVFHUQZg4nwP5SmrLzS2NdrSs/4cLOG1WeZgAi/Kyc49asZUIR/5xOLzrm53fy3Hdp9vFX9P1+YgJwFRKgGJ0KgTxN52xG2vE3s1aTpj855XutuOWVeXvaCWhjHGjvEF69UgBGdmbNZsODcpmCLRF5wP6GFARBXKRMGxYAcDla5VkbrpeVAr7DI+rZM1YNCRl25fQ3Fgo0QX4kILrrQ8L0I8B3HTJP0PFhVteC1wFUCC/TUaYzUe+OOtX5ZFl3G36mylFrTtli1u2gpFD0wlrTYPEBvPUSvjghVjxhu1uqXQlXAu69UNkglQ+eXG+/MyP5+dr7fhhoBzf/ulEHVUizvg92IOCGFX+dd9hd8/wWc33+G0ZMlbcvUI1GCryxXSuVRHNo2TT7Osc+SVfLJbBIe33H9WlpbJR/AbKtaS2k4YxynM4abRvoj0GfHwi0oTqkBw5ckCq6durh3BlNWMLOIbSZs0TkqRqmSNhO27KweqtJgv6Cz1Qed7Hd3Gd/TK+P1ns2dYytTl/Qs4QdEapIUiPqXBabScFYcp7OkJtFz4KP0ylarFSx0xyWoBqo5etDxOW5n+nU76j9+c9WtvSzNnpRkqlxCd8x2JwI5POp5kaEL1UK8YameWSoRyTmyrYTHs7x2vXbxz/Q5s1yQ+3mCUae9EIDZJADXEQDA0KJXJkoOZewiEx3Kfd/4d8om35zurZ3al+s11qiHfSEACVwA9BikTTSP/o/xceiFuQ3Gx2lqz8XH+cDMLHnm4/i2DZvyzKJr0IbesoEXV5//wwT4OI3tuXY369ibAKlg3LhxBuDjjOow5sf8OauDlu/xvpIuzn9iEnycapzesTYF7xiEj7PEYf4zRd4y7x1b+33zTDhRxST4OGU4nfPBOPmSCfFxok533nU0uJFnlveDCrWyyj4xKT7Ov9W4nHfP6MmuCfFxnHJW93qW19Mv5cyXWjt8zjUwMh/nT07PXTC650qVj1Otw8EdK5TjAyY/XbOobdmpk02Cj4PlEKx8nA/aPPXY/wU+jn9jzW93h9f0/m3IpVZZVZIeG5mPE2vPxcfpaW8YPk7lO+Nk6munvFa9HO4ya5/rMt75OPS5OQ8ckyH2XBwTiX1p8XHOpS7u6e62JWTTi3YPzl2/eo53Pg49RvCAVU9OrEIMm4cam49znC2MDT0obyoPXS/adSBM8c/93tT9KuuuCfDspJ9KEh/DPGGqx/ZFAx+5Oh6eHtPu5iS54qdMhRKomTcIfgJaKmfPwaNXMkaGZLXL8471cDjD+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg07SEwlz2IviPdv4zxlm8s4XdCZtImQI4TCYNAHF9OPk4zK24K0+wudI+P9XHzuOCaEWbewc3n0z0oalgoB1YGY/uCJ8JrHAT5ZAVMRgwDl/xpeRBPyRfDCUPXbODMixecgcZ2SiyRG6uF4H6STbUv0/curqKm5n3zj4OizPiQ9YUefrSqvSR1/nEJv30Hk8nNovZb7g8ct6W7pFTbB5Jn5Oa8Czwo9+CofbqxdOa9aWuifpC8oyGmZGxTi/xG4RqMOrj9S4T1DDlxWq1xSgVUijHCCmB0djfYemwRjJIrVMOQj8iWT5YGTVEJtXehHp15nIufl3X3WoXsaBtJQBmWRSpD4qq21dCyC9BiOA8DiG/BP/R5ZdCJ97qEnniqeeEM9tTLF6F5dHll8b3XDHmRnwf/7Tc9EUP02Z0Ie3kYdRiyzPRPxghz8TmaWuoHkC4EV0goLXT1hVl8v1+88gYvHby8TYl8Rb/u2HAr62hX5eiUp7ZoAs1qWSUwpPWsL5jfzX4DnGDCgJGwe9YqEl294gYhVCJYvOVnW9BbwMJkSZBhU5czX8X/nj762nR8uibhxKc7NI5XWYuwp+E0DomDKXhNCGn0+wN6zQyBJsFi/CACm8Zo+33mG/IPsqW7NXzIUpfy+PUMhXGugMfQQmYSF/dGD7izDx5tnhbhU3fR/3T14XuK/OQBI1koEIrYCGgbXbBT3VnDlfuRWp9FXO44nJqBU6nlq3E0PriLKBANHYZrs+CBI8uk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+mm2Ib3rvdth5orzfsv3HCg7ZmfdSVSubGSMPFojhHVlqcM6HK/Yalo7hkVHw6mIRKEgyq/KYeE8KN7thgSYXnCQ7RUQ+ZKudHvQMmrCNKebN6oYXjOx4HOJS1TbYNV3Qd9UwxdGftGhv797/Gfsz+LZ/1TtOihrK1U5xYzlKxaZEtKLrpeUeA+wcoBYpXmhuB9ggl/RVj/WGO5BJdYqkLh0HFDtJ7uFcaEbY8o/bWF99jxjSTlaN2BK2p/ANzfj/OafDVtgmmU5GWuBeuyxWUOdIS7pqQPrq9ZUTLLynVzu9r/PFD2oa1CYSpGh4H9ZkQv+h8aBn8EQK2mhbrxHQLYz+CZIj9Ar7hYzUpR0Nd+VCAW5nogBZoAr1iGIAeYM2wCjt56Pi9Z7pa/ns/+lyqzDyIv+2/OnhY1Y0EBYSM/HrqeFV9djWwNWVFpoP2Gt4l4hPZ8jiZtunO5wISBdfv1pWlRAi0J6PkfuDZ7Td4kqaM/id5b1RrS6VUjP5/3dtat3qYZ6zg+0ia42wO54IT0fROVfUtsQUfmXLNSLqPxrQZgmWbYP3DO6dmj62APJ9zo9tgYmS8L0fM+fyfE+fwRumx6829WlzThgsiJM1+cuyNj1MsJz8eqVC/uMbPszMFkTJosGd3seudo7aOfIuZqE5N0iYKpAmDqOrdBMuu8Xn5QLZ2SNN9/fC0w2hOlRmfC1XyMeBW5veHXh0K1VvYCpIonGz5bdB4cN81z8vU+PiL+2/gZMtoTJ9WgP+w+TrnivuHW1x5w9Ej9gqkSYyow0DykrFPgsy2+Q/3D2sZXAVJkwlW3vF330H3fP/X/UtJkwotkkYLIjTDtHVuiQef6O1/ajYSuXPWg1AJiqEKaxbqH7I375GpCVcuttt0p75wJTVcKUGFhLXmbn8aCDV3s8sv34VwVgqiZglYGyJ0zbN//ZTKACD3y0y3Hak+hrwFSdMA0e8bRs0uv8gFl31n8coXq6G5gcCNO4hBq/Ln4ywX9TmShNxqckd2CqQZhmjz9Soeu7vLBllxb/NMu56ShgqkmYfHacE5i96Bg22f214+G83AbA5EiYfFOfXZ/yZVPgWE8fdfvcpdDLtQiTx9UF+bUffg3ZKV6eFPhTeagrVZswVW+w8Z6ojNp3p6+qyl672lHA5ESYnJ33vl6y+R/Rby8ez/9lSkU5MNUhTJ1TLisTfRt5bh/1dOzNXguhQKiQMNUbt6PPpx8OYQd/vfVhqmvgYoZQVV0Bi1BVh0crh7Vau9Zzz8wN15bvfZ/Og1DVWbYQVS16z+bFx06Jl27MH3Gm1kjqZ5mLh8crlFLE6Qu2BLgRcYeQPC+LlalTx4KEGAQhogKgjsct6AEK+WrMWTVh0FU33FksOF39BIyviJ3DcJAeb6+uXwHNgtOo+Iug6+9Vjgo906FL0LqTT6/N95syg8fDqDxvEMKVvZMQIClq3nmysVhwoLpeOXGbCBloGhjvSSqDJY6Uajl2/AS8n1yBTZ3IdiKUqOCJa2WsPAqJ4unHcTU6WC4MnBNwYuPC0RXnU+nj2s9h0scLTLyXpnHBWgwHXOurm0QmxzzqqGcm50p0NGmBuzQxEo0wVjJEJgQJiLaENTvPXNBo0tXJnYd6r734245Lj7r3pjENiccimIakhW/vVXIlGrsPyntpblhjZ7DN9QSuLnkoiiT8yehAIsFanBhUp22lg0FTLfZaB/r3pc4Ui3UEiwewtnOCBZo6Mf6cYxt//lNuKJZyAz1DN5hyQ20HLuWGb/qNlToqN2hetJk39cF1z3W3Bl345dms6TwOlvQIxINyg6MD10H3yg4GUW6oF2G3O7PxatGS23+1N7vffrnRlRvMOVH5ZpwxUQeWqeGUG9zO3b94Lf2MeIGy8eqyR1ZtMhnlhjfVuVz32FTTGZ6VG8Ysi7vzdvEAvzWrO/ed8fjaWSMrN2BRhvXoPYgyBlNumNPs1k/W7sdDMltUvug5pyGVFG0c5QZzTnC+VTegcsOP7jk/en/b7jPff/lgy2X/UCUcjafcgPVpVoQea/O282x526klkuBvHar7jctwMn9SP/kANRsNBjmaMNInWPeFA29tMVxYTYDMhMEMMRr8CvKuJCHAVqXBNQpAsCXaK8y9iNRtlE6JE339Ev3ezCyatOhRFrdyHaIsLiNV8gQeeOWk37IC9gKFMEAfUHgeP9dnoJvncqeAGp2vBF2h7SbBuxEHFLDLRWVK9PjHQ81b2zoE+4rRCIVNxYJydfTiHTtgAJHtwkUqV4HmC+zowVbdYv7Ek5deh06fO1r575jGnand0oe8mdktC0xFARag8H/cP79N0CzFqcCeY85U4wGwL05cgIEWZZQkCh8z4N+0ErD9MOWwLDh8aY35kmvMObbofnqX957ZbRs+/SfBtrIdJmQCnCEeHq+SaWnPWFLr5R3p8kvjkiXANNcee/0j36dfV98DzjfnfBrT1oMH1/7D6dqbRnItKj+e/bNeqVaF4ELxHOnMTjPWr+0w8+fALM2TrNEDhZ70DT/EoSr8Ku9rd25ETMpGkUqy3bAuRgyMF9gGRu+86jeHtdvmmdW7n8P0HvupZZWqQvKrBi59wpPMMsitl+lRMb65SBkLIMcpuNhjpAWPwSaHBYXiIalUtxGRtm1X9Asz3IH8K12zEdD4NTUA6I+8EQXkB4DGH12jpPwUr+BCoMDlBlgGCWYbyjihC1n8HKCHCyDB/+ExTQ1Xo5WJMhb1krW9lRXrCTNCtq5t9YdEPJ56iL18D4x0wIwxxPWiYoz3ovPxG49YeW512DZryC9L65QwxswGMKsgzGbeiJLpaY0xmEu6JNywkPu1q1tRyji1LCoBax4YJwpN01v74Oacz37BS8b2mPfs/qQl1BMZBc9lTn8pRt6plM0I2PqgYLvuisFGhISLbCHhTMX6b1q0VYZMev0iyO3KGDHlu9lEyDAOozA0QaFAxAK2hNmVvA8SYbE2K48bJlHIpXgjT5RrYoRKME1R6R4J6Lv0HO/J8ALVrOuxPWexoBNE1xq1+ZYO0G1U4r5vH4Dx8OCqq0yNEbExxJAAXFh/Zs7z/HI+27p07r/73Mld1PQZexAzfcYvF9Wd6ayEkh5FA8h5QORWolIGWPnVvQZr+qwjco5a5FSUpgabFhK+1xsbT1nwaVLI+lt7ag9bL7GhHnMnGgh6S4dq5bsXQ7QacaJVq4ZRWOwW3ZLiZYVxqF+Is+MWBFJamcIN/o3azc+/P0xyB8lUNEoc/Clp4LbHBkjoWPAIMKlOwl2N9DJ9YCpJJymhXwe4Eb3gJYo2F94c6wV6LYQ5hGLYwlwB5+8STV+KhMJRPqzmtfRnPjnzb92bG7mlHW1jAn4rxMYEdrk0oGjECUUt7UB1iW2gMpmaf/RoyU/541Io+ffNgavk3zsHEvLLJg85nRvHD+RWg97nNdwcF7RwR6i4ztvsVzxALq/JBbmkJgn5Fd5YmbYk5AZgZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKViSBRkqzMod5BI/vX6xo4e/ewC8le+acZlDfYeJGtj06/5IHylsfm/3pBR11vbrHyXWsmHXj1cSWq/6vgi/0ihVIN00VsA4eZlJdn6W31fOWw3HEMrA+MPwCbUsJ5JkFD0G17n045LfIVGeCg/kjXrBxMFRNgXLuOPDECZuTdHfRau3bEd9swJQ0ldA3AA/zCzgu6fGtSskWnCj6T41/td13hNrEke22lu4x9EWCldiCG3ZcMcUIwrZYyN/y5sKqmpUQUxgqJ0sKfbj8I2hnp9fuX0c+3mX+pxyMtYmz30HcnM4b7Ziqn+k/xTjrMA0rdOVHydWAuPnDlac3CyX6FdTYMM7LLwakeyT1j3yqJ6bDljMuv30PHrk3/o07faYONuJ/r3oxoRMgNOXh4Wq7nfm4T7e4hhCiqkN4nHIEosQkJzjDP27fqBDwVZwZE/xp8oXqACexaQpD6c4LU3UG/fd2GPnL8m2uXqgqaDLaxyB6goq7/SDhxr4HPxNYeG5ocs5hK3UUkn8vcRdRaSgOdIE50vLS56B9sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMRyFsZ70RC1ACANsm/YY63bZpa2T7nsoTpgcvGHYnufnqMdTNKWtsP5ZlWKcYi4ri9BBXUiY4iNOHIVjhqDaWDlLz3fqNdRUxsGSgp7FD9dJxmvTlinr+m1JqXHrWa9Y2aiQSg3vRQBUyGTglgDBt4oRptZ6DXdFbaPS9ZqNtocFIg7URuIUmZOSObhg0RBy6yhaHRM5nm3cYfzs43XfFK02HGrXp69Cxknghvk6DWC9nS82d8fvI3R7sXIpEGCdLhJdkKnkUMUDqFJboh7s43hC1Ul7IrCOuns5iwb3aJ6DiNCInTwGoH6mtV6CqiG1D4Yu74HWQ33LN9BmzW43c679D/NOe20kRrakpEvYAZoqEXy6qz9HPuZWwz0Fm8l0Iz0ZUn4NqmNdq68UmscHfh0sk/XCZB7077OnmueKL+RbrH6Ig6u4ffj9z94+4XhQ+luu6XXph7R+8s0n9s5LAdfY84HOOEx/QfIzBMLDAiBvDcCA6Ceg/+lVRs+kmUQ2Sabicdv/zywFlTmwLntE2slPm8ZttqU7D72c6jbjO+5ot8MoeTq9sNimvvDxIekWv4csWC3jxMikRfJGOGTe9XcTwo7dDsu+5Palr1YK6KFM+BLuf6RjiOt+O8XQjwglcZmTMV1OaiwWXa+s3IXPUYoBNLBTyovC4U6bsq10f9vgd9CrTrGFUMnU51lyEPwAhKUQYSgORI5yIbK9NjuvX2Mb17LlBb3t39AiY9PabxuLIjTdUH+OfqDsZppN2hkEdwP9fe98B1kTy/h+VUxSxiygqwQpKs2DBlpCEXhQsZzk1QoBoIJgEEcuJYlfsKGLF3nvvZ2/n2XsD29n1PO/UO/U/syWwu7NLQpYk9/t/eR6fR3bYZPfzzrzvOzOf+bzClHhldDxIK+HZQrlWC9Ug9awYIvwbNvmgn9NGPS+zT+LXjeCJzqxD8EQZ7BcRmNWlM+O6kTvgtYlUAxdPwgR+4REm/EnQ9V+qTg3o0Px8yHZ5nwnuh07LqZ2PLbHRN5g5+EP63HSIoTeKoyFsgmFolMdqH070KLykCeWgFuQDafH1AVhGAf4/P6cUDg8fiUSUHs8tWlEFzmsxwBxRgEEd63T9YL5p9RtX9N7Ek9okfZuDh52rAXW4dq566TG/xYZ5+G7/C2cExyVpvWq2U74IrkxV3A6jCKEyHSkb0k5hIB8A4UkH7lTR5FQN8pN0ZQqux2IKgVPbDV24gQepIWV2KmrhBu5RzKmL0Jsk4wlCbxJ+E11vkq4XSdebLLKeJP1GhJ4km2+q46/UAJ9jjPytPHCt95kBqsB9tZoEhMnbZVDlb8XM0SEuVNxu4G93Pv5Ywls0s8TceW0H925h6poJGB1roDm9UewFSNBZXPcUQsiRDaSiiASf7bNjQ6XL+2RZN1K7Jg15FlkEkWA6SlHpK7edea4IXytI/BIbOK8BDyjN4URpcl2GBCAn2wWvtQATIwMAorPeqTEM/yhmDCOuF8eCN9ZjPqEWmlw9MKQIf3r7P+ZP6XI+ZvKnnTj9qdv//Clpn1bpR/eV+DlEunXfsb+7v+gu58Gf0mWaePAUHTg9RYti96dXf57a5lj/xJDdNVq2PfzoXhQP/pS+SMADSm6cKDkXpz+lx1CL+9MOnP7UTe9P71j9nIA+nPghs/mUqPk+Q5Ik3fVRFL/lakYkD1OCb5xTgr/0U4K7vJHZKpCQm4HMhtDA05PZmBp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxto93oxsZ0YjF01HEiGqSBqZvufPsIkNm03osoU82OQ+m02y9zzsOeHxp6B9e3bu2zool3rO74fO8kSFilkbhc2xuYqFSfCOAhW6hIlqnQIXF4Ly3FwatnTdRcSjGOLt7KKiNWqVKhJGLHgx/8jnu040T7h8WFju+LeHwvZ2XyBLldoPZfOEtt20Cg0UACe/tqFUnTxABblasIoOFP6JUeqIdwcZBtzlyEtbRTMJWeaIsSjdSCZQ1gYOtK1EkDZBUi5MrolTJoYqYikB0A6/HAnrnRa8Xha/3lWdVPAq1QsvDmskWxtf+1RFDMTOGnhuUKfEn6oM+VSoAaWRpwQlxkDZLRLeEmXhRbj1UuASlquriJJM+IQAVlFVylUSqAVVIBDpNAp5gv53TJhYfw/RVR9YfVimq4DytFRH7/88xOXM2lxxOaM2GZcfWj3mdHlV610encJJ7E/XE/tzeQuT9gLzhUmEbi4ZJhG6uWSYROjmkmESoZtL5kK/Zn0dvfzMT6LxCa//+HeZ/6gCuVDnp+8rLcko55++afzJ3l0eJzOCK/T6yI5EF+PlIbjmsVnSSsu100WHzVaufbozV7n23s7FXa79nG532Joy0bIVwff2B835hTqfsky59gxnruK36c5WUHN6zpw5ZijXPvB0ZpO+v1YJ2Lph9Za0H//Osopy7amc1lFbg3XMUq797JvfSs6r4yTK+PZLsvxgTaq2iaXKtSs4jdPbGowjsGS59iZrXs+J3isNPtxljm3N0IPXrapcexdO4wVYxnjWWa69077fv+cELg5aUlbVsNSCtz9YuFx7B07LtbC45eBNxVaufXEF3yDh4RVBa55uH1PmTcd/rKJcO5ZDsJZrB46QyFMfseWp/6Vy7fSyGBYu137dmatc+xFmSlss5dodorbZKN3dAtb/nbvo4ve+w3gv104XN+OhBPlVZ64S5GeNk000oly7LvT4uLUp+yTbo5d3k49aV930IUzDiu4jeMDqCCdWu8zrcy1drv0xmxv7nwh/kUT46dWEzCbC7ynkEuGvICwOEf6d++5Ne/BlhDTnxgH/PudbleHxtDnPPhJqlrsLuTTL6wnNIsLfYnJYx0M7q0Ws8pk7YsSEClKLi/A7cqIC+o3VzB2MO/jDnwj/XM3TKmV2tgmY2r9Osq5mdaoYpiVF+G04TffFMpMHs4vwV+6oq1n2gE6yut/0DzO+PzplYRF+zMuwqqgDL2M2Ef57yxYNsq2+OOjgma4r25953cMKRPgdOcGpIDSjCP+sD83np5brELawWUhD59F/jbYCOQuIkA0nQl/0088nbHmbTNyk6fcOV8Vr7tdde3nxWyqDzA47xJekVoGIzszZbFlw9snfIlHm309oYQDENerkuHiQw8Eq1+pYo7Qc6BUWWZ+WqXpQoNFQbl9DmWAexFcugYsuNHwvAnwTmGmSkQerquU/FrhKYIGWm3f3bbXmVE7oRPm5RgsWLVhteu0uWgpFd4ymFpsH6GVC9JwlqHrEcLPWuBSqPD58YxRxGgU6v7w4s/49+wPPxbPm1hZPdT+8mHZCCrsRcUIKv8677C94/9Gc759i8WRJ3zONSJTgIyvVMcpoDm2bXhu+fI9vFSHO3Hzm0eGPoRWpfZX8AGZf1bcUhzESOI0RbRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbSDNTrsF3S2WuZIQoy7/LN0Q7/Fu6r45FK35MvCL4jSpaoQ9S/zm4rDWD05jRVhFSMHfpRR2Wr1/IXuxGTNAC3HCPotq/JhB3X1wJXOA8dc3p9215SpsonmmOFNOHJ41PMiQxeqmWz9BCOzVMKTc2RbF0SKT5ouW0P21/QJe/Bszx6LTnshAMNJAG4iAICuxahMlAxl7CITlR+dDLXP7h4yp261nZXkj79Y9LAvBKA/FwDdI4Vkovn0P8bHoRfmNhsfx8GFi4+Tx8wseebj/PBO7NpLmBWU2eSXDfceOP1kBXycai5cu5vlXKyAVDBs2DAz8HEeLh4Z9zUlQTRvVau+1Za9eWoVfBwBp3X+skxItgAfZ/RxF0l8i/r++6tM+rWW98sAq+DjvBJyGSfPGowjsCQfJz1QO7/PwjOhCw43mvNg6JlNVsXHuclpvAsWT3atiI9jP29kXc+jN4KnlHo80Tdh8WsL83GOc1pun8UtV6x8nG07xHUXLfKK2LG918PMa8GJVsHHwXIIVj5Onj5PffZ/gY/TIe2yOsW/kWjHyJej7/Wad8rCfJwfXbj4OH4u5uHjtHNL/VAi8UZYWky3lv90WLGKdz4OfW7OA8ekuwsXxyTUpbj4OKd7v7syzv20NCvU47FdvWsJvPNx6D6CB6z8OLFqY95ZgqX5OL+zubHBh5VNleHrJLsPRaiePe79lrpT0iUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAbkD2v3pidfT5/d4w43PP+35M8grNZn4+5k1OwkdH/ykYBFxZR8CgWolfSzz0Z2Cv1n4bg0zjBU/gOEviPdv4zobFMVavOKfsohQoYTBETBPz6UPLjMLPipnzOZkqHvAxpFd/fJDk+jw5vPp1C5YCU8EMbsDLu3RE2E5TDmyiHrIhgwDh8xZeSB/2QfBGUPAzNDkqwWMkbZGTxZIncI2IC9RdsqH8bt21FVU8bv119HLNXJYWtLPT0ZbniR97gE5v003s8ndgs4rjhssjeWnSLvGSzyNKZGcmvgj8FzB3soM2e7E5dsSrtD8kzOmZGxjq9xG8QakHUx+tdJmthyovVaotXq2KgHCOkBMZif4elwzp5nNagHIR+RLJ0qDp6kCJGfxPq0ZnLufh1Q3erXWUCFycAZkkUqQ+KqpdwQsgvQYjgPA4hvwT/0eWXwsfd7xh16qVo7LkdabbvI67S5ZfSe+SMup3UJzDryNL5T7OmdiTbycOoRZZnon8xQp6JzdJ2UD2AMCO6Ck6O84ySKTclm1zjP+69H93QFGvxvxsG7OoM7boQlfLMAEOoupNFCk/awfqO/bTgHRLj8h1G/u+Yqxnu7Rs5EqESxWarKv75ow0kRLpkDTpx3exeLm7BrXV++0fevlQ9obKQ02RlJPgnIbSOiYbiMJodp9FKmNdopAu2CZXgDhXeMko/7jHbkGOULdmrJyVKXysTtQoNxroDX0FxmEhbdX/0qXTptekhY7dsH7wiZ+A5uq3KhCXr5ANUegELAW2zC36rNzNceReu9VW0cMVl1L9rcRn1dS2G1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0L6K7aQ3uXRg4gyqgsBS/YeKjlqlwtVprBcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3siAaYXHGR7BES+ZCjdHvSMH2C/6eqHKobnLhM8MblEtT1WfReMTS18YDS/89SwF8syT4myh//mEOUZTi2IasPyioWmhPSi66YS7wFWpSBWWWIU9wNM8D8zi1JzssZwC6qxXoEuG39meYths/+Q7FixsOFy5S9yxpJyrGHAmDqewJu/rcn15k/MW2CaZTkZ64FG7LHZQZ0hLump+fUdRl94PdF/TvqbOqczWoRT+yW821zw3+GE/5Jl4GcwxEwt1I2PCMh2Bm+CtAi94m4RPYWpq/kehCs4IkIEmP4e2IAgAsxrtgBjtJ6Pq956xa/nU/2il9uS366LN94+1eDIm8xTBfR82vw1v38V8QDxQtVnyd/R3s8L6Pn4/nrl8sHaS8XTZ/f89PeJ3dcK6PloHl5dFHN0lXRfqdvn5+ZO/6GAns+Rr7Y3cvcdDDwc/XtY2K34twX0fBCVf0ltQ0TlX7JQL6Lyry3RtG55w1vl20cGTLZL2ORZzeF30FSWaGr7ceqwR8+PitN7Hf9y02ZhKdBUjmia0fmZy5UpL4O39Qz/+r7ThxOgyY5oqhvcaMeT2d/8M9o30X5daf8UNJUnmu5lja2yuE2ngJzggcdr1xZoQJM9CVR0u1HtW63yT98y+Kdrv64YDJoqEE3CvBVHl04qJ9u4o7Oy+S5pKmiqSDRNFtUr59ba2X/XtuvPSrin+oCmSkRT58yjx2r+czdwaxff0T1ajHQGTZWJpoP2n7KOKiaJpg63OV3RaT9UUqpCNMXFPxkoDKwUlPblacXAst3jQFNVomlNldy/mjaeLEqrlZs7/kwA/MBqRNP6LJ9FS3vcCt09JMd/x2PNMNBUXcAqA+VANH0+6TDizJG10uVZMxpm+h5tBZpqEE3yl227uvuG+GfVu1f18rywi6DJkWj6npR+3MXTV7pRUrbygQZxItBUk2hyr+p3qqNkld9Ue9syX39++hI01SKaLkyqsvN2tWi/KcuTfu00p3l30ORENJVq2jpCcHtk2HbvUi2rzNdAPcfaRFPmmi/nm/iWCjnUdtikXle3LgJNdcgO8Mvsb6ebO4ZvfbTnXu0bTiGgqS7RlHE6pEOlR+v9py8Kmlyt5asjoMmZaOryvnzjEBeNaLrX0chmHyR1QJOQaGq1fc+6slFBQYtWnSh9LLeMLUOoykXAIlTVrvbV6k+X2YeuzHK68aTXwWiE2zBWqOoNm4uqHrt3c/aJM7KFG/KGnas9Yil16iobmqRSxyBOX7AlwI2IO4TkeVmsTJ02ASTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeo/inoXxE7h51BevyinnEFNPNPo+IPgny3/vemt9e9HhK+/kRNl5mS4BweD6PyvEEIV/a+1QMAxaDmnafdZII/6xmVE/tEKkDXwHhPMQpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vicoo9EK3RsdSw2uZRex73r5Rd0PjO9GpY/rv4dJH89v4r00jSvWYzjgeljPKjI55lFHIzM5D2KgxeSbSxcv1wkT5IMUQpCA6EtYs/PMvx0aNKR27QjJHMGVE107rOhIYxoSH4tgGpItfFuvkgfR2aUo62V5Yp2dwTY3EjgX8lAUSfhT0IFEgqWp0X1t1IOx0plTxT3eCPw7mH4EiwewXnCCBbo6EX/essWf/yk3FEm5gZ6hm025Iao+l3JDi/rFodzgseNEUvPXEwPXNanWfdTMeat5DJZ0D8SDckOX+lwH3QPqm0W5YcKoWcmbI3YHzG2T1n1/17sXLK7c0IETFdBvrJRlaj7lhjPrdCW2fejoN3vgpmvldxy4ZjXKDW6cpnO2jOnMrtzwolrNFxUm3Q9b43/y+alKs1wtrNyAeRnWo/fAy5hNuUHjO6T1+Eqp/pOUq5b/8rgGbQZpEeWGDpzgtKhvRuWG5D2zbwapzwaPWXds84UevR5aiXKDGydCYEwTeds7trztzAJ56Ne2NQLGrKpb5kX94Yeo2WgoyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRhkle0dYv0c/NzKLJFiPK4gY0IcriMlIlEbBA4ybGLStgD1AAA+TbtZZEB8/4+q80/UKNq//+2ZKWKUXBuxEHFLDLhWVKdP/HQ81bWROCfcXohMKmMkG7Jkbxjh0xgMh+4Rqj1IDuC9rRwbbzlchSB6+VFk3cu8S/yxolteJnWSl5M3NY5jcVBtjAWpva1H3oJF3tIJQ36X1DyQNgzTgBAz3KIkkUHjPg37QQsP0w5bBsOWxph9mSw6tOPX785KxLw6Xb4q73O6p9nV0FEzIBxpANTdIo9LRnLKkV+0W5/uhmWgJML4vZuXXl/qd+D5yYPtHtwsPJP/Jg2jqcpq1qIdOi8uMZnYxKtcqHFvDnaHbui6nlBkR89N88r96H2Y+6OdM3/BCHqvCrvK/deRI+aQuKVLLFExtiRGB8zxYY/a7WuDek9XbRxt59Had0P0gtq1QNkl91cOkTnmRWQG69woiK8V4SdQKAHKfgYh8Tk/8x2OQwv1A8JJUaFBHp23aFPzDDHMi/MjQbAZ1/XQMA+u9+iALy/UHnX9jAVH6KOLQAKHC5AZZBgtmGOlHoShY/B+jhAkjwf7hP08LVaHWKgkW9ZMBdr1tPMtdJt3f3KjtQuUdB9THdMdIB08cQ1wvzMT9J+i/wyGsomqvL6Tq+f49dJvqYGQDmNRBmGz9EyfQsNwxmU5eEGxYwv351K1qdqFVEJ2PdA+NEIbFMHKC7VG/QVP9Vn5ruvvXymyP1REb+5zKnv5RG3qmU7gRsfVCw3fTAYCNcwh9sLuFchfofmrVSh43/422I55VRMsq72UcqMA6jMDxZpUL4AraE2YO8DxJhsT6rTBwiVylj8E6eotTFC9VgmqIx3BPQd+k5npNhBWqzocf2GssEGoiuHWrzbSlAt4/JY98hCOPhwVVXhRYjYmOIIQHIuzdy08vKt8VpvW+s+D664TFq+ox9EDN9xi8XNpzprARTj6IB5JIgcstQKQOs/BrbgDV9NhA5Jz1yGkpXg10LCd+ic2MG/23zJHDNoDqKxC61N1CPuRMdBL2lQ23lexRDtPpwohXZwCIsdtuuqUmKgjjUL8DZ8QwBKa1C5Qn/RusZENgPJrlxCg2NEgd/THXcDliAhIYFHwEm1am4qZFWpgcmUwaJiXbt70mMgnco2lxnL2wUGLUQ5hiOYQtzBZy/S3T9GCQUpUY3uTD89OGAdQcrTQuaOYrmL7C3QmxMYJeLA4o+nFBE6gPVB7ZAZTU1/+jekp/yx8VQ8q9FA66Sf031kP9p9ZDTuXH8QC7s+E9Y5eYzpRkOm90r7I9cxgPkSxpyQT6vIQn5R95YmRVJyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZn2yqfWgz4lTAin41Ssg7P/uVQXmDnRddm5FGv+SB8vYXm/3rhRz3uLe1nP9qm5gB159Xotq/Kr7YL1GptTBdxDZwmEl5aZbRVs9fCcsdx8P6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6nierg/cBN5YgTMyKcYt83vhO+2YUoaamgagAf4hZ0X1KT3mzt37lcO3Lxw6Pda4+/4m7LXVrzL2BcBVmvrE2H3HUOcEEyrs5kb/lxYVddTIgpihT5S4+q++fGnhsEzex7Jq/VSq+ORFjG6W/jH06uG+q9VTwqc6Jd6lAeUpnCiNKI+c/GBK09z70yOK2ywYZiRQw5O9UjuGftWiX/v6BVl/gmULbT1mTxGMTrVgvu53u5EJ0JuyMHD00uM3M9tot89hBBFF9D7hBGI4pvQKwFDmkScLhkh23ArcVLjs6/PWMGuJQQpkxOkKUbu6zaUKvE31y9V5XcZbGOR3UE5Dlba2jV4ErqgkuM/OQP+rkXdRSQ/l7mLqG8pDnRGc6KTot/T/ZstML7sHh5q4/VZkrn8vH9ORFAv5kI8MxLasIDrQt3P1VPdUtRGSe7TD1gYujdgKPsbOKYvELbzfogFKAGA7bFxoc6wbdpX5Wrtm5i9JHjn2vIpT9++aE1d7MT2Y1nCOqWxMC9Od3GmMsGBn/4EweqM6mNLQWr+xrhYVwEDSwFGGjtUO0ecv/4sdUHguvEJO373+Zta9K+sDNyLBqpAk5lTAgjTY06YbhsZ7ArfQqPvNVtsCw16GqyPwC00ISN39MSgIfzQJzY/JGl83qtt+oPQpf4573Vta9ahr0MnyJOE+DoNYr2cLTVvjN9H7vZg51LkwkRFCryk0CijiQBpGIuEdriL4wlRK+UFmg3EVdRYJqjpdgoqTiNy8jSA+mdXoxxVBWwbCl/cBY+DfMtmB174qsqOD9j8wXlo0LZrjakpEvYBzBQJv1zYmKOfczNxzEFmcg0IzwbUmINqmPZuRrFJ7PHn4RJJD0/t1/Zblw7B65//OKb1q5vUSQrxuszdP+J6oQfb23496ZZaJ3TT5ujX/46r3oMHfEpx4gO6jyUYBrYYcWMIDkR7Af3HuCpq9l3lmjiFjstop0seHt3yl17i2SeHf2/48Rfq0brS+P1MoxHXeV+zBVZ568pllSdWZZV3h0mrGBW+KmIOL0kRQzhfdM2FwVFBCv/+QaPDxfN71Fpwj2qYMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQS2bsZNyJz0GGATC5WyMDzm9e3yjzS0Q/gy4fLay/4a258mKYR/AEJSiGgoDkQ+u3Ih8sKVjOuf2eL6llkhf/Zu5xs0/s+vOttjtz9QbYx/o+FkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vMw+iV83gid6ypXgiTLYLyIwq9vLjOtG7oDXJlINXDwJE/iFR5jwJ0G++F9zPqTk/fs1eM38x665fzenkufKsCU2+gYzB39InzsBMfRGcTSETTAMjfJY7cOJHoWXNKEc1IJ8IC2+PgDLKMD/5+eUwuHhI9EyL7R4btGKKnBeiwHmiAIM6ljv1Q/mL1a/cUXvTTypTdK3OXjYucpy5dq5mqHH/B82zMN3+184IzguSetVs53yRXBlquJ2GEUIlelI2ZB2CgP5AAhPOnCniianapjeJE2ZguuxmELg1HZDF27gQWoYoaeiFm7gHsVZN4TeJBlPEHqT8JvoepN0vUi63mSR9STpNyL0JNl8Ux1/pQb4HGPkb9fJfr0wesvzwFmvt/2j2R4zmyp/K2aODnGh4nYzzkRVKvlkSeCm2ydlzdNnmHpuUgBGx31oTm8UewESdK66nUIIObKBVBSR4OSJY0R5G53F8w7PmjPcdm2rIogE01Ha/aHG8t/HvfA/vHbP3+VXHjOVcABROsuJ0hE3hgQgJ9sFr7UAEyNDVJRprHdqDMM/ihnDiOvFseCN9ZhPqIUmVw8MKcKf/vsf86d0OR8z+dNkTn/a73/+lLTP/N6KyEc2G0Qr7vZ7c77rkp08+FO6TBMPnkLL6SmUxe5PD+546ruvVvfg2aF5G9OWDnzFgz+lLxLwgFI/TpS6Fac/pcdQi/tTLac/7af3p1+tfk5AH078kNl8StR8nyFJku76KIrfcjUjkocpQUs3rimBux7yb7yR2SqQkJuBzIbQwCNdPUIDjySzITTwSDIbQgOPJLMhNPBIMhtCA48ks9EzNAZjDXpFZBejq+fxwFj7zpuR7cxo5KLpSCJEFUkj0/f8GTaxYbMJXbaQB5tAgyBtkr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChU7zM6v1HhmQWXJ8taBZrmfYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIsSjeSCRY2Bg60rUSQNkFSLkyuiVMmhipiKQHQDr8cCeudFrxeFr/eVZ1U8CrVC3cPbiRrsaDxqYoYiJ018NygTok/VRnyqVADSiNPCUqMgbJbJLwlysKLcOulwCUsV1cRJZnwCQGsoqqUqyRQC6pAINJpFPIE/e+YMLH+HqKrlmDrqlYTlukqoDwt1dH7Pw9x+Vxjrrh8rDEZl0taPeZ0eVXrXR79hZPYv1dP7C/FhrnRYdJeYL4widDNJcMkQjeXDJMI3VwyTCJ0c8lcaGzLeQurPpohXZ3WfkPM2D+OFciFbqzvfnDAb/XCl6elyLpcTVnDCK7Q6yM7El2Ml4fgasNmSSst104XHTZbufYTTbjKtc9kSsnwXK79qm7f4I/SPMnhKXOnPHvq8s4KyrUfa8JV/HavZQQzqDWnp06daoZy7U/+yKhcLny63+64oC07dKnU1UJLlWvfzGmdldZgHbOUa4+uXOd7h5B2kunX2wQfaxNKXWG2VLn2BZzGmWkNxhFYslx75WulXva8Pyh4XkTrdpUPdy9jVeXaJ3Aab6QVCQVZvFz7tHoTPcZIK/rvr3Llz/67FCMsXK5dy2k5pcUtB28qtnLtZT7vnhN7Xy1ePir7k3DZ549WUa4dyyFYy7XP1Is9/cCWp/6XyrXTy2JYuFx7+aZc5dr/Yqa0xVKufWDU3UHh85cGLFb+9HzZT7tocpA8lGuni5vxUIK8XFOuEuSCpsVVrv3lAXHJf/0uhW240G9El6lvTvJerp3uI3jA6q8mXFi9Mq/PtXS59tJsbux/IvxFEuGnVxMymwh/TFMuEX5p0+IQ4X/5Z+Keg68dgxa82fltlnudejyeNufZR0LN8gFNuTTLf2T6yOIQ4a8wdnNa0M6W4Ztqlb/w5VFAlsVF+MM5UQH9xmrmDsYd/OFPhL/qHMdNQbGlJHs6Vu7Vq9aXilYjwu/LaTpvy5jO7CL8v9548G/i1jai6aO7Rm5fV74ibafT3CL8mJdhVVEHXsZsIvwZBxw/J/8yVzxDlPUt1/1ODSsQ4Q/nBEfa1Iwi/Hc3eF4YW3+53/LyOz4eW1N3uhXIWUCEfDkRAmOayNvKsOVtMnGTpt87XBWvuV937eXFb1tQdQSwQ3xJahWI6MyczZYFZ5/8LRJl/v2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVpmaoHBRoN5fY1lAl+hfjKJXDRhYbvRYDvcmaaZOTBqmr5jwWuElggX33o+8vSytW6S+dOa79glX8vqp5KkWp30VIoumM0tdg8QO8cRM9ZgqpHDDdrjUuhyuPDN0YRp1Gg88ugKqX9yvq2C8u6n91i0/X1j2knpLAbESek8Ou8y/6C99/N+f4bLZ4s6XumEYkSfGSlOkYZzaFtE97ucbnzvzz0m/+1qSb330gVta+SH8Dsq/qW4jDGck5jzLeO9EdgzI6FZ0iiWgfClzwarp26encAU1Yws0hwFzbrEB2v1sS4C5t30A7W6LBf0NmqqNPSq38JjwWMdeyy8+v6mVRuR1n4BVG6VBWi/mV+U3EYazqnscZZxciBH2VUtlo9f6E7MVkzQMsxgtbtFPWcOrFM6Mz71aoHXR/z2JSpsonmmOFNOHJ41PMiQxeqmWz9QSOzVMKTc2RbpZRf6+95Pjxwvaq0eFMj560WnfZCALaSANxEAABdi1GZKBnK2EUmbuZ+Dm2gbi8+MGnStmYvg8dZ9LAvBGAuFwDdJ+oTTdv/GB+HXpjbbHycUHcuPo6je3HzcUbEDYr+2T43bN6OzInXq6b3twI+TrA71+6myN0KSAVakNIXPx/nXo9fp63uMiw4c2+6yz3bm2Wtgo/TitM67tZgHbPwcZLSN9famnbef96dng9XfUk/aRV8nHqcxnG0BuMILMnHya1179v95XbhK3Mj1n3ZM+WIVfFxKnAaz8YyxrNOPs7EUktdA0v8LJm39Kp72vWHfhbm43xpymW5d1YxTSk2Ps6EDz1vzLk2V7x2we5Hr8o2k1oFHwfLIVj5OMAREnlq2f8LfJwu78s3DnHRiKZ7HY1s9kFSx8J8nGnuXHycocyUtlj4OM1edd4zaOLLwC1Rn52bbrsVwDsfhz4354FjMtWdi2Myxr24+Dj28V6Jg1Z/kqRnB7e1qZl4hHc+Dt1H8IDVUE6sEs0bLS3NxynH5sYGH1Y2VYavk+w+FKF69rg3tRCbXZdkeHYyQCNPimeeMDVi+6KBVKlNgqfH9Ls5qR74KVOhHGrmxcFvQPa8Vtv3rCsbFRS0aNWJ0sdyy9iyPh9zJ6dgI6P/lY0CLiyi4FEsRK+kn3sysFfqPw3BpwmDwlwOEviPdv5zYGPZX6Gup+yjFCpgMEVMEPDrQ8mPw8yKm9KOzZQOeRnSKr6/SXJ8Hh3efDqFGmdL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrLFbkSJ3CNiAvXybKh/G7dtRVVPG79dfRyzVyWFrSz09GW54kfe4BOb9NN7PJ3YLOK44bLI24Z0i9izWWTpzIzkV8GfAuYOdtBmT3b/ibom6g/JMzpmRsY6vcRvEGpB1MfrXSZrYcqL1WqLV6tioBwjpATGYn+HpcM6eZzWoByEfkSydKg6epAiRn8T6tGZy7n4dUN3q11lgh6NAJglUaQ+KKreuhFCfglCBOdxCPkl+I8uvxQ+7n7HqFMvRWPP7UizfR9xlS6/lN4jZ9TtpD6BWUeWzn+aNbUj2U4eRi2yPBP9ixHyTGyWtoPqAYQZ0ZoP7rsPqKpqQuc8HfIlqeKF86ZYi//dMGDXbtCuC1EpzwwwhEIaWaTwpB2s79hPC94hMS7fYeT/jrma4d6+kSMRKlFstqrinz/aQEKkS9agE9fBcYc+LOy8OTAr9ajgxrqEJZwmKyPBPwmhdUw0FIfRxJxGa21eo5Eu2CZUgjtUeMso/bjHbEOOUbZkr56UKH2tTNQqNBjrDnwFxWGiBdN3594YevOteNv+lK01W92dQLdVmbBknXyASi9gIaBtdsFv9WaGK+9Ctb6KGK64jOrBadT6jRhaX5wFFIjOrsD1WZDg0WVSODu6DfR0zDId2FXeGaWehF86IkZUuhd5YV2cCOkV2EJ6l0cPIsqoLgQs2Xuo5KhdLuOpXNmoeGWsTgjrylLDOoxXbDWtnSJiY+FURK5SEeVXlbBwHhTv9kQCTC84yPYIiHzJULo96BntYJrT1Q9VDM9dJnBqaCqPzB6rvgvGphY+MPJFI17eH7OlcaZkedbF8muGxR+kF3hBvmKhKSG96LqpxHuAVVuIVZYYxf0AE3yvhsaxxnALqrFegcTFbmhEiex1iyI2i1XdO/4kL81YUo41DBhTxxN484acbw56iRUsJ2M90Ig9NjuoM8QlPdUjWuYydJpENL1svxr3s+evo/ZLeLe54K/MCX8Zy8DPYIiZWqgbHxGQ7QzeBF20gFZxt4iewtTVfA/CFRwRIQJMfw9sQBABpiJbgDFaz8dVb73i1/OJdxoffn9m68CJBzJrpqxuVVDb8FPmufPvI5TS6Vf2TTjyRbClgJ5PH1mD3BJ9B4q2xB9uHHu3pWMBPZ+xSW9nNz1dPXzW9UlfAk4OaVVAz6dExJOV1eL2Sw5UuzxE2FDct4CeD6LyL6ltiKj8SxbqRVT+tSWaSi21n3lxVU7EgQP7xH65ufVAU1miaWlyyvA5G677zVgy/GsLxchaoKkc0bR9bUVRr4GDpYdfjzr/yfsb/EA7omnIEM/hSx6rRFkfBtdM+5peAzSVJ5o6/7z2uOM/ZaUZecMn/OKfkwya7Ikmz7cOl6dFHY2YdebOsqdxfjNAUwWiqZ/XsbDbNU+Hbty93rFZ0AMxaKpIGuXLipnbf7kVeKB56NpjuwfCx6hENJWv5z/Cc4+TdFOLMlu75fRzA02ViaYzS4SPvmVr/NNSNmf8PkL0E2iqQjTZ3vvzQC+72oFbI/w7uiV16wSaqhJNDh0+9tw/rmHIHP++I34dp9gMmqoRTSvTYl81O3hFdLhNv9ZBgaeqgqbqAlYZKAei6cHxbHHN+UtFB0v16PteF+0LmmoQTfapZfdXmFNZlu2x7Ilb7bOwAzgSTSEfFmhSms0KyOx2oPelN4nwu2qSVu65JySwVrJofKvwVZOz4rqBplpE08XsXoerSOeI9pQKudWu7rTpoMmJaNof0LBJ9XIrAhZnXs9cGe8hB021iabffr309H7N8MCcHy+Pi7dfshM01SGatg3KdBJOOSlbdjekp/LbuTzQVJdosrHr4l11/QjZjMu3BonfV7gDmpyJJv+WO7ydb8SE5axM7xp1wucmaBISTXkXPOT/vpkjHn334rF3FW+dYQhVuQhYhKriNj/xLd/zr4gDD5LPV477bM+DUFUlNhdVPXbv5uwTZ2QLN+QNO1d7xFLq1FU2NEmljkGcvmBLgBsRdwjJ87JYmTptAkiIgRMiKgAaeNyC7qCQj8acVRMNhuqGN5YJFnuegv4VsXPYGaTHEz2NK6CZfxoVfxDku/VMCOwRs7qi/7ijqw//NFl1g8fDqDxvEMKVvYUQoBjUvPO0m0wwy9OonNgnUgG6BsZ7ilHAEkdqrRI7fgKeT6nCpk5kPxHKNfDEtTpBGY1EsfebSuVr1XMImbWi+YOmU7fPpNLH9d/DpI/nN/FemsYV6zEccP3saRWZHPOoo5GZnAcx0GLyzaWLl+uECfJBCiFIQPQlrNl55mvqdg5wz+4k2Tb3nz5Tl1W8SWMaEh+LYBqSLXxbr5IH0dmlKOtleWKdncE2NxI4F/JQFEn4U9CBRIL1zq7jv+Nm+Ug2ry03IutS+RjTj2DxANZETrBAVyfiT2W2+PM/5YYiKTfQM3SzKTe89+RSbrhkXKw0ULkheXJJjeTgUfGEe67yq74fHvAYLOkeiAflhreeXAfdnxgXLIuq3FBtXKl6u+a0DTq8Kv7wuKNzqf3DEsoNdzhRuWSZmGgAy7SwBSb+lBvOfn1Wpf/4x2ErWxyZ6eF3tJ3VKDec4jTdQWtNZ3hWbki2r+r9surysEnrP2adrFzyi4WVGzAvw3r0/gkiSyku5YY6J7M2VtsiiNiTUfZj5TqfqAQhyyg33OEE55KnGZUbJpZxmrI+o3NEWtzwklJp55ZWotxwihOhg/q8rQpb3nZmgTz0a9saAWNW1S3zov7wQ9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6uZlZNNliRFncJz5EWVxGqiSC9Ut9jFtWwB6gAAbIt2sQV2pi0vTL4ftGeoVW8p1GO7gbBe9GHFDALheWKdH9Hw81bx/5EOwrRicUNpUJbvkYxTt2xAAi+4VrjFIDui9oRwfbXj1sW0+63li05+7jx9OGCyZQh6WUvJk5LPObCgPs2bWYpuOy/pJkKGqnbq+nOsADYL9xAgZ6lEWSKDxmwL9pIWD7Ycph2XLY0g6zJYdXDVvpnhbWbn/Q3skz3/QoPcWzCiZkAowhG5qkUehpz1hSK/aLcv3RzbQEmGbas3U+/N5+2jBJZo7bm5dzckzVe4Om3c9p2q0WMi0qP57RyahUq3xoAX+OPtLo/PvOuNEPpYvPOw2M9vG7St/wQxyqwq/yvnbnSfikLShSyRZPbIgRgbEqW2D0u1rj3pDW20Ube/d1nNL9ILWsUjVIftXBpU94klkBufUKIyrGe0nUCQBynIKLfUxM/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/K0GwEdP5AbwD6736IAvL9Qef39TaVnyIOLQAKXG6AZZBgtqFOFLqSxc8BergAEvwf7tO0cDVanaJgUS/J05as+HmWd0T2wGM5iyWtqEX6SnfHSAdMH0NcL8zHKHKv5fQRrfAfl+SqGf81Mt1EHzMDwOwPYbbxQ5RMz3LDYDZ1SbhhAfPrV7ei1YlaRXQy1j0wThQSy3kTPb9JckTSXem5g+JnBt2hnsjI/1zm9JfSyDuV0p2ArQ8KtpseGGyES6jG5hLOVaj/oVkrddj4P96GeF4ZJaO8m32kAuMwCsOTVSqEL2BLmD3I+yARFuuzysQhcpUyBu/kKUpdvFANpikawz0BfZee4zkZVqA2G3psr7FMUAmia4fafFsK0P3iZerYdwjCeHhw1VWhxYjYGGJIAM713b45NU8QmPPwvTDd/1xbavqMfRAzfcYvFzac6awEU4+iwYPbELllqJQBVn618WZNnw1EzkmPnIbS1WDXQsIn6zxlW5W7ZUOmOL872jyjP1V4qzzRQdBbOtRWvkcxRAv0JA603nlZhMVu2zU1SVEQh/oFODueISClVag84d9oPQMC+8EkN06hoVHi4I+pjtsBC5DQsOAjwKQ6FTc10sr0wGTKIDHRrv09iVHwDkWb6+yFjQKjFsIcwzFsYa6A83eJrh+DhEI7LeLotWVdg8Y+63Ppw1sVjd+FvRViYwK7XBxQYF2cFQrQxYlAVZ0tUFlNzT+6t+Sn/HExlPy75MVV8u+MHnIHq4eczo3jB/JjJ+7KG453CFkx8NLDeUc+xvIAeYdmXJD7NCMhr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+wFn65vKm6RZDUqnTlm6t5kBuUNdl5k76PTL3mgvDmy2b9eyHGPe1vL+a+2iRlw/Xklqv2r4ov9EpVaC9NFbAOHmZSXZhlt9fyVsNxxPKwPjH8ANqWE80yChmDY9j6dclroIzLAQf2RoVk5mCoGQb92E3liBMzI3ZhZOdfatRO+24YpaaihaQAe4Bd2XlDd5rXGPpkzI2jaD4vCAprUSTRlr614l7EvAqwCyLD7jiFOCKbVbbyQeTgbVtX1lIiCWCFR+vefw32qd7sim7ti4IwDujFPeKRFjO4W/vH0qqH+a9WTAif6pR7lASU3TpRqeTEXH7jyNPfO5LjCBhuGGTnk4FSP5J6xb5UMOHIqt8WR7sGzRE/CBGtGKyy4n+vtTnQi5IYcPDzdwcu4NLaJfvcQQhRdQO8TRiCKb0LXiRWutn20MFc84cadFW/LxU+2gl1LCFILTpDcvIzb120oVeJvrl+qyu8y2MYih4M6PeLJ+4PHw8bOf/5Tqe+nN1F3EcnPZe4i6luKAx1nTnSq63PRmmyB8WX38FAbr8+SzOXn/XMignoxF+KZkdCGBVwX6n6unuqWojZKcp9+wMLQvQFD2d/AMWVB2M77IRagBAC2McaFOsO2aeOcBv7ldbeULE2U+nHr2ydnqYud2H4sS1inNBbmxekuzlQmOPDTcyFYnVF9bClIzacaF+sqYGApwEhjh2rmqNf7p3qVlU2KbuD2YsPe9lRPJAP3ooEq0GTmlADCNIYTpqFGBrvCt9Doe80W20KDngbrI3ALTcjIHT0xaAg/VIvND0kan/dqm/4gdKl/zntd25p16OvQCfIkIb5Og1gvZ0vNG+P3kbs92LkUuTBRkQIvKTTKaCJAGuSW6Ie7OJ4QtVJeoNlAXEWNZYLdLU9BxWlETp4GUJ/X0ihHVQHbhsIXd8HjIN/yQa9Dp+pdmChblzr8364n2zhQUyTsA5gpEn65sDFHP+dm4piDzOSdEJ4NqDEH1TDXtzSKTWKPPw+XSHrt5Ffyq/36SrI89kSsEi3fQN39w+9n7v4R1wvD58j0XbUTrs0LXzEw536z7A0XecAnhxMf0H0swTCwxYgbQ3Ag2gvoP8ZVUbPvKtfEKXRcRju49UralMhBkkUnB/lf2hAbTDUafj/TaMR13tdsgVUyOK2SblVWeXeYtIpR4asi5vCSFDGE80UapnXpbO2I+KsB03M23nnWaQ/1sF/pMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQSrWho3IXPSY4BNLFTKwvBY3lu5Y9Cr22GLMmpMSsw6702TFMI/ACEpRDQUByLzOBGZ2JKM605scX3LrJA/e7fzDRr/51ed7bHbH6g2xr/RcDJMe/0MgxrAhSnxyuh4kFbCs4VyrRaqQepZMUT4N2zyQT+njXpeZp/ErxvBE1W0JHiiDPaLCMzqejDjupE74LWJVAMXT8IEfuERJvxJkC/+ouGIE/4DW/ovv7Nsblj3lbTOx5bY6BvMHPwhfS4aYuiN4mgIm2AYGuWx2ocTPQovaUI5qAX5QFp8fQCWUYD/z88phcPDRyIRpcdzi1ZUgfNaDDBHFGBQx7qHfjDXtvqNK3pv4kltkr7NwcPOVauWXDtXnnrM67BhHr7b/8IZwXFJWq+a7ZQvgitTFbfDKEKoTEfKhrRTGMgHQHjSgTtVNDlVg/wkXZmC67GYQuDUdkMXbuBBakjVnIpauIF7FPE+CL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOv5KDfA5xsjftnaM+nRRKvHbc/75Mt3Oa2qq/K2YOTrEhYrbDavsNaVi+SvSXUGqDUM1LQeYumYCRscIaE5vFHsBEnQ0PqcQQo5sIBVFJHjL0B3v784f7zd/yuNd51wOXimCSDAdJUWPyOAHa9tFTN909JD36Is7eEApnhOlvj4MCUBOtgteawEmRgYARGe9U2MY/lHMGEZcL44Fb6zHfEItNLl6YEgR/rTuf8yf0uV8zORPq3L6068t/+dPCfu8LLk+pvbIn6RZBz0/KQNsyvHgT+kyTTx4isqcnqJMsfvTM5JDW2p5TgpbPPFATM3F4qKIrtNRoi8S8IDS15ZcKH1oWYz+lB5DLe5PK3P606/6/NTZ6ucE9OHED5nNp0TN9xmSJOmuj6L4LVczInmYElzmnBKc1UMu5I3MVoGE3AxkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8HxpoLb0a2M6ORi6YjiRBVJI1M3/Nn2MSGzSZ02UIebFKPzSbZex72nPD4U9C+PTv3bR2USz3n90NneaJCxayNwubYXMXCJHhHgQpdwkS1ToGLC0F5bi4NW7ruIuJRDPF2dlHRGrVKFQkjFryYf+TzXSeaJ/ytWcCWG4kjw2Y33vrQv/NDDzZPaNtNq9BAAXDyaxtK1ckDVJCrBavoQOGfGKWOeHeQYcBdjry0VTSTkGWOGIvSjWSCti2AA20rEaRNkJQLk2vilImhilhKALTDL0fCeqcFr5fFr3dVJxW8SvXC7yIayezbtDhVEQOxswaeG9Qp8acqQz4VakBp5ClBiTFQdouEt0RZeBFuvRS4hOXqKqIkEz4hgFVUlXKVBGpBFQhEOo1CnqD/HRMm1t9DdNX6Vh+W6SqgPC3V0fs/D3FZ2YIrLstbkHG5gdVjTpdXtd7l0X6cxP4eemJ/Q97CpL3AfGESoZtLhkmEbi4ZJhG6uWSYROjmkrlQ0w3DZ3daN0461md1yA9jPW4XyIVU92d1PFkhN3inyz13cfYaMSO4Qq+PVk6hifHyEFwbsVnSSsu100WHzVauPboVV7l2r1bFXa79WE3hyM3aM7K1s/zayBfWpp7stEy5dnkrruK3PVpZQc3pcePGmaFc+5oWM3T7l2aGb7uZPPpBVAx198VS5drDOK0jsQbrmKVce632mfYu4g9+E57N2V/iZsddVlGuvS2ncbyswTgCS5ZrPxp6VjmoVoh475R+fetXGkNV2rV0ufaGnMZzsozxrLNcu2TB6BpdquhkizP7nDxZPXSvhcu1V+a0XBmLWw7eVGzl2su973XcvuUg0WK7zNpnS26QWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1dK65y7XOYKW2xlGv/O63Zo1H9vgVsnpX8e5/N2VTBRD7KtdPFzXgoQb6mFVcJ8sWtiqtc+z2HK6H+K/sEjO5wSChSXMrlvVw73UfwgNUcTqwmm9fnWrpcuyubG/ufCH+RRPjp1YTMJsJfsjWXCH8e03fyIMJf+pe/xjhX6hg0+9HE/TvvH3vK42lznn0k1CwXtObSLP+L6SOLQ4Tfy6fXvdfTe/ktlIRv3+i9l1oH3RIi/K9acaGSZ/EMtOCOk2VE+GvUTlDZRu6TLqhRI33ryn4LrEaE/yan6S5YxnRmF+Ev89Ft1KPAbL8VW2Yln/Zq+8bCIvyYl2FVUQdexmwi/I8vvkh3+fQgKNPNu7EsQtbUCkT4MWfDCk5eKzOK8A9dtn1eepMnklmN1m4u2WDnPSuQs4AI3eRE6IJ++unGlrfJxE2afu9wVbzmft21lxe/bUHVEcAO8SWpVSCiM3M2WxacffK3SJT59xNaGABxjTo5Lh7kcLDKtTrWKC0HeoVF1qdlqh4UaDSU29dQJhgEh6dcAhddaPheBPiKW5t6sKpa/mOBqwQWyFdvU75ryNHk+RF7dk6dfaBW6nHTa3fRUii6YzS12DxATwnRc5ag6hHDzdrWxhXCxodvjCJOo0Dnl4Pnda7afP7biM0OzTSjkmtTCzGXlmI3Ik5I4dd5l/0F79+N8/1DWls6WdL3TCMSJfjISnWMMppD2+b3vUfXrq011W9M90NvBOmfqXrgtuQHMPuqvqU4jCHmNEZryxiDURzbmB0Lz5BEtQ6EL3k0XDt19e4ApqxgZpHgLmzWITperYlxFzbvoB2s0WG/oLPV+g9HKrd/niRaGPTIb1vQUGo6VBZ+QZQuVYWof5nfVBzG8uA0Vn2rGDnwo4zKVqvnL3QnJmsGaDlGUI7P0PITE1767Y0KHZZhl/vWlKmyieaY4U04cnjU8yJDF6qZbH3v1sZlqYQn58i2xk91GfRmbKWw+Y0TRzrUy7pi0WkvBCCCBOAmAgDoWozKRMlQxi4y0SqtxvoN9Z6ErbkbWWXYttA6tFBm3sO+EICWXAB0b9SaTDSb/Mf4OPTC3Gbj47xozcXH2cXMLHnm49geHTJ6W/jY0PlDV/88SPtmjBXwcX5vzbW7ed8yTp9KKhg0aJAZ+DgpNWaualyrkmRb3V7Nf415ILQKPs5VTuuctQbrmIWP0+vb6xqxzyJDDq8ecD9j/IaPVsHHOcJpnF3WYByBJfk4JUdNim+fnuI31/tT0pHvXyOsio+zgdN4yyye7FoRH+dT8siMVkmxkvRas6d+6LW+loX5OFmclptmccsVKx/H41enRXNT1oZvXHnup5m/qN5aBR8HyyFY+Ti79Hlq0/8LfBz/lju8nW/EhOWsTO8adcLnpoX5OO5tuPg4Dm3Mw8eppfy+/LBfL+mm05ubTRNcrsM7H4c+N+eBY9KkDRfHRNimuPg4LjHVHIPfLg2bfOTqsjxp5RW883HoPoIHrBw4sSrf5v8rPo47mxsbfFjZVBm+TrL7UITq2ePeVOds1yUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAb0IUPL3jI/30zRzz67sVj7yreOsP6fMydnIKNjP5XNgq4sIiCR7EQvZJ+7snAXqn/NASf5gU87ecggf9o5z/VjWW/PW9xyj5KoQIGU8QEAb8+lPw4zKy4KT3YTOmQlyGt4vubJMfn0eHNp1Oo1dFL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrL2ZIncI2ICdU821L+N27aiqqeN364+jtmrksJWFnr6slzxI2/wiU366T2eTmwWcdxwWSSjGd0iXmwWWTozI/lV8KeAuYMdtNmT3amaRqX9IXlGx8zIWKeX+A1CLYj6eL3LZC1MebFabfFqVQyUY4SUwFjs77B0WCeP0xqUg9CPSJYOVUcPUsTob0I9OnM5F79u6G61q0zwEYJZEkXqg6Lq15oh5JcgRHAeh5Bfgv/o8kvh4+53jDr1UjT23I402/cRV+nyS+k9ckbdTuoTmHVk6fynWVM7ku3kYdQiyzPRvxghz8RmaTuoHkCYEWmt/po/N26o7x02O/PQ8YfOe8NMsRb/u2HArh+gXReiUp4ZYAg9b2aRwpN2sL5jPy14h8S4fIeR/zvmaoZ7+0aORKhEsdmqin/+aAMJkS5Zg05cLzg+71QvtFforHVdzjx9Vrk+p8nKSPBPQmgdEw3FYbQHnEa7Zl6jkS7YJlSCO1R4yyj9uMdsQ45RtmSvnpQofa1M1Co0GOsOfAXFYaKPPHtFO3ttLBmye0bJPJcl4xvRbVUmLFknH6DSC1gIaJtd8Fu9meHKu1CtryKGKy6jnuM06i/NGFpfnAUUiM6uwPVZ0ARxmkwKZ0e3gZ6OWaYDu8o7o9ST8EtHxIhK9yIvrIsTId2bLaR3efQgoozqQsCSvYdKjtrlMp7KlY2KV8bqhLCuLDWsw3jFVtPaKSI2Fk5F5CoVUX5VCQvnQfFuTyTA9IKDbI+AyJcMpduDnnELlpjt6ocqhucuE+w1uTy9PVZ9F4xNLXxg5It2319/w5ojC8L3zqnQf+yy5Up6gRfkKxaaEtKLrptKvAdY3YBYZYlR3A8wwf+VWZSakzWGW1CN9QokLlPHTfxyPOcH2fZhPj4bPFxKM5aUYw0DxtTxBN78GOebg15iBcvJWA80Yo/NDuoMcUlPBXm+e3nwbrXg/avu32nx/sJEar+Ed5sL/s2c8K+0DPwMhpiphbrxEQHZzuBN0FIdtIq7RfQUpq7mexCu4IgIEWD6e2ADgggwzdgCjNF6Pq566xW/ns9tYbXdq7U20oNtn9iUan8ppICez4en5cIOZw8MXbirVxkH2X51AT2fcF34rZCwZSGr/xQlBwRnrCmg59O9anTeYNdzfjOjptyxOVsnrICez/322R/tOw+QHWr1ya6S12JFAT0fROVfUtsQUfmXLNSLqPxrSzQ1amnXrI9DTtCiH17nqLbH/AWayhJNz0vmNjixPUk258fo6x2P1vUDTeWIpsa1Xq2NapkasSQzZE6bwN9agiY7ounOxrXxtz0GinPkNy8NvXynJmgqTzTNKqs9Mf/xLvG2xGsO8XtXJ4Ame6Jp6pgOT7Pb3wqd5t8/+1/tvO6gqQLRdH2gS3RgLV3wgpTaTic0VW6BpookUHbj6vzxKsRvu9PeWntthN1AUyWiyfeO7eWqdknBa/yPSkbatDgEmioTTRW6+uR2dUj22zVmaP+Xw6f3Bk1ViKYWEen/vtg6RjJpb4vcK30a2IOmqkTTyWsXIvf98Nxv41ZR/W+tfzwNmqoRTT3KfXjv9DkoYNUgjxLDQ0Nbg6bqAlYZKAeiKeDQ8ZvtwsaFZe64mjku68Ye0FSDaEp4/6NTztrb0g1dfJycfce6gyZHokm5e1ngvKslxOM3uPY87zjjDWiqSTQN9VB1+SpzCdr+e7PaQ67YLwZNtYimYZNPXh0gl/jNEt38uOji4QGgyYlo2vssr2X2sn8Cp0+Ovjr47oDnoKk20dTMJn7rmi03xBkfHJ412Tb9PWiqQzSN/XHN9J/t2oUuUVVt2qxkX2ivukRT7OEz1d2PnBCN3n6yW4r7hDzQ5Ewif+JGeMZkUcCkL/fO7pMOnw+ahORdczteWra4hXh9qFvlaXV2VWAIVbkIWISq5uwRLuvtODF07d7aHVMlTod4EKpqzuaiqsfu3Zx94oxs4Ya8Yedqj1hKnbrKhiap1DGI0xdsCXAj4g4heV4WK1OnTQAJMXBCRAVAA49b0B0U8tGYs2qiwVDd8MYyga/vKehfETuHnUF63MDXuAKa+adR8QdBvtvINhN8c91WB02tMCzr0NJeZXk8jMrzBiFc2WsDAYpBzTtPu8kEnr5G5cQ+kQrQNTDeU4wCljhSa5XY8RPwfEoVNnUi+4lQroEnrtUJymi0hG3utjXXS22TjM1c8mZV7ME1VPq4/nuY9PH8Jt5L07hiPYYDrlq+VpHJMY86GpnJeRADLSbfXLp4uU6YIB+kEIIERF/Cmp1nHtm+fv2w7h8l03o8Gu8ZKv2HxjQkPhbBNCRb+LZeJQ+is0tR1svyxDo7g21uJHAu5KEokvCnoAOJBGtn16UOJ8d2lU67MrNL5pW/B5p+BIsHsBpwggW6OhF/WrDFn/8pNxRJuYGeoZtNuSHDl0u5IcG4WGmgcoPt+GvyMatcApaO3uOo2brZk8dgSfdAPCg3TPHlOug+2rhgWVTlht1/DL546c6l0NV9L94LnJxLKxNqAeWGFE5UEiwTEw1gmRa2wMSfcsMToSQ5bnht6cyWg8vfXfqCeurIksoN0Zym62mt6QzPyg25Le9P9/SJDp79T+9DD2v2sbGwcgPmZViP3o9GZCnFpdww8XXjbzunb5Ks93z6KuRzqUFWoNyQwglOgq8ZlRsm/lz6wHpHkXTi1jiPk3dfPbcS5YZoToR66vO2lmx525kF8tCvbWsEjFlVt8yL+sOpaxS2oSBHE0ZJQw1fOPDTF8OF1QTITBjMEGPBryDvShUCbDU6XKMAOFuiv8Lci0jdRhqUONHXL9HPzcyiyRYjyuKOFhNlcRmpkghYQC42blkBe4ACGKCPvi+OnRfxVCnaNy/57ABVqTzabhK8G3FAAbtcWKZE93881LwdJSbYV4xOKGwqEySLjeIdO2IAkf3CNUapAd0XtKOD7bgFVTUCzfnwFTeaZ7/0mPaAOiyl5M3MYZnfVBhgV/uWDZ+SZxuyynvZuPvO95vzANggTsBAj7JIEoXHDPg3LQRsP0w5LFsOW9phtuTwqi1LHn83YtW1wKnZwYcWzL7UvAomZAKMIRuapFHoac9YUiv2i3L90c20BJhm2nN9d9RNWj9PlO7y923l0+rteDBtD07ThlnItKj8eEYno1Kt8qEF/DnSmBtXDAxsFP6DeMGc2BOu8Vvq0jf8EIeq8Ku8r915Ej5pC4pUssUTG2JEYPRhC4x+V2vcG9J6u2hj776OU7ofpJZVqgbJrzq49AlPMisgt15hRMV4L4k6AUCOU3Cxj4nJ/xhscphfKB6SSg2KiPRtu8IfmGEO5F8Zmo2Azv+4HQD9dz9EAfn+oPNfb2cqP0UcWgAUuNwAyyDBbEOdKHQli58D9HABJPg/3Kdp4Wq0OkXBol5y13n49s0LSwfv/ePNnib+a6jqVaW7Y6QDpo8hrhfmY/aVzK0XcVMmmaB173TptmuOiT5mBoA5D8Js44comZ7lhsFs6pJwwwLm169uRasTtYroZKx7YJwotBOo+2n5siHbwsZ8mbnmt7c/X6CeyMj/XOb0l9LIO5XSnYCtDwq2mx4YbIRLaMXmEs5VqP+hWSt12Pg/3oZ4Xhklo7ybfaQC4zAKw5NVKoQvYEuYPcj7IBEW67PKxCFylTIG7+QpSl28UA2mKRrDPQF9l57jORlWoDYbemwPHj+G6NqhNt+WAnTnmjz2HYIwHh5cdVVoMSI2hhgSAO0X3ZYN96eEr7y79P3OkBFXqekz9kHM9Bm/XNhwprMSTD2KBpBbB5FbhkoZYOXXpe1Y02cDkXPSI6ehdDXYtZDw9f5rz+i4dvaSeXev5bwZadebesyd6CDoLR1qK9+jGKI1lxOtqe0swmK37ZqapCiIQ/0CnB3PEJDSKlSe8G+0ngGB/WCSG6fQ0Chx8MdUx+2ABUhoWPARYFKdipsaaWV6YDJlkJho1/6exCh4h6LNdfbCRoFRC2GO4Ri2MFfA+btE149BQlEx3nfNs9QfxHNKrClzcJrzeNrGBHwrxMYEdrk4oJjLCcVUfaBqzRaorKbmH91b8lP+uBhK/iW04yr5p9BD3sbqIadz4/iB/E3UhzF9Ss7y29vL5diWjzvdeID8VnsuyC+1JyFvyxsrsyIJuRlYmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCszYWRZ8YGICwEz+lbo371/3jUG5Q12XmTvo9MveaC8+bLZv17IcY97W8v5r7aJGXD9eSWq/avii/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MfwA2pYTzTIKGYNj2Pp1yWugjMsBB/ZGhWTmYKj6B+wM3kSdGwIz8hHHb/E74bhumpKHGisGrISuQnRc0+FhFhax/hGRT6zkxy/bVWGfKXlvxLmNfBFg98iXC7juGOCGYVl9lbvhzYVVdT4koiBUSpT0H7+6ct8gnKHNipevzPWTLeKRFjO4W/vH0qqH+a9WTAif6pR7lAaUTnCjt8mUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdOXCzpPb9wcu3vqh5bqYL98suJ/r7U50IuSGHDw8fcvI/dwm+t1DCFF0Ab1PGIEovgkJzquVP0xMdH4QsSftdNqP+79vsoJdSwjSb5wgnTByX7ehVIm/uX6pKr/LYBuL7A4q5cGAIwt9qoTPePR3ZHKpqz2ou4jk5zJ3EfUtxYHOfk50tur3dNuxBcaX3cNDbbw+SzKXn/fPiQjqxVyIZ0ZCGxZwXaj7uXqqW4raKMl9+gELQ/cGDGV/A8fUEqbw5/0QC1ACAFtd5gKU6du0bn2ck75vmy9ZmfJB1XrF1tXUxU5sP5YlrFMaC/PidBdnKhMc+OnmEKzOqD62FKTmrug1JzawKmBgKcBIY4cqdlXt9JtPS4Xvcj07b3bOjH+pnkgG7kUDVaDJzCkBhKkuJ0zVECvtpm2h0feaLbaFBj0N1kfgFpqQkTt6YtAQfqg9mx+SND7v1Tb9QehS/5z3urY169DXoRPkSUJ8nQaxXs6WmjfG7yN3e7BzKXJhoiIFXlJolNFEgDTILdEPd3E8IWqlvECzgbiKGssEUaJTUHEakZOnAdRbiIxyVBWwbSh8cRc8DvItXXeNPnur+yjR8hulMjZ0vkiVLf0B+wBmioRfLmzM0c+5mTjmIDO5C4RnA2rMQTXMAJFRbBJ7/Hm4RNIX7F/WIGy1U+iGL9ofvR+GlqHu/uH3M3f/iOuF4ZPyaMm/LWrODtn9cpR75vB5a3nApwMnPqD7WIJhYIsRN4bgQLQX0H+Mq6Jm31WuiVPouIy2Ym2nWWs3/RIweeaF9ie3xt2lGg2/n2k04jrva7bAKm6cVnG2Kqu8O0xaxajwVRFzeEmKGML5Ig0zKfrfmPZ1ukr39u59aM7acw5Uw4Rh9zMNQ1zn2zAiT8KdwGVGxnw1zUsm8BMZNyFz0mOATSxUysLwKOU/OnbsgfcRB/5sNttp5qiSNEkh/AMQkkJEQ3Eg0oITkQYiMq53YIvrW2aF/Nm7nW/Q+D+/6myP3f5AtTH+jYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U8zL7JH7dCJ5oCRHBE2WwX0RgVvehk6k74LWJVAMXT8IEfuERJvxJkC8ecvV9Wt3VTwIO9J177e+tgzpQOx9bYqNvMHPwh/S5751OwQkcgqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+Pz+nFA4PH4leMKDFc4tWVIHzWgwwRxRgUMcaAEYM5o5Wv3FF7008qU3Stzl42Lm63Ilr5+qsHvNObJiH7/a/cEZwXJLWq2Y75YvgylTF7TCKECrTkbIh7RQG8gEQnnTgThVNTtUgP0lXpuB6LKYQOLXd0IUbeJAaUjWnohZu4B6FjRihN0nGE4TeJPwmut4kXS+SrjdZZD1J+o0IPUk231THX6kBPscY+dtNI/6sF3BoZ/CEB20q+fSeXYkqfytmjg5xoeJ2GyY/S2lbMVW8aWq/8/3OXDB5aQmMDkdoTm8UewESdCqITyGEHNlAKopI8JNS284lhPQLnzQyTOs58cWkIogE01E6OfYviVBZO3D0hcnecxtl1OcBJRtOlL6IGBKAnGwXvNYCTIwMAIjOeqfGMPyjmDGMuF4cC95Yj/mEWmhy9cCQIvyp6D/mT+lyPmbyp5tFXP50vuh//pSwz2WF4EjG4HaBC+WTFq+7HDiIB39Kl2niwVNsFHF5iuWi4vanHe02t8qbcSwi66fJnZ6NPt2eB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym0+Jmu8zJEnSXR9F8VuuZkTyMCVIFHFNCWL1kPvxRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChS3zLsjXRMnGduxZen37S2fYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIUsm0kE1zuCBxoW4kgbYKkXJhcE6dMDFXEUgKgHX45EtY7LXi9LH69qzqp4FWqF87q2kg27lLHUxUxEDtr4LlBnRJ/qjLkU6EGlEaeEpQYA2W3SHhLlIUX4dZLgUtYrq4iSjLhEwJYRVUpV0mgFlSBQKTTKOQJ+t8xYWL9PURXlVl9WKargPK0VEfv/zzE5R84l+q+diTjsr/VY06XV7Xe5dF/OIn9H/TE/gDewqS9wHxhEqGbS4ZJhG4uGSYRurlkmETo5pK50OxxTdY5fvCX7bulOzVvcrXNBXIhz54pswc+/xC2enApr1LSH4MYwRV6fWRHoovx8hBcA9ksaaXl2umiw2Yr1/5dzFWu/RxTSobncu1dbFxqdtl0UbrsVeVVbcZ5UnfnLVOu/auYq/jtB8sIZlBrTo8cOdIM5drPjqgvaXlssGxChY6j/2xQhXq63FLl2p9zWueBNVjHLOXa/3z761ufMz9K56y51GDf+r7HraJc+zVO45yzBuMILFmuvW1d/7+bl4wLmT4981TC2ZhZVlWu/RdO4+22IqEgi5drvzPgfckbITVCVix6dvbgRVk5C5dr38hpueUWtxy8qdjKtb8tu61O+VPvArY6T3j4MO/5K6so147lEKzl2s/pNxCD2PLU/1K5dnpZDAuXa/f34yrX7u1nnnLtPUbffTjt2eLgLS9q+OXV3SDivVw7XdyMhxLkUj+uEuS+fsVVrn3k7ZT5WcMy/Xfkqm0bHNz5lfdy7XQfwQNW3pxYNfL7/6pcezCbG/ufCH+RRPjp1YTMJsK/2I9LhP9npu/kQYQ/+kevj8eUnuFpDTSJx8r1mMLjaXOefSTULF/ox6VZPovpI4tDhP9K+YuDBTuayPaMejrv8kSJ2OIi/BM5UfnZvN6Qc+5g3MEf/kT4T2h3Ju14vz1spc2z3ya0e7zRakT4dZymG2gZ05ldhD+kljjy59SKwSucnv7TySfPkqINcOEV8zKsKurAy5hNhH+C+PPNF00qBm/8e9uONppj1H5rGRH+iZzg/OxnRhH+P/ptrxBUabtkVrt3PoNqVbxmBXIWECEdJ0JgTBN5Wwhb3iYTN2n6vcNV8Zr7dddeXvyWKkBrhx3iS1KrQERn5my2LDj75G+RKPPvJ7QwAOIadXJcPMjhYJVrdaxRWg70CousT8tUPSjQaCi3r6FMUEYC8JVL4KILDd+LAN977FNMAw9WVct/LHCVwAKdPPX9+KXf0BMBS6KubfH/XULTCylK7S56sXmaYzS12DxA7weInrMEVY8YbtYal0KVx4dvjCJOo0Dnl9cdf8qeWn9+YPblb/MDX7tSy/6WlmI3Ik5I4dd5l/0F7//ej+v9n1k8WdL3TCMSJfjISnWMMppD26a2+LRM5zdRmrWyQbelMyedovZV8gOYfVXfUhzGuMdpjCvWkf4IjNmx8AxJVOtA+JJHw7VTV+8OYMoKZhYJ7sJmHaLj1ZoYd2HzDtrBGh32Czpb/dXl3IApa8ODx03adfTHyl4LqHENfkGULlWFqH+Z31QcxjrDaazDVjFy4EcZla1Wz1/oTkzWDNByjKDwzjZB0oYvZDOkC5tO8Wnax5SpsonmmOFNOHJ41PMiQxeqmWz930ZmqYQn58i2fhyf2W3c/fCIhe9n57rNbORs0WkvBOClHwHATQQA0LUYlYmSoYxdZML3X3cv54VTg3akyqY8rB1w1KKHfSEAF7kA6H5Un2iG/sf4OPTC3Gbj44yXcPFxIiXFzcepeLv5897VkoLnHu6cbvtmyQsr4OOMlXDtbg6TWAGpIDo62gx8nEkVzo96fD8teMf9T9N/H/oh2Sr4OEmc1om1BuuYhY9zLGnLaceJy6TL67y6FNlpl6NV8HH6cBon0hqMI7AkH6du2p+fjz/rHTinZrVfXv4dNt2q+DiBnMbraBnjWScf5+7u2U9/+7Oi6OD8JgdP1Pn2wsJ8nJaclmticcsVKx9n7tWT3x33xgStabhzeblK/VOtgo+D5RCsfBzgCIk8Nez/Ah+nwokb4RmTRQGTvtw7u086fL6F+TinJVx8nG3MlLZY+DiSfj1LRk59K5o56e3Q1lsTVvLOx6HPzXngmJyUcHFMDkiKi48TV7Hfz6X7h4QvuL3p3cUWgY145+PQfQQPWG3jxGqNeX2upfk44WxubPBhZVNl+DrJ7kMRqmePe7+l7pR0SYZnJwM08qR45glTI7YvGkiV2iR4eky/m5PqgZ8yFcqhZl4c/Ab0vHtux0vLFrcQrw91qzytzq4KrM/H3Mkp2Mjof2WjgAuLKHgUC9Er6eeeDOyV+k9D8GnGwtN+DhL4j3b+M6axLDC90yn7KIUKGEwREwT8+lDy4zCz4qaMYDOlQ16GtIrvb5Icn0eHN59OkdJUMNAGrIx7d4TNBOXwJsohKyIYMA5f8aXkQT8kXwQlD0OzgxIsVvIGGdlNEVEi94iYQL0zG+rfxm1bUdXTxm9XH8fsVUlh1DCCOn1ZrviRN/jEJv30Hk8nNos4brgs4taBbpEubBZZOjMj+VXwp4C5gx202ZPdf6KuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6kiNHfhHp05nIuft3Q3WpXmWAmBLMkitQHRdUHd0DIL0GI4DwOIb8E/9Hll8LH3e8YdeqlaOy5HWm27yOu0uWX0nvkjLqd1Ccw68jS+U+zpnYk28nDqEWWZ6J/MUKeic3SdlA9gDAj0lq3z3z6mvzj1vDVY9stFHeVdzDFWvzvhgG7Tod2XYhKeWaAITSug0UKT9rB+o79tOAdEuPyHUb+75irGe7tGzkSoRLFZqsq/vmjDSREumQNOnFdVGNPztGED/57b21/8eanzy04TVZGgn8SQuuYaCgOow3nNNpg8xqNdME2oRLcocJbRunHPWYbcoyyJXv1pETpa2WiVqHBWHfgKygOE2mrM3O/RUYuGCnZXC3NP+hWO8bwKhOWrJMPUOkFLAS0zS74rd7McOVdqNZXEcMVl1HjOI36UweG1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0J6JFtI7/LoQUQZ1YWAJXsPlRy1y4Va/bRcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3uiBUVoBQfZHgGRLxlKtwc9IxkKU3T1QxXDc5cJurU3lUdmj1XfBWNTCx8Y+aK9OmQIfk4WSqZsr+ffTXvrIL3AC/IVCyfe04qum0q8B1hpIVZZYhT3A0zwle2NY43hFlRjvQKJS0yViRGbt98UZWo9f1L2y53HWFKONQwYU8cTePN+nG8OeokVLCdjPdCIPTY7qDPEJT2lqRFd88qMxv5bzh55/e10eRdqv4R3mwv+EE74xZaBn8EQM7VQNz4iINsZvAnSIvSKu0X0FKau5nsQruCICBFg+ntgA4IIMFFsAebMAnno17Y1AsasqlvmRf3hVF1xW6woVpQ0lEk3YQsvftSadERBLWGMIhb8GiMckFqwcJs7mDDidHw4jyROpo00aAK50DfpYavbqf47VLa7pz/d5oV+bubCLNliIMbvQEojmnVCIPgdFZreAYxFM0/wX7zOadriW58W1AnY2GPq9XLdP02iuVx4N2IXD7tcWDxadFdees2N++JlLX54IosJPmRiPKoED4BCgMaicj4hcAsPqQAVNsFxxAAi+4VrjFIDui9oR7MzxRW/dx/pnCs5VOF6n49DP1JrGpeVkjcz2Zn5TYUBtrO2Ys3ikCni9LAbEzP3BefyANiMmVyAgR5lkTCGH4mBf9NCwPZj3JkxO8yWHDTGY98yR8lPlgzJ/Jry6cW1kSctSmOElnk3g8syS2dYxjLI03uHea5v2GfrsAOH/DqKsgIbdvt7yf5wi9U33OJJuJQtqIlTfy9shBBxrStbXBPuu7FL99tM8eru9RyWJ3pTy3+WjlTrGCd2uCZNzvgNIKqR58Y08JkhqVI+VKlFT5y6Xm1Ur++xPgHTKm87F/LXLH/UIyC0p7Hrhs64oTOZewIvbcQIT5VAeJqRaVx46o6/H6xZiD0I8s2e7hn3pY78n6DRfaMej3+d24X6ZvhHMN+MuF6Yv43Jsy0dKpkSmhPUsc2K9xdfmuhvRQCiNAiRFDWqA8Go9p6LDFCsM0nMQvAwEjQ9Ep8d/Tquqb54nHT00ScbfvPPopYttBGD25hDCbtaGDb0McoDNg8zubChdR/4QbYCjrIM+dgkwoP/rspE4jySFh2//9lQt9P7LyND9r1vPHqO8+x+1ERHDD+EmejglwvDSlsyuUZ4nUrBs7b+uXXgh93tWbHqplXgR5zyRWONwE/Eid+7OdYTMYxkOVXAPVEM4fKQ5ut/+OAHp/19/MfmrelZ4V3rVaY5AhPjxkUPYqTb+CHixk1PrDcTcaNbkfaS8Z5n9v1ko0cVveubMqpM3FSGhJQ9s0+QW5j/Dw==
                    
- true
- 
                      iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
                    
- 69d1541f-422f-4fd8-ae5b-1cebcb7501b6
- true
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- false
- 37
- 0f29d6b5-557d-476d-9fcd-1e35aafe35d6
- 1327e01f-51fb-4c31-b529-4416006b1a3e
- 162f3737-68e0-43d9-9000-edca353ab239
- 2a5be90d-6a4d-49c0-913c-d70e26179b8b
- 2e2b4494-018b-4b3d-9bbb-fc30e0fbb0b7
- 2f8549e0-84db-49b3-9fd7-857b8fbfa7c7
- 3eb6dcf6-830f-4fec-9aa7-1b584e652d50
- 4ec05b12-4c8a-486f-8714-ddc1a05d9a38
- 53d8da27-6143-4850-b0c3-4f1386b53720
- 5782dff4-9e08-4705-8226-1768e292ab2e
- 599673ec-baa6-4810-ab0d-b293bbd9bb44
- 6c12a62b-5fa4-4cb8-880b-d3fa7400b8e5
- 6e52f4cc-ea4e-4f66-b842-f541e2736850
- 806c65ee-b8de-4133-87d0-9b4c6414ae56
- 84ab60b5-0405-4c03-8a94-29477c44ce75
- 95251c39-6e20-4161-97ad-92420e60dcc4
- 971a627c-1390-4c0a-853b-fb1abcf48166
- 9ef3de6a-acfc-4d39-ab7d-19ba384fa423
- a15a1581-bcad-4009-b8f8-bed52caa28d9
- ab6c7f05-12aa-4d56-b76d-a62f99dc474e
- b2bd482a-2fe6-41d1-8580-03fe3bbce4c3
- b6a15caf-2993-4a1f-b467-f63b1154d573
- bb37e36f-b619-47cd-acf1-af337ee168cb
- bb3d4e0b-5b1f-4e69-b754-6fe5a8bc47a8
- befb5a7c-a7ef-40cf-b5c7-cf2bb32a8ea5
- c40aa5fa-e68d-4bb2-abe6-a2e720c42943
- c8dc7fba-2802-414c-937c-0ee49475db9a
- ceed626a-062d-410b-b4f0-75cd654a34e3
- d965eb26-5b84-469b-934f-8d2e6540c7d1
- df6b3153-980c-4183-bc57-d1b62bfa6f4a
- e284a31c-8ac1-4f31-8a46-c0be553a3b44
- e3c3b7f6-afca-405a-b0d9-09d8922ada04
- f08a4db8-220e-46bf-93e7-68d63cc48dda
- f6a14f25-35ed-44f6-8764-6a7f6d50d3d1
- f6ee1b2e-83fe-4987-9449-6c078a80bfaa
- f8dd3c7e-c3df-45d9-8cb9-a5f3d4eaa8f6
- fe56a2bc-596d-45fb-9cb3-e28b207d7009
- 53133e66-86e1-4322-bb85-7afca5c21f4f
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- e860b9e2-e037-4c18-988a-393d0094d8e4
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- b2a58353-e9c9-4e65-a900-6efa66489724
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- 1af94696-7c3b-4341-b4bb-415b935cb441
- 17750273-1d4e-4a10-92b1-f4b16af3b73c
- 43f684c6-6920-481c-81ce-8a3096268d23
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 88db9398-ca86-4220-85b3-d1387046010f
- 937bac2b-aa3f-4485-8435-a74b05842dda
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- 8de15979-110c-49a4-bf71-f92c5c15659e
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- 9c973484-e313-4490-a780-3cac6484f2c3
- cb30ccba-a894-45cb-b1d5-847ad7005125
- 20d03587-b988-43e2-924d-d6655441a5e8
- daca2ebb-26cb-48f4-8885-277e43200f92
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- aa2a8593-f318-4546-bad9-74c7978a14af
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- 735da924-e3a7-45ca-9564-36c125627c0a
- 326b8016-5135-4828-b69a-a21c171e1a06
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
- 
                          1276
                          -87
                          103
                          404
                        
- 
                          1337
                          115
                        
- 20
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- 806c65ee-b8de-4133-87d0-9b4c6414ae56
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  -85
                                  47
                                  20
                                
- 
                                  1301.5
                                  -75
                                
- Second item for multiplication
- 599673ec-baa6-4810-ab0d-b293bbd9bb44
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  -65
                                  47
                                  20
                                
- 
                                  1301.5
                                  -55
                                
- Second item for multiplication
- fe56a2bc-596d-45fb-9cb3-e28b207d7009
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  -45
                                  47
                                  20
                                
- 
                                  1301.5
                                  -35
                                
- Second item for multiplication
- 2f8549e0-84db-49b3-9fd7-857b8fbfa7c7
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  -25
                                  47
                                  20
                                
- 
                                  1301.5
                                  -15
                                
- Second item for multiplication
- f6ee1b2e-83fe-4987-9449-6c078a80bfaa
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  -5
                                  47
                                  20
                                
- 
                                  1301.5
                                  5
                                
- Second item for multiplication
- ab6c7f05-12aa-4d56-b76d-a62f99dc474e
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  15
                                  47
                                  20
                                
- 
                                  1301.5
                                  25
                                
- Second item for multiplication
- ceed626a-062d-410b-b4f0-75cd654a34e3
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  35
                                  47
                                  20
                                
- 
                                  1301.5
                                  45
                                
- Second item for multiplication
- df6b3153-980c-4183-bc57-d1b62bfa6f4a
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  55
                                  47
                                  20
                                
- 
                                  1301.5
                                  65
                                
- Second item for multiplication
- e284a31c-8ac1-4f31-8a46-c0be553a3b44
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  75
                                  47
                                  20
                                
- 
                                  1301.5
                                  85
                                
- Second item for multiplication
- b6a15caf-2993-4a1f-b467-f63b1154d573
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  95
                                  47
                                  20
                                
- 
                                  1301.5
                                  105
                                
- Second item for multiplication
- c8dc7fba-2802-414c-937c-0ee49475db9a
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  115
                                  47
                                  20
                                
- 
                                  1301.5
                                  125
                                
- Second item for multiplication
- 5782dff4-9e08-4705-8226-1768e292ab2e
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  135
                                  47
                                  20
                                
- 
                                  1301.5
                                  145
                                
- Second item for multiplication
- d965eb26-5b84-469b-934f-8d2e6540c7d1
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  155
                                  47
                                  20
                                
- 
                                  1301.5
                                  165
                                
- Second item for multiplication
- 95251c39-6e20-4161-97ad-92420e60dcc4
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  175
                                  47
                                  20
                                
- 
                                  1301.5
                                  185
                                
- Second item for multiplication
- a15a1581-bcad-4009-b8f8-bed52caa28d9
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  195
                                  47
                                  20
                                
- 
                                  1301.5
                                  205
                                
- Second item for multiplication
- befb5a7c-a7ef-40cf-b5c7-cf2bb32a8ea5
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  215
                                  47
                                  20
                                
- 
                                  1301.5
                                  225
                                
- Second item for multiplication
- b2bd482a-2fe6-41d1-8580-03fe3bbce4c3
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1278
                                  235
                                  47
                                  20
                                
- 
                                  1301.5
                                  245
                                
- Rotation angle (in degrees)
- 6e52f4cc-ea4e-4f66-b842-f541e2736850
- true
- Angle
- Angle
- true
- 0
- 
                                  1278
                                  255
                                  47
                                  20
                                
- 
                                  1301.5
                                  265
                                
- 1
- 1
- {0}
- 0
- Contains a collection of generic curves
- 2a5be90d-6a4d-49c0-913c-d70e26179b8b
- true
- Curve
- Curve
- true
- 3537ed18-f4f1-428c-82e7-541bd20996ee
- 1
- 
                                  1278
                                  275
                                  47
                                  20
                                
- 
                                  1301.5
                                  285
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 256
- Contains a collection of generic curves
- true
- 2e2b4494-018b-4b3d-9bbb-fc30e0fbb0b7
- true
- Curve
- Curve
- true
- 7428efec-7c04-44c5-9681-0bb0a240649a
- 1
- 
                                  1278
                                  295
                                  47
                                  20
                                
- 
                                  1301.5
                                  305
                                
- 2
- A wire relay object
- e3c3b7f6-afca-405a-b0d9-09d8922ada04
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  -85
                                  28
                                  23
                                
- 
                                  1363
                                  -73.23529
                                
- 2
- A wire relay object
- 9ef3de6a-acfc-4d39-ab7d-19ba384fa423
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  -62
                                  28
                                  24
                                
- 
                                  1363
                                  -49.70588
                                
- 2
- A wire relay object
- bb37e36f-b619-47cd-acf1-af337ee168cb
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  -38
                                  28
                                  23
                                
- 
                                  1363
                                  -26.17647
                                
- 2
- A wire relay object
- 53d8da27-6143-4850-b0c3-4f1386b53720
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  -15
                                  28
                                  24
                                
- 
                                  1363
                                  -2.647052
                                
- 2
- A wire relay object
- 3eb6dcf6-830f-4fec-9aa7-1b584e652d50
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  9
                                  28
                                  23
                                
- 
                                  1363
                                  20.88236
                                
- 2
- A wire relay object
- bb3d4e0b-5b1f-4e69-b754-6fe5a8bc47a8
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  32
                                  28
                                  24
                                
- 
                                  1363
                                  44.41177
                                
- 2
- A wire relay object
- 0f29d6b5-557d-476d-9fcd-1e35aafe35d6
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  56
                                  28
                                  23
                                
- 
                                  1363
                                  67.94119
                                
- 2
- A wire relay object
- 162f3737-68e0-43d9-9000-edca353ab239
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  79
                                  28
                                  24
                                
- 
                                  1363
                                  91.47061
                                
- 2
- A wire relay object
- 971a627c-1390-4c0a-853b-fb1abcf48166
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  103
                                  28
                                  23
                                
- 
                                  1363
                                  115
                                
- 2
- A wire relay object
- c40aa5fa-e68d-4bb2-abe6-a2e720c42943
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  126
                                  28
                                  24
                                
- 
                                  1363
                                  138.5294
                                
- 2
- A wire relay object
- 6c12a62b-5fa4-4cb8-880b-d3fa7400b8e5
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  150
                                  28
                                  23
                                
- 
                                  1363
                                  162.0589
                                
- 2
- A wire relay object
- f8dd3c7e-c3df-45d9-8cb9-a5f3d4eaa8f6
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  173
                                  28
                                  24
                                
- 
                                  1363
                                  185.5883
                                
- 2
- A wire relay object
- f08a4db8-220e-46bf-93e7-68d63cc48dda
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  197
                                  28
                                  23
                                
- 
                                  1363
                                  209.1177
                                
- 2
- A wire relay object
- 4ec05b12-4c8a-486f-8714-ddc1a05d9a38
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  220
                                  28
                                  24
                                
- 
                                  1363
                                  232.6471
                                
- 2
- A wire relay object
- 84ab60b5-0405-4c03-8a94-29477c44ce75
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  244
                                  28
                                  23
                                
- 
                                  1363
                                  256.1765
                                
- 2
- A wire relay object
- f6a14f25-35ed-44f6-8764-6a7f6d50d3d1
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  267
                                  28
                                  24
                                
- 
                                  1363
                                  279.706
                                
- 2
- A wire relay object
- 1327e01f-51fb-4c31-b529-4416006b1a3e
- true
- Relay
- Relay
- false
- 0
- 
                                  1349
                                  291
                                  28
                                  24
                                
- 
                                  1363
                                  303.2354
                                
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.5000000000
- 
                          976
                          -140
                          250
                          20
                        
- 
                          976.9166
                          -139.8604
                        
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
- 
                      7J0JIFTd+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpobKE7LSQ3jYtSrt2ad/1tv3uHXd0587cG6875vb+Xv//26/mzFx3vs85zznnOc/nuXJGno6+HiyOz0/gR4pEIkkD/3Xzcvd1YXMW+bG43mxPDthkDbwMNoM/suBb+J+js5hOLC74FmmoWYHfZGoEviwPvDTu0Yv4VaGHzOO/cBpdjJZ9lrXmsvzYrGVguwLQLmPrClzFqTv0sgXL29UuwIsFNneEfnFXqM3Sk+vBdAdbBgOvpqSk/OR/ypblznL0YTnx29hs9k9lI5Yzm8P2Ab6FNdfTi8X1YbO8+ZcF/+tkxPTh/R454B9H73uEx4TckutsxPJ25LK9fKAvD94iqZMl04PF/9fLjvZ0Ez29B7nbG3aGAX8+iMsA/rwfl3U/Lof3F94/c1LBP2M28v6Mvh8T2/zO6nhL8O9bgsArbAM/8iBpb/Pf72/dcn9rbPPb7scdbL5a09uaLtIQdxR8fftagV/N/yx0S1DrQcHb2/Hr94Yn8N4cifX3hLTmC0J/Qq9gfor3d+gb8X4j7AYONt8bdJ/82/71Hl5r03eEfinvu0Oq8q4A6cP/rLCSTQpDajf9Ir4hILtAVxMwHyQvz7J6eiZ0e3kboIeBQ8GbP0zAn678Vw09fZsGUEf+EAA6mxvQGaH+0wF6WcaOyXVh8d7ZH/jnDi0Saaoa0LPmenp68EeQ0tzz06VnAd1Z4FfJg68I/Rp5G0cvBjPA09cH/l4FE66nr5fQm7uY0KkMtgOXyYWGgBQ0sqQF3gq+Itv0vgDePUMfV6R6e7M8HNwDaL7u7vChQLX2dXZmcZ3Z3q7DyLOaPMbU0Xr64P8NIxv6uvv4cllTOSxfHy7TfRjZ2tfBne1ozgqw81zC4kzlAFfrzr/0rF/+BryyLHQVGaqvj6snl/9yVwu2oyuT5U625gZ4cjuYOvG9TEr9DvVFI2cxMmQ2sX/UKywXGLEKv25TFuX3KP1yFlYOoPmaZZIG/ujc9JqAWODrMk2vgxp1gPTrZDLzl+8budemYl7GQdqBvd3Pnlj9cZvAXUnzbCVv6MnxYbI5TX5UG7qKjIEnF3KtfMPIGHq6e/py+R4O/F9Rvqo/lewCXpfs6Uw24TK9vV09vQDfR/Zs+lYdTI14vQf478eiw8lHpjVYhOxPj1e29TUGmqSgJm6OkkNw3wrzfdpXnDTqPr4CmjpATX2PLkqqm8GiZ0ZmrTnUfYo50NQRapLtqZbnrKhoWXz2qwLHK8gAaOoENU27Vm/ZOz2ZkXr9ekjRzY4NQJM01BRuYBQuH2tC37qzfssqv7CtQJMM/w5der4qZV63Wnc3zu8Uhd4INMlCTXmPl52okKm0DHF4UBnyI7IT0CQHNaV7MPZ/UYqxyK/TfaaQm0YFmuShppeDPpydumqG8Ubja2fZCi5LgSYFqEmLNTBOeXYYLT9isSxJN3MJ0NQZavLrJncmP0aPsfb2rEN0vYZioKkL1LRz48ObXl0vG8faTWQHa0yKBJq6Qk3qEaGdRunestpf93rVjamxN4CmblDTi0CXz4vTUunHZOqMXGVipICm7lAT2+wE2dnyOWXz3nE/nqtQXgNNilBTJ2kVHaWhfozMT49ND4d8mwQ0KUFNx5xHnPKnTaPvmdnNZbW0wgegqQfUFPtj3ktTf6Z59oltDT0m3bMCmnpCTUs14u6eMDjB2LB50Or0mKUdgSZl/gW397t+PWkKNZQ6V8l6h8tkoEkFatqk0PUMKfuw5TF2wuq40oZSoEkVahq2d2B4r2W2xvv871PvX0/8G2jqBTXdyoi5onVaxixzSJcNWRYDpYEmNahp4SBlizrSMpNQywrtUWOcjgBNvaEmurebxpLujwxifko5JPUt0QOa+kBNpPSNjt5zfWmlnyxPzR51SRNo6gs1XU7IXvpi1nLjSGaIjrWhTBnQpM6/+T3dspkpGpT1l+aOzPccFgM09YOabg+06RV+OYR+9J15tt6lMtAo/aGm08fjPxt060bLOzvSZk5m2TqgaQDU9NfLsujvX2VN0+x0nw0Jzu4LNJGhJurz0FOLvDItNlb1sVhYVh8mZ2q0SMCDDAQ9synH24fJcWSZ+LKbnZmSvsqnPUY/zFJGb34Z/epWnQi3IWfJdlwCf5mkQPXx4bIdfH2aPDzkuvkuSgo3FzWgHV1USa/Fh1PmhVoWnv0UaqMTYAtzUbR9umWyr15a5b7oqF3P+lIJc1FH2NXyZjP7mqx7cqf7Kor5B5iLSj/kPf6EuSktuJc0g1Y1URnmooxXlydTQhvNNi5I4hg8z9OFuahL82XVi5buMsydrPpx1BxpDZiLKpvtcXXeR1/T4JG9/WlBmqdgLso/pGLFxqHjKCnDS1PlNGYGw1wUe9/qYtaYy6ap0aSJ0/XKk2AuSu3nSNIFF2mTCKXeR+InUIphLsrayXz/iwB3SvoxrZCI0Z0Pw1yU3RBd9StPSiwS5Dw4IZsv2cBc1OTs9wMnXquxTC5ZqVE9atBhmIvSCHAbGnovyiyuenulXcqg+TAXdSL8ZOzVCK5lxKrjN/etvjEf5qIYO2TV/PuwrA6eYN2o+KQ2BeaiHqaOezvoSX9qCneH/UvZsuUwF2W5/t1A09gi04IYi9kKZ1Q/wVxUYuH3Bwe3pxrkechsTEh7pwdzUaMvsxhTZ8ibBOWlhmqu7LMT5qK4N+IOFPaYaJX64fjXOcMPP4K5qLlrOXnDIhIt4w0cErJ/vpOFuSgjL02bPAVbs9gLtfUbLCdqw1wUtfE7R222jvHOa5FP9Lmqg4TGqxraeB1W/GBW3sL1RhkVdru/T66pxmG8dsBtvGq143gVsW7gj1cR6wb+eBWxbuCPVxHrBv54XXHDvefzHaZG+UFldnvPaF39b0nx35KiBUsK5KwMW1IEGXbMT9fwpKZfMVa/dDxFEbakWDT3S90C6mDjI/aTGIEBe6VgS4phWmPUTluo0ZJZJ+Z7XKUWw5YUV2aNY5PT9xofTIhMPfDl0DjYkmLRUYY0fcNTw7U6umWTlKZeFnI2A9CcDXLZjoOz6Yibs1FtR2cjwqPwnY0Ij8J3NiI8Ct/ZiPAofGcjwqPwnY1cgJrmq4Icy/CzHuk7ax4/gDmb9MZDMQsKvjCiDagfJ65aHQJzNiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZiPBDfGeTdOfgJLf7n2kR2xwHPndb/g3mbJDDS6jzdkfrvMgJAofO2wmt8+o9dRj4jdtovnXO1doRB9KUBX5XFyO2H9uJRTb05fqxBPswaFjQTKJ6pw70MSbZEfwgmc3x8SSzlvoy3cnuLI6LjyvZm+UCxj+9ZehsJycWpznYIlIOZBdGv0UhVQRaEQo1x5wMAKM48V7SAP9dd6yCVJtaQSJ9MiCRAg2krdl+nj78NT1JPw9o3VvR2YvJZXosYnO8fHmBDVlIW1FydOf9djKggRPvbkR+yRvrdhctSOhHSysYX1czO/S6oM1FfzvoZSveb2sK+fJCXDK2gAtxZPFdgId1iPPIruvNt1Zb35z8bUN056ZmoaBWC/WpBvSpAvUhA/okU5H6AK3+qQL6SEH6dEDRp4elr4cD6Lycm/uFSIl2d6F9C54+1HRHvLX77Fs1oxESgV9HhES8l38nEXICxUEibUyJgC7UzRoMsnn7AN/XiOnDbB4DJFEBRxkDLiCHKwk2jIXf1Mma6ePK/+YdV+iv6mTqw/IgkX4dTMhweFLzPwS+D24p8NIyGJbqZevlzvZpthKZ6UNewuYsEW2ukm+vy4b1O8/IKFj2qVhpn76guczBzwmbq+llIXOJsocIp4dlj9C9WPaYIBl7yDp4erqzmM0OkNSlyRqevj4IxyJDdXRkeXvDLy/S14AODwzdkr082WgD6WPQ956vLRdbJmyOYdO9aV8FLCNjzfugkGn4r+Num1zIncwXZZsPOTx3IiCLVOtlGWTH5LgAhiX7AXOhJ5fXc51aoFS9qcKlTp83mwSPNM9cyzlwUkApOeiiwlr9ahGHWtqYagGeRUCtDq1XS8Ma/DzLB/DJfkx3X1aL5Vry5H5j/Y1J9Kw5GWuvat0ejThf4F9VWDB4mzgk4w1+VMmAwQ8tk6RJKMukM4lMxveJvUzW7esv26CxolSwIzCAVRHZ1oghvESSRpHYwJDLYvqASyR38LOQRyU7gecrLCeyQwAZUJfr0yT2MLIP1H2ZHCdoCaW3qkVrJ+QaX/R9C3dgfksLNc7MryDp7wE01jEUsWYKBTTW3y20ZsKaaRR5NwDTQOS3S/vmd6+fZZhJ8vkTx2rKknMEpxhb8NPCU0zTy3j3smRAATKowCtRvewUsGqs3i2RKUbB0BPYZbI50Cn+aBL6D3LRhmUgNZ6B+P1S24nNbTrN1RFpKK9HlfHdWL3paXIvNROe9fhbwFDyRvwPCxkL1iQOgwXuxjKYvmQMJtM0Rwka6810LGP9bt3WmWesJsch0j6bumk+/5z9zqCoLltj5OSlRoIrAgbvg8IrAuh1cVimLgXLMtEpkl498w/9QcsIrdlkSOhzaxcGzN+LtAVyuyZgi07gx4Us0fQq3nbQzoFcWiYVGMFIp159lDdCoImT3/v+NRMnMgImxokzPx1r4sxPExlsaNvE+aTWnbViwHSTTeXmX24aylLaMnEittLIzUUbt9KgMziQjuUM7NP/f+fVSwbZ79+OMzE/etvFx/HQ3D0EmVflMA0G9GjCzKv8n1/zK3JexRpsv51XRxv4JMotybDcTQnMTH71PKRt8ypipKne6XPvZ+AWWmwexS/h9uYpOIw01zQsw6lJyHDtMu1Olro97bGdo0HmlQgpVekSc4lOuzyPhzrtAgMImnb5nVNo2rU8RrtwhnTKMHBu78nsBjMlgW/TzcLX3Yft5c52ZIK3Ljz5ovX3vhaArVgewKccme5kD4GrtGhWRZ4QYd2WkNyI9hbKqXgMEGw/IGck0K31kXLSgW4tt7+ia3P8gd+rQRl4IVJT0BEI2JLnFXgvmzrxx+Icp6qNUmXyRoWvell01e1ZzW+XQmnvbMXrtkKjQa7pdfQLN90P73ZJJOxzh340Ntfbh8wGhhPZ2ZOLsJdI+1T3l9cc16W/RWyXjbFfFsxzEbCPFFXIJMBLyO4vhfBSyCO3NnopEmDOA6A59akivNRVcD2wvwImktRvROpvy3L0BBaHrVFpgN5Hit3Frkbr99yLsrpQKCeokoGwSga/VSk6e398oOomRsw1SuDjoTc34aCSHKZK+fsqoD7Y3Jew/KeaDcsbEAY8o2mBQMiZSXDaa7qU8LQHvY63P63PhXpMIxU8AEBo4Z7LUwryp3Jo/nRb/ccdw2dGMgr+sjpu8jN5kGBk09jfi8vy9hbypVgLPVVjMLbK28pwyKzmC8CuxX+nEs3KxoJqpz1ohf4km1WDhlnptMjXIg/P0W5ZOBj7q62lIVYwlhIDSDwO2MXUIbtbHSCxYowIH8s/lBbhY6VE+Nj474GFKTH2pnn7D1pSHuveag8f2vOXFmQ/JpfNdHAXfX6r9qFY6txwKj35Tc/S+6fWVAiqPQv6KNlK2DlYtbcLLQes5RUDOYdypLW25vOs1RrnoPzLOfzqyCJVmp2ecIF2+4NJ6onem2nDfBNa5BikyLj7hMVHIQnKKSIkoB/lSQD5BHk0n5CQXzcn5FGjaWF+bmHWkvsMwU20NZPDchd0B/wridJQm0r2Aj/Bm4Mcfb19PD3IHE8f8OwFmJ18WP4+0FmMSF2R2TAibkU4Y0SUqo5cT3d3G9Cz8/1X08+b6Yg+ibQkWp+Um+nN4toBt8//tZpGnr7gSHAEZpAlYFIEy4ntA313YCYGdxYPAvch7Mgn55B2pBdUkLQTADvOMiQFhhgqWDC5LmwOg+Us0Ck6N71sw3ZxFaSDml638/SCvyrYGZKNCyo6kRMquvNEFETkZPl3JSppi8tcZspxYjvCUCJ58EVwuwN7ibemBUNZv5y5rRfLkc10N/R0+vVZYO/nw2UxPZr/3Wk2l+n1y2E0dVUFtK5KdtHIC40KM9hy8hBj+5eCFYL9w4blzgwQ7KpyJJEnhmi9tyeVvIzNZZG54JWgLDSRHRWZmyXiRlo0/hG9Edn/2+gh44EF0uJEKF8gEOkeGoH5jJzIdw+dCa85cvrASXNk7isOmstFY2letYmveRc0zVuditmZr3l7oGTC2Yz87aGIbEZ+KqaIbEZ+KibSsEIZhuACS2SXQCY74pBh2BXNJkvL2LpsyzTDY6VW7k8fzXst8Ls6z/AFpwFAOC9X4cmyFTkLg43Y3l7gQGCSvVm8pUjAcH7yAvD/gI2A3yBSC2R2J+r9CSki0Cg0XORtPbk+VvBeJWIQ/cOlXfPVkPMhuLRLBgaRqiH4n+AgqjHKr0jiJFd05XPgwPzE8he4XJMpu6GZsoS1L43z/SwjaljFUX1ujwWC4WYwG5EJsqzCASUZFKtNbt4E+biyeNmivAuA5uMnjzJ9QJOCU6Izm+VE9uJvIvRatAlCcgIodywcIG9uaukuE9hxZ3oAyv8tKmsU3INmLmlV1qhSc9YoC9JI5BccnrV6/I6zl8wOWswwWT5nzBkc80aRtEQbHXwtoFA0qBAdUOgN0sGDYbpkd5F5o2gKaf5KUwJ2Z029xcnTA+h4v1WNZPfde/JXRcbGYapJV1/WqAh2i+brCneLX02/U69zt7jY0lwdsygtlRvrXd/o4KAe0IMw1Ct3q2hVSFyFl9D3SzpgoK3wWSVSrji5CZVHs8cYrl2ot7xjxI2ziO0FeB3hTtb0Mt47t9BcqBdNEXVKcS6ngvTGXThdEEuHXs1DHcoOxFJiaHhHY5quGi1+ze1pu494ZbXen4hFEWt3LEWAfiOUEthCRRzZXEd3zL7h5WF2rMroLbWsTMdgrrHpPIIoorgESxEvN/5SEoQw/lQwAkm6tQMYEeiKBUYEOuMPRnxcXrxeyuYGY/3OmG8751OqiTvBgVnmi12xsszLXcQCRhSmmi/u+lyJHvrY4viKQws34whGIAk8HCQiu2BJBHShfzsYERi63d1B6odl0tvhNpROf12QMBhRx8KyB4X1fwRGrLn23NJnLI2aGr9LUWP8um8SByN47gQ1bx1wJ5ICI2xqh7p9UQ+wzJ/IeZL23O4KIcAInmdBVQvwLBIDI5CbAcKAEbzBjyoZMPihZZIiCWWZtGvFtppX9UsMDxzW+X7h4qgaEdOz6LiOKH2HQO8EAzaOnu7uTSlq4PwHdBoWl+3YtG5q2eoIObvLWjC9vNgcF75S4NfBcTGBxNjbOFOSwcWEdQWYMiN8QnU+P7fCK96KbxwlNOM4aAdrJHQqpeTaD1ZLO3tDVeDrdjcCMx+8fbi+jj5kKtex5Tm4k21YwFdg+TVFbRyY3iyylzuTwxpG5jKd2L5NR1bAQHdv3o+D8RwOmcl1bFnUBlmMAfO+hQyGfEMLFY8GF2hcQPFzopa3gcDyttyrVctbdeB3k4HtpGHTHgpc5v66MZHfOzN52jcfGzYtadb6YRYntwrG1zqK+q68F3/XNZFbtDZ2zUAwVAMKlSwqQY23zvVqXSiir0FzH+J1lSbdmvaeIoWizFc1/lS0wTRlEIs77VzjakF/yruaNXg1YX8Ka8Pbn5LzIF3sRflTOuBtSdxWhiZsmsZTizTZvb7xo6xWR6M9V33254Y/OY44W+ddSUTSTdPr4tBi8VIsLZB95HdBCTIV7lC0gf9AZ8PkeOtA8ogUxe7Jug0xlyqMymaTH+3oW9VD0OHzLins8JteFockZC8sSQI9+R69B5pHH7F5VUC/ST9oMTPHRpAS58QJdnwrYPxY+QGrE3thZ94RRdeehp4egPzAwAMHH/hh/5Y5aWRZHLRbER6Dv9paKJ09uG3cCKbEGojILyIBwmZGtco1d+ZlADUt4kR+uRMm97dxVmuYpmePu6jyplowUVV6Fvg54X7T9PLvvDGyjk8bvTEd0EYR1KZeVDbP1SZtWpcr3ZT6g6GO4VeZm4klfkaH4xuf9WU+WSbR/L7kXEiARlECDM7lCQCNq55o44owh/XIU3WcDuuRFsPjsH4T5mH9Rr7mymia/4E5lciiXmLOqdT3x8qptF72L8+prJQZ2vdYTiezPI9D6575bCnEM6cSZy8M5lQq+mPlVALWEk9Opb7dxR3zmJPMw5ZN1paLfK3aImcsppxKngSoOZWABJBPUEHzCQTKqURW6RN/TiXSkpLJqawFAb4NgB0niiunMuxqfoVZxw3EzqnkJ8OoonVV4iwZEDUjcVoyIPs/DksG+2CsJYNaMN899CK85sjpAyfNkXt4HDSv9sHS3NqHr7kamual+yKnHfieYZZbPsWuqshbcAst03REKSg61pnmCNQQr7O7J+AjOS5NcXRy04GcaNeMLNcm6paE9x/Q67+zwaiabcojjDUZ2802yGXaHS1p68oArFfBhBJ3kNOi3OfcCrXziyV95PlrToqmQN2hN1p3aHXAnz8ExR7wR5a6xTG4j4SDcegT9MMofeLWx9wK2uND/HHZB80Qrc51bvaF7ZDrjLSFUGoy+FtFWhFZNrUlqcnSotJY+F0a0rEvmo4X+z1/9mmzhUXQkW2Dhi/+KJgL3cnCU1SCD9rJyFA7YGh6u4M7UG0P4JM64Ea0SR0y090TcG5M6KS1ZTE25KMdhO9NGEoHX21hP3wDxuoLgX74TRQbDcbVFAtbFVfryguvu7A8gT0pN0DkVyroveTvjb0KDUsy38/fbnp3guDJsQn0UeGT4+aW3+3skF2vjWMVzHrKBDWiiArb8o7pCluX1cPvI7z9L68ziD4Euzp4YFqNnGV89Z4hRxv6Cp4Zy1h4imTk+a//zqHpnffn0Gz0zQOV7aQ7M0i7cBBJEVOk8gLiFf3g/wymtCo+2rN5kDthd3Xtd/r9NFnXreLV7UsGT8+60uaujkeolNeX6aLMVJvD68utOqFq0sIZfOQcrz87AYYV7cnMEpUXaj5mRAXcf2u2uucPwTTR5qsIp4n+ahJL4BhTDaDTQrOHOgll9kjXK5g18NJnw61X3Gvf3GmoRcSomhKK7efMbTkTodVc4QpKR3bmenqQV/gHLF8FrJE8vDw5YAJNy+YP5PN/0O5OOF75q62lp8L5FbyYJYlsKOL4nARoXX1MaC7h8/YiI2DQLazwh31vkd/SlLL0py0tlxHhVJyjovIluocpx4fFBXqKcNy3w3B7Qb7H/te1hfkeeOPvPOqpM9WxW4KPmie8WppZ672/bxs9qhcgJRhUJJ0S1TkPAFMz8A7CbBvelLVmBmy2bMDvLHv4Dikr4FUhJdePbNpz8rREQdvNwbLdnFbYzv5OQICFf6RBOnVAgtTZyW1NkABtR8a0HTAUCGO71mW6Nttu+e9s96F/b1V22UrGrpQnUsqcQeGCtpuLZbu5WLZro9cHjQNmsKAbR59QxmnV0kQRsg52mhFy8Se4smy6hPDKEnod91k4B3J0cqLAJjWglZ7fujVJV0gEjLps6drJmT/ktIwPXPl+t+BQnzeSrXeaw3MIGArYH+OvQ/qRUNYhWYsYT+YHZZmFKS0avUG1ULByk4wtC3ymacv3sX2b1yDevE+CG34oINeyhQfy6YKibkdY4KbXW0FcgtAJ6YOofD1w86qf26qa032a6mU1fU8ySBG6sqDvL/I7KrzrxVWb+cl4R9H23GXhuR8lWH0apAPB/CLRxJM60FqdSxyn9mZ6aypiDrb1YXmRvdnLWbxzPBbT0ZXs7csL57P9WJC5RBro1XDfNT/oziZba9Ypq/oXfBGMnoCXFY6e8F4Vh3kCc7HMo09Y8/DT5NHM0/8XpATlxP9+5Kw3dTVna60yPjrCbjfJ/iLi0Z1tApaQDyjFAbuty8GyXHSOpC3HB5aEVgooh19o86aSLdLXizQecqPz27z637h7sezrm52hUH4ymBAGjDZoPu1PQplPdb73UjtC7mica/DmK6u/i+DzmDozAGuTm5YDLc+07GfBYnqDUC04OiDek1fowB24WsumVeSTeVHvSnhNDWtsoY7+4KOcMgEdT4jKuvQCU8AyRe7oW9Hn5HkBY1AA0X3tS1rS7PndzfN0RwaMWOsjmA3XCfxKooqyev/eTeCMfroCUrmCUsWLSv8B3QQgFSrCJnKf9cutgqUpeV6VIVIjlfqvT2bZmjFi4t567KV49UGORymh8djO61vFPEgcUaddPFgbEAcajwPQxiOBEoOQUwzuiUFCvVUuNGv4gbsrLNMdcvcbRCl3kUxiUD5gR/+jzfFSMSQGheTlVSxcehSPxCCScGIQCd9ia2S0rjqww4Z5Q3KvmUc6PKO6nucIZid0tWB6e5OpToAdhFJbQeE7oXVZYI0BRsHJHuDnmdDnf80fzY6iRfMI8lntGLco1JUFm1txQOSaDdUOEDppBPNU8rPaOpcMgCX1ezfV8oVrpSc6ErB9R9qBqZNMMgw2WsSdqkKcovOuKLwUbXr5d3MM0jHjwM7bgxLWUknCdWydjvEkbFW0qBesqC9cKZFCIX2QRHP+J+RBWoSKWpZrg1NKdpvZ6F4MaFwB1/EBfASZy/syoieFHRvzB78ZkG5UMrzT3DHfX90XRBatoSs0ySG8FBZ6gzgEA7oHhmCuWfw5eCCaY2t1xkkPvuDtkHGCTJWAVddDnoLBqush41Sw6nrItTbsQcfIFQDsQcdIzwp70LHey61h4dvCzLf97PGl++ALi2APOl7xbMbbkZFaRgdIo19JF4YEwx50rNh//5kC8w/UDXVH0qYsvz0G9qDjcdEzKSFKr612yGcsZU4u6Ad70PGljJqwLSXnGYlx6h13OVz+KZR/AxY+FNmR/3pZFv39q6xpmp3usyHB2X1xKA04CK1DEb00IPIx6O1aGvAfEgrNVxNVGjACpTRgb1p+xWl2xO9LA2qgmfJPfc5TSa/Fh1PmhVoWnv0UaqMTYCvG5zx5vcJ6zpPXSzE85+nYxQ3B+xzSzXcPLVRXOFG5py0havE/52nxK6ynzyi++v99ztPlqTejv0zYQd+qeJpBU+n6liDPeSp/iWUwoEcTLuVLTM952kaaMslQwZ6W0sOvoeb0khO4PudJ8YJr5yuGymaHho/cfnC47BYcRhoZ03DVLyQd0hbjc572m06Jzuozw2o3q0vyYrerOyX6nCeex0N9zhMwgKBpdzAJZdr9Axla2j7dMtlXL61yX3TUrmd9qRQzQ0u/icXQ1t74lzO01xKr5saqPrEo6RG77dKNR5/xZGiNV5cnU0IbzTYuSOIYPM/TxYGhnXATi6EFrCUehjbb+kVKx94H6Imrnb5nyIbvkyRDy5MAlaEFJIB8giaaTyBQqPwIu1rebGZfk3VP7nRfRTH/gG+o/PSFDvVIhhZpSck9l6TugTifS7LBqKCiQ+0DYjO0/FC5FlpXJQzPmX7Ie/wJc1NacC9pBq1qorKIG/knPCey/+PAc2o/wuI56x/y3cMQwmuOnD5w0tw/pGLFxqHjKCnDS1PlNGYG48HQ1mJpHl3L11wbTXOiB7ouzZdVL1q6yzB3surHUXOkNdo10PUPlxFogS5rYKGg/Qwl0FVonl+RpPXs94EuHcIPnxPhJ2OvRnAtI1Ydv7lv9Y35xK0UpFaNNXxqL/KHz1A0zQ2u9rrjN/4o5fC8hWoRs0oEVzTK4Ff1AVMBjdjOziwuC9BJRKorWlbOCH79My7/Mk6/LsNb9fw6YAXpphbtccpme1yd99HXNHhkb39akOap39+wkKlEvquFolcdA/Y9NWBNMFGZO9aASWqvtvW0lcqAiQKul8AVCJNXR46sDeWPgRULm6rign9rLjHs7u65jOUkOtJV7aH+14j6RYaBiVpxa3U7pSJy03neTERuetPrv+vbSRTpE1cvTKLvj7r0uZL+7mUb+3Y+IPMEUOZOohJbxhzjydzWwtWaMPOTHVg+y1gsDi+/n+Xoy+sevFN/kVo+D73xeWjaE6vU43IWd27mChYG6fzruk7CXh3eiPcm500uJNt8UbIp5/Jkg1yCLuHdMHK50RI3LGKLg+ipSNPhUXzlGmbxlWt8yYcRXnL2vtXFrDGXTVOjSROn65Un4SM5cj7FQfI3l7Akz7zEl3w4muSEfp4dsufDTtyRFoKduCOnRtiJu7WT+f4XAe6U9GNaIRGjOx9u+fPs1H6OJF1wkTaJUOp9JH4CpRiHQ2s9NJuc7abxfuQ4T4vgd6/N9a6sMRbMnbJhAStwRxbZ0tfdvRXAzXD+5zjg58DZks0Blu5sp6bpdRkbzBX2cQXs0OI1CFJNjPsUzvESaG5pgVtg4V13BejxnQ1F5HiBOSb6V9q66lA15SXDAssN4GZ8eMszUDGRAmian1uypoe+ydrJyRZdrjk3IFK7wAuJSO3ivfw7X4Hs3230FYogOw0qt1vUkcw58Mk6V1BrTLRQub7NynEFuhrYtUTKN35AWY1KtxsGh6+XdV6QX14l+HQhqIN4iHzMg2Ar7vnE+byehKFW3eV2PcDi36icXYAXC66DBsyB6pmzuByWux74Hm89E/oiEFJ3YXERIAf409YloypvaQ4aFrgEmckJaDK1SCsjl8RtGSRttGtVDjQK3lBF2NU6hzcKWkWCqiGT6KGu7yRSijP5m1LT9udZpjlte6A6r1DwLK2VVBIOUuhjSgF0cWiiGkFCmagsj9EunCGdMgyc23syu8FMSeD7dOMFeL3c2Y5M0YnIaKu0vhbAMGCB5T4cme5kD4GrtGheshuiq37lSYlFgpwHJ2TzJRus2xLSG9HeUo8BPrGgAZAzUlT2MR1cqT0TcQ7IDxuIOAfkZQwgzgGRx3n8dimU9vY4J+zXxLSCvb8pI1pAPpH2SX3Zy3vA9LGmOQvlR82uTVMXsI8UVTimRG3vg0ISiN01QAeFQqMDLHlOaaiAiST1G5H624LP5XBqlUp1xeuctaMGWMQ4dJ9/Y+JlwbwxKQNhlQx+q1LWjc1bNYI2GOwdfDL29pqItj5BBlTpzTMslZKfteo4VQ2WLv57gZBZKxLNFwefv8vrMWCNeKHcefdcnlKQP9VH86dELhQ3Ofv9wInXaiyTS1ZqVI8adFj43tpcKE7uA1ahOPv3eBeKOxkXu3PFKD3zhE9Xrb7lWKfjXigOmQmEQw20xvdYNdAOvBdLobi5Cmu27qnLNEyduHrB8HJXbVwLxZ3rahk1/UeUaUSRh/G7k7FncRDJHlMkuffEyxrk/4irUBz5b8f370frmpa4PSmNeTL4eJu7Oh4INa8vo5ZGA/qyeArFxbx5YHCwB4cS+3rO2oW9lh0iSKE4e0w1gE4LzR4jSSizB7ELxWkEuA0NvRdlFle9vdIuZdB8tLvDqVCc4jusQnGKb8VUKK6039aNjfenG0XsdV6/3VIlQyKF4qiN3zlqs3WMd16LfKLPVR2EQ7Ex0juselaZbwmUziumQnE7LRyXGRZlGgf13Vmz9GpKiJgKxZ0/NuaSw1dds4NSPyp2X1//DAfbLX6LZTtFItlOqC4MPoXiejckbhs89apxaWDxQuVT6ioEKhRX/gazAuMb4hhHLIXikIs/iReK4zk61DJpoW9xLxT3c7nqc637dZa7foy09Lz0zF3iheIU32IpEP+Gvw4ZRUJZh/ypoN7Oe8Omd7kVYJznP7psRPitzmIE9bqoVGKAepHKlfiDenIXfWi6p7ebRSbGTSsqoguWRyYcqNcJFAgVH7qtXPl/C+oVrPu+YvjcO2apdskvfz5QFXxAnORAvRxlLINFSsZgkgD1Nter3Nd3vmW2cdDlvY+MI2bgCuop0fI1kzYUUY50cHA70XPGRxxGmhOm4aZIyHDtAuqljup34/PwrgZJBvau55hDBSuwtTeox/N4qKAeMICgaXc0CWXa/QNBPbXFmftf0FmWBW+n9XF3LZJGu2WcQD13+UoMUG+MfOW/G9SrCu/zwCCVa1GalD/j5qbh8niCetVTZCOe5He3Opbb+dmhapMVOIB6TqC1UEE9wFriAfXOp8Y+u0qayEhUzjkeP9DEUJKgHk8CVFAPkADyCWPQfAKBQL20PHXqeuYu42TT4d9XmKQ7i/9hl0hLSg7Uy+xaKUZQz9mkoCL7cNfKPwLUG4vWVQmT+3tvyEybVdJf6OvqtdeX9tO1xol6QfZ/HJJ/rbtVYiT/6nfju4dxhNccOX3gpPmsNbfWW2ssMwgfpiN14uYgDg6aZ8phaR4tx9d8PJrmRAf1jhyU83nCbDDZ88CqQCFv+/d2BfX+4TICDdQDK1LVKlaKBvUSaPkVP64qVv4W1JuAZso/DhrbdfbY4BuDOVbhumULpTmLV0kAGnshU4kBjeXICEW+iAGNFepoj1HqE0zbcdi3y9AjNycg4tRtg8b6bq5zOLKnmrF5GPUvQ8bERBygsUegzKjQGCCzBKGxtINyf81aMMIiS6Eymtbvs+DzNyULjfFkQ4XGANkglzARzSUQZkZFTn34EExI0+EwofrIYk2odrJ8yScRXvLnieeiuEZ65sGyUTFms77PwEfyd5T+nU0TLphl33zqfzt5biYOklOksSQnS/Mln4wm+Z8CKL29POoT+fNI6pH7+pmlgR5bMO4TP0BpAuhDUAGlOum2znCtAZTUpT5r3O6nZFC0fPvrwnR/BLXWJkAJ2dtxAJT0QeVQkRs5wbUBPLNDXIDSk9Uvv6bYcCxSN72PHB5exSUUoFQnjaVWvnS7Bu7/ZEAJufySMKDEGwWoVI4cYun2uwyE1gFKI06HKYx2szQ9NHHh/qOvXydLGFDidXFUKfKbJ6opJJSJiqCAkv/WUQ6dc/IY+x5O3nx/YQitnQClCT0rMQCluh4izj/+PwGlwGdWs7mRhy0O91Xl3mIeNsIBUML5gAREb/R7VmKgN3I9K8UMKDUO6VKYGTzT6sD8u4yC2uogHACljve2Pkgr7GFeMOLZGoOfY17goBLQrTFUyu/RqmOk1gFKyNN6iQNKvB6DCigBSkH+dCqaPyUyoJS0fsjyodu2UQN763jc2PLsphgApfhelRiAEqWXyLQt1NzA3wNKUx6fWG+scJORNfJ69NO5MhtxB5SQGRA4sDfRoEao7I1rL9RFfFsApQNTjLWu+NIYeaUJya96mjnhCiiRJ3zSntflg+lR76FylwaedMdBJAqmSGq9iJctxf8RF6D00c5RjfMmjVZmcfTQuyEf6wkBKPH6MiqSA/Rl8QBK+zLdK0ezCikll4b1TSrc70kQQImCqQbQaaHZYxoJZfYgNqA0RC5j7KcX9xgbTri9OTvqpqOYAaWtqpUYgJKyqsgwUdsBpSEql31XJcy3CHp1X3tMdX6iRACleQohtl3l3tL32Vopvf/61wYcIJdIUE5UjsJJlUBpjGIClD51Ojk2tJ8zdbNdB5M+f630FhOgVF5THGhvp0gtHptWU/NYio6D7aZg2k6ZQLYjUcQDKK2cPMJPReOT1bG4BTT36DUjCAQovVDBMs4pFQIZRxyAEnLxJ3FAiefoUPEca9XWrUlaACjdiJsbrK76kLJLhkoeFesXL3FASRlTgVoV/jpkOgllHdLqmocDmnuv+GseIikkWM1DZLo0rOYhMrsMVvMQmc8Ge8ogMigFe8ogMg0I9pRBZBYJ7CmDyFNn2FMGkedFsKcMIo/pYE8ZREZKgabOUBNyvw80dYGakEs5oKkrSfRxKtDUDWoy/LvajxlAM9s5t2Lrz0If8HGM3aGmjgPCRu/dZmcZqehTdSnb4x3QpAg1PXt0rrSXVJZRoJ4RPSWg4xCgSQlq2rNwPFn99A3GscsDGKOfD1oGNPWAmspedawy+njONLzruDtSlmazgaaeUNObze6sRikuJW7/gA0ptTtigSZlqEnRdqju1B1PjTeVSmcePB0zDGhSgZq6f/M++8ogzipl6KyFitMazIEmVahpSf3LHNm52+hry+wP3OxSNA9o6kUSvRATqoepRkKph7m8exw9YXwcJVSnNH/KvCN7caiHSUEbr4Q54Ud2HpzSFHEuXsV71nEnrCP++E58H0lF0/xPhTi/36hbemP+dIsN80y7rtZonC/6vnGBOCP1sSDOLvpigDhD7eXTQ7lcRkRo736rRilcJjbEGaSPhZbN1///hTijHlalucTXW+yPL+12oT9bEDWWHMQ5BtNgXSRjMElAnPMGzcnY/vaIed7kLqVblWozcIU4A3v92NBjQQVlV7ZfD5XQZ444jLRHI7AMVzyCOJs03CFO9st+3hWn5lJDS4/EFjm/DZQoxMnzeKgQJzCAoGnXgIQy7f6BEKfcDK2YuxtcLPb438yJOeleImaIk6SFBXFWaf7LIc6e3Tazzl+bTdt/Tbf6Wp8ixLMt2wZxzu194cA1p3LKlqW1R+7GTAnBAeJs1MSCOAFriQfiPL3K4ewGL2uTnWMU9js7HHguSYiTJwEqxAlIAPkEQzSfQCCIkxnUbeV6xnrGvu3vdNe9ffZF/BAn0pKSgzh9hooT4txrVFBB9x76Z0CcRmhdlTA79fgC7dAVd5NNE3sEBa8dmvMAp506sv/jsFNX1sXaqX8YyncPxoTXHDl94KT50hPl43rI083CE6ZPlT/v19YiuqDm0ZpYmns1u2QamuZEhzjHeq/zCyncYZap5xy3Q+ps+0Kc/3AZgQZxgk9bTB6OAnHeMM+vGLBr+O8hThM0U/5xECeFOef+/nRTy8OcTuafSG+3/P6GcYc43QdjQZxjBhMU4txrofEl4Yiy4cEXV4vjNvfcjivEuWXY9iG22XsNwuqvZ+suS/fGAeJ0GowFcQIySxDiPHTXKn5xp1m0DRZ+pi5DFgrmKEkW4uTJhgpxArJBLoGO5hIIM6Mipz58iEKk6XCYUL8NxppQbzdLbkp4ycO79Xxue3m0+b4biotcRr29gY/kb8ITs9PcDjB21xZzDqQsLMOjEMUgzEIUg/iSm6FJ/qdAnANDUnw1nYaYFJ1I3vs0a8bEdoE4czSwIM75Gu0JcZpNytXSmOBqmbJgi/XIyDTEqWObIE5kb8cB4jykgYUlBmm0O8RZGH7I1vLBIoPixyo1c5/cFsSyJQ1xzsdUa4zGfxBnCyFO5PJLwhAnbxSgkovAKBAjxDlUNmTq5ktUw0Pj62OTUhc8kTDEOR9TCqCLQxOVOQlloiIoxNl/Z69v/fdGWGQsdu7gqD17ENZt4QhxFuthQZxOev9BnJB9OsRXjZnZ8Nko50TY9cNvt3TDAeLE+YAExBNz9LDwxEg9cUOc7icYa3VtrOlbXow3LBivLVhO+p9BnBaaKoeZ78/Qoq/l3uq7+OFlHFRywlRpip4YIU7kab3EIU5ej0GFOAGlIH/KQPOnRIY4/7bTNC9nOVsVP2ZOfJbw0lj43toMcaqPxoI4T43CG+L0vxRcxXRayAgcVLpPi/VJFXeIE5kBgQOfqDwai098MUosEGe3S/v22ejcNUqIHPKtZ+eniMq7bYQ4d34/duf+ulfGhUvtduhenHQHB5GAroIhUtIo4mVL8X/EBXHOWFH33spnHWXP4pHj/MKp9wkBcfL6Miq2CPRl8UCcmX5Me5rLRvrmPrcC1ZWNBHuz5CBOXqdFVQPotNDsYUFCmT2IDXG+Xl6+JbM+3nDvOnOvqn2M0WKGONVGYUGc8SPFBHF6lt3su+SJg1WaVd2KzUHdciUCcX6Y+eV4SFigxdoez876Py3oiwMIqDgKizWrH0mgNEYxQZy2y+krOUozzYI0G8bpXzstmLeAH8TZgeHVi/nR2KDYRS9j5aU6kY6llbYrH4llu3gC2U5OTBCnqmv6psUhvmaHKyuuPdm7T9AzShbi9MI0Dp1AxhELxIlc/Ekc4uQ5OlSE8epI3CHOPvSgAbYqnqYbR7CWAvsqwSetSALijB+JpcD8kfx1iCUJZR3Saoizf3PvFT/EiaSQYBAnMl0aBnEis8tgECcynw0GcSKDUjCIE5kGBIM4kVkkMIgTeeoMgziR50UwiBN5TAeDOJGRUhjEidzvwyBO5FIOBnEij1NhEGfvbEWt0BeVhqFnpoSW3y3xhkGcM3udyxn8PcA4y2zRvN25d+fAIM7hOkUx0XcGUEoWS+VOH9njEAzi3P6mU+KVvz9YHh3wbqNtrJsyDOK011fNKXB9ZLVD0yHZLtKuBgZxRttnWVWM7mJVwn2wYouHQx8YxDn3tBTn7IxMRvbwQwuXLurvD4M4BztUKSZl1FP2V6nrX6/tFg2DOJGrLSFSE0Q6RQ79CV7L0s52PWMWV7Px1pLgDztwIDWt0AYlYY7xkT0Ep1xEnKv4gef4ZMxzfFLzOb41muZ/Kqn5sKv+dXuWr8nGW7nMR2P+0hAjqRnEwCI1OzHEQGrOzvq2MuzYS6Oy9186lSslvSQ2qbmSgcWP2TH+f0nN+qUe7wYPWkA7rLOhfP2V3hUEITWHYRqsk2QMJglSk6GcHF/Tr8AobN5F/7E6mw7hSmqOnvVwwZa5NwzjLIZHrp2om4XDSLttjmW4HHPi7MRwJzWly+Q+vw1lG5c1KCWoMUMHSpTU5Hk8VFITGEDQtDuDhDLt/oGk5naP+M9SKlbmccd7kM4u3bdHzKSmtgEWqfmG+i8nNS1uHi0ov7jaaPudn+vVn05APNy0baRm3tEhi6UZJ+k5Xb5kqlV9L8eB1CQbYJGagLXEQ2oezNH5UjdtjlX+8EFPKV5WVZIkNXkSoJKagASQT7BB8wkEIjWnm/ncq9/nTs2xCdpYd2TzUPGTmkhLSobUtC6oIB2giZPUjDcvqDi5l/ZnkJq2aF2VMDt1cscIxo+JWZRQr2vbnqs21OO0U0f2fxx26nQTrJ26tgnfPdgRXnPk9IGT5i8dI6fIF7hYlOzYbFXj+ekZDpp7UbE0t252yTPRNCc6qSk3OYTyOU2BmjBSeuqpVR3Gtiup+Q+XEVikZrUpCql53iy/Qvmc6e9JzVlopvzjSM0tnb0f3q9XMjwk6+x3bcAtcwmQmh+mY5GaxdMJSmr22am5REE7gxY1gWPZ555fAq6kpsNnzhHqYjtGyvd5Jg9cStuaxQuSmi+mY5GagMwSJDU1lZNcjlwJpARNlisfsnMEm0CkJk82VFITkA1yCbPRXAJhZlTk1IcPNog0HQ4T6koK1oQ6n8KX3J7wkl9zmra0m7aqZVHfsWOPDSnsgY/kP/KDQxcNnmiY0jkzzjDTZywe68ZpmOvGaXzJ56BJ/qeQmt2ypU/uiv9AS1E4oC/z18NN7UJqUqZjkZr109qT1DTR3/spo2632dFzgaWM6hzB57q1jdRE9nYcSM0J07HYQ8Xp7U5qatcpTWi8FmQeaZjQz/32BTdCkZr107DUKp/2H6nZQlITufySMKnJGwWoeKLidHGSmsGbTeYHN040iKzZOVRl/lZBEqf9SU1eF0eVorx5oppLQpmoCEpqLuLKbWIUbzHbOJOcei11BOZt4UhqfjDDIjWTzP4jNSH7BKyRJS3yqjA7vKt8yJMzWrtwIDVxPiABGcQXZlgM4ikzcZOagVtu6Q9fU2qZcqB6r2kiW/Bh1P+M1HzvtX1H3txcSua7y7N/vh40HAeVkjBV8jETI6mJPK2XOKnJ6zGopCagFORP56H5UyKTmvKlNgX95nsabWrMynrk4vtJDKSmnRUWqfnNEm9S89TKAPdte8IsY6V6ugwMP3gEd1ITmQGBA4TIsMKCEAdbiYXUdBnk1K3ny49mgbUrVT/dC1bEldTsq2l7cWX4ZXrGm6G3XjEsR+AgEtBVMES6akm8bCn+j7hIzfekfMMr118Zh/SlLS89+3Rom7s6Hmwiry+jsolAXxYPqTkhafF3g5QIs+J3pIr9nX5YEoTU5HVaVDWATgvNHvNJKLMHsUnNgs9RSaaLFOjbX9oa0G6f6C5mUtPaEovUrLYQE6n5jv3M0LLPCsqRzes67LkWMFAipKZ6pkNqmNlx6sY78tarYsv74UD70S2xgDKyhDxqe5KaP2STzfXCR9HT6XoJxlsnnBUTqalq0xD6alCBYZlZmfeIvS6bcLBdowWW7YChQBjbKYqJ1Lxi29GS4vnGOCixq9xorU99CERqHsA0TiCBjCMWUhO5+JM4qclzdKicYhdL3ElNE+9Zyk9unqOUhvSNdxk3YoHESc1qCywFtlrw1yELSCjrEEKTmkgKCUZqItOlYaQmMrsMRmoi89lgpCYyKAUjNZFpQDBSE5lFAiM1kafOMFITeV4EIzWRx3QwUhMZKYWRmsj9PozURC7lYKQm8jgVRmouCq5KnNKhn3HERymTB+cCrsBITa27KfXMggkWZXoXo+6+Gr8bRmr6nk2Mmhn41uLQkM5OqamyQTBSM73yvVZZ8DjGvoaUxSk1JvkwUvOO1JNCt+G3qGH+G5dvfT1uJIzUzMhInm5b7G62LkPB5GbRRxqM1LQpHE4dpnjWIqQ8SD3ar98DGKkZ/fN+z2fnGIbh967GnnlSYAwjNZGrrZaTmpkjx2m6f1lOz335gvvojvpZEQOltaTmQrRBSZhjfGQPwSkXEedSfeA5fvlUrHP85Kl8R7gITfM/ldREPhhXTKTmhMIKknYPQOMQUdu0+mxgcaQktE3DWhC2jNR0f2qVEpi7wDyRqnNr5cthp9pCarYVTAIUIIMKzDcUsQDMB/pgoxJRUMzwjGMqpEZSedTlgQpLfv4USffxl0P4oJjDbsnb9x3iSt/6OW1CwffgOQRAMUGDVSthGeyAZAwmMriYOV3wf4VRTCxj/RbF/PDJsbtHYKFBcYdlk08upT+V6MoVtEwgpmXsJWSZdmEtB654PoZVbG+cpnrcLVWm9ozEWMvQbMiliWQt9ZucOjRxLib9yybOQT8nbvuwK4de8vdF+Y1nvz0WY4mDYlesEgdTXMVQ4uDbiESZzuP8DXdsGX3VQmXyN2KXOMhxxQKvI12JMq+i/YhvXvWLVT2dWfDIJJ6qETfn4IPNBJhXQYM5YRpsimQMJokSB5nxpEuDl9KNYg+aqivOOaiLa4mDHX/fVO9XKGe6N9+BM2n4wLbmO4OGU8Y03AuXf/G0O3534+RN9jNoWQVV6Yn9Ho+W2LQLljjgeTzUEgfAAIKmXSYJZdr9A0sc3DfZmml7djwtXv/Rs9QpJ5zEXOJg8EKsEgcvFvzLSxxUbY75NEmuxii4LtrA4tn4IXiWONjR9dZF3z3PTdMeliw7vElLG4cSB+oLsUocANYST4mDxWeGaWrtczOIfqZrF3HLylmSJQ54EqCWOAAkgHyCA5pPIFCJg6o4o8EfFTpQso+eNl7/fK2e+EscIC0puRIHex3EWeKg1LSg4nyKw59R4sARrasSJsSdMXHszUMhW61iCl2lNmqvHoZTiBvZ/3EIcS92xApxUxz57sGJ8Jojpw+cNC98W3ZtyUEuNWOIte+IEI9VOGieswBL863NLpmFpjnRSxxIv1EZqH8qwiCUdHV4cI/gPqj3J44SB/9wGdF8NRElDs6xUEocfKDnVww4w/p9iQNnNFP+cSUOigxG1SpN5Rqk9Y7zPF0lpyWBEgdv5mGVOMifR9ASB+uCZ33o3r+KnvywPvPCo75KiEyXtpU48PwZv1fjirbZZv9KyriUmraCHWCJg/p5WCUOAJklWOJA42Gf0YdW29GT5+g3hp7dOI1AJQ54sqGWOABkg1yCC5pLIMyMipz68OHtkabDYUL1n481odrP50vuSnjJTYt0kgdHjTfcvaXr8VdBzDx8JP+romaW1fK7jFSqtq5X3ewtOEhuNBdL8sFz+ZKz0ST/U0oc+G4fazH5JtU0caFB3MHgNTPbpcTBlHlYJQ4ezW3PEgd11GXyCspxxodTFO39ikcZ4VjiANnbcShxMGYeFrTfZV67lzjolXi3omhUkmHGh8lxOwtm1hCqxMGjuVhqFc/9r8RBC0scIJdfEi5xwBsFqFx/l3niLHFQvHC+CpfZm7GpbnX0+OnTEIWR2r3EAa+Lo0pR3DxRuZFQJiqCljgYtfqcsfWNOnoON8sgurH3hnYqcVDrjFXiIND5vxIHkH0O3DFd96LmJT1ISu1VbHGXzjiUOMD5gASE96udseD9A87iLnEQqTGpFzkyy3RPUd+a7nb1M3AocWC0Zv2zsB9+ximFtU43erGccFApEFMle2cxljhAntZLvMQBr8egljgAlIL86RI0f0rkEgcpuRfNg6p0TQsnbYlWuPhwpRhKHNCXYJU4eOOGd4kDm9Dg5bUrfQ2OFU3spx2ksxD3EgfIDAgc6H3KEix6X22JWEocUEwzSoeZGFltMYmZlFLk54FriYO/jPtqj86cSMsf4pPtyQiPxEEkoKtgiFTlRrxsKf6PuEocTFo3Zxqd5EjL6Nyw3jlKM40QJQ54fRkV6gf6snhKHAwYNrCy/8x02ja7Q/PPPZdRJ0iJA16nRVUD6LTQ7OFOQpk9iF3iIGrnoRVLHluaxOS+Jx88vtFbzCUOGG5YJQ7OscVU4mAsPW24bkmCeYFNbXjCWOUsiZQ4CDDVvmAdtMlqw4VuLpQP8pk4YPJGblgktrqEPGp7ljjwV33TcMPAwTh3zJ0+uvfTU8VU4iAlRXHKR/l+1CMyPS/37b7yOg62+8DGsh0wFAhjO2UxlTiIVXm23Gd2Jm1b7VeV/nSFBgKVONiLaZyVBDKOWEocIBd/Ei9xwHN0qIC/nBvuJQ4WTPS2+HTiDKVM81FArxccfYmXODjHxlIgms1fh3iQUNYhrS5xoN7ce8Vf4gBJIcFKHCDTpWElDpDZZbASB8h8NliJA2RQClbiAJkGBCtxgMwigZU4QJ46w0ocIM+LYCUOkMd0sBIHyEgprMQBcr8PK3GAXMrBShwgj1NhJQ5MXpjrBO2cRN3iq7Ns08Kj52ElDoafte3nsTvLqGiqY//v2warwUocLGAfsbRSmmiVYn8yLXVgZTisxMHJ+6rpDl9CTEpKgsxnOS5cACtxoCFvK6fbP4Keff2qCqsHyRRW4sCatPCR1a65FmmWShfH7XJQhJU4QK6bhIoVgAUPRA5ibm+yf/TrEeZBO2endTyjPACHYgUctOFFmAN5pK1xyirEuVoteCJfPAfrRD5pDt+leaJp/qcylzmnTqhOe/3RJCv5YOMp2xd9xchcGqzDYi47rBMDc3nR1ksnT4NtGWlh0Es17IEDsZnLaeuwSLCh6/5/mcuid/ZJsxZLm6zdv+9yVPxeKYIwl6qYBusgGYNJgrl8s4d1/mL5W9NsasfFV75K++LKXMoabZK90ehjnBi9olL5x2ItHEbaq7VYhru5ljh7KtyZy9MvXYa9dZtncET1m8aMhl7pEmUueR4PlbkEBhA07XqRUKbdP5C53EMe2nihINtqy9dbat8fzAwUM3MZuRyLubRb/i9nLreuPrH2NHMcNbeSkkAuNv6BJ3M5MbmmWH1pB6P45MQhO3couuHAXAYtx2IuAWuJh7mUuf26wep9lsH+ZzIzHizYM1+SzCVPAlTmEpAA8glL0XwCgZhLg3tX2JHZd4zXjZfP1XnTgyviVnBmLpGWlBxzWbxanMxlhWlBxfyi1X8Gc8lF66qE2al3yXs1a0pHa8PYHrbDpm8YFIvTTh3Z//F4IuMazCcyruG7B2/Ca46cPnDSPFfq8pUUzi3q2lGdTWTlZTg4aF4dgKV5ZgBfcx80zYnOXK4fu6hTmGWCVYjfuthLYeqG7cpc/sNlBBZz+S4Qhbn8m55fYfM28PfMpS+aKf845nIle/qENR6FtE0v7rEfdXxm+Psbxp257OKPxVxeXUZQ5tLl0KGR5mdZ5iXJhX6JDzKycWUuf4z1st+V9IOxaUJcffinhzdxYC47+WMxl4DMEmQuc+2tel3doEfZc2tqb4MLDvkEYi55sqEyl4BskEvwQ3MJhJlRkVMfPgAg0nQ4TKhb/bEmVB9/vuTLCC+5xoQR2epVYcalbtMotn3St+Ej+Y0ea20HzthtUvrtdDElaao/HrU6/DBrdfjxJfdHk/xPYS63ZTccP9fV2yD+4MHw/BkPemDcJ37Mpf0yLOaS1OYZrjXMZdWkh42r/DNMEvJlB3/MGog4am0Tc4ns7Tgwl9bLsChC7WXtzlzafQ7f9q3ku1la6ufMfHaGYIFvSTOXJEy1av3+Yy5byFwil18SZi55owAVNNReJk7mknNr3rTcHq8tto0Y+Gltv4YrEmYuSZhS1DZPVAEklImKoMxlYKNXybVOjYYlb2YlPzx4uQfWbeHIXHLXYjGXtLX/MZeQfSYVXDfuF5ditnZdIMO4SMoPB+YS5wMSkCbkrMWiCeeuFTdzeWVmyPWPE3XMouW+6NPHvRMM2v0z5lKm4USOwYhTRolm9uaU5WvwUImGqdKotWJkLpGn9RJnLnk9BpW5BJSC/OlyNH9KaObSfHvsiEXyhkly0VP1R699JnxvbWYu89ZjMZfh6/FmLt2vPh7YLeQVJezrhUyT/FkHcGcukRkQOOCE2euxcMKd68XCXGp57uDGOO0xOrr5oNJX6uNRuDKXm/06T7YatN4oUY9hvMrD6DEOIoVjiuS3nnjZUvwfcTGXatlvCyIcgmkFa59/8v6xt3ObuzoelCGvL6NShkBfFg9zKTu39kb3rsctDyQd2usuU/Q3QZjLcEw1gE4LzR4rSCizB7GZy8Y5mp2ddFzNgkvMWVNnTnVAuzucmMsx67GYyw/CKcD4MJf6AdS3UUvUDNavodE7+VyslQhzaarFtewm35eaGdfVxS3oyQEcuD399ZjMpYQ8ansyl5p/fXWLOvEXNZJUb92wyfOtmJhL1+crx8540tMy/5Tb+ogHygk42E4O03YfJJQ7LMp2amJiLlN0SFWrn36hbN9vRZl5INacQMxl3TpMIJZAxhELc4lc/EmcueQ5OlTisEcr1yQtYC6nFRg2DHpSRts3LrRvwPmCaokzlx/WYSlwrTlTeiUJZR1C6MdKIykkGHOJTJeGMZfI7DIYc4nMZ4Mxl8igFIy5RKYBwZhLZBYJjLlEnjrDmEvkeRGMuUQe08GYS2SkFM5cIvb7MOYSuZSDMZfI41QYc0kburJmQ42N8dYj9kFuC0/PgzGXSt6htW7XJ5mXvVMZua/D9UMw5vK95eaIs0OH0NZ2Tn90Kv7FNRhzWXJ/36oP0evMSidqZsy3UngPYy4PDRp/tLvmd6OssIhc3RAtJRhzadZT8YRV3EzLfWvoR5c923Udxlz6qfWXZx17aRlpEnzt7crOarDHSl86efnA+fGBlCP9dsguf6f2N+yx0sjVVssfK31QevHqjy7+psVqnQ4vi90dhwOpuQptUBLmGB/ZQ3DKRcS56B54jl/ri3WOn+/Ld4Sr0TT/U0lNP0eplMw9uy3SHrnSqGsfVIu+b1xITddoLFJTO1oMpKbZyMap1xo20rdGxb8q7f66ktikplM0Fj9mHf3/S2rqV4xa7NQ1y3zH2iXUg669JxKE1JyCaTBtyRhMEqRmWfqiF9uvahrkHBtXsc9dZ0PbFraIkXZ3y5CacZVWjKw7IZMCFxcMxOPpmJiGI0nIcO1Cal4xVhnhnLzHfG1C6gC1wXerJEpq8jweKqkJDCBo2l1DQpl2/0BSUzPjgcnE6Q1GhaxxW5RUpaaImdTUjsAiNbtE/MtJzYAJOzKcz3c0KrkbUBB6uMcxPElNxV3k514hAdTioTdNZxRVDsOB1BwcgUVqAtYSD6mpZj/8maOvoXnJfWWHd5r35CVJavIkQCU1AQkgnxCI5hMIRGpOmz6hp9zQDPNDo7tldr+bc0zEreBMaiItKTlS0zVKnKRmBL2g4rxL1J9Baq5F66qE2an3t6tJdDkSRM17pbQsbdisBTjt1JH9Hw9qMAprp14exXcP6wivOXL6wEnz8lPKPxLHxZnm5a3QCFuzZDcOmv8VjqV5YThf8/VomhOd1OzwWsvwyv33JkGhJd+ORJ2ntSup+Q+XEWikJh1YKHzbiEJqHjfJr/D7uvH3pGYQmin/OFLz0jlvHdOjTrS9+w/n1f9Q8fv9DeNOaqqFY5Ga38IISmpyfBaN+Dnph2GoXqacXz53DK6kZoDsTdnETxomW69Q+jAuHbPAgdRUDsciNQGZJUhqqt1/qf515BeTrMqCbjNji+kEIjV5sqGSmoBskEvYgOYSCDOjIqc+fLBBpOlwmFDnY06ojOYJNZjwkhe53BzocOQRdXuYfM8t1Znb8ZH8w/W9m6Mf7Kfn7f8eXO32Oh4HyQ3CsCQf1dzLQ9Ak/1NIzcj+Ofdkv983y1vq+mrbpR+J7UJqloZhkZqb2zzDtYbUVDIa+5Q1dKt5cu3x17NvnxIMZrSN1ET2dhxIzcIwLPZwX1i7k5qO1okKN44PM9l9i3z6p9dWwfoMkiY1N2OqtTrsP1KzhaQmcvklYVKTNwpQ8cR9YeIkNeVGnwvdnFxrnDe+hxXr+W1XCZOamzGlWN08UYWSUCYqgpKahhcbtTzPzLXaPvacg5Lmhw7tRGqu24RFas7a9B+pCdmnMlMtMfb+epOkgfdWm+QqCz6V7p+RmjgfkIAM4upNWAyi2yZxk5o6dhpONgbeRnF3vEoXLKUIlrT7Z6TmzV2jjLWNPSgHNOwezq386YODSrMwVTLYJEZSE3laL3FSk9djUElNQCnIn4ah+VMik5o/cialvVp5nJa1dGP3tddKqWIgNatisEjNpBi8SU3zZXbdhmstt8hOKh4+I/68YIICHqQmMgMCBwjxVAwWhJgZIxZSc3fKbNvX56+Y77BaTasOqRZMJGgrqTkoNpb1sSbQNLkXyfHxjaGXcBApCVOk0BjiZUvxf8RFam4YXmTd287NJD3bW6u0+iSnzV0dDzaR15dR2USgL4uH1DyvopJc4HuDuunbNrcxiz4JelnJkZpJmGoAnRaaPcJJKLMHsUnN3OStFn5B+2kp13d2mxG695uYSU1aDBapKSM8l+BDana+F1FxZ9pR85jo8q1q0+4MlQipudx90GE/N23jUoXjV+cs+qKOA+1nEIMFlOlJyKO2J6l5y2gT5fkJPfNt70Y46L2O6iMmUjO2Zlv0M9Jro7KIeysLzXc34GC7Ppi2kyGQ7dTFRGoGdiy6lXFwFyUu7ucz0rhqwRCUZEnNd9FYxrlLoPxgsZCayMWfxElNnqND5RQHt3JN0gJSc1Qoc2eHnbtMw94HzDt/pEO8xElNGUwF6pszpSNIKOsQQpOaSAoJRmoi06VhpCYyuwxGaiLz2WCkJjIoBSM1kWlAMFITmUUCIzWRp84wUhN5XgQjNZHHdDBSExkphZGayP0+jNRELuVgpCbyOBVGat64w/V+HTfB6IDbV2ppacc4GKk52uHsg/y8owbbGoZdHD1j9EEYqXnMKrmLwxmaUebCffuefslTh5GarqmDUqr93Kyi5wbMe7/b8SGM1EwffbdIUZvCiKNq+u9X7JIGIzVHrbjCuXIuhVI2PK4heUmdBozUrN7f1SzNfz1jS/qXLnox56xhpOakbrUTw966msYdMjr9gGoxAkZqIldbLSc1owqjU3cdHWmYZPzwYo3julgRA6W1pGYk2qAkzDE+sofglIuIc6k+8Bz/RyjWOf6rUL4jjELTXN42zm+fr5tRxstG1njywXcCX7U7tLeyAP7gspnuwrsyWRSp+/B3ZRyylReLY8Ige0DXaNlOLG/PMdebvRiUZNecrjILdD0xb0vIFsg3tFBQe2CtE19aAUwiwJ6sWuiABBC0sbgCuSfDWv31a5oZQI/v49qUvufrzSI7ujI5HJbo4/pk4+qulurnTIN6WA5eVfakn8AXlzVquoLQF25uwHuyBdMnQ0FJDoha/jUCPXBCaYUkln/SjoC0zXPu58+ff7aGtyQLGsbbi+Xo687kkl3ZLq7uYAK+SNsM9ZpnXW6VQD34Y2H3jXZHBbN75GyhiwgHqJpbxGGd+hIs68SXEMA6wAzwszWbpgHGHmxvbzCD0FHATHwXIvoo6tKSVz9e7LFIvae6p/rQ+dmCxmm6oogI8K8WcRiHjmkcwJtI3jigfeDG6fgb44yneoC/kmcTMNYIfJTFcQwga+vr6ZOnkj29mEt9WcPII3n/+vUO0SNq0+yrdznnPGh5Dy8d0f1qnSeYXWMHu75wdo1AqziMd6AYy3j2kjGeyG1v3XS4BTv9xoJTf1nQ25XNCeAASyfAfIC5OJ4c0HTA39w9l/EawX/qg00eTP+mF0SXuNP7vLfPPUOr+D4poZYbgooQlQVcRXG00MvisJwcpuXyiyRtOfBDYF5Dq4IVPZpOhdkcF2xHaKNmxNRfsZG+9UtQYRffeYsFHSHqmulXC+7HzjnQGgJcp1YJLatyeI4QWqduJKGsU3t3WmF7ouiDVZlcxmOtcSsE8aBuhk0oojWX5cdmLRPGm9EQiyFUMOPfG4YzspfDjqnIXk0X9O5uynF093VimXJsWBxo+4++eD00PKvCZY4XJWnIkYbiHuf2Yd2rcG6PYHu3WcAfXp5cHxrb3afpF4vaYqFi5ccAdcsA7eNFHVlPAJa09DKhJS1/WyVyD8U/bQNzKCF5WrSin7RG13Ht0W60nCFRk+oG2D1t++keYnel/U6/nybrulW8un3J4OlZV9q4u1IDlKsHlRN5RmsPrq0ElftdGF/FDraEIXv6sbhctpNod/rkLPVz9SeSabR81JDRbt6ktg9hhFZIH4GDVnRMrRrbd5fAJ3FloS0X+CZwsXMn+c5PORa04uO/aKBv8FOaN7chZ1U5/saA/1bwf7vAlz2Cn2gOcWxCc2Otjjs2Q3/tEHdEbrphcUekSxMKIIHfVmRf1nu5NSx8W5j5tp89vnQffGERDgGkaDR1CRrMYOyQVfPvw7I6eIJ1o+KT2pR2C2Y0fsYKZth/EncwY1qXqbIG/ka0vHEFztPlBw0jQDCj/jPmdvkzAXZkb968aYdgxknVj7m3dL0t90d9bXiUSmUSIphBx7RO4ycCWKddghkdxjlX7tpz1rTI6u27ExoLgwkRzDjwCXM/TATjkCQZzLgY8bhkkkWG4Ya6DdZfDuykESqYIYdpvPyPkt4SEyiYsUDGfK7C7AyD1HuvnoZtHhEn4WCG60csy6lJ3HJiDWb4VibmVa4eYbiH4rtnhvL8e4QIZvDWEKjBDMARQuvUGNK/IJjxMHXc20FP+lNTuDvsX8qWLZdwMKP+C1YwY8KX9glmrDfUzZ36KsMyPLk/yX1l9y64BzPIfzu+fz9a17TE7UlpzJPBx3HYoNd+wdqgh34RVzDjy9CGmd5qNYY7PQOZw+YXDMA9mIH0EThoNQFTq/rG/6tgxmY0N0boYAZy0w0LZiBdWsuDGZbr3w00jS0yLYixmK1wRvUTDsGMLWjqEjSY0XFA2Oi92+wsIxV9qi5le2DfFp7BjMDelRjBjEw1oWx5nIMZj1WStvaoG2+87tQd+fc/L40nQDDDH5QEdWlo3VsiibmCO7L6+vp2CGZEr7GjfarvTonwHFQRo9kzmBDBDG1M65CIYJ12CWZUz/M9WzGsI+OA+/JcxuUjdoQIZtSqYRkH8CaSNw5JksGMLUcn96OSKBYH7Toft3HXf0KoYEYopvEWS8Z4xAxmrEqO5OyYfcg4auKqZdfPnvwu4WDGBEzLKUrccmINZmyuuDW81jCNnnb472/5P/RohAhm8NYQqMEMwBFC69StpH9BMOPZo3OlvaSyjAL1jOgpAR2HSDiYsbJPJUYwY3Af1DphuAYzbl7zePFqu4bBfm6fxvefB37EPZjx0c5RjfMmjVZmcfTQuyEf63HYoPv0QaPnwQ06o0+rSgy0IphhrZDxXjZ5ukGBashpCz1bW9yDGUgfgYNWgzG1+ta+61BJBzNi0dwYoYMZyE03LJiBdGktD2bsWTierH76BuPY5QGM0c8HLcMhmLENTV2CBjN6Zytqhb6oNAw9MyW0/G6Jd7sFM7qMxQpmTBkj7mDGVPOqbV0XTGDsGBwfPuze8o8ECGZ0Gou1NLw9hgA7srq6unYIZsz7rPGx5Hw+LebkPd1dciOjCBHMyBmDZZ1IIlinXYIZQwYelpk6Nsc0bK/PiBEdejEIEcxwwjTOFCIYhyTJYMaJQaPYFTUDKPn7vBX7FyV1IVQwQxnTeC9GS3pLTKBgRm3VxJePrtSbhL68adUl4ruahIMZp0ZjWS5J4pYTazDj76Oci5uHcSxSl4ZnUVIijhEimMFbQ6AGMwBHCK1T40j/gmDGzF7ncgZ/DzDOMls0b3fu3TkSDmZ0GYcVzMgZ2z7BDOMshw0+35wMj07cKP/qrUbb6yUiN+gzVtS9t/JZR9mzeOQ4v3DqfRw26J3GYW3Qb48VVzDjajlzy8Gh7yziSga+fvGUcR73YAbSR+CgVc5YLK0ix/5fBTPi0dwYoYMZyE03LJiBdGktD2YM1ymKib4zgFKyWCp3+sgeh3AIZmxHU5egwYxFwVWJUzr0M474KGXy4FzAlXYLZkyYgRXMcLUWdzDjVDeDLmlsdaM9RzrK5XO2mhEgmKE/A2tpKDeDADuyGzdutEMwQy1n94JzH5XMiycFPl+xxSmBEMGMOmss6+RbE8A67RLMKCp3e1G04qFR/gq/OfPsI9IJEcyIxjSOKxGMQ5JkMOOxQXnFNvdvhlunvFjct6OOEqGCGRRM46lJxnjEDGaYBebStZPl6NvDFLvH1Ax5L+FgxhsrLMtVWUnacmINZhhOH3Bcy3gnpUjhskpUWX9iYCa8NQRqMANwhNA6NYH0LwhmaN1NqWcWTLAo07sYdffV+N0SDmbo22AFM2pntE8w4/GlW6teyrkwtsVfYI3u+n4I7sGM96R8wyvXXxmH9KUtLz37dCgOG3RtG6wNOslGXMGMfvPv5ew9uNskaIqfpvL1VfjXzED6CDyQnBlYWmW27y5B0sGMRDQ3RuhgBnLTDQtmIF1ay4MZvmcTo2YGvrU4NKSzU2qqbBAOwYwkNHUJGszIS9K6PTLVxnD9retnlzj1cW23YMYUD6xghru7uIMZdg4POtpu6kjNntLNcXSQ9WICBDPGeGAtDbt4EGBHdunSpXYIZqTFTVyjGNPLKHL7fl/bYukcQgQzHrljWafYnQDWaZdgxgTn2dwFhw0okU/+2iE3KpFLiGDGVkzjuBPBOCRJBjPkhjZMlZtOMo+YPCLCsKfOHUIFM4wwjacuGeMRM5gxqn/0ErdRYyjbpVZWXVV5ESXhYMaHJViWO7dE0pYTazBjxPHXVxZL9TQO3V5Ot8vSO0WIYAZvDYEazAAcIbRO3UH6FwQzwgy+PWUP7GB21MV+i8GImOMSDmaM4WAFM257tE8wY23MrRfraU+tSpOW6BSv9TqNezBj0ro50+gkR1pG54b1zlGaaThs0IdxsDbonTjiCmZMKf57wuN5/la7lS5Mz7CvZeEezED6CBy0uu2BpVVO++4SJB3M2InmxggdzEBuumHBDKRLa3kww+SFuU7QzknULb46yzYtPHoeh2DGLjR1CRrMoA1dWbOhxsZ46xH7ILeFp+e1WzDjSBBWMIMWJO5gRj+T5/M73bRhrL909lBR3J6bBAhmpAVhLQ23BRFgR3bmzJl2CGYwlzqOvtPN2/Solt4D5sYiGiGCGeswrcMhgnXaJZiReYsh62T6zDR7vm3Rrfl5HQgRzJiLaRwaEYxD+l97ZwIPVffG8UEJlVe7SpokKdL6SrsZ22BmyBattgllJ2mnEKUiQmUnhJAtSyFFSqv20r5JG61S6n/vmJG5M/fG25259/V/+7zv51P3mOve3/Oc5zznOd9zBstihm8WRfvEvRD13JBhopuGDSnAVTFjGqLxZLExHj6LGU7bxoj4Su7R3uE4O8t6zE4njIsZEoiW+7wNa8vxtZhhEpAo31wwWO+AUmnwojH35uKimMHMIWCLGUAgZOWp8YQeUMwY4BF4a9XN2frl74dMTRG+mYlxMUPZH6mYQfAXTDFjEGH97dVvzAwyr+yX/9ttoxbqxQzp3ObindYB2sW+rz57/EjuiwaZ4Y80QR/sz69iRgB5RsO8WeU0n9dPpto35m1FvZgBjREoaEVA1Oq1YEdLrIsZCXBhDNfFDOiku1MxAxrSul7M+EDfu7N24nht374ZT09Hvb6BQjEjEU5dnBYzoN+RLLBihmgYUjEjdi+/ixlnTh5kyBsIU8J9a6yT/nrhi4NihnAYUmr4di8OZmSVlZUCKGYYDzx39dncREpI4MUnosMtxXBRzLizF8k61XiwjkCKGdPmjm6Z8/C9VuCJN0LKWy9MxkUxIxfROLF4MA4By2LGRvEFXu+19uiWjBkkeXLv2QO4KmbsQDSeFzbGw2cxo8/fWdcnqjbTw2MozQFkyb8xLmZYI1qOjrnl+FrMmFi4ccFlQ4Jmsrjqz9uaISG4KGYwcwjYYgYQCFl5ahKhBxQzplvXPi4qzCNHNCpfmr5w+mGMixlbw5CKGWZhgilmnPAJVRg1UNog33yURIv1/GjUixn+k0oNh5us0snI9VAou3zKGYUJ+uYwpAn6qjB+FTPUhx+8r+t6VzfwsCpjZ+uLr6gXM6AxAgWtzBC1Iof9XxUzkuHCGK6LGdBJd6diBjSkdb2Yccwgvp/1WW3NnOUpKS++FsqgUMw4BKfu2YNW1LZZw3S2psj2aRy7oYyz31ABTYnGmlTuKkZvmC5LZlcxiI7gZz0Ydk6A9xJtGSuBf9oSrdcRgfd19yS6ujg4eyoTgXe3A9utnG2JjgxnO097lU1dio3bdS0sFwWUae94dM42M21Pf97Pzd3f2S1d7KY5QGoUHwt00wkaBIIPdDAIBAZiy1iuwQAppEkxH6CTBjzfzqZ5q/jE2CNahYe1fma+C54DSQ7BT/NIDpmXf3vos1/boHd0S/qBvaEOFA/tb38Yx+IBgaJBgd7yimOnwW+wisUkd5TQcAG6v4Mz4Izgz00nwP/pThlEmmk/ttsq2jq4A70LaJ/A+8vV629UqZjdMoi/+r5KqsE6m8OO4prsD3PZslMT2qklaDBPRINZYmMwUS/gjdsn2dzGalrAy1jCv+lsfZnGao8rPO2TmGe2xHHEcc3MyQoj8k2yOM9sEKUyP8hlHPb13/U0iwFZ5C375OmRywsjZq12lUChp1ERDaeGkeF4za+bFnRrptaP2mm04GmqBd+V+4bbDNPPd35meMnyCCeu2IvKa7rcfhXtDqSYz4p4OSQCwRU6JFzOY3Yg1rCbQoAZdiMaPsVMMg2mFp8zOKnzM16O420ktLyBaQIz4eKel8H5+lAtLyvHNawFBEbHDTrdi/2TA7QNjGgkE0W5DVNmG22SUzaY0KURV1T4xwq60Q7trAVNw+ONzsTCPTKXGTq1dVHiy4Crr98PSKwKjLoPoa7+EJiCLd9f3d8Q9C8GkL6zPb0XSx4JXTA4cHlyH+ZlXVt2/4xq8ylJCDXXLUw9TFd/pnS3rwHTVbk+J9Z+/dcHLWxrdguVi2uWvB1G66806HL772M+DoEVkWDngr+0IHpZARMPa0fe8xnrb3taPG3itY99TDJ89WMt55czSZixPko04FJbyIDL44UggWnOpsFpGVFaBqk3V45df6xG9Q8DUwVgLS/QWlOADlEBtVZ4EdNaLHE7REIKBoPbyzZg9v3LkXmq1P/LJcb60H4avi0viioWuiznjN/tt+FWiIh6TLDMY0lQoc5DAkoeUwJWTEiFiwkHih5abH/aoltSVFBydPUjziOsextaOTMcuSc6cOFAkUR0BT/RqU5DdHYBXoOZansyvD2JYLxgePA+d4Uid3iGeI1O7qiBp3ZWu57i8SjcMxBeqtq4uzg6GlkB16HDA8QnoZaE80kxUw+Guwnw+OxfO07TZQ3YE2wcgecBKywMWwdP1rvbAGoB48ljnxSIHdmTXa5KaHEVoeQgYEczDYLPdg0JmpW7nYMzlbGSwyn6tl82Ale9Ol8Xb79u4uLa+SqnM0zVKa7yKT5Y/RdTREN3F2Be6enQ/lR92E/Fa5bqbrVW19nWwab9R5ndWhy8CA7PnS7RwHqnI2ti3h7MwbU0BytHDRfbX58FchVPYKLm1PHvXovcrVx/BYx2V02Dc1Wi3djCwF1B5LBTmdT9X4s3cPqHEcPRah2nq7LrY6IkG+ANPNj6wHnvIBJxLZABE93BO7Gm3Twd1fHO5tslssbUsMcDCog31aV4PEiX+j/0TBGI//9hhIwCkjNiNKuc68NVYAfGM6lodng4jHvNocMHSprH3tSRkswPpwSNyO5zLu3iMBQ0H7EfSXOJjpCcDqe5W7mDkgM9XeNYmYHji6dL3nG8at+Fa8CQowN0HHuYChSn8nDjnbymg4crKLoVkAEzh711k9qDM9EK+I9oB/4GnqaIup737NvC05RE210SUp/st8A+H5dBOBq5TCNu7OLuadC5esbDYP8wjei4G49VKHoMYLChGuD/nAaz1S6qmkCLqe5vzHAEDMawBWIhw5vjdu2mzIAzJfnasHteM/PUjyxZLr3T7ATn6DoY9FpPcPkcpEIYYJ2S4cFd9IJbE5ms4eIEJDftfYd5G9tft2GOwGA5zINpWlsgWe1Svm2oISIvk3yIFvPXg0qPzXEKv39gLiPz/Kku9p+aY1UE+yjAHA1kHjm4IfhtXlGwyyBddHwStZMo4NgNjobgFAbIjhXbZ5UeREA9ZqGM+bf2GgHQKcBFKIYt76rL2Pf72y7a2ensaYr9UDvZvzdnVmjG7Fncs3rW9d+FKftTNl/UpRZQCvVWfPl7innTH4apIkBmW1DmXmQemeOMY0yZuabSfbqn87hO5idaMzzXMhjOYHLkwbBZw3QPB2BKzzsT3JgdF3GiJJW298psq93j1qpxRphf97XljjCdG9FOuJsKWLIt5SXb4AKmbKyQkAkXEnAzokKHvq6MqDzSbYinQk2HwoCaGYU0oEZ3SH4E95Jbn5ZhEEyi1f1iyK6zm823oCP51vjLn6SlQ9RjrW5TwkNPvkVB8r2RSJJvjWRLngUnea3k2A9TVV1oAe/f6atc3cKJxPc3YgCZhw2DSF/j6MhjxINb5pnE/pwz+DkwMjs4AymLg217KF/r4GlPdPG0Z7h3fbxbPjuuunGCOT2btOhOdMUNUYTn5LIMZ3MX1SUCCYck6NB9NXgs9CsC6j6O/NMRbihYLPUAhzbgYTyZqQCoGE8BxIUXKpuJZdN9jKTW3KDnl3C6JPNG3Is+7Zd/55dQb/9Dv5QCdz+ByiXyKkWfB3c/RcIu9HdRuZEdyrlzuBroWjzlk9ycSHfZKUdJ/2x6RVehMYUTjGM5CFhe5laRsxXtsQpU63EkkloXIwVauGc/qJjJOldGZx3GdlrsVtFnuDszHFXAn/FQ0aGs0HX2ZNgx3CFMFvjnT9OTocw0EDQscAuilfO6dlPztDI0/fqTTvKHdq3JZ/WCJhIPuxrmM3sBhzbsxUU4IaTpTG3BjJiZkbFd35anFG+ezMyyqhxNjTE4n5q23MiLUwrmW3FL0X6ZH1IwXRxWiosdA1U2AWagoh/TvniWcFrDZ/HwOQ6NepyLcZLMwparo4MNWEx05h6p4DKCkTSgGzCcgE/ZWDkSnTju0qVxqbXO/EvoFCI1rp7gdvOgwmakx+JG0zjbuxoxgLT/MjgVDuaFoFGAiJEcw2P9gz1F5bH+wVwphax/QJcx2O1CMO2CWB8Zpe3gDsQC0PuZgyWnvXjaZ0zyaINvksp6vnWEwWYv7O9y2EeIxF2KIgl6gYQAmPN8DGuBhKt3XAO/2iKmupNIQr8RSdaYAUzebLulUtZ28YjwvO8Gh+6ILX7Xr3Aep0pkbpXIv1Vp2ZTir0RZO/XwVfm0QEsNMRRUSkZUKSSmW8tI0r+WkbogEHS1vktLSezrqPO/BSyPaSGByT9EC8cCplKseJoDF08vjXr18vNeGs0vK0JukuWn1Zwr5jQXL0bX8/2JzK0DjmBtRtEJ+OQEcJW5fXpFtHJ0cbYjWrFqM13brBb7aqW7hoyZRqrcsv0r5jbacT8b92o+eLWr5QHAl6TjAf2+8wqgBHCraBxPbAvOl/qTrTwYHZAz763H9gv2XehnQzqxZuFud8mD/n9M60L7G5SA+MP+9hDQaHA8HIFKBDfbxneL1h3I9hHm4jbTGXgK5Ubd5Vb+TpUc7yVePv25bhpnT6O58BxI2dd/N9OpWrR+hFndWHJSffCisyIzNVEQCXAVBJFuxeGPlmL/kVfvFoQzqKOT2yK7+p0tIWPyH6drFbTetL0dPGH1H7v6H0NtBSxfpvAy0618pi93KxVv1wIYXJ3a/RksY/DeueBfskdL3JQeGGwgY5K0BoL4ddyFG/H71cQPNZhOC6sG4LSs0eMoAWb0yFApNhtz5YtG+FXHW033Gm9BABSm9xHNLRZzjyGiMJIqdKDB7b5LXOnu4kTc4L1u/SaijYuTq4szOP3u2vgRKsX4WS8+nxq761rzaYPGm3BPxw0j/Wrropo+wPQ9AlSTyAsBJoD7QbjHEjECfJwczHqEDd6d3pvnW37PvmfhfrGPfukgRZdz10drDgTn4O6Ap3BDXcKTzDlL8+a/7s1dmu/c+LuIertlzVWxAg26/9hBZsqDb/7pd5G4AnLuBeU8zcs504CheTNGEZUnxljenRGww7LrfmfZaUOO7NoRZaWeImxsMcH9AufZG30tkGxn0Q3bGUopzqCoZWoGUZMGxLWKxqFgu1WItjPDke2I6t3ZQd1hu/W/s93o0yXHV0/z1omSs9TTv+f9ltN2i5FstxjJdn8Y9UHjkBGNo4Ij43RzJ6cUyzrgoqWn+xqYRR1o8gdZ+GXegsfCb/t11EfhfFagEyODdTGIPaSBVs+47uUk/VkiIADtY5bmiMh+mENLWPVQTHn5N7M/A9pRUMAMUQG1jjwklwCTh3R7+5dsh/fyf/sXdBdSp+1fUFwaaBIm8KbLgCYRVhOUZwOaehF4F6WApt6sJigGBDSJspqgFAnQ1IfAG7gCmsQIvNeLgCZxVhN0mQ5okmA1QSulQFNf9u+CzPeBpn6sJmgqBzT1J/BeTgWaJFlN46XIX9YqTtA8nFfU8HbO+ytA01+sppqYxzfylHI0ojQumEUPZbQATVKspgcfrgy5PFBfJ2qoYVLk7S/1QNMAVtPKGKPBQYeHU/bMj/64eHNRPNA0kNWklre59ilhnca2hLqaMbkNh4CmQaymu/fnTsu/d18zc/TNZn2D1eeBpsGsJqur+jYWjCEauyQeyu6XHisNNA1hNe25cG7aM+n7tAPH6ZGF28q+A01DCbyzLa5dg8MIMLsG9e7cOrb4y0iDgNnzcq8++pTIo6N0d9dgHlynxM0yPtRDUGIRpeKIr1y3ryMdn3hHd2FptTIK6/h0xHX8+R3LI/lwmuP02CloRxTYsVNmCUjHTr2N5/exUxMGzHdpCVDRjDL3i16dPpaTV8Dm2CmjBKRDPOYn4ODsnJKSEgEcOzXpJGP3u4FESlyJsXzEQVHOpUSsjp2aiGidoXiwjkCOnSq+HTrf+uh6/cARU168db/PWf/F6tgpYUTjANEEe+MQsDx2Sm1KjeqZhlEGkboLdOnn9TkPWMT62Kk78YgHumFjPHweOzXsvETKk/rRGnm54nOj5YUgWaLAj53KRbRcLOaWAz/Et2OnLt8tXaI+qVjneA7BK3ujHmdGh9WxU8wcAvbYKSAQsvLUAgJMnvpvOnYKOlXE+NipugSkY6dSEgRz7NQkfYKPEGkYPbxR1s1rhsJl1I+dgi4fonCU0sUEpKOUShL4dezUt6mPexttV9cLmvNgw4qbBbdRP3YKGiNQ0CoFUau9gs1DsT52qhAujOH62Cke1S923REa0rp+7BS0OIZCAekYnLpmo4VXhx+VIhcnOL6bs0mMwlk16DjKor0w3fViRrHQr1MwgGHCHZiYWHmCf2W4gzcgrrRiFtDbiSUHTw/2mVOsX8Rq9yDaWDkTrYHZ5hpXV0cH8NgqF6AR+Hz7Ldc4gx8F99E7g3yAI3MkYl5UIWrYg0cDMSdBS+jLiK5sRpO5BcDFzs6R0bEBC/wZz7UuRCdwY3bXii0bXi5snhqsoJlGmP62d8n2AETZuIstkB/oYswwBPI06VNVQFzktQCeBoxM0pVV3YGpBmgwZQT36rMeiPd+iPwfc9+MqdUIADxHbrkq5xFfvZn34ME3My//Lqoqvp8yahzjpkGUjPkJ+QVHr/5hVFUHFBIDFdrNK6rKAzG3iFOh31U95Dj8kZX0gJqxBIODGGVOh7gGJyXoZAlPzdx65Jkapss/oCr2lUiqAH6Dm5lZ04LuFD5m6K4kmriD02ewF3Nay8Gjc1xgzrY3g7Ns3ptVw8XUCqcfHEbPmmNHUJIjc07IJOgdN+ImWTq18cN0NSeRTOd9EhPT9bF2cXFkWHUKk92ZmI0yBDcSg0MCu5bosBIM7wgLqteHTO6tH5OtFRT8+e6tnaOKICehgPfjDkLtl1GfLxewogxPrMsnnxllurWgrGDCOseOBWR1R5jEvChGhH8q/dCr0YNj3WmcJ/v3Yd2Yu/zNbuCHOMxgAyuONEQc4d+IM759lPo1gndHnQFpZ+NDp53QSmg8GyX2tx8nTS7esXODmwr81cQPhZh9GlYhoE+z8rYiAkzepkWaqPRz3jVS2n3Zw3Wx76Zzsi9MPM3VBSRIuXM2MRid//61AOXw6/O2rAHP0x7IO+3siR1HY7SfBdC1dElKNvVssf5Hkv/DrPS56+tnwD4tN6nTqbGL+noXAwpWA/paaYAlLYi+UoC+ilVcaVI3t5MO/vVYIJTargXPV88+6zo/ru0QZZ/o3/lCY1o4v+pczAw8dIjXiRG/Wn6XQkED4x+mUPaAevageqM1eHjna2BiKl3drRSqX3v3tWXYuTN455cGgUktpQVmpJgHU0evpoYkcSZLmswPcidLrOto907w/WuqkN7fuwrrZKnDM7uRKIGP7OBi62DT3p95fxFZNMNv8+pC/YPDje5+8qzR4fRV9g24fbWjhR/GUEQ0xq3TuEh/CN1ZD1LRd3bxBIYvKxuwMq04ZR4wZQX5c2Xi1Hk29i7utsrEafM83Nw9mf/gna3qHlhoVJZVTPJ5c+2O3DV/zs2Q4uAvMPZc58jdbTo18cNYgaeRjKWGjbEgPYdZd+lOtjrk1zKC8xp3aw+EHnT+kUmohWqb5iG/QY+ubpld+ydT5T80R04eK5BLA2nGZS7oL6/KtK2qe1kqK5IjZFsSDS+/XT8zXGeb7pMv18ONEjGd9oICRFWxBLjFQwAwtHQrE2UPZS5OQELF+2upr5JCI1+LayUbbbVU9PIohgxlzA/yGMrar/NDgIrTCAKkG51mJ5rFhH8X7aQaYqq+fcA7gxjxbDerOcWjBEY7TTlXhUA7hdRwZZYo004Og9VqNjn000298zacNvPnABzQTkRQEti148tnMQn6nMjG/fv3BUA7OZR81WlYkkFLlqDMKf3mbIoL2snnLJJ1puDBOgKhnR7J7un1+cB+cuJtt7CWxdPf4oJ2eliDZBwgmmBvHAKWtJPPzbaTWWo3qYF6oXfU6rfMwhXtpI5ovKYzWCe7OKKd3s0RbU6IXWMQfSPDfYHbhkaMaaf4M0iWM8Tccnylnc6m3XprllVPLR1WPlrdeXYDLmgnZg4BSzsBgZCVp5YQegDtpCkjnz1GspdWyWnrsLy3G15hTDsRz1ch0E6utbDFUlRppxSLTaP2zlKh+D4fJ3R8wHND1Gkn6NwcBYJHClQOluCpqOUqlKJEO8k+Ut1uJJSmmWkqp/5++qto1GknaIxAQSvAjxC0ItYKNOZiTTuVwoUxXNNO0El3J9oJGtK6Tjtdyb4eFHbiAvVgpIxInHXdTxRop+Nw6v5HO/0j2ulgSdvjw/sPkQudRHcfSH+vIjDayec7Eu3k840ftJOXWN81r8+M1sovGOm1aMCWOBRpJ2KrzYcP05V0T6x6Xhb6XP4kCrST63ckOIT4XSC0Uy9p4YynblRaysAKlz4id6oxp50uf0NSBfAb3MzMsKKdlj56Nb+tqEU/KyNVNN3GAT+00xRE0z1sxcVyH99pJ6NWTZqfjht9Z9MbyonXhx9gTDsxowwsrgJEGYHRTtfE1o+YrLGafmD0hGJK5Z1QHNBOzGADKw4QbARHOz3dIPLauzhFM9Ts9sMfw5tFcUI7TUFUCOjTrLztBKFH0E7T6xjUeQvFdfwKDwWO2zgilu+0U8VPJNrJ9YfgaCfPV71cVzaPUU+v1MyhOGyJR512ggZGFGinnJ9IzILlT5Rpp5t/HVoouVONnvR4upJpaWIW5rSTFOL7V/zAOlniF+3UN92z9chYAjn0fujmD0Zy+3FBOwGdFcEYRGyMgTntVHGmXut4frV6iZr1+3PXbiXghHa63IZkLJ82PPQcftJOY186qa+s2kwKLz0wdDxBHvrFB4KmnZiBHJZ20vqJNu1kubcxoX65jH5Kv7FL++rPPoo57fTwBxLtBIQWlGmnQC0DxaCxV+hhkXMGWj3Xm4A57SSGJED6gTZ2ollG+HfRTu63I9NKBs4yOPTx5DeLSUeeCox2Oi+EdLbTdwK/z3Zqbp2wx6dtqa5PqZ2iW9nwNzignU4LIZ2UES2EgwNqbty4IQDaybbp+YBcg4PkcEuzO9fmFYnjgnbyRLQOFQ/WEQjttG7Sum1DTJNJvlWm3nNrNlBxQTvJIxoHiCbYG4eAJe20ZxG5VZ9Qq5O4VHLYtAkJl3BFO10jIBkvExvj4ZN2cqzTEJ30MsbgYHSs21MvEaxpJz9Eyy3F3HJ8pZ3sl3waMlk/RKcsdHmTvVLOW1zQTswcApZ2AgIhK08tJ/QA2mmxr3Oh8s6D9Ciy9YHcn+/7YEw7nRZGOtvJUVgwZzt5kD3XtSarUA7PG/rtcf6F46jTTtC5OQoEz3FhpPOKwoX5dbaTwz1jvRnD/EglISJXouslRVCnnaAxAgWtHBG10hT+vzrbqQIujOGadoJOujvRTtCQ1nXaSdN1nFGhhLHevou3GvzpsxRRoJ1Owqn7H+30j2in8rciNZqfzuvu6K96T4iut0hgtNP5kdUItBN1ZLe+KK+LtJNOFXmyTeh7UvGk4nIZ0v4zKNJOn0xspJ2b0rXLaXmZ78d/+lOGFIRDToMKwcIh0SO5RiB+0E7m305dfP7EixwZ+TI/79CwNsxpJ09EVQC/wc3MDCvaye2B+oCT0tr6udOt73vHnUrCDe0kj2i67yMwMZ3AaadCn6GjWupH6m7duP8Sadu0DIxpJ2aUgcVVgCgjMNrJco/Yx4iNClqxoxcHFT1SnIkD2skTURwqRBy+0k73DlaemFnziBronXOr3I6sjBPaSR5RIaBPs/K2SkKPoJ2a9joyWoTc1SNTR/sn3IrZx3fayXFUNQLtdFoGdgKPOu3UdE0lsW6ClHboZ4/cC8NoU1GnnaCBEQXayRZUD5ZZmDuqWynU72mn1au+ziyptVLf90burHLU5kOY006DEd//tQzWyRK/aKc1CusqvN5fJQV8NPYUkfjbGRe0E9BZEYwRjY0xMKedzExnUJXuRmseVshV2khrWYUT2skT0VhUXPQcftJO/cxvbeu1XEH94NnkLT/K+g/BmHZiBnI42ilDZVT3stTf005npg+QEvVIVs81WeHpP+NLFOa003eZagTaCQgtKNNOVUEtqx3bjMi5qW+URCefWos57RSCJICZhQw70TxF+HfRTlLGE5XmxbzQ2lPWO+fwmVBlgdFO5qORaKdAWX7TTsOOUk/UKL6jpZ6R270+6OpnHNBOhqOR1o4VR+MA2bh06ZIAaKc1J2sjkhdZ0DKzLn8Z4b0CH7QTAdE6t2RxYB2B0E7nv15re1s8Sj9N5Msp9+fmdbignXJkkYwTiAfjELCknY4WkJ9e0/TUDF0tMn+D5SIKrmgnS0TjqWFjPHzSTuYBrX2TtmrRj5aSxVscn7RgTDtJIVquYRTWluMr7dTPfuD41fXbNGPGVF7QVVpwABe0EzOHgKWdgEDIylNPE3oA7fTXd4/at+RIg4SJZsul5jfqY0w7GRKRaKeW0YKhncYsFz7hPlRe49iPfoHa19ZWok47QefmKBA8FCISwUMk8ot2opb2XzTSUkQv43Owb3he1CPUaSdojEBBq5bRSFpdFuwsAWvaqQoujOGadoJOujvRTtCQ1nXaaXXDm/w+iyMovuXmaXf6lS5BgXaqhlP3P9rpH9FO+5t6Hbza+pGeN/r9buN9qwYLjHYyn4lEO91S5QftdPiZl2PsZ5pGpv+hl/maz5ejSDst3PDwg4HnVvUky6mqXjtIj1CgnQxnIsEhijMFQjtNrTo1oa/sUI3gwCmWD9dJ/8CcdiIgqgL4DW5mZljRTpP7X/L9+3USKbBmV2LYFwc53NBOOapIpgvExnQCp50kMrOzVGe0GQQ82PYyz7jXUoxpJ2aUgcVVgCgjMNopp85XexzjpdaRvNb+d+5kR+KAdiIgigMEG8HRTs191OyD9d9plc7Wv+wUZX4BJ7QTs0/DKgT0aVbedobQI2gn8ylD84vtnxrEjLOONwk2uc532qlFDYl2MlQTHO00XazOzLXRn5ZxQCj1ad/aBtRpJ2hgRIF2alJDYhZq1FCmnUzvLpI+VCWvF2MYczhnyZbrmNNO8Yjv762GdbLEL9rJuFW/WnFOHSV+NWNGX4fQKlzQToaIxlDExhiY006vLMbdfXIpnL7D2dO/14Qn03FCOxEQjXVrJh56Dj9pJ/2FYvfks8ZQci5NkHzu9E4FY9qJGchhaacSNbRpp1Dv9NyBhkn6pc1T/ioJaHbCnHYKZAvAk3YyVEObdiqp2HBlG11CN2hFVJum8rWhmNNOMkgCmD2byU40awj/LtopxPyoQdX0fgYn3B9vCHOyHiEw2unpbCTaafBsftNOxH1q2qWhm0j50bEGOac3/cAB7VQ/G2ntOH82DpCNM2fOCIB2qt71pGXg0skGOZTnn9T2vqDggnYKRrSOLR6sIxDaKfWKqZKp9hatmN7B1UuV+9fjgnaai2icwXgwDgFL2mnLAa1qj0GRBmESD/IavuZuxhXt9HoWkvFOz8I62cUR7WR//uX4l35hOlsXLvJ6NcbZGGPaKRrRcp6YW46vtFPizScfMxecoBzWz5ooOnjyXVzQTswcApZ2AgIhK089S+gBtNPiM0LOtQtzqLmTMpe7rZD1xph2qp+DRDv5zREM7XSCmtZPvNdDg12Sb4Yef2QxDXXaCTo3R4HguTYHieDJnMMv2mmTqEONb5/JetnxpMkqZxZbok47QWMEClr5IWq1dM7/Fe10Di6M4Zp2gk66O5/tBAlpXaed5K1rpKKzG9RTa2Sm3LwlGYIC7VQLp+5/tNM/op0yqj8olAeoUlMaEywTrusUCYx2cjVGop2ajPhBO5kl/5VxKTWZni3uNrx/H2cSirTTB0KRxtWbb7W2j9ReX1b7YiIKtJO9MRIcom4sENqp7Nsu8Rz/PtqlKX0Wxz7yeIk57SSNqArgN7iZmWFFO7luXL+h2C1Y56Bj6sG/P+cH4YZ2qjFCMl08NqYTOO002Tvyoke0EeXEu5OaESk0eYxpJ2aUgcVVgCgjMNrp3ctBscuXOpMPxDXIThw4SA8HtJM0ojhAsBEc7SR6vHd+bNYE/WM+kYWVj/WO4IR2YvZpWIWAPs3K284TegTtdE/oecmqSXdJQd6714e/U53Kd9pJyhSJdrI3ERztFNRHaYTfjkTNCBXFgO1r5MxQp52ggREF2knMFIlZeGiCMu20xvb9iTk2tZTdlblrs1vk3DGnnYpMkN4/xATrZIlftJPl65fLXSZn62SNnxG8/OgjL1zQTvaIxlDHxhiY005KkweWLE2yJcVEN6xX6e2cihPaSRrRWE3GeOg5/KSdbqTJi5XdrKVky4WdtPrRSMeYdmIGcljaqc4Ebdoprne/vmrnU9QPjW4J3j/6/HHMaad4EyTayd4EbdppYesGQnLdJkqEyr1Fspc/pWJOO81AEsCszZidaF4g/Ltop+zs+AXGxx31tmZL6Nwp/aQtMNrpuxkS7aRsxm/aydl2/9z5U86SUyc+3pibMHE1Dminj2ZIa8fnzXCAbJSXlwuAdpIavSRt0/h6WkTsCjn1owFbcUE7JSNaZyMerCMQ2umH0PMqjept+nt2rusz9btRDC5oJxNE4yjjwTgELGknG0LcKN0RsZS0JepXVx6wkMQV7dQL0Xj1plgnuziindbHFlnF1P7QKaw+F/8lcfJ3jGmnfFMkywVjbjm+0k6E284T67LtyYGvspQGBig54IJ2YuYQsLQTEAhZeepFQg+gnYxKJpGUpWpp2yv8ZEK8Rj3GmHb6uAiJdopeJBjaaWiY6IJ7MpMMwhRq+hBCsk1Rp52gc3MUCJ7Xi5AIntOL+EU7KRqZ7x2Tn0rLc79Qs1h4lCvqtBM0RqCgVTSiVp6L/q9op0twYQzXtBN00t2JdoKGtK7TTiE/Hw16eZ6qsePBtX1nnxdroUA7XUZN3X4CVHejwwK1LU4l2nteP3B4KvJSo5O6BUJ1VxOc75J8p/XV6SMu6gw0CbOaxqpNzpWpCdIqWzVf3XhERgTQJMJqishtPHm+vwc56vDhHUULHw8Emnqxmm4P9DUeszBRp+z7mePq0fO44bTecObaOvG0cqLUI62tG09Jqa5Mf46Cua7Ames/OO0fwWmTao1HOSUe1SydZyPbFiEvLTA4zc8FCU7r5cIPOM3tWX/LeYfc9CLzqR9XbbJ6hSKcNnurxXwKwUY7u2/jtpW7xqWjAKdtdEFieUxcBAKnrRhqLLuhMYpcKBabmfmYWoo5nKaMqArgN7iZSGMFp5Xq5OSVNobTYmeqLVi1u60ZN3BavTOS6fKdcbE6y3c47V5U87orG+brxGbQNlm9f78XYziNGWVg6SIgyggMTrsYIn5XTMSGvM+IpE/WKOJM7rCB05QRxenlIkA4bZar+O68PZXqe3xWXqufrWKBEziN2adhFQL6NCtvqyP0CDhtmUMW3WDALIME81Pph8ZU7+A7nKbshgSn+bkKDk67muNROTgoVCPNx+L4Aal8zmQeDTgNGhhRgNPk3ZAQk++uKMNptZr9ZOQWh+jn5+/K9vZ6NQxzOO2aK9L7Z7pinSzxC047MNVi3bOjOvrBNikFSRXLOb97GSs4zQ/RGEuxMQbmcFqBweXUDN8Enez4aXPPxPdVwwmcNgPRWP1w0XP4CafVp/xYlnqgTT1+etrE7CX5qX8yVUYBTWIGclg47a0r2nDa64KyyyI5byjR+ZNrk3yLUjCH0467IsFpfq5ow2lTN0mdn7iljBQguSCJXKMGmfdjAKcZIglgNtyVnWheJfy74LRTj4ZmWH/drnPihJ++mc3yZQKD06Q9kOA0iju/4bTNCsuyg7/fIe1wulj4uWjBRhzAaVIeSEv9De44IGyKiooEAKdtvfHGMu3VWVpYn8+ZryTjOb9eCys4rcIdyTpReLCOQOA0XRXjsPUiKpqBqhXyanSNU7iA01wRjUPBg3EIWMJpX66tLPe+1qARNGP/p97Lv3zAFZxGRDReixvWyS6O4LR7oqtJNy7GGiQ8oacTJYo5z44RPJx22Q3JcmmYW46vcNqLpRPE0qxEyVEPx6Sqiu5O+XOyBQU4jZlDwMJpQCBk5anXCD0AThsrbiymJLuTknvz2hDGQIIuxnCalCcSnFbkIRg4jfzE7dEitUz90pKPMfZLrXNRh9Ogc3MUgCsxTyTg6qEHv+C0vhP7kXQO3tIqEMmptFePu486nAaNEShoVeSBpFWIx/8VnHYdLozhGk6DTro74VPQkNZ1OM2QsPypQdxiWjp9wCXVOGspFGinG3Dq/kc7/SPa6cSjlE0fQ7bqlc0al73UQOKDwGina/5ItFO4Pz9op6oRLzaLi5jSEtbemb9WXGEiirSTdG5z8U7rAO1i31efPX4k90WBdrrsjwSHHPcXCO1UOVTS9XBZL2rgx2k/hkv6D8GcdkpDVAXwG9zMzLCinSYKX/yxrLWYXPhkbpnisXV1uKGdfBBN54iN6QROO+W4uXvFXBej5n6I7Hv/gx4NY9qJGWVgcRUgygiMdvpRHvls4bK7BoWl/o0bT/SJxQHtlIYoTri/AGmnN4xV3ptNC8iB3l9JaX2+bsAJ7eSDqBDQp1l5201Cj6CdMuVm5v01rk3zaNDOAqXtCgP4TjulBSDRTiYBgqOdErWnWAe98aPEkcMO1d7UVkKddoIGRhRop+QAxKOoAlCmnba81t9y+4QaJe3VkuLDztOxP4prI+L72wdgnSzxi3bS/fh6puixZXrHFqs7a6aL38MF7WSCaAx1bIyBOe202WmQZe2FJp2MDHPVkcv++oIT2kkZ0VjSuOg5/KSd7k9v2DqzOEGvUJdeWxwzzA9j2okZyOFoJ9OgALRpJ8ZVpZtZwmupSb17HxLxyBXGnHZyZQvAk3YyCUCbdrpmsXRBxapzOscMBxtZiz1Vwpx2mo0kQLpsADvRvEX4d9FOeoOkKg0iTekpWyh5a1/G3RQY7RS7HYl2Ut3Ob9ppsZHkKY2Y4eSQ3O0KjPd5CTignQ5sR1o7DtiOA2QjJydHALSTjJ/sLVkfM2qcl3lsW2VUFS5oJ3dE6yzHg3UEQjvFOV3v88HGST9JdoLtUSedclzQTnqIxlHFg3EIWNJOu+Y370ieZa0duLO67kzbyGhc0U5yiMaTxMZ4+KSdxjYlNXtWG5H3zVGurRA//h5j2qk1AMlyz3ExTeEb7eS4xNnggZmJVurDKRPr149rxAXtxMwhYGknIBCy8tTbhB5AO3lJy4ozjr2hB+sE3Gje2FcaY9ppRCAS7fSWO6XlC+3kUH72x/ZXa2hluwf6vkqXeYo67QSdm6NA8AwNRCJ4hAP5RTudJyqXHznzWmNv2JsEyhtFedRpJ2iMQEGrt9uRtLoj2NESa9rpDlwYwzXtBJ10d6KdoCGt67TTlVN1aRdm+qhnjYrps/69dCsKtNNdOHX/o53+Ee1kf0gu4bLXKoOQxeuWfEi0eSIw2kkhHIl2eh7GD9qp/6m7+14HF9FjDRIzQg5tDEGRdvKfVGo43GSVTkauh0LZ5VPOKNBOcuFIcIhkuEBop7hzvbd5vV5Ij4nu1XzUWc4Lc9qpNQxJFcBvcDMzw4p2GjFcf0HMXhOdg8veXjIKOumIG9qpDtF0ZdiYTuC002Lh8Jq/DgjTD7wL2Bym00zFmHZiRhlYXAWIMgKjnXYFDehHWa+gFxgVrUdPPPcFB7QTM9jAigMEG8HRTuf+ev1ZoqqYVFiS7jd9/JZsnNBOdYgKAX2albfVE3oE7ZQx/X6plKI6NZI0zjtVql8632mn1nAk2iklXHC0E2n/zgfFUXtJ+/q2MqZOmlCJOu0EDYwo0E6fw5GYhcfdS6F+Tzs9oV537Zt2nhae8HmL2NJ3szGnnS4ivn9JONbJEr9opxMnSQTpnY80dix+PDzuZO45XNBOKYjG2IuNMTCnnRzUqAn7/n6jE1Q1+8vbWYmrcEI7bUY01ipc9Bx+0k7W4rTNSxXvUUOmVdwt11rgizHtxAzksLTT3W5mqb+nnU6WHhKamiqhf9R3DOmHWLkO5rRTJVsAnrRTSjjatJPpqwVngu7b6pbvW7NIfUx5Cea0UzCSAOmu4exE8x7h30U7Tdtw1fnq+QT18kmRjfGrH44VGO3UtA+Jdgrcx2/aSfmJzZjE+F66CUe3tv5cpaOJA9rp9T6kteNb+3CAbKSlpQmAdtq/W7lJe6aR+h6F3V6k+WEncEE7nUa0Tg4erCMQ2qnPQdoY5dgZun4ucl9tdi9ZjwvaKRrROIF4MA4BS9qpvnJJ2s/tdvTEDSEvNp+Rf4Ur2skT0XiW2BgPn7TT49i4I5Zqb9Tjj12PkIzUcceYdqIiWk4Nc8vxlXb63lrhMFYzRCtWsv8kk0ElZ3BBOzFzCFjaCQiErDz1PqEH0E6XU/vrpXtvo4ZlfO2nEnreEGPayTECiXZSjxAM7eQ+Tu6YaYqPXmJI2SzxCb7PUKedoHNzFAge+wgkgsckgl+005w55zdt6dWoHXZkvFub0H031GknaIxAQSt1RK2UI/6vaKcHcGEM17QTdNLdiXaChrSu006zJW/NCmq2143M1DzzmESbjALt9BBO3f9op39EO62MMRocdHg4Zc/86I+LNxfFC4x2Wp+IRDvNTuQH7aQW8fCzAWkybUfQ0aKlYkeNUaSd7mwJGZP/OF2roPWm7e3gCatRoJ28EpHgEOtEgdBOTQGrxPz2fdHIcyzfeKnCYRzmtBMdURXAb3AzM8OKdtKccPlW9qYZlHyX5F3uW9euxg3tpIBouoHYmE7gtNO82cuJVrILdMPWrFiYNJ2xD2PaiRllYHEVIMoIjHaaOO76yKUDhXTKyNKFlaPJX3FAO9ERxZmdKEDayepg5sWSMfOpR/z0xn1pqCPihHZSQFQI6NOsvO0RoUfQTmp5m2ufEtZpbEuoqxmT23CI77QTPQmJdmrlTpP4RjvV7c7wX7LambYvvLVo6V5dKdRpJ2hgRIF20ktCYhZUk1CmnQIt9pAGqKymHcwNH/Uo7KsQ5rSTHOL7SyZhnSzxi3b6PLmSuElGk5rUYNL87MEzP1zQTq2JSMZ4jo/0R+C0k8GP5U8pu/7SyjCg+B6zOLQBJ7RTHaKxyjCfZvCbdjq9O9dYbpg6LVF0qLHH62EOGNNOzEAOSztNTkKbdlqkaBIrElSqdbSh8rG3+xJ/zGmnoWwBeNJOrd3MRH9PO8W8qO9jZpFOifiQ7zyJdGM85rTTw0Qk2ul0R6L5mPDvop3u3p87Lf/efc3M0Teb9Q1WnxcY7aSZjEQ71Sfxm3bKX31R9njFQY3I78VTFkc0r8cB7aSejLR2rJyMA2QjISFBALQTVUHs1ifNpfohcoN6vTkQWYoL2kka0Tq98GAdgdBOlXWS77QuaepEr1z+IKnkiScuaKemJCTj1GMz08AR7eTdQI+59/i65i61/BXLwgdQcUU71SAaLx/zaSKOaCf/G3nVdNl63dR5AbqGvmaJGNNO8YiWC8bccnylncil6yrOqDzT2W0T5tUUNTcbF7QTM4eApZ2AQMjKU58QegDtZHVV38aCMURjl8RD2f3SY7E+26kiGYl2Ck8WDO208kd2ybIF10jbHo9+mnl861TUaSfo3BwFgud4MhLBk5bML9pJ4/wnHc2mBNo286b6YyPH90addoLGCBS0CkfUykeweSjWtNNTuDCGa9oJOunuRDtBQ1rXaac9F85NeyZ9n3bgOD2ycFvZdxRop2dw6hLtxhYG7goih53KpO7/WsxZNe1txHC0WsepLsyyEFwXHkQirnVwZxDdwTuxBOS9B76lzVl60QSt2BvBz6e4D5Xj8SDcL/37CHf28r6wgDz9A2/dcm55pI78w14bBX6Rxbuq9nHZhytTAsYGxXdVLMmf417yJRLbjfuLNVNSjA0GfPh2zh+3klOHVCNIrjyEnQq9wL3kH02/ntwe5EPzHfiy1vtF8UjcSn5+CpLkmVPYkjfgXnKZHOtDQXonSbvviRtu2lcxCreSi9GQJG+gsiV/iXvJ1+kqXjT022Pgf1HSTv2jeA5uJf9ujyR5vT1b8kbcS66r4E6XFB9Jyonsb7fK73kabiUP3ook+catbMlf4V7y9Y5yR7xWKWqVSZy8ZrHiqwxuJU8OQZI8PIQt+WvcS367Zc1VsQINuv/YQWbKg29OxK3kTbFIkj+MZUv+Bk7y6fl08mwlC0pZtg9tR1P2TUhBBBDb3cWRyKQ5PbjXGHvDCK2q5Q1MxWzaaUHWyj3rVu3AFnPrwGpnF+BvwNyHtVGha+uPruoLC3btrdBMLZO/cLSiqRnpiXmUcDjau6i0DzCJzjEH0vHTZB74PxHcum5WxQf833pe/uKZcq+0Ip4bJ9isYKSgiP+/9rH7Ypl+iHJM9KGmvWio0B/6oiugUAioUBMJ+AdUoZZ2hbhqqmyJuoj+jdHg9CHW2hMd9K9JIMajwlPF1TpRhS5SQ7VO1EiSbl8s1+IkA2AchX0d7YprRQFLKCKvegwRaG1aVMXFhnRTqBGLGOBKKVMhzn7HW6Gl71c0Gy8x1U5+5L4uMy6gjHNlm3Uz7pVtdgM/NDJchKQR1JmE/4FGTBSMRX0DOv3Oi1qvPi7Rv9pKjtrwfHJZbfVPzr4I3oxbIdZlfugjZYakj6spuzrwFi7wT2gbJp1FFNEqIDd9Y8jacQb+vlQHD0/YrWdwJftRNIaVxxr39q1f7axSe3R3BO7WteCuMmD4u6TysdQCZdLsMtul52CfihtX7tTYVVwZ3Am6BNCxEtDxIVRHV/DchMVcYb2buLI42cqDwRSA5/se05/wcf/pUzo7GfNl7g0X5fxKvl7gK3G9aPvV38V3aND7UzYZkIoIShUFxPcKqFQyx5hSwcZ3nhw3nbnmBjqIgyfDyQPcW0jlqZFb5dpnU6sUyGFxvRmqYhZ+A5kEOPDuWt6u7oyOejGz0mw+iXP1QtDkm1QhSydwhwGXToEFTJ1YXfMdqytxdc1eUz+SJM9cpiSpqt4Ryh57SoTqYM1uS2iIkVkx1YyaLbrH4UeDBCeExKLk2vnsrvdbog6jPVNrJ8WJYErC6HZe5qchUpQx1oWUcVVL5srJBCn4J+MGBjq3diPjiDcGlD7Oq/OCdqgw6lZORuzIyex4y8H7pIBrbqQ2sofW/hgXwxvUOX90yB5/UzRLQDAfY1aKxuWaDe2CdWvZe7gmxF9A0eAJ3WkXVz6qoAXpRkqbpBkXqjhjutkgp4ClhhSvjgqOoYAarI7aRIAZQyMaPsVMMg2mFp8zOKnzM55zLUHiV3jiXvWGm6EO/bV525nI6LiBBHeo602aRFaa2qWeqawwQ/oMTVo7nlG51Oka6TjcY3Lvr/zV1kVZ08BxYgUg6y1ei9oU0MmWVfXv2OHFXm1kRycJXbCncq1e9WFe1rVl94yoNp+ShFBz3cLUw3T1Z0p32e1CMO19DZj+zNVzxNqv/7qxhW3NbqFycc2St8No/ZUGXW5/Hubj/i58DPqlFdAh3B2srB15d4PW5vs79YyqdGNqVLNmPfDgjOASZqyPEklc1hAicfUCIUjIgA6Vf1phAKxJAK05hcQj0XQER/3lVZ00EkJLo2Fqb/3H90vQ3y2yo5fI56QcGI3I3BqRf6sRNAyhoBHg0wgaEZdVsRyww5GQourgdpgIjKe/AgDvgHo9YvBkrXHU/Xr+YjkmeZxH/Im234Y7oLKuox1QDQtYvtJCAicmEB2u5TNVYgXUZriAOvTxLs2Bsy9pJPz9pDy7Zi3ngZJCZN7r7wPasRweUhIk2ps4ynQsioerfMdzgd6YAcyfbZkZKpNEcgIxL1dHBxv4AwhCclOjfIbuoYbeUPd5NvHOHsg7dMVlu2qLDn4NYgtiSRVBOrUKrMSAgxtL9ff/SPX2ZEXgyo9n/UIPMAl1cXQEnh+MGkCnsGMAT8HeTMd75+dVM1UHYkay1uEDwYfSvmaqCmAvEJwpKkDChgY1xYd/ZIq+FoAUTq4uzgxnT4EbZLBZe6lkw7pNv56Cp/rm99ato3kHkzNIow8I1c5ZAvsO3HP4zo1oW0KstIowpQiwRFlnS3zsyaHo6O294WP9/MnJ8qf21W/ZqYpRKCI0Qv3/U0/2/wvHZlyx/qakd1joR1XizW0vceT/rs1Q///ck/1f5EH44/SSgfrFk19uIf+c8Roj/28YWA3x/y892f8rrh/3MTeRIh3/O/369WdCFBz5v+bQaoj/t/Rk/6eNG3LE6sNZ7ZAbBXdHWj6pw8j/HVWg/v+1J/u/MNV1mNUnLfJxO5XsjVceEnDk/zVTof7f2pP9/4Pr/pjCxQXqOe/rFv18JzcJI/9P1oP6/7ee7P9DjRoD38oVa5TrlXtMTrbbgyP/J9Ch/v+9J/u/5pZtL4N+eGkllNyyvT2MYYuR/weuhPp/W0/2/4QEqbmfxEeRskQH1Y38a+NNHPn/dweo///oyf4v2liZT558WvOgnrm++votqzDyfz1fqP//7Mn+b/9q498Lnw+iF51etW3n48EHcOT//bZB/R+Urcf6/524aVqKWk7qaWNNniyu/umJkf8v3gP1f6F/pPq/xP/3XY8IeUl4p1m+88HGEv3ERhz5v2wo1P+Fe7L/L5tS/JUoa6ceviqfFmipIYaR/6fFQP1fpCf7v6GU4gyKWqZmEDVpQFyraByO/N85Dur/vf6RJdo3PAvcBgN/MXMeDDsnBtzJpyvyqL0p/i80fCcolc8eMK+Ox7PzWP9iXkZbdZArirfpqP//Dw==
                    
- true
- 
                      iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC
                    
- 888bc43d-bf25-48c3-aa36-9d17285125d3
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- false
- 20
- 05f34f0f-4f8e-4462-82aa-5e30fb909cb5
- 0bdbe3fa-89dd-406d-8c80-6cf3cb28ec67
- 19201f27-e961-4cd6-a1da-dbd604d23fd7
- 19a6753b-a9d0-4f37-861b-7022988355e1
- 240848bf-eb4d-46d2-8106-6ebbac5ab881
- 2410d7ff-a8b9-400f-890a-b069943f1167
- 2cdfbce2-6ecc-4836-aa8e-0f85b8a74976
- 47a31173-f0f1-44a2-a201-5dd8d33b6071
- 4cc97740-caa8-4b16-a424-4ec69e765379
- 51f9a605-042d-48b5-a72d-840602c3318e
- 5feab2b9-bbc8-4117-abda-c735008c5e50
- 6c1cd4cb-f26d-4baf-a9d0-c412a73f153e
- 827a1037-9bab-4f09-a804-99da30648e96
- 876ffa66-c4c5-4e61-8635-2e6563eb9e15
- aeb0c3ab-df35-499c-a9ea-aaefe2199a0a
- c5b9232a-b0ce-47aa-8983-9a32708608c6
- cf57d458-4d9e-44c4-85c3-316fb4603137
- d0af14ea-590d-4f8b-80a0-c1bfc02e22c3
- d364e931-f072-4723-9456-b543274ed03f
- f24ce9b2-701f-48ec-9ed2-cb2f2bd4896c
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- f9b9305d-1e20-4067-946a-b44d88604308
- 45329fda-4528-406d-a823-54e35ac6ff74
- 34281050-3848-44ac-894c-a3119ffa069f
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- e9837f44-fe89-4576-a1ba-d864d9176564
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- 
                          1495
                          -116
                          110
                          404
                        
- 
                          1591
                          86
                        
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 240848bf-eb4d-46d2-8106-6ebbac5ab881
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  -114
                                  82
                                  20
                                
- 
                                  1538
                                  -104
                                
- 1
- 1
- {0}
- 8
- Second item for multiplication
- 19201f27-e961-4cd6-a1da-dbd604d23fd7
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  -94
                                  82
                                  20
                                
- 
                                  1538
                                  -84
                                
- Vector {y} component
- 827a1037-9bab-4f09-a804-99da30648e96
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  -74
                                  82
                                  20
                                
- 
                                  1538
                                  -64
                                
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 19a6753b-a9d0-4f37-861b-7022988355e1
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  -54
                                  82
                                  20
                                
- 
                                  1538
                                  -44
                                
- Vector {y} component
- 47a31173-f0f1-44a2-a201-5dd8d33b6071
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  -34
                                  82
                                  20
                                
- 
                                  1538
                                  -24
                                
- 1
- 1
- {0}
- 6
- Second item for multiplication
- 51f9a605-042d-48b5-a72d-840602c3318e
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  -14
                                  82
                                  20
                                
- 
                                  1538
                                  -4
                                
- Vector {y} component
- f24ce9b2-701f-48ec-9ed2-cb2f2bd4896c
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  6
                                  82
                                  20
                                
- 
                                  1538
                                  16
                                
- 1
- 1
- {0}
- 5
- Second item for multiplication
- c5b9232a-b0ce-47aa-8983-9a32708608c6
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  26
                                  82
                                  20
                                
- 
                                  1538
                                  36
                                
- Vector {y} component
- 2410d7ff-a8b9-400f-890a-b069943f1167
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  46
                                  82
                                  20
                                
- 
                                  1538
                                  56
                                
- 1
- 1
- {0}
- 4
- Second item for multiplication
- 876ffa66-c4c5-4e61-8635-2e6563eb9e15
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  66
                                  82
                                  20
                                
- 
                                  1538
                                  76
                                
- Vector {y} component
- 0bdbe3fa-89dd-406d-8c80-6cf3cb28ec67
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  86
                                  82
                                  20
                                
- 
                                  1538
                                  96
                                
- 1
- 1
- {0}
- 3
- Second item for multiplication
- 5feab2b9-bbc8-4117-abda-c735008c5e50
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  106
                                  82
                                  20
                                
- 
                                  1538
                                  116
                                
- Vector {y} component
- 6c1cd4cb-f26d-4baf-a9d0-c412a73f153e
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  126
                                  82
                                  20
                                
- 
                                  1538
                                  136
                                
- 1
- 1
- {0}
- 2
- Second item for multiplication
- 2cdfbce2-6ecc-4836-aa8e-0f85b8a74976
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  146
                                  82
                                  20
                                
- 
                                  1538
                                  156
                                
- Vector {y} component
- d0af14ea-590d-4f8b-80a0-c1bfc02e22c3
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  166
                                  82
                                  20
                                
- 
                                  1538
                                  176
                                
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 05f34f0f-4f8e-4462-82aa-5e30fb909cb5
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  186
                                  82
                                  20
                                
- 
                                  1538
                                  196
                                
- Vector {y} component
- cf57d458-4d9e-44c4-85c3-316fb4603137
- true
- Y component
- Y component
- true
- 0
- 
                                  1497
                                  206
                                  82
                                  20
                                
- 
                                  1538
                                  216
                                
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 4cc97740-caa8-4b16-a424-4ec69e765379
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
- 
                                  1497
                                  226
                                  82
                                  20
                                
- 
                                  1538
                                  236
                                
- Number of segments
- aeb0c3ab-df35-499c-a9ea-aaefe2199a0a
- true
- Count
- Count
- true
- 3537ed18-f4f1-428c-82e7-541bd20996ee
- 1
- 
                                  1497
                                  246
                                  82
                                  20
                                
- 
                                  1538
                                  256
                                
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- d364e931-f072-4723-9456-b543274ed03f
- true
- Curve
- Curve
- true
- 7428efec-7c04-44c5-9681-0bb0a240649a
- 1
- 
                                  1497
                                  266
                                  82
                                  20
                                
- 
                                  1538
                                  276
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7428efec-7c04-44c5-9681-0bb0a240649a
- Relay
- false
- fe2c7fd3-a20d-49fe-8b1d-09361e90e45d
- 1
- 
                          1201
                          307
                          40
                          16
                        
- 
                          1221
                          315
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 877d17fb-a865-4477-84eb-510ff1f13db3
- Relay
- false
- f1fbb0e1-fe5e-40d2-841e-732012e40657
- 1
- 
                          1188
                          261
                          40
                          16
                        
- 
                          1208
                          269
                        
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f18af49f-2c36-475e-9666-3bd16c62f28a
- Panel
- false
- 0
- 0
- 0.000510441291375068915
- 
                          -347
                          121
                          160
                          84
                        
- 0
- 0
- 0
- 
                          -346.612
                          121.1601
                        
- 2
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 74e72892-1a4b-4eae-af9f-1aa7c27d779a
- Relay
- false
- c48f2a86-4388-4b9b-a155-5f9d30e70ed5
- 1
- 
                          -385
                          -117
                          40
                          16
                        
- 
                          -365
                          -109
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1b67eee0-1eda-4d33-a2d9-8cf379c87ae7
- Relay
- false
- 118e674e-db63-4847-b023-71a1ecd9c236
- 1
- 
                          -387
                          -15
                          40
                          16
                        
- 
                          -367
                          -7
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1e05010e-b50b-4830-b2e7-d7ec43b1b1bc
- Relay
- false
- c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f
- 1
- 
                          -389
                          35
                          40
                          16
                        
- 
                          -369
                          43
                        
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 0dc3cf42-8c57-4e88-9c7f-ebfcdb8df114
- Format
- Format
- 
                          -331
                          -153
                          130
                          64
                        
- 
                          -239
                          -121
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 029c7b0e-8214-4576-bbd2-fe0901352c09
- Format
- Format
- false
- 0
- 
                                  -329
                                  -151
                                  78
                                  20
                                
- 
                                  -290
                                  -141
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c10e2589-2e0e-44f2-8c2f-494f97d8cd98
- Culture
- Culture
- false
- 0
- 
                                  -329
                                  -131
                                  78
                                  20
                                
- 
                                  -290
                                  -121
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- db915e2c-2049-44b0-86a7-8e0a05caa8bd
- false
- Data 0
- 0
- true
- 74e72892-1a4b-4eae-af9f-1aa7c27d779a
- 1
- 
                                  -329
                                  -111
                                  78
                                  20
                                
- 
                                  -290
                                  -101
                                
- Formatted text
- fe9b2349-403b-4c80-bf8e-3415f7e9017a
- Text
- Text
- false
- 0
- 
                                  -227
                                  -151
                                  24
                                  60
                                
- 
                                  -215
                                  -121
                                
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 83c699a3-3a60-468e-8e09-9fc0126b99bc
- Format
- Format
- 
                          -331
                          -69
                          130
                          64
                        
- 
                          -239
                          -37
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 4410e18b-8b01-4918-9a82-49048c3b2a4b
- Format
- Format
- false
- 0
- 
                                  -329
                                  -67
                                  78
                                  20
                                
- 
                                  -290
                                  -57
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 98b62a3d-1fb9-4cc6-9c2d-503672ff8b96
- Culture
- Culture
- false
- 0
- 
                                  -329
                                  -47
                                  78
                                  20
                                
- 
                                  -290
                                  -37
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- ec3f478e-2b31-42f3-88b4-9cffd1577e1a
- false
- Data 0
- 0
- true
- 1b67eee0-1eda-4d33-a2d9-8cf379c87ae7
- 1
- 
                                  -329
                                  -27
                                  78
                                  20
                                
- 
                                  -290
                                  -17
                                
- Formatted text
- 07b602e6-3f30-4265-8f7b-014173103908
- Text
- Text
- false
- 0
- 
                                  -227
                                  -67
                                  24
                                  60
                                
- 
                                  -215
                                  -37
                                
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 19a54d3c-b7b7-4d53-b8d0-f7fa93338ec6
- Format
- Format
- 
                          -330
                          14
                          130
                          64
                        
- 
                          -238
                          46
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 8f443e65-05a0-4035-8bc2-c3635e897552
- Format
- Format
- false
- 0
- 
                                  -328
                                  16
                                  78
                                  20
                                
- 
                                  -289
                                  26
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 9bb27c66-c1cf-4073-9393-c8ac657e997a
- Culture
- Culture
- false
- 0
- 
                                  -328
                                  36
                                  78
                                  20
                                
- 
                                  -289
                                  46
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 8dc78f70-6c2b-4abe-80fc-fec3aea4db06
- false
- Data 0
- 0
- true
- 1e05010e-b50b-4830-b2e7-d7ec43b1b1bc
- 1
- 
                                  -328
                                  56
                                  78
                                  20
                                
- 
                                  -289
                                  66
                                
- Formatted text
- 12a00da0-f03d-412c-99e3-24174bf36562
- Text
- Text
- false
- 0
- 
                                  -226
                                  16
                                  24
                                  60
                                
- 
                                  -214
                                  46
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 23d9f3a2-1454-4364-a19c-8801a4aa8e4a
- Relay
- false
- 7fbc35ee-c93d-4288-b414-b6d63a02edf6
- 1
- 
                          57
                          55
                          40
                          16
                        
- 
                          77
                          63
                        
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- 8d1f6b3d-13f3-465f-b3c7-56564b00752c
- Scale NU
- Scale NU
- 
                          153
                          -193
                          226
                          121
                        
- 
                          315
                          -132
                        
- Base geometry
- f948e3b2-cfd7-4eef-86a5-50f9dad72123
- Geometry
- Geometry
- true
- c88c0b93-14b6-40b3-a27f-00ff79f7b13c
- 1
- 
                              155
                              -191
                              148
                              20
                            
- 
                              237
                              -181
                            
- Base plane
- 432aecca-5eaa-44b6-b0f2-18b882cfca7b
- Plane
- Plane
- false
- 0
- 
                              155
                              -171
                              148
                              37
                            
- 
                              237
                              -152.5
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                      1
                                      0
                                      0
                                      0
                                      1
                                      0
                                    
- Scaling factor in {x} direction
- 5f5ed2c5-b1d2-4d06-b26c-f3b52b48dfce
- 1/X
- Scale X
- Scale X
- false
- c48f2a86-4388-4b9b-a155-5f9d30e70ed5
- 1
- 
                              155
                              -134
                              148
                              20
                            
- 
                              237
                              -124
                            
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 511a0238-63d0-430f-a55c-66dc2b094d0c
- 1/X
- Scale Y
- Scale Y
- false
- c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f
- 1
- 
                              155
                              -114
                              148
                              20
                            
- 
                              237
                              -104
                            
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- d91b01d3-f368-46c1-aeaf-e0c7339bfdc7
- Scale Z
- Scale Z
- false
- 0
- 
                              155
                              -94
                              148
                              20
                            
- 
                              237
                              -84
                            
- 1
- 1
- {0}
- 1
- Scaled geometry
- 7f737f09-6227-4105-9ed2-0609a54e83ce
- Geometry
- Geometry
- false
- 0
- 
                              327
                              -191
                              50
                              58
                            
- 
                              352
                              -161.75
                            
- Transformation data
- 67e926b8-0b7a-485b-9f8b-0577bd48e6c3
- Transform
- Transform
- false
- 0
- 
                              327
                              -133
                              50
                              59
                            
- 
                              352
                              -103.25
                            
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 193810d5-127a-4ef2-93a2-2df5119cf6ec
- DotNET VB Script (LEGACY)
- Turtle
- 0
-     Dim i As Integer
    Dim dir As New On3dVector(1, 0, 0)
    Dim pos As New On3dVector(0, 0, 0)
    Dim axis As New On3dVector(0, 0, 1)
    Dim pnts As New List(Of On3dVector)
    pnts.Add(pos)
    For i = 0 To Forward.Count() - 1
      Dim P As New On3dVector
      dir.Rotate(Left(i), axis)
      P = dir * Forward(i) + pnts(i)
      pnts.Add(P)
    Next
    Points = pnts
- 
                          960
                          1569
                          104
                          44
                        
- 
                          1015
                          1591
                        
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 23d5f74b-2615-4df2-98d7-e702968086f3
- Forward
- Forward
- true
- 1
- true
- 147ceb0a-e550-4da4-96ca-8ca546338041
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              962
                              1571
                              41
                              20
                            
- 
                              982.5
                              1581
                            
- 1
- false
- Script Variable Left
- cd494ec9-299f-4eff-af9f-62e91ff30a17
- Left
- Left
- true
- 1
- true
- 3e0631e2-acee-4952-b380-ca85b2802769
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              962
                              1591
                              41
                              20
                            
- 
                              982.5
                              1601
                            
- Print, Reflect and Error streams
- f1122156-86f9-4e0a-96ef-9a9fde4cd825
- Output
- Output
- false
- 0
- 
                              1027
                              1571
                              35
                              20
                            
- 
                              1044.5
                              1581
                            
- Output parameter Points
- 35165a66-0f4a-41c4-96bb-4865345e7d7e
- Points
- Points
- false
- 0
- 
                              1027
                              1591
                              35
                              20
                            
- 
                              1044.5
                              1601
                            
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 3ccd8fbe-c80d-419d-bf32-d57c2bb4d8e6
- Series
- Series
- 
                          409
                          1732
                          89
                          64
                        
- 
                          453
                          1764
                        
- First number in the series
- 977bf3e7-0d24-45a9-a6b8-e3d9f6e04438
- Start
- Start
- false
- 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e
- 1
- 
                              411
                              1734
                              30
                              20
                            
- 
                              426
                              1744
                            
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 254feffa-5877-4f43-9c51-74b6cb770fe8
- Step
- Step
- false
- 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e
- 1
- 
                              411
                              1754
                              30
                              20
                            
- 
                              426
                              1764
                            
- 1
- 1
- {0}
- 1
- Number of values in the series
- 16a91bf3-6653-476a-a5ad-6b5eea6b39c7
- Count
- Count
- false
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
- 
                              411
                              1774
                              30
                              20
                            
- 
                              426
                              1784
                            
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7
- Series
- Series
- false
- 0
- 
                              465
                              1734
                              31
                              60
                            
- 
                              480.5
                              1764
                            
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 6c965c03-c748-47af-9b8c-55ba80a7c206
- Duplicate Data
- Duplicate Data
- 
                          384
                          1573
                          102
                          64
                        
- 
                          447
                          1605
                        
- 1
- Data to duplicate
- 371f3cbb-f7cb-4b93-85fa-2553b97d0873
- Data
- Data
- false
- ff15de5e-5cfc-4151-a598-a645878d2f45
- 1
- 
                              386
                              1575
                              49
                              20
                            
- 
                              410.5
                              1585
                            
- Number of duplicates
- c21c1053-7352-4746-afd1-3a086e340bbc
- Number
- Number
- false
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
- 
                              386
                              1595
                              49
                              20
                            
- 
                              410.5
                              1605
                            
- 1
- 1
- {0}
- 500
- Retain list order
- d4b874be-26df-49b4-b504-a68703706422
- Order
- Order
- false
- 0
- 
                              386
                              1615
                              49
                              20
                            
- 
                              410.5
                              1625
                            
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- a8d4b2ce-0382-4b07-ad56-e45e8d6691c4
- Data
- Data
- false
- 0
- 
                              459
                              1575
                              25
                              60
                            
- 
                              471.5
                              1605
                            
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ce7a6538-1307-4799-aa09-c6d0b388aa6b
- Digit Scroller
- .
- false
- 0
- 12
- .
- 11
- 1024.0
- 
                          -143
                          1722
                          250
                          20
                        
- 
                          -142.1696
                          1722.402
                        
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- db90c791-fd03-47f7-9d9f-fce64245413a
- Digit Scroller
-  ЯR
- false
- 0
- 12
-  ЯR
- 1
- 0.12177142743
- 
                          -138
                          1624
                          250
                          20
                        
- 
                          -137.4702
                          1624.085
                        
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 80528f19-96fa-43a4-9544-823f9ed395d3
- Digit Scroller
- °
- false
- 0
- 12
- °
- 2
- 0.0003959052
- 
                          -140
                          1667
                          250
                          20
                        
- 
                          -139.5521
                          1667.344
                        
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 9393d860-fd26-4ce8-8516-240665f8d209
- Radians
- Radians
- 
                          238
                          1631
                          108
                          28
                        
- 
                          293
                          1645
                        
- Angle in degrees
- 23aa7fad-d7c7-468b-8fe7-cb92d958d0af
- Degrees
- Degrees
- false
- 256fa74d-8451-4366-b97f-fb31ceb7790f
- 1
- 
                              240
                              1633
                              41
                              24
                            
- 
                              260.5
                              1645
                            
- Angle in radians
- 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e
- Radians
- Radians
- false
- 0
- 
                              305
                              1633
                              39
                              24
                            
- 
                              324.5
                              1645
                            
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 4be4d01e-f1cd-4466-afb7-4c701c8415b6
- Point
- Point
- false
- 35165a66-0f4a-41c4-96bb-4865345e7d7e
- 1
- 
                          888
                          1718
                          50
                          24
                        
- 
                          913.2098
                          1730.519
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- Relay
- false
- 5078d0e9-110e-4e9f-a4a7-8a5d53101b3e
- 1
- 
                          249
                          1693
                          40
                          16
                        
- 
                          269
                          1701
                        
- be52336f-a2e1-43b1-b5f5-178ba489508a
- Circle Fit
- Fit a circle to a collection of points.
- true
- 1e1c32a1-ce8d-4957-8d6b-20e1e7f00d58
- Circle Fit
- Circle Fit
- 
                          366
                          1991
                          104
                          64
                        
- 
                          411
                          2023
                        
- 1
- Points to fit
- f1050762-10a2-43ca-8bff-809dcce2a36f
- Points
- Points
- false
- 4be4d01e-f1cd-4466-afb7-4c701c8415b6
- 1
- 
                              368
                              1993
                              31
                              60
                            
- 
                              383.5
                              2023
                            
- Resulting circle
- 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42
- Circle
- Circle
- false
- 0
- 
                              423
                              1993
                              45
                              20
                            
- 
                              445.5
                              2003
                            
- Circle radius
- 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79
- Radius
- Radius
- false
- 0
- 
                              423
                              2013
                              45
                              20
                            
- 
                              445.5
                              2023
                            
- Maximum distance between circle and points
- 27b55d9b-ea60-4f36-964a-16c736644482
- Deviation
- Deviation
- false
- 0
- 
                              423
                              2033
                              45
                              20
                            
- 
                              445.5
                              2043
                            
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- cos((4*atan(1))/N)
- true
- 74efbc8f-3410-4e24-aada-2bcab8a679bf
- Expression
- Expression
- 
                          517
                          1953
                          215
                          28
                        
- 
                          615
                          1967
                        
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4f02194f-7531-4362-9ec9-d41464997f0f
- Variable N
- N
- true
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
- 
                                  519
                                  1955
                                  11
                                  24
                                
- 
                                  524.5
                                  1967
                                
- Result of expression
- e71a1b21-deda-4ee0-8783-f40fbe34bf91
- Result
- Result
- false
- 0
- 
                                  699
                                  1955
                                  31
                                  24
                                
- 
                                  714.5
                                  1967
                                
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 0868edf0-bef8-44ba-bfff-f419e7d67d07
- Scale
- Scale
- 
                          540
                          2098
                          126
                          64
                        
- 
                          602
                          2130
                        
- Base geometry
- 2eb8844c-6be8-465d-9f45-fe8cda686713
- Geometry
- Geometry
- true
- 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42
- 1
- 
                              542
                              2100
                              48
                              20
                            
- 
                              566
                              2110
                            
- Center of scaling
- 460a9868-24fc-4fc4-b670-679bab81e8e1
- Center
- Center
- false
- e7ec9ac1-1a14-4f10-af2d-92b279404e69
- 1
- 
                              542
                              2120
                              48
                              20
                            
- 
                              566
                              2130
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Scaling factor
- 875d2dba-b4e5-42c5-b511-4c5d1b9a78c8
- Factor
- Factor
- false
- e71a1b21-deda-4ee0-8783-f40fbe34bf91
- 1
- 
                              542
                              2140
                              48
                              20
                            
- 
                              566
                              2150
                            
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ab3f2f73-b91a-4c6d-8374-0389102171db
- Geometry
- Geometry
- false
- 0
- 
                              614
                              2100
                              50
                              30
                            
- 
                              639
                              2115
                            
- Transformation data
- b2e95054-06fc-4de7-a108-3a97edfda004
- Transform
- Transform
- false
- 0
- 
                              614
                              2130
                              50
                              30
                            
- 
                              639
                              2145
                            
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- e0c086dd-125a-4893-b52d-269284ba8332
- Area
- Area
- 
                          354
                          2108
                          118
                          44
                        
- 
                          416
                          2130
                        
- Brep, mesh or planar closed curve for area computation
- f782124a-d5de-4023-a7a5-af4b9cf9feb9
- Geometry
- Geometry
- false
- 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42
- 1
- 
                              356
                              2110
                              48
                              40
                            
- 
                              380
                              2130
                            
- Area of geometry
- 0c7ff78f-224e-4115-9e24-ae9d1967091c
- Area
- Area
- false
- 0
- 
                              428
                              2110
                              42
                              20
                            
- 
                              449
                              2120
                            
- Area centroid of geometry
- e7ec9ac1-1a14-4f10-af2d-92b279404e69
- Centroid
- Centroid
- false
- 0
- 
                              428
                              2130
                              42
                              20
                            
- 
                              449
                              2140
                            
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 461fc3ce-2791-4cc9-8c3e-25389656f03d
- Multiplication
- Multiplication
- 
                          665
                          2010
                          70
                          44
                        
- 
                          690
                          2032
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- a247e566-2790-42d7-8a97-f5d9300932cc
- A
- A
- true
- e71a1b21-deda-4ee0-8783-f40fbe34bf91
- 1
- 
                                  667
                                  2012
                                  11
                                  20
                                
- 
                                  672.5
                                  2022
                                
- Second item for multiplication
- 8c992c09-9162-4193-ada2-ca180f2bff01
- B
- B
- true
- 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79
- 1
- 
                                  667
                                  2032
                                  11
                                  20
                                
- 
                                  672.5
                                  2042
                                
- Result of multiplication
- 5e47cae8-ad95-4b4c-a1af-feec999bc560
- Result
- Result
- false
- 0
- 
                                  702
                                  2012
                                  31
                                  40
                                
- 
                                  717.5
                                  2032
                                
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- .5*L*(1/SIN(π/N))
- true
- eea9f1d0-8fd2-4314-9989-8302e677101f
- Expression
- Expression
- 
                          605
                          1852
                          207
                          44
                        
- 
                          699
                          1874
                        
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 37cc8cad-4cf7-4da7-ae8b-baaa7447ca62
- Variable L
- L
- true
- db90c791-fd03-47f7-9d9f-fce64245413a
- 1
- 
                                  607
                                  1854
                                  11
                                  20
                                
- 
                                  612.5
                                  1864
                                
- Expression variable
- 1bea666f-7b30-4858-b2fb-d70e9f75df7a
- Variable N
- N
- true
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
- 
                                  607
                                  1874
                                  11
                                  20
                                
- 
                                  612.5
                                  1884
                                
- Result of expression
- 3c9661e6-e5b9-4a08-afce-8c2037330161
- Result
- Result
- false
- 0
- 
                                  779
                                  1854
                                  31
                                  40
                                
- 
                                  794.5
                                  1874
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 646f35d6-4eb6-4dd5-8cac-4f8f0c9b5977
- Panel
- false
- 0
- 3c9661e6-e5b9-4a08-afce-8c2037330161
- 1
- Double click to edit panel content…
- 
                          891
                          1854
                          160
                          100
                        
- 0
- 0
- 0
- 
                          891.1822
                          1854.321
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- R/(.5*(1/SIN(π/N)))
- true
- 215d4120-1cff-48de-94bd-f7b73ce01e75
- Expression
- Expression
- 
                          284
                          1493
                          224
                          44
                        
- 
                          386
                          1515
                        
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 8039b10c-7cc8-4915-bdb9-ff99c2f805d2
- Variable R
- R
- true
- 375085a7-85bd-47e7-800b-36aa5972104d
- 1
- 
                                  286
                                  1495
                                  11
                                  20
                                
- 
                                  291.5
                                  1505
                                
- Expression variable
- fb427817-9f0f-447d-860a-e480261c5a5f
- Variable N
- N
- true
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
- 
                                  286
                                  1515
                                  11
                                  20
                                
- 
                                  291.5
                                  1525
                                
- Result of expression
- ff15de5e-5cfc-4151-a598-a645878d2f45
- Result
- Result
- false
- 0
- 
                                  475
                                  1495
                                  31
                                  40
                                
- 
                                  490.5
                                  1515
                                
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 7de561f6-268d-461f-a4c8-eda519d78324
- Division
- Division
- 
                          55
                          1790
                          90
                          44
                        
- 
                          100
                          1812
                        
- Item to divide (dividend)
- 4b3622ac-b6f6-4c84-aaa1-2e40b4eb5e9a
- A
- A
- false
- 0
- 
                              57
                              1792
                              31
                              20
                            
- 
                              72.5
                              1802
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 360
- Item to divide with (divisor)
- 164f2f15-bca1-48ba-aacd-831d6c5118cf
- B
- B
- false
- ce7a6538-1307-4799-aa09-c6d0b388aa6b
- 1
- 
                              57
                              1812
                              31
                              20
                            
- 
                              72.5
                              1822
                            
- The result of the Division
- b62c1df8-8506-432d-a6e8-a67f16f863f9
- Result
- Result
- false
- 0
- 
                              112
                              1792
                              31
                              40
                            
- 
                              127.5
                              1812
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 755afd66-a8b6-4eda-b11d-813843840b3a
- Panel
- false
- 0
- 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79
- 1
- Double click to edit panel content…
- 
                          556
                          1393
                          160
                          20
                        
- 0
- 0
- 0
- 
                          556.2406
                          1393.461
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- b2fe30d5-a712-4905-b391-821ae44f7d1f
- Reverse List
- Reverse List
- 
                          505
                          1635
                          66
                          28
                        
- 
                          538
                          1649
                        
- 1
- Base list
- fb6b39e9-a6af-4a51-9455-a92fd1fa3dfd
- List
- List
- false
- 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7
- 1
- 
                              507
                              1637
                              19
                              24
                            
- 
                              516.5
                              1649
                            
- 1
- Reversed list
- 8646f974-91ff-408b-aa4d-7fb4f8df1cf2
- List
- List
- false
- 0
- 
                              550
                              1637
                              19
                              24
                            
- 
                              559.5
                              1649
                            
- a3371040-e552-4bc8-b0ff-10a840258e88
- Negative
- Compute the negative of a value.
- true
- 85d22e58-6d1c-4fc5-a0e6-db45a35dbf06
- Negative
- Negative
- 
                          589
                          1695
                          88
                          28
                        
- 
                          632
                          1709
                        
- Input value
- b9f327a5-f681-4bab-906c-b34f3e2c24e1
- Value
- Value
- false
- f90883e5-3fb0-4e4e-927c-2fdab122cf8c
- 1
- 
                              591
                              1697
                              29
                              24
                            
- 
                              605.5
                              1709
                            
- Output value
- 3ebf92f1-2275-4471-867c-81168d14be25
- Result
- Result
- false
- 0
- 
                              644
                              1697
                              31
                              24
                            
- 
                              659.5
                              1709
                            
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 0e44c07d-1872-4e2f-ab76-00ed6aed824c
- Merge
- Merge
- 
                          707
                          1639
                          122
                          84
                        
- 
                          768
                          1681
                        
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8054d771-018f-4a32-b4e5-5bd79d5d438e
- 1
- false
- Data 1
- D1
- true
- 2e337179-3366-41e1-91ce-b34ea88fe906
- 1
- 
                                  709
                                  1641
                                  47
                                  20
                                
- 
                                  740.5
                                  1651
                                
- 2
- Data stream 2
- 05fec144-1dbd-44c0-997c-ab726c498b6d
- 1
- false
- Data 2
- D2
- true
- 0
- 
                                  709
                                  1661
                                  47
                                  20
                                
- 
                                  740.5
                                  1671
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 2
- Data stream 3
- 38e4e3db-338c-43c8-9e0d-578f9c881434
- 1
- false
- Data 3
- D3
- true
- 3ebf92f1-2275-4471-867c-81168d14be25
- 1
- 
                                  709
                                  1681
                                  47
                                  20
                                
- 
                                  740.5
                                  1691
                                
- 2
- Data stream 4
- b01c5f53-5323-449b-9e7d-3debe1530274
- false
- Data 4
- D4
- true
- 0
- 
                                  709
                                  1701
                                  47
                                  20
                                
- 
                                  740.5
                                  1711
                                
- 2
- Result of merge
- e6883f83-7321-4869-ba03-b28db7c15488
- 1
- Result
- Result
- false
- 0
- 
                                  780
                                  1641
                                  47
                                  80
                                
- 
                                  795.5
                                  1681
                                
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 927c4f5f-09d0-4e2a-86de-669a0fb6834f
- Reverse List
- Reverse List
- 
                          550
                          1447
                          66
                          28
                        
- 
                          583
                          1461
                        
- 1
- Base list
- 2b065ff5-2682-48cb-9eed-eb80e4d5eea3
- List
- List
- false
- a8d4b2ce-0382-4b07-ad56-e45e8d6691c4
- 1
- 
                              552
                              1449
                              19
                              24
                            
- 
                              561.5
                              1461
                            
- 1
- Reversed list
- 80f75b67-ab0d-49db-88ed-3c55aff68d37
- List
- List
- false
- 0
- 
                              595
                              1449
                              19
                              24
                            
- 
                              604.5
                              1461
                            
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- b2031a4b-8015-4f12-8f56-d042d761e9b2
- Merge
- Merge
- 
                          699
                          1449
                          122
                          84
                        
- 
                          760
                          1491
                        
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- f150b0c2-a9d8-48af-85e6-4a08fc493011
- 1
- false
- Data 1
- D1
- true
- 80f75b67-ab0d-49db-88ed-3c55aff68d37
- 1
- 
                                  701
                                  1451
                                  47
                                  20
                                
- 
                                  732.5
                                  1461
                                
- 2
- Data stream 2
- 311df633-43a1-4c6d-9575-509e524f8766
- 1
- false
- Data 2
- D2
- true
- 0
- 
                                  701
                                  1471
                                  47
                                  20
                                
- 
                                  732.5
                                  1481
                                
- 2
- Data stream 3
- e88f8a6d-a05a-49e3-a7f7-a253f1d7e828
- 1
- false
- Data 3
- D3
- true
- a8d4b2ce-0382-4b07-ad56-e45e8d6691c4
- 1
- 
                                  701
                                  1491
                                  47
                                  20
                                
- 
                                  732.5
                                  1501
                                
- 2
- Data stream 4
- 3dcf6632-4c2c-4051-a3e9-ff6ef825e6a7
- false
- Data 4
- D4
- true
- 0
- 
                                  701
                                  1511
                                  47
                                  20
                                
- 
                                  732.5
                                  1521
                                
- 2
- Result of merge
- 147ceb0a-e550-4da4-96ca-8ca546338041
- 1
- Result
- Result
- false
- 0
- 
                                  772
                                  1451
                                  47
                                  80
                                
- 
                                  787.5
                                  1491
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e7210d73-6cfe-4de7-8448-9777503ce93c
- Panel
- false
- 0
- e6883f83-7321-4869-ba03-b28db7c15488
- 1
- Double click to edit panel content…
- 
                          1159
                          1460
                          160
                          479
                        
- 0
- 0
- 0
- 
                          1159.163
                          1460.554
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 30cfd029-92c7-4238-a408-6929948027aa
- List Item
- List Item
- 
                          786
                          2009
                          77
                          64
                        
- 
                          843
                          2041
                        
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- b6d36df5-0130-4255-b205-5c8692927ee7
- List
- List
- false
- 4be4d01e-f1cd-4466-afb7-4c701c8415b6
- 1
- 
                                  788
                                  2011
                                  43
                                  20
                                
- 
                                  809.5
                                  2021
                                
- Item index
- a40829e0-25d6-4fd6-b645-d96b8a696078
- Index
- Index
- false
- 0
- 
                                  788
                                  2031
                                  43
                                  20
                                
- 
                                  809.5
                                  2041
                                
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- a032919e-88c9-48f0-b24a-51aa539e52cc
- Wrap
- Wrap
- false
- 0
- 
                                  788
                                  2051
                                  43
                                  20
                                
- 
                                  809.5
                                  2061
                                
- 1
- 1
- {0}
- true
- Item at {i'}
- 231ec3f5-b0c1-43a7-a9fc-ec5669fc1001
- false
- Item
- i
- false
- 0
- 
                                  855
                                  2011
                                  6
                                  60
                                
- 
                                  858
                                  2041
                                
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- b9c21b7f-29c8-4753-b2b5-0e8b3c9b4034
- Deconstruct
- Deconstruct
- 
                          899
                          2015
                          120
                          64
                        
- 
                          940
                          2047
                        
- Input point
- 4a29e212-b848-4130-bf63-69e5f1c898ca
- Point
- Point
- false
- 231ec3f5-b0c1-43a7-a9fc-ec5669fc1001
- 1
- 
                              901
                              2017
                              27
                              60
                            
- 
                              914.5
                              2047
                            
- Point {x} component
- 9f667c48-eb1e-47a4-8db2-61666d1ea383
- X component
- X component
- false
- 0
- 
                              952
                              2017
                              65
                              20
                            
- 
                              984.5
                              2027
                            
- Point {y} component
- 79b1faa2-503e-498d-9a62-75f1113025b9
- Y component
- Y component
- false
- 0
- 
                              952
                              2037
                              65
                              20
                            
- 
                              984.5
                              2047
                            
- Point {z} component
- af4c6c2a-e29e-4d24-8c7f-4df53b899191
- Z component
- Z component
- false
- 0
- 
                              952
                              2057
                              65
                              20
                            
- 
                              984.5
                              2067
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- fe052eae-c14b-40dd-a64e-a9605baa3660
- Panel
- false
- 0
- b0ca4533-8708-49c9-abb0-994600403593
- 1
- Double click to edit panel content…
- 
                          -75
                          1436
                          116
                          20
                        
- 0
- 0
- 0
- 
                          -74.75103
                          1436.004
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 15a9d74b-afeb-4d95-a1bb-fa7477735b92
- Panel
- false
- 0
- a6d6d315-6584-4d1c-9c7a-258d37fd4a9a
- 1
- Double click to edit panel content…
- 
                          -74
                          1517
                          118
                          20
                        
- 0
- 0
- 0
- 
                          -73.92162
                          1517.638
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 5cc4f794-4ed4-4a4c-8c41-7786c46d0031
- Division
- Division
- 
                          1151
                          2015
                          70
                          44
                        
- 
                          1176
                          2037
                        
- Item to divide (dividend)
- 5a96fddc-d35b-496a-8a2b-dc4281e0294f
- A
- A
- false
- 9f667c48-eb1e-47a4-8db2-61666d1ea383
- 1
- 
                              1153
                              2017
                              11
                              20
                            
- 
                              1158.5
                              2027
                            
- Item to divide with (divisor)
- 81aba054-a3f4-41cb-bf02-15a2fcc92ee7
- B
- B
- false
- 79b1faa2-503e-498d-9a62-75f1113025b9
- 1
- 
                              1153
                              2037
                              11
                              20
                            
- 
                              1158.5
                              2047
                            
- The result of the Division
- 3e1b6d63-9b79-46a8-8d27-80596e7d8b16
- Result
- Result
- false
- 0
- 
                              1188
                              2017
                              31
                              40
                            
- 
                              1203.5
                              2037
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 9a773977-be13-458b-81ce-8e026fc440d3
- Panel
- false
- 0
- 413475f9-4f88-4628-8645-62eae4dd9722
- 1
- Double click to edit panel content…
- 
                          -75
                          1477
                          116
                          20
                        
- 0
- 0
- 0
- 
                          -74.95802
                          1477.779
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
- 
                      255;255;255;255
                    
- A group of Grasshopper objects
- fe052eae-c14b-40dd-a64e-a9605baa3660
- 15a9d74b-afeb-4d95-a1bb-fa7477735b92
- 9a773977-be13-458b-81ce-8e026fc440d3
- 3
- 084c7217-4011-493b-8830-63953c7ba928
- Group
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 3c066c4e-f82e-4ce0-8965-2fc103a164f1
- Division
- Division
- 
                          168
                          1736
                          49
                          44
                        
- 
                          197
                          1758
                        
- Item to divide (dividend)
- 48454173-6e78-4a1a-90f9-71b265a676a7
- A
- false
- ce7a6538-1307-4799-aa09-c6d0b388aa6b
- 1
- 
                              170
                              1738
                              15
                              20
                            
- 
                              177.5
                              1748
                            
- Item to divide with (divisor)
- bd85d2d7-9186-4c60-8c8e-c3db7225fed6
- B
- false
- 0
- 
                              170
                              1758
                              15
                              20
                            
- 
                              177.5
                              1768
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 5078d0e9-110e-4e9f-a4a7-8a5d53101b3e
- Result
- false
- 0
- 
                              209
                              1738
                              6
                              40
                            
- 
                              212
                              1758
                            
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 5bd76574-5d5a-44cd-ba49-5798321dd60e
- Interpolate
- Interpolate
- 
                          783
                          1332
                          225
                          84
                        
- 
                          956
                          1374
                        
- 1
- Interpolation points
- 1309ce84-0810-4236-b802-033306a3ffa7
- Vertices
- Vertices
- false
- a35486f2-4dac-4ca8-ba16-9b13976474ec
- 1
- 
                              785
                              1334
                              159
                              20
                            
- 
                              864.5
                              1344
                            
- Curve degree
- ff1b1037-4bac-4f05-b1d6-ed7e744d8455
- Degree
- Degree
- false
- 0
- 
                              785
                              1354
                              159
                              20
                            
- 
                              864.5
                              1364
                            
- 1
- 1
- {0}
- 3
- Periodic curve
- c55a5646-4ba9-4464-af9b-8c798d388029
- Periodic
- Periodic
- false
- 0
- 
                              785
                              1374
                              159
                              20
                            
- 
                              864.5
                              1384
                            
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 33a680a9-7b32-4f98-99cc-5298b63afb44
- KnotStyle
- KnotStyle
- false
- 0
- 
                              785
                              1394
                              159
                              20
                            
- 
                              864.5
                              1404
                            
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- ffc7114c-425e-4e46-9780-4f5439b2a045
- Curve
- Curve
- false
- 0
- 
                              968
                              1334
                              38
                              26
                            
- 
                              987
                              1347.333
                            
- Curve length
- 2b05c6b7-328d-44fa-bf99-ff7ef38fd7f7
- Length
- Length
- false
- 0
- 
                              968
                              1360
                              38
                              27
                            
- 
                              987
                              1374
                            
- Curve domain
- f5a94324-cae2-422a-9504-bc1edac874d6
- Domain
- Domain
- false
- 0
- 
                              968
                              1387
                              38
                              27
                            
- 
                              987
                              1400.667
                            
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
- 
                      7H0HXBNZ13dQpEpRUVAUgxXp2FFZCSEUCUVBxU4gAaIhiUlQsC0q9oaKitiwd8GOvWFby9p7X1exrdjLqnz3TmZCZjIzJA8B8nzv4/50YU7mZuZ/zj3l3nPPMQuUJKSmCMSKUvDHiMFg1AJ/raWi1CSheMgIgUwulIghKQpchmT4xxR+BLsvRMDjC2TwI7VQsgVGCg2El83Bpb7B959FD1oROeWuInKzLHWVaZRMMEIoGAnpFoBuEp0MRuHboJfDBfLkmHSpAJJrol9shdIiJLIUnghSWoCrK1euLMXuihaIBAkKAR+jCYXCUrtAQaJQLFSAt4iSSaQCmUIokGPDwr/GgTwF8j1m4Jedj1Omz51y18wyUCBPkAmlCvTl4SMyjCN4KQLstzc1Y0OCPT2f7F78cvk08O+TRfng38eLtj9etAv5Afl111r479zZyL9Zj+cuUH3yUk4E/Hl+JhxhIbzlydI1qp8fZ89/nL1A9bHHizaqRlN+TDnIy0U74fXF43Ffjd2LPhJK3Yh/vGVl3zs9F/nwTLqfczepBkT/Ra/Q3oX8jL4R8o1qD7BR9Wzoc2KPXfYZhKp8R/RLkXdHUUVGQPHB7tVEUokwirbyizBGoHxBR8OxD4UX4aynZ3BIrHkvIGFwKsixaQL/WGFX2ZJU5QSqiU0BIGxDgTCi8lMDvWwSw5MlCZBPOsGp9rW0dEAdIFn9JZIUbAZNaBzXvVYfIM64rzKHVzS+xrxXgpTLS5ekKtQ/axEsk6RKNT5cOziExRXGy3gydAoYoTOrFu6j8Iqp8nPpyDOjt9uy5HJBSrwoPShVJFKfCqyo1MREgSxRKE92Z/ZRagy/dp7e8D93JjtVpEiVCfzEglSFjCdyZ0alxouECWGC9BjJMIHYTwxGs8GG7lOmb+DIpugoJqxURbJEhl22ChcmJPMEImaULF0iqxHKx7TMyuJljYf49OHmm8wR/iq2GIWbsRZlj2lK8T11ypRFZDxknwqmPoCDlsprOLDgdRPldYhRDRQ/4+DeZbrPZ02vkwPyNwZtWGNz7vi4TwtxT1UL4ZU5WyJW8IRipR51QUcxCZDIUNWKMcaELRFJUmWYhoP/J9NVTixmEhyXKUlkBst4cnmyRAp0H1OifKsaoYGI9IC/83u9HNPvY1LEdK9Xnt9fpC4EJCOUVBp35/rD+y3CsntuH5Jz/g8LQKqBkmSjf7kXe1sG5v+R/9qxIKw+INVESU+cu/COes7gbl612eeNwMYFkIxR0vbTrBHfHR1Cjjx7NKezrfMDQKqFkj5cf1K4ql4xN+/Z80GZsZtfAJIJSlpxsJ3d9Z+1gw8Z1Sgc55TzHZBMUZI0n7t8s00XTkaD2azQluNGApIZSprw+SDD+rBxZMHBzkaX9wavASRzlDT1xMneR/6y4m7JfDK384uvboBkgZLEezxennqxjbPp0eY4X5d93wDJEiXVPDDsei3fX/55b+Y92uHV7zog1UZJ08e1/PHmRnzQAquoNx+jHPsDkhVKSvvUwNlNmhO2etwM0yVfp/UFJGuU9ONJiy4X3nTosdc32mP4yriPgGSDkn7uZy3rv2B1YK556eXVtzPNAMkWJTVtuuzcrPaPQ+YuP1O0I/j7fECqg5IWh73iHt3cmTtvj1vj5f17ugNSXZT0ZnXtxgUPbCN3xPXk33dsVgRI9VCSs/kxN++wd6zCmB9H59Zq0BmQ7FBSo4HSZXU7vQ1dYLzPcrh16CJAqo+SHrz8uH5WZoOQbceGPbXdsmQjIDVAScWtOaf+zerOPrCE5ZUw9vNjQLJHSb/PyjE78/Zn0FT3q/l/rB2fDEgOKCmxfvQ3o8ljgqYY7ZWJncOmAlJDlBSZUzghrWYEa9WQpLqvzDL/BaRGKOl0arv278dlhB98sPb2dbP08YDkiJIudpw/ct7xSz0K6q4/wDw13hWQGqOknEnX9n5flsLa+s7Zmi/OhRLVBJsORcLJde1zOFnvOW2Pc/1eAZITSup2pem1+cuPsNaO2TIhZdjoTYDUFHuvBxv6rZ/UIXJ84vN7DEZ2PCAxUdJyYUr2rtWenLW1cm8d/NVnj1lo4BCcBnGGmjlULFfwxAmC4FShSplNlP1Z6/aRGiFH9oTPenSUZ0yiNswihAnD1C8zLFgKhUwYn6pQanhUdWMqykhvKuq3KlRR7WIKF/0Ivcne0P1FJ9beKwo1FSXd1STfxDSFk3/TvcO0CS8HqqmozfkXt0148zBsR7xt3Bur7rZqKmp874hPZ9alBW2UTAuZGpB+XE1FPX29b8W74NCAaW5t5jBCmE/VVNTO/GO/Qnb3485ymlFybtFRGzUV1Tum8WmnvqWsxSfa55nH/PyopqJiujVMmdziVeSMCKOPE63CvqupqLHBCsnQtT7BB2pczXxY+8gHNRW1xC3CKejfwRHb5UuWrHcdv11NRX3PSQvcFMoI3tFght/zib3fq6mo+VM57S85jg5a1WU151nRzuZqKqrk9zp1/pwcHrIkpOmuGI82n9VUlEV4x8+XlzULye9xq/vgFtcuqKmoS1HvCzyeh3M2Nl/lZOUj91RTUdPdVqc7RnGDs9JzHXdc6bVfTUXtXVxk6mgq467re8PJ9HpRPzUV1WbXnTPvPr0Km7nynVd0X/tsNRVVw2/HvFH7xkUu/NLVr+3U0mtqKur466j3jWxcwxa7L1tmsT5oq5qK+pTfJ8gi3z9sX3OvOkm9um9VU1F3hzCF+6/3ClnqfLXXjSEHVqipqOlDWV9nnl8Ruj39Q728p+FpaiqK8VdSp6jdJQFZLd69HTSz2001FcWI7vf86LXVPXZcbbiv1ow7ddVUVK+Ofjn1ot1YuwZO6+Ey502mmoqa0nCkY+7O82EzRvPsi14PZaqpqD6pQ9jtitLDdpr6Fdh9lDVXU1Hciw6nlhXWCVp+9PfE+jvblqqpqI8+8zm+70pCdrLz9l8b1CJFTUXV+mdaKqvf9JCpPVkDLkhC/NVU1JYPkes6fW0RuNti+/tj4+fL1FRU889/vPZ3Pha81GQLc1KscT1AckZJvq4HuV7sTkHbT4d2ZA3bMQeQmqGkYUE+vU12rggYbzVp5rj7Z6EL0Bx7+JjMgZuXGgctjv+8zv7AqO6A1AIlHXJ+uzBuigNr8unsW37bDh0BpJYoKcMla1Nzp7kBB9rsj1nU/7EDILVCSeO4u/ufTtkQtDel05LZfZvaA1JrlORxl7mY/9WPM6PTMvsufeXwu1ywJ+x7xXrJiDY9ctfbtnpR1H06ILVBSQvqlEZ05I8JX/aq2Ye78vCegOSKklZ7FMy/5TnNfxYzZnJU0Zw7gOSGkpxW+/1xLiU5aNfqbbeXMTqwAckdJW006tniDDeaPflK7hDTbpZnAckDJZ2aZ2vy27uH4evWLHsUceHQIUDyxKbe5FWnalu97bGup6dtbI9mjoDkhZL+bdhhzeC2sf6HVn75i3vWXQJI3ijpy9en6y80LgmZ/Jv4clazK6MByQcl/eF+osG5mrPDj0z75PzKrO4SQGqLktZO6uS+fMDtgB1OCts/nK5BA9sOJT0btXfC/QvyHlu49qFn+KMCAKk9SlraRfqo4530oF0is71znu3wAqQOmGa71qrZ4BMDg2fX2XEu7PO8IEDqiJLkNVLtI5rY9pi3/eP2oR/2dtMwep0YFEZv0vrnsaxWZ0PGvzg908JmrLUejB40CKRG7/C6mb9t+JnfY/fRbjFnDsjr4r7LJCI1JV4gw1s9U3QoMnvmhX5SzuQxEyQikTL4g9YtUSThKYTiJKZUIhQrmGJkYDnp6xNNHdkjabw/dj0SeR7l0ggSCppEAzucIGCgXFn/eHHDsbc7R+z7c1xyuNulSZZKskbwR4BTFbsGgA/ykUtwojMyXDmMqHYnGYyQAAbjKKtWlHCEBBkHqhyGrTtn9PS2J62jYKQlVwjEikCegkcfdZoEyAAgyQw1hml+yDiKp0jGXr3maO+xxqEKQQqDUbY6ZaJEGH4Gi10ZjCx/VBxqUonDIcG6TeKf57iz3E/u9JbVHYTD3pydKhvBg4EsXiKgc2BCIRFdOSN4olSeQsBUJAuYCdgAUCR4yK8CJk8BfpRLBQnCRKGAz5TyZOA7FQKZp0mIkM8XiFV4kUoL0fuheGINgSkjaclqpgsHAAhY/R2wOiOAwGqmO6D+dtISefohQrE0FYmFTVGQyaCpw0ZeXyFhClCMSF9wzNsXrq+zV4XOHGDZtveqj+Px2gAZQ+Pl0MvlTQaiD1jByeAPEJL6o5OhhDgZLrXhMDK64xAyKgehllGYLDCBFlFKC1+SAgSvXNTmpTXP9wvrFrb1+o399jlNZHixUI2rKRZlpPLQ+9V3rqi4dm7QlJoZnt36TNmlB/SABNGgl+d3srYSPUmqAhUwExr46kchulYFHZhooxVjSeFyHDD/3kKfKP/dNo8bBV3vF40XMmQcTSFTXtaAiQwHhvY4PHJHpagbwCGPiEOsJ4dxqTseB6NycLBXTXXmCKD8JDI6JPhPzEy47BnclaG/dV7z7tIr3fVJpSDi3Z0OESA3OERqaI9IglCWIKKVjXN9b5aGrDsWvokn+qfI7om/gSBS4keHSJTfSdTWwaiW1NZ5Po93/iH7Gpbd79otrw2b7HDvVTtQOELIFzARRapp7kwpgG2D3obZNjBBgKIansoTMUUCcZIimSkXJMFdIblWxo0Yv1M/ogb6OKqWsHoDFeTdFcD6mczEZbkBqq9OJs5GZeL4yNOQvmT3ZalTbj+rHZI55fCm2aFFvwzXwEUBfGwhPkwyscsCKlrahdTAUfnLdZVeK/SGMLkghehSWp24Vg0VEcssnl3oMmrKegJE8HVIIEIulwcRMcbSA0SXfOkgAiJUzQ4xvIkJOaLGKUxjUnHKPloqEipUXIL6cphQPIwigvmjnfHy0U1DD8z6/rzB8On98OwKg/dpskt5Wd+aEvIjqzMdP0o6VQs/TOMlEpGAp1KADA3XBlMsJqyEBIFcrj48qa6BCg9uaClDTHLOLLvHM9lw8wFrVbtaf3P4PQ7jY0vEodFkDXZd77xxR9XJQDLemHki6kTD09ERlmYxPHESYCzq+iCSy9cCqd2NBRuWh81gTQy/OXXB/h6PcUiZoYNqYlVGqQy0EM1CiRbQLBpekI5oNS+LOGB0IdAaLmIwQNh1xUbVBEydVhmQIZOfEjIw+VE3qRaDwk1aMXrh9X+Kh7E3bG3z8+Kfba+TmGe8f2ROg29rygUiIDQCmTBB6Tdp5x0RrbtpOE8qFYqTMKTg6+jRmXjSzrie+f0D4bNXZA91iQzpWEFLCSM6pjlgznSSpaP+ue6cDv3NMOaYUDEn3mVy81zjw/67Y1s4bDp3uwHudW0CBQkSgJssNUHBZMkSNN3YWhRs6tpLAF5BMEK5ahPPkwuYUhFPLHBnynh8YSrgnpgP/iaJVPE4XM8RM3myBO1WbYhbTLTPrcEw4ge0jRqALTzKAYifJ3NvGcC9PcrWyb1tDL6bCcJJtjKGgm5u2YORvveDPRkvHd/1D9o3tG0WJ7LoHu69a5K9K3KxPNEkhmgVFE0GXGyAQOWxGAwpEai8NghQOi1FOAaoZAgRFSVuytiTFKjVfxptuOudFrS/aff6reVLmuD1KTJaFBxNU5+q0fStT4+6objEkulTqQeHweDouDTRSzmftMIkcPfB44dn3A+cnn2j7biRll/wzotyJE3nBb1eGVjEBdJhQZSR8hYlmCx1heIC/kJlwxPL26DwkIJiVniqnvHHfPa2t8sUL0s+P8IrfGRITYWvvFwZkDDZdJBkBGAaHYsKNTS617yx6U26/Aqa27vDDMaSfovwgh8J5k/kCOCdxGoq85oUuNZjS1IA/GDiwckHb07TTkkTN/upHkVzDpbRtPVUgE7JGgqgKwDQPSJCxwB+TIFQJ9VsGQo/pXTiSF9uyfM6v05u6x25yf5025vRPMKKZx94n6bcKC+Xp42JO9AV1MZSuK4AsSlmkewxxboi2OikjWtHIh+jQecVf1jD2v3rR+72H3Gn3dVHuQRVI5CnijRXHLDrep9X7igAX8kAKPRAAEDnlRnVvBp+ROgmjNjE3ns4UvT86YC3uDey7JkK3gWm4EiTyZ1ZLeOHFoFCObBy6XBHS6CAeivdAwskoM+bBL+BFHFi+gzl82nAjiNqYG8eLZEpItXzk0gklpj+oqXEqkYjMCyuNVB1IwDDGrDhX4JrO7Q1J2XsiJNWWKZ6qJgvSMOGg/9HWWlOxcpXfSK4xl7f2AtWnw9aGRnaHweVMRewTlM5GlMwzJktE8DdSR5TBD7OjBcoRgoEYqZipASN9rRTlcQMJ81H0mAbclUHzzUrEfVcvTU8VzADvAU6qUdb+OVM8B4yhfI9Sd+qTcOlT4xeruTMGjhh8y+rnQ54mYxG7ibfG8IRy9OXxM0nPXivUghWFJkZzgP68pJAp21IawQsAQh5qKF6uvu39rs8ngZsvNyH16vAdyZ+k4QD7iUHSo1UHkxEl1gPMAGpoYEpi6+jWVEKlXKJlBSl5JT0kF73d7O3HnGvMWn4lObaThP9mxQPVEYKWHBplOiqeSLQoHrIgkoPnV3C4/70tQ+esM7J9GXz0fjFRDMEjOhArvZRdwBeF6FAgpgyEfzKZ8anq09Yd6YCXdiDsbhyc8lzrFbKiphzSf7cmkt7GEVLjPOA0jJbBTC+RxZu+wMOmK2sBKUV0+DC1pjuQziTkizHeN20CMI7dohe0nTslJerWFEdBQB9XXkShtgkM5AJookNK3XaTnJAAMLkwoUvlCnX19qQAvV7sj1vA/c9Z8bikHq72kRZ4lVWIHazpsoqI5UHWNyRQx8cDwwMynyyoZ91Sad1egAslhYwIFHVsrmkXFyHn2nHoPpT0p244YQ5q6QBDMJL5bwmT42/wjt9NL2Qs9805NtU5922dUPFCoEMMIOTJpUBV1VtrBoesXgHnosMq+nAo9fLYysx01cPbC3Mo2Nrcl517xmWJdGVdNezUYzdP/75+xbFETPvf+3UcGGfhdVmFBmeqD4qIFv2K/BEphdqFC0ZFEaxT9Maw7K32wbsWyl623WsWQh+ZVeVDaiUNO0TK/YZqW7F5Q0mCGRwAGYiT5nYI5KIk5hChRyziOgXoXQ5M4EnBk4+U54qlYpgtmG8BBCFWIZUqhjeCg2qGDlgKxwFPoJc9GSyk6FeRRbEB0QMKktThMu+CkkSXLpSRQ/gMzCCSJHwBVoGEMTDDrSwaS6IEz6gJcNhnCbdBBhen01ioQtg2L2xMlIaHQ9+SE31suFOeLF9c/qB68v0uElDnEwVze8FCMVBhGaTqaZC4ELbbtIw0XR5BM1w8shMhCu+CGYoYOCjpJBZm0TN7rt3F2eucdAfR6ZPiKuYPq+gooCoHN1IhwqQGwNS2LokerQPTWTGyFIF7sgsxnNLKFfXCy7ent7McUwfT29y/8p0syBv45JWoZlbD9mtdGn/Fb98GqEaSHP5VI1WGaxj0rLu0gaDyAcx0snKNlGmugKTALlWlkxO4z/Nuz++Zpbj4R5bsi8e7sV7hd86rdqUV7g1gGiZEDKmMLwQLaPTvlIrfNaHTsB4+17rYNfalr38lnnRrRWX8Mv+pujAGtCoCJUBDqJsKMEBykanjabWSitVZsF1QYeftii7Zof93A0Fx+8Ht8mYrY/Ecj0gxKRFCMxp1G+rzaDw2zgsV7dSv2usDQ+cNl5Z/rYdfq0PiS2kEhGw6Jo+mxkFzh2w9QwxzIPF7uejBk+RLJOkJiWXrZTrst5KPABK+bSaK5NqRG394pYcRt5WgC8PuEkbiG7SJYBv1BYNN8kMU4/abRzYlT1WOZlGce8uN4zZlBY02zj1ROiemzPwqzd9YHEX8IWaqzcqSnkuFFExVtCFYgL0siB6Tdkk0ungymH4b9XJhaqtnL58QZJMQO5fXsizbmU2cj5nxunl2X//+uCKd5YCkRs1nSX0ur5nJ3z/ki1075+3pbqdJZVk6uAowUcWSvhYyhYpI7bM2+55qEshZ8/QvzL2x734Gy+r2ACasqqiVAYzomiZwageZmikw6qzomY5rPAME0sUwHzxEuAJSxdvPxCygsgixZ3p45eQLJHx3Zlt/eTDZQrkF3JvdaqTxdQxy/sHTj7n8zg5q/QU3q7BL4hWpJPkUqiRKoNZBZvpmBW32RBmDhxKt4NZyo1yyCxxqixeTjODsr7YZXb7raTHxCeO4hcTne5UJFSuIDuyvFFF7gDcjEtEdhz14fRuuVU3LxXV5DTeVuf8jt6Hh1wMn9PrbLi9965e1Rr2QgCObkEBuEUCAFQtOnmimClDUp5IARi53TK1Y0QrztrFdfp9tXxYQjBlyI0kpkx5vTIAKN5MA8CmUZsxR9OKQeFo/mcnzqkQ1MuJc2LNEL2eOCceZ9fHifMCihPn/Ru5c9Jf52M8sKbigc453WY0LNBrTjexRoselwaJqlQPjHi0jY4RY7ZhjLChYgQzqfmeqbOmBcw/sYW7+Nu+0fjX7SUQ8dLJGUEIK6g8g3os5kihTMCUwZHQskKkuBMzgEgeRAN3I2a5mBPzyCqaMw8wPzoMPc2UQVJugeE/DMPclgpz8+hFI9alDg3Mf/NV0Im5ER872qAxazj4RybkibTfoWhUFu1GSgXiYC4zBR1Du5CWWGeI9rE0dwAIH9A277I1CE7WQo0OXKxLGnkQHkDXrNEIbelc0SbKwldw9sMlFb4wMTFVLmAmJPPEYoGI9MVve3R4cuJejv/BDYMvjmoVdBa/3hSoHEFzvQkj6H01BUDyCEKygWw1xRbmxaytFq+zFlCuElVJsS9fvpTqEjUz8YyBa12pIp6MmSxMShaBv+Rq4dyQn39OPT4+fP2Pnwscp/w6gQ/gotFBNAM4FaUyuONPy52SNQbAndJSRqkuwXRTTopQLhcCXzABxyZMhZAyR7Jmy/IbW1aG7ao9/pVT5rODeOYoRyTJ3yijVAZz8tbQMSfKEJgD+aNLeN2JlQK/EuEJeBwQZ8sE4oR05QaQH1Mi5Q2H+0U+yG9lnyCfUT1z78qauDhy50z7/ad0e9dk/JH+GLXxNY/046iVwTwGLfMKVld3tF22qfcIt6lnXA4H/co4KE8WitPFwHUC7APsEkvgqTYf8JNIMhIhwl+9ISmFl6a8QL60FX5z6c3nXwJmbXX+slhWmkRIM0smS9tAL1cG5+JW03HOtto5B2/iM3RcJ6lbtk5CqwiXczk9g5xNAgt37Xl3dfiaWnhFSOkzlVH0zRFvT9SHgH7qGQ23ygtRhKifWodB4ac2NB4dffzAx8gjZvl/t+o42h33VtbsVLlCksJEq77j3VSIKdVpoNYsEZB0OZp5AMdANrOTBJIUgUKWzpQqB5TbhIoTRKl8Qai4l0CMnh6gdl6JlTDpnlWDDwS6NazyLZXIFEFCkUKgKnitLfYFcA97PcA+hyxXPgvula2n3K0hjaGCMWwUEgwerTx6sxq/559+0Sp4cr5oc9167ebhxRIbVVMsVZQqTnaBJ5KPQuT8yfRIlBuHIV2vUz5q/Rg1FwY5eiajKgLTxDe386MG70L3rQ0Y1LY5Ifr5j6YwASuijtDH6W1arC6tq1Kdi/WdMEVDLvgh6Ozcz7tfaiZAPT7sYoB3QGktxLYRraoZFhhgH4X/r63u9uDvYGAVJutSqTEDDbeJBXqrLNz2bk4Xbpc0rexwe/X6RvJHM+qGLJ618m+Ll4cWG0C4bducznmRNjOAmKGgoKAKwu3ipZwj9+KaBi34+3GhQOH20iDC7UvOdNzxdjYA7lRJuH3jyypb3tM37AlmK5b9PvZ+lEGE21lM2rWQpgbAHEZ1htvF05/brGY+Y2//fubliKFtpxtUuB3VlDbcdqruoM2Awu2cUN9TN5t1CNje2ybS++jgYdUcbts60VqsJtXNuUoNt2deaPm6ww1z9up3bWub2VgXGES4jfgQlOE2UISon1qP8f9BuE1sIVHN4XZeG7pw29+lasLtfnxLr26D/EInNrnbr2XD7Tv1Hm7ruZooUhC7DV0I+cilssLtvZd8J4ouPw3eKGon4br+M1jv4TZRR+gBKyBHNFjltf4/FW7bUakxAw23iZ1tqizcTt5NF26f2VnZ4bbF1PXXsvr1ZWdHzv/VbIzRSgMIt2N30zkvZrsNIGZ48OBBFYTbbXNc1nbu2TpyTlLbmmc7vN5vEOF24S467iTvMgDuVEm4fTOH67g9f0Vo9qu76U9inC0NItx2oGUO0CbVzxxGdYbbFqE7ml3ra8HKzmj2oODmrx4GFW6n7aRjnkv1MM8ww+27nVfb/jrQij3ee9aOFjZNNldzuH1rBx3npu6obs5Varht49bc2bdFbNiM6QfmdkuXbzSIcBvxISjDbaAIUT+1PuP/g3Cb2HuxmsPtuL104XbBnqoJtwPc2IuG9krvMXtJ3NUjDxu+0Xu4TUwF10MIGbWXLoRk7K2scPv5vPv1FIqYHjtvTv3XZs9v9/UebhN1hB6wAnJEg1Xcnv9T4XYDKjXG+jVC/loxLnRnUtNfUbK4GYS4VtVmiaS0KPwaqrKUTQJlPKDGeoGXkDAJo2h5RJrYFdaEK0kYJuCrbqJ9UpIIHP8BbU8MwSKDPrCSeABZhRlYuNJLQ13RNRBwVp6Ygvq97ImQqqogGkdKr2oFzi+vhnOHFwjZef1dItIZ7drTgmNQPYigAbD1oSrbiCTpeOukxppE81KkIuiFANTkQkU6Fp0FU9aqLfzt7V/FHWoHzq8r+9XwZfYftOiZBiqHJVnjQAn69k+QDDAvOoiA0BmAx4jIuA4l4ayjE3gipH4+dRnhlnaTE5udmxO2sce0kL5FLW3pBRsZkMSRRy6XJ9jE3tJ6EOwsTzqulXgYAteEDJVVsGdQWIXUbwfb7ciLCVv8M3bgtK7Lp+IdxkBhklDBjE6QwcNyOnTXbR6RmoKcp5OjtyJqUC5EyubTnW8kcopWKAiPp9WpL6oJa4aNAi9iNtwE+QLV0TVYkcQEOMeJwrSyr6gFuxaoikJbIsKXmqj2EbQWOwZZIvaNDCXntO252YLDOOoGZG4UW1Pm+vdowemw3w2LZByomM1ufd7Ld+JDbl7QyncK34b4VhVWvQQpPClTeVZUrn3f3NbK+1CuKvsI8phiwUh4CREC5aFhrawdsdU7zRNqsBtP1qGwXMEcqsJyUTBKma1TYTlrhNswRJHBxyFvlrhPlhLc/3zwxnGPVk/LOfFAjxX9iV3v9VBVLg/Cs4pM1ZnBczJzdLLhVsrnoTtIbtGsg/hMsDR4x+ewu3yWlxn+jLPyfs0zzuj18vCJOnD1pe35C9w1I1ZE9fx2uJ4e8GHQ4gPEpzpMgRlSpWeEEohuDOIf3SrNWcXwZEkCBR3TPg/quW1fL7uwfX05g2bP+YAvpmmivF+Taej1yigdFzebjiu2BsoVnZblbBCFJxXwUeVLypiwniU9zn26w80WhfXe5roQf/rHJBy5X5Mx6HV9M8bWE1UncD1Oo3N0lBeH4TJHt8IcjioMYC3UBJGwPDy+jzWyjDh7kjvr56ckTpcr7/ARAFs5gGYEgBEqA5GC2XSIdJ6N2fWGDAq7XjAv7OOArl1CJ3/8qTA7cQdfJh39Ru278HRTFXfHG3DmyGRhQjJTIE6QpEh5cjnsFMIUgRkE/XzU/GsX8DP+SuoUtbskIKvFu7eDZna7Sfa8mjKpvK5DSXfmLLSku0abHn/YpmdmRSuhNUZdDWjshcpVWligV/kkpC8uernHwrl3TOQKxciCSNcRh/DCR+XYqAhVbPxhtWtbiKF3AEk3G6YrgqFOGqsbFhcoy77gyhCLJCMFcmWPALgXDn8u8ymZoyPIW34T7Xm1Vp2B7U0QwBzIAIObEQAwdDI3oprMBlNogyhNeiq08R928KFcAAZiuGEGXaGN5BkY5o4GjzmxXr2eMLcy/r5sT0Qwa9HnFb/bj0z/q4KYl8DM4eVUmHsDzL2XY5g3psI8Ym/QxbOMInZG/4ZdhS971MGH9uFwv1EqEiYgVSY1jRcV0o7hwAcDLoEC3ClipuBG0co2TWk40jF35/mwGaN59kWvhzLpHktzBw1P11ZtwEodywCcM0l3ymB65dKTVqqqrJi3itlwC6SBHI6X8JtMkcuhfEwG+vHPzDY6Yh64/x/7cCu3epcwuhEF3VLZek1DRsyU16kHVj4P8rjwI3TBcpMgoQzoeSFwk5EVIjy/SPnjaZopGLdnQVDuvPp/txkxCN9g3oilOTtYGrPDiDA7mrw9dm9Rq3mhS4clD9s2fOOqipYRBezMgOz0ZpFEH2nwJNKyk2ogGZUDklM0bNXK1wmllCUuY+Y9fBG5ftbr6W+PiPHFqYwCNFEKKBelP9xPNDhXc3b4kWmfnF+Z1V2iB5SAWNOglLX0JCqDKlmi8y0clEkK0BnVAiCiRqzWtoGw+zUiMbBtoEaPpxAPBClUnzah0qe5hY/6TXn6NXR/4e7924c95hKqhPPEApFmw0AqNerCYkrhHWrpCUyxRCFQtpxQCNLQlozkbi73osOpZYV1gpYf/T2x/s62pSSPooEtgwxVZE22F+QivKheKJ8gnKztya0sHBpzJw5JWRd7nU+5wm/WWy6QxYDHx762ZaAkNV4kgJFjwjCkHQRfqEDfHcw6uDrwJGMdgY+q9WHiIm0rDqMkDvDRl83ImMK2COfJkoRiriARJxSWysu9YLKn+nVz5fUYiVT9KnGltxUn5U3cSRsExCiZRAprJSufyhR7KmWGKbyEbRxbwk3aUDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUm0QoQJKaofjfuK+NJyzSHUlSdqETVYNytjz7zOb7vSkJ2svP2XxvUIkVP7hZR/vXg4l6Kp3Nxo+Ix9dDU4DEn9pzVE+bEltN6wDwrmA5z22AMcyYV5j5rep0ckL8xaMMam3PHx33C90uqFSyTpErxmNfGMA+QqPdBNaKa1STOAouZBMeFZjBYxpPLkyVSoCNQhshrhAZigPVJHcJuV5QettPUr8Duo6w5IGGuIFF+AakGSiLOGECqySBvJgxIxiiptGvru++u27M2130+ucbTC3ZmoYFDcJyBGpW8eNGHyHWdvrYI3G2x/f2x8fNlJBBqmhICjxkYj5XscqZilwFZUF/Xg1wvdqeg7adDO7KG7ZijdwuqMX+Kut4btIi3LqBAOuxR73/+9KgeC3qpJYdROBWWKq00C3qnJWfijqn/HRa0GZWoGow2Hxbk09tk54qA8VaTZo67f7a+nrQ5Uf71oM39p9Npc8Z0TJs3N3jMuTGZAzcvNQ5aHP95nf2BUd0Nd2EuKo0O80sjMcxbUGH+PX7A6XYW68PXHqr5k5H8cz5ZVXXtdzacwgU8OUzDQ9ablQ2zgJ1E2/Rpt3dxyPntwrgpDqzJp7Nv+W07dESXOu/aZq3DtmSOALlCsr2LEjfgmTTSrR2tqtldihIA0jc7MXkBJ3bknsjp7f4OHpbPJzjDhpRZGAUTpCFAJSySdXZ/VwQg3Xpfllvfv4NRw3ez2NLAPZ/8kwuuzare+v6w4SECgBnZRgNsGQ0AQOdWS6q5ZaALsBkuWZuaO80NONBmf8yi/o8dqmABFkpM51yqBdhLYMJNXfy/BViUP9uGtdgwb8R4zoYBgQde7k3tpYcF2AV1SiM68seEL3vV7MNdeXjPCqqHOHhGLpdqabEQUG8truwF2BmODyN9f9vB2bxuQv2UgXIHPSzAEjM59IASEGsalDovrsQFWOKie7UuwGa5oxJDugA71QNBCtWnraj0qcH4h+O4u/ufTtkQtDel05LZfZvaa+MfkgSPle8eTt1O5x6GbMcgb23wkA/re8V6yYg2PXLX27Z6UdR9un4gT05JD+l1fzd76xH3GpOGT2mujzWtJNo1rSQMcheDh5xoNPQDOdHNqyDkUngYYBEV5NCNK1iEQd6GCvL6ifvyc0+e5Szd8mTUucZj8vBZQ5w0qUjCJ2l2WYsC4VboHVjco0zZlqfwkER9tP+7lplc83u9HNPvY1LEdK9Xnt9fpC4kfTTNhCaUoCWIj2Cfi0Mn4boMiXsGN8+8D/2H8ZBA+SCk7/aXXZB95K7LQXum9Pv8vRNniR7jIT0fGGW4gGAaAsQny3c9A6s3HdKpcWWHXgIgGkgdDL4ApvtJ5EJIZ4LnE4qYQFJUcsLkyWCDe0mKMIEUxT9N3tWwWRUWlDtt0sl6HZPwEmKu+h7Nbn1lJL2nabkgEkMD16ODBtFaUbOzNCbVWmYoeqATjV/GLkUyT8FM4Q0TMFOlyDpIPA/WBaJs67eh5pCWyzfLwxbbrk+aMWOLLaHyDDosSeUZjKL3jFkPVNgDybiX44kIu0YOsY7AOWM9aLEjhgIikKRgLXE/mJA5q1dY7nNZrNO2mfjdiv+o460ewPKmBQuIOmp/XBkU9qdP0xrDsrfbBuxbKXrbdawZPrffhgO3MWC+MNVqHFWhrn1GqlsxSwREE/wIwIDJoWgre55IIk4CsZccXZ3xxLe6lzMTeDCRlClPlYKIA3AoXgKI4H7lkKlieCvccxGretUrL3oy2cmwEzjC3wERg9TabAPLoJAkwcNq6hmqipESZgpcxNfONpbG3bn+8H6LsOye24fknP/DghY2zWPMhA/ocJ4p7SjVeSbocKQd0clW1imzlegDkb7s0LYcm6AbS0O2ch1H3txWVEePxpKogfRwZCcZIjSbbEoUAu3vcFQnY9kMJ4/ofh/EDAWMKgL2U/z4PGzslfDt1yP3x3bzi6nWFUWIypkjdKgAuTHQqkPlHV9qH5rIjJHB0lBwFuO5JZSr6wWkktQ4WEGKvPVwn3kzR00p7M3dt6Hzj9WfL13FscwiQjWQBtvUaZXBOhda1t06bKDuDN1yUpMopBsqMAlYnTxhIlTvNGv0qWcv+5gs/xA6/p54X/zRqYSNMWQ8TSWkvKz3WlAeqJYJIWMKwwvRMjqddGoVA40VQGSEQGkXdQCmYWnNS56uf3A2Zo9jZM94RYgg0YE1wzSMUBngIMqGEhygbHRqT9xaaaXKLLgu6PSYszP/hE1K6KwaD2amtbNdgA9RVMv+miFKGakyEHKhRQjMadRvc2NQ+G1nl/C4P33tgyesczJ92Xz0Ybw3ygU+GjM6kKv9wkGA6mAYzG/APGEQISaCX4Hflc4E2MoUyjbGQNmi8gp9L9R1G6uV4yQb/cu92NsyMP+P/NeOBWH1yZ9b04vGKDocEfP+jB4R03CV/KHn/Em3ZQXkAdQwIK92s6Obb5d6gSGb5v/Tm3do8kVCnQt4N0mdC+RyeZ4SUf/p4fwXEwIkJRNCJuwc9Emnw98OCECYXLjwhTJlB2ZyY3tz09KnM63GB2XU4/UvLHmyCz8tA7GbNadlGak8wHy8P7pG/r2kx/KlRluNfp1L1ANgGZ/oAAMSVS1OlNJmwM+0Y1D90TwTTlfixRLhJY1WlWXuV7SKfxc8rb64waiJJyzqImefATM4aVKZQFUGC3FqWQHRLrFtKuYAE1ibUjDtSNpJx6BM62FLLJorxuuBtY8+0rE266Ph+MdZuh0kr81V0+ekzLQzN3VvndsqcEHDKdt6tz6Ib2phzCUrsqm8qve1O09UJxWwIC+I8a0nMsVQw+jOoDCMAdfs74/otNN/64DBDjP6HMInetrBrQMFXPqEla0FsNaaQIfT015sSQqAXLmBgQzDLxsGCQ7LDk3zgZBoZRGfOHfhHfWcwd28arPPG4GNS/kPrMEO0k9p641AS3kOgF5MlpAUB4T/6B8VPUzN4qqBApcbYGIm9DYkYqYLdhAYoIcYVuQnpU6Tw9VoyUgBn9yIXEudZnfDmxe+d1HX1vtyfVzxOgapqUJy1By9Xp6OyQ5ydQ2L/i1kwfNIn3MDfdtVUMdkQXsLYTYmy+rJaYPAXNEl4ZZq7FetbiVIxHJBQioiHjDLgXx1c+R9F8bPHm4Byw9Fhw7MWNQNh6Vl2bia4S+OqG+VwHRHYRtIBtstDwQ2VCV4UKmEc9bNP/h0lIRPfv82zPPq7xxi4SGpiJcgYEakikQkuoDKYfbA7hPD+6DMCsUjeCIhXynkI4Uw/xCEKTLtNcH206wR3x0dQo48ezSns63zA5rnJCuQpEbWNtWsNYchPQvQtSTbfMuD6J6p6NxvAI0aUkZBAY/9QyUJESNPrLl44s8tV3oELZh5fE2/j89D8e4zMpCm+6y8XN50nvD5IMP6sHFkwcHORpf3Bq+p6HY7rEJzlqoKTSysQnOW0n3WEjlHFXIynKhB0SLPrjv1eEo6gxu087Rpm2vdZ3zHlz1HBYR8SwdP1fcshmgBSaJBS3qmSh0s7EHNYtKlAnUcmqudq/EMAy6tQOQJPyP3DA4ZAp3cJIGMUIkP/qmo4m6AGEjIWDAECKrTlawm5TLRMFVkklSQr3Ge6CwoIUszgwVuwCzQaSHMQVkOBfoKiK3CRJ9PXiAkPKzV1S1ZPbaljl95I/EroaIC8lYkGxPI5cqAAhFxSiiAiKOGypNh6Pk3RG2pn/wbYu6aHlKe0k7TpTx1Po1B7mXwkE89cbL3kb+suFsyn8zt/OKrm34gH/2jVYTPvTHhB/saHYzaZF+sB8hvXaGDPOcKBrk3FeQ6n5y0wSCvgpOTxGhM7eQk0T1TOzn54fqTwlX1irl5z54Pyozd/ELt5OSKg+3srv+sHXzIqEbhOKec72onJ6X53OWbbbpwMhrMZoW2HDcSkGoxyN0VQDJBSURBASRTlJTTROz9YGJyyBSHLR5GT6890DiKCYWXVPrEezxennqxjbPp0eY4X5d93/RwFNOHiv/Nwoo87m+3CFpvzI+/8cIWz/96ysV+tkgih+4isoGjfb3SZkFCeAAzGZ5YVA6AhJQwztTpIFDNA8Ou1/L95Z/3Zt6jHV79rpf7iBrgkH1IW68chIqdT4BJdots7RpmHXY+rtPataNytw3prCBBDjVLYFYgdV6Q69Q/Tz0WiiMLFlvVNm9U7/eK7LVV7jL2JYCVywnU7GqU2DsKGwgcJ/XDqbCqr0qJUMeKvPoiv4tNSdvWofMX9R3sm1jrnuGeqYIoAZmhQenoMd3OVLlHYfMKmWwIZtiUg6EelntGvVWSMtKspCFzX+SeIVl9E/s0tq/G/VxY1AoRItINOXji6tZx3dxYV9XuIYRICQ9aaBFYIJxuIq9gMzS2wb/yf0NX2SluXrgSmmIAu5YQpKnH6UDqfFy3fd2WgULlm6uWqspERlnxk1JBbTrBvPF9iWP4fpsF9X3HLmyB30XExtXcRVRRKgOd4mN06OQcwxyjtgwKw/iqTwTX2Osbe8Hq80ErI0P7ay7Ea1pCqtYdzvj9XFWq20gJusqqnSGcPq7ljzc34oMWWEW9+RjlSPJI5HsD2mZ/A8VUcBLAdp7scB4sucg4WQnbtBtNRVcapcwK2LBpaYtzD4ZOwC92IvuxFGYdRyx3m4qg4iqaCQ57HJ+kak2QB49kn9TJ1lkjYAnATKOGKrdm2Lpdvr2DFs77VOdDzDExXhNxwL3kQKmRqtglgDAxaGEqKNLxAHG5W2jEveZq20KDmgaREbiFpnHYTeqJQIPqoXZUesjwWwmkfWrg7CbNCVs9bobpkq/T+lZ6KwF/uIL5+iTsQEzik2fAlfJXem8l8PbTY8tmv1303/F1Q12bwDqN9dhK4Od+1rL+C1YH5pqXXl59O9OsoudNYacFCM8WsjkHuyPGvdZ3K4Emko5MWS1ej/H1bvfuEn9ni15bCdxo3vozl9Weta1J+6J9L2T39ICPLS0+QHwMsmi9nlsJtPKYNrp0xrrAOfuNjJ3rTWpZra0EIFekr+i4wjQorpQcwbii/1YCMQeO3Q8wfcyaaeYrSOns8rhaWwn4e6LqhLRwfgYsnP+6klsJdPRjn9rQczxnztrJc+VbGxIOP1Z5KwGIyNFXdIiEvMLsensGhV3/b2sl8ONJiy4X3nTosdc32mP4yriPldRKwPslXSuBoy+qvpXA+YH+lyXhfTgH2m3ayD929oueWwno2fgjqaQv6VoJAAyruZUA0Z5XeysBBDDKVgIAMHQyd6CazAazcUWUJj1VLCNuc+hh56qwmG7nKq0Yw7wjFeYGWlWpadNl52a1fxwyd/mZoh3B3+fTPZaeqio9AkH21/dUVZXgHkXI+/9VVUL5cym9qPOd/ZeCJ/m1tTYReT/XQ1WlG0vOzH7k3CJy6Y8a9/LjbCq8ZgJmR/F7qnpBMEEn531lV1WaL1p5ZfWFdRHbRmzxdG2fGKiHqkpTOlxiTt33hD0v/IYghrW2orvfEKUQWpS+vqvEqkrErPdqraqELHi/p6qq5OKBIIXq007/Zfp0cdgr7tHNnbnz9rg1Xt6/p3sV6dO8t3T6tOSf/+lTlD+PS9t+/vPe9KD1i3wytj/ev1EP+vTN6tqNCx7YRu6I68m/79isSA+aIustnabwf1vZ+rTP8DmhIwJSA6d3cKqxqovHaD3oU+IigR5QAmJNg1LeP5WoT4k2tNr1KSIxlPoUIIXq085U+tRgYgLidDLI+l0wJMh5QxcSxL7BIPelglznZDZrDPIqSGYjbpOoJbMR11bUktmIAZ1aMhsx0lBLZiMaTbVkNqI0qCWzET00jYw1qBVJRczZ/Jibd9g7VmHMj6NzazXorIeMtS56Y7JlFTKZWKZNjcnEKjVqTCZmuKkxmbjnr8ETYyqeNBooXVa309vQBcb7LIdbhy7SA0+6UvHEgBo6FLfmnPo3qzv7wBKWV8LYz49JHkXPLZFWOadM5t+Zzlrg/zSj88r0bdXXEinq8clKbol0kPv4v6OhQzcqUTUYs/z7rByzM29/Bk11v5r/x9rxyXpaqiPKvz6aCzyhLWX6BLPLfgaPeWL96G9Gk8cETTHaKxM7h0013OXR4qt0mG+4imH+GxXmOptJK0bVmckHLz+un5XZIGTbsWFPbbcs2ahmJonyq2YmiTNGzUwSGavmC2Xsdn94pvk5zqZTiy529Wxmp+YL7dwYMD0/4gF3W/KXNkvWtZ+hYVyh1icVpMicwglpNSNYq4Yk1X1llvmvHoxrdypOmkcvGrEudWhg/puvgk7Mje/x5e3Qjb9w8I8MqErtqwI2wrYMxcxIqUAczGWmoGNotyF4OrVd+/fjMsIPPlh7+7pZ+njax9Ksukf4gLYNKVpzGMzvcLeGDeaJxtIMiMwyvmpsEdKlSTRRijZWfRKWEEiFZTqTeWJg5EhfXC4cEt2/Ez9g5vDAwSmKFk/wG4KByhE0NwQxgt4rGMF0FgjJBsp0lm/VkjhRKwFAq1IaJSUlpboU+2PiGQPrS6WKeDJkn1EE3RdS3uSc2JYzcnnX8CM59f/t8H7zTkIRVXQQkiKqGKUyuCP9RscdpiFwB2ijUl2yi5pyUoRypGxxAo5NmAohZc6u3tK9JQNmRI4/4R3oeGLzGDxzlCOSLOKWUSqDOZe+0jEHaJPqZw7kjzpzMMtExZxOrBT4lQhPwOPIwa0CcUK6suiiH1Mi5Q2HNRp9kN/KPkE+o96dW9NvZ9qPgLWd/mn9aGcHfB2E2jFq42ueY8dRK4N53rTMe/TFcAoF4QtpGpfDQb8yDsqTheJ0MXCCAfsAu8QSMWQd+EkkGYkQ4a/ekJTCS1NeIOWjcEHTLj3X/hUx48S9FZI+QZcI1dCSydKi0cuVwbmsL3Sc8692zsGb4I6KTqkydZXr0UJxEr0i9LybcHip0DN0avLoFi/Oun3CK0JKn6mMovcFb0/Uh4ARxxkNt8oLUYSon+rPoPBTGxqPjj5+4GPkEbP8v1t1HE3YqWMrF3KiZIIRQsFIvJsKMaXKbGvNglWH5GqLQUgB2SSBJEWgkKUzpcoB5TahymyuUHEvgRiNX6id14sd54+cd/xSj4K66w8wT413pXtWzV1FPN26D/hHKpEpgoQihfKLydx9yhOmbTiM2B8A+xyy3cYs4NJu+Jcy6400Gg7GsEEOTiLPqJVH776pzrK9GY0jM69fnv77y2n4c8dm2KiaYqmilBcnE4ubVTROBsiFQOT8yfRIlBuH8fVfnRLd68eouTBMyQiBTCak6Flhbxk2uLbzTc7a2rXOTDyxrV7FpzABK6KO0ANWQI5osIr9t0p1LraOaYqGXPBD0Nm5n3e/1EyAenzYxQDvgNJaiG0jWlUzLDDAPgr/X1vd7cHfoQq3WVRq7H9F+P+jIvw5k67t/b4shbX1nbM1X5z7nRY2fRbhdyilK8Lv8KsyivDvZ+cMnXD/eI/9NSPbrGA0earH0+Z61pGwZrlZKV3N8sJfVVKEv0mdHXsO3F3CnjjUfvv0fSlh1V6EP/kXbWuCX9XtgarvOFVPEf7xyd3rrZ5VJ2Sz9zLWix5bBhlMEf4zP2n7J/z8v1GEv9aziRvPHLYLXFxyrvGfx950I+x0VnURfkTLUFZRB1qmyorwTx585se9xhnBWwP2+y6dNQ2fjVA9RfgRZUPdoeBXFRbhP3Td+/jhTacCNtRaGr750/XbBlDOAmlT8JO2TcFPLPwMYFD4bRyWq1up3zXWhgdOG68sf4svxWeJHOKTSkTAomv6bGYUOHco2yIRlt2P1sIAiMskqUnJwIeTC5ClGl1qOcwvEk6ua5/DyXrPaXuc6/eK8mk1qx6oEbXN7WvJYXgbnWIweGy46EJsuwzwnco4VcGDVXZljwWuoliQvrqpq+v6x+OiQxfIQyeuPeVVXPHeXQQXiqgYK+hCMQF6LhC9pmwS6XRw5YDRTuniQqE90PmCJJmA3L+0mmw5Pzf2Y4/MizdqW+6/1pRwQgq5keSElPK63sv+gve/xaB7/wLGKQNYrkMkUwdHCT6yUMIXJtDUtokZE2/p8WNP2HiH8dmPO/rWwssqNoCmrKoolcGMqbTMiKseZhDdH4YuOxaeYWKJApgvXgJcO3Xx9gMhK4gsUtyZPn4JyRIZ353Z1k8+XKZAfiH3Vi93em5dMPNxwOyz0ssZrJCJeLsGvyBakS4i6X9ZRqoMZnWmZZatQcwcOJRO3mr9soVucaosXk4zg9zOdixk9vFmzy1auG945s0vFQmVK9p83BtV5PCo5yWNulA+nM3vGad08lJRTU7jbYXH1uWaNJsduX3gw91/SK/tqNawFwJwlIECcIsEAKhadPJEMVNGXWQi/YdxcNxnT+7GP7v+69ig+8xqPewLAYhh0EhAnyaMU6ijyWb8d+XjdLvS9Nr85UdYa8dsmZAybPSmKsvHca95iiYfZ2ANDc9Sz/k4I5/Vqf9n/Db/XZ/fz106MivMAPJxWkBIKHc3f9SoFqWPTyq4ceNGFeTj/L7mDcvq1tbwFU/C+e1Kh3UxiHycazXouLPFELhTJfk4t4qMWp+xkHOzx5W27Nv66QGDyMfJpGXOQENgDqM683G2m3YymvdXHGunowPrL8fuzQ0qH6c9LfNqVw/zDDMfR5K1o8+HxK6RhbOiEgffGuBYzfk4T43oOHfQqLo5V6n5OItSwnPZL3xC5wjHXQnwPltsEPk4iA9BmY8DFCHqpwYy/j/Ix/n9wYZ+6yd1iByf+Pweg5EdX835OO2NT9Hk49yrSblYqtd8nMQm4fMV9gP8M9/l3AyYG5+l93wcYmyuhxwTd4gcZY6JsbHGQqme8nG4v+dwR9ik+u9bHB7eslntmnrPxyHqCD1gda8mHVa7alapzq3ufBwOlRobfkToJozYxN57OFL0/OmAt/idkp6p8OxksIwnTdY8YarD9kWLQKFcCk+PqXZz0j2Up0yZPFgzLwl+A6nkLRemZO9a7clZWyv31sFfffZQPp/mTo46UUP+zKOBCotUP4pFIpXEc09aSqVqNLLSsc9PMhgN2PAv4fzn0Nacg1uen7SKFogAwwT8UKDX07DhELYqWRlExUqdz6S5qGS78s+k2cxM75LZoU7A4SKbvZ0jasxQO5M288OHxhm3bwdnJj8b0KS5aaTambQ5Pu94AZuCIzZ7/tva1th5kdqZtHOx+8PuuC8M2H0pcZbLBa8ZamfS5tiGt1kUnBW0qsXtIbltD5WqnUm7OCjuHqfF58hN38ZNqxt4x0vtfH6XiCunF7YqCsnq21O2qMmUfLVmM3Me807F3JFy8kUNuuyP3ugDSGYoaXGTx46JU7oFbEqX3F+W5wLP2pmjpLZ/rv61PjGMs95uxoCV5ncmA5IFSjoiv/og1eJa+LTll8b5nK63A5AsUdI839S/549+GDqXN69zvVbyIECqjZLq1m3Wsr0Rs0f+pOdXQxMHTwMkK5Q02SJmWPcwfvCmB0WN5IG+lwHJGiUNGcJc/3d0u6C5s/PGvRzx5zxAskFJvufDDk4Ji4qY6ia1HzT62HBAskVJbbYmJt5ud6FHfg2THitif4UDUh2U5Hny0aEWPif8Z46Kib+6dMkFQKqLki41cZ26Z9i9oIm/fW10ZabFGECqh5JC9oekLS5JCsl/nNokp8adfYBkh5KkTdtaRVzexco5UnJlYL8GSYBUHyX9HX2k9O5Vc9YBJ6HPtx6HBwNSA5SUcOGGeZtVuZxDTd+0mfSP70RAssce/urTxNDJP7nTf+vECBx0sg8gOWDCFms3/fBiU9be7RefneqZ+DcgNURJ7XtHWg475B+x8/dfq5aNz+UBUiOUZJWw2u78uPjgwxO2nZtn3GYSIDmipJftSr7FvXoUsXL8g72no2Z3BqTGKClA0v7r8lfJgeOzmu96+21HPCA1wbh8R/Dt8pyjActNx70ad/TMdEByQkk+V6wbpL3dH7n6lMfYRrWf/wNITVHSlrb2r05crxWQ1ay92P7TOfheTJRUzC6yKz65MGBLl6HPatQ/JNM4bOnMoDhsubhuhybFDs/ZU/ztGr3tf2GwHg5bBlOpqPqJ+/JzT57lLN3yZNS5xmPy8IuJnDSpSMInySCgakzaCr1DlfOJlFqXp/BEIqCE0Cr2WqYMEBUU6aNprnOiBG1rXwELEGJ+CupXEu83yp3DKDHT8H5pm0CUZVQqH4T03drWqr3H3bGYO+PD+QSLnsN/6TGhUs9OLsOFw/CHAPHJHLczMHXQXKdsgA69gMMkQ9bu+AJYplciFyIpFOD5hCLYdFklJ0zgQTF5MORKIEXx74TGF3/rt4g90dmqzS3f35vht0BV36O5BVpG0nt5VRdEYmjgOmNmEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+V/nrqJCm8sTYs+9OXx87dT6YRVsvRYUlWyzGKvrln64EKeyAZ93I8EWHX2DHVEThnLLEHW7QWEIEkBatX/d17PuVeCZjZ5OiolaO/Jlc8jUgPYCGiTgkWEHXU/oQw/nf6QJ+nD4geepWdPsi2OEVz+sDOQidbqeXpg4eZaevSrk8N2VOrlVPTlg7j9GgsiRpID6cPZkKEKJO1+RY6Gcv/9PTByjlC1xWrhRG7J/vEPqnfdkW1nz7oRosKkBsD3SmputMHk+7ku+99mt5jzups6xUXopcZzOmD1+Z0rCsyN1B3Rs+nD543OCVetLkVe3ro8VoLVh+/XM2nDxAtQ5k+DrRMlZ0+OD0xd3P4D7PA+Xc+tvB+HtvKAE4fdKMFx85Ct5yvCp0+GNpnXZu+6d8DlqeZPKjd9TW+Bkj1nT5A5jQlQmBOo35bKIPCbzu7hMf96WsfPGGdk+nL5qMP471RpGdddCBX+4WDAHzLSNQTBhFiIvgV+F3p6n0VgbJF5RX6XqjrNlYrx4m4fkn+3JpeNEbRobWLouUpZWsXDVfJH3DgYwvdlhW06i0pmTSllaOfJGBt4V9N1zDXtyZsssO7STbZkcvleUpE/aeHvi0iCJCUTAiZbhxGYEud9s4cEIAwuXDhC2VAfAGd3Nie6795vMUYT07WgKL4ey2P4WsEmwdiN2tOyzJSeYD902f2yX39soLGX20qutE6rKIH2iFgjWkBAxJVLU6U0mbAz7RjUP3RPNJpRsNLS4SXNFo1YMb211kd0jgHnJOObdyV+KUuchgHMIOTJpUJVFt3iFPLCoh2iW1TMQeYwFqZzZxZzxpOC5/d7tmgKz0LDuiBtedb0LF2TTWxlsw/ztKtAVz5/UuDva1u1nrmHjDVplbI17Z9M6qtfynDE9VJsH+pVCO+9USmGGoYezAoDGPANfv7Izrt9N86YLDDjD6H8KWB7WDJTQVc+oTZuAK4PyzQoeuZF1uSAiBXFv5EhuGXDYMEh2XNzvhASLSyiMRtu/IfWIMdpJ/S1huBC6Y2APTiAJImaHFA+AttKnpWj8VVAwUuN8BSvtDbkIiZLlgDL4Ce8hAf/Emp0+RwNVoyUkBxAudqkItju9gFQbOb5k8X7Q63wesYpBcqSYs49Hq5+RfWfew7mHVjb+/i/nONrH3bCuqYLABzMYTZOICk7VdOGwTmii4Jt1Rjv2p1K0EilgsSUhHxgC0kyFc3a25KSes1+ERw/nV277m8Cwn4rIKycTXDXxxR7yea3FHYBpLBdssDgQ1VCWFUKuGcdfMPPh0l4ZPfvw3zvPo7h9gwWCriJQiYEakiEYkuoHKYPbD7xPA+KLNC8QieSMhXCvlIoSKZKQFhikx7TUDcpad5TrLGxmpkbVPPYClPiK4l2eZbHkTXuqJzvwE0akj7QwVs1weVJESMFIAdx9eMSCq+GjHvzajgM09MjuLdZ2QgTfdZebm86UzMSqhoOhUscwKRW0XmMsDuJY+sKd1nLZFzVCEnw4kaFC1S+BYErUx9dOFi6EE7T+7IY29e4lO1UQEh39LBU/U9iyFaQJJo0MqyrlIHC3tQs5h0qUAdh+ZqOTueYcClFYg84WfknsEhQ6CTmySQEbKE4Z+KKu4GiIGEjAVDgKA6Xclq8uRhgmGqyCSpaA9lT3QWlLDIkgq9kFmg00KYg7KNKfQVEFuFiT6fFIoJgW0t7lkEsQsP7pIlLRprTNiYgG9FsjGBXK4MKBARp4QCiDhqqLgMCkNlMHXridpSPy18KqFsvZ01mrROWrb+oxUGebjBQ07MjdMP5A4HPFpfK00MW3Frml3bb+ef6gHyonp0kK+ph0EeQQW5zlmZNhjkVZCVSZJEiWVlkiRRYlmZJEmUWFYmSRKlKitTM4kSy8okSaLEsjJJkiixrMzBIc1e1j/wzH8dn8vrazd7ikbKGxReUukjpl/qIeUtkor/zcKKPO5vtwhab8yPv/HCFs//esrFfrZIIofuIrKBo+mUm1DMtmZBQtiyJxn2uFEOgISUMM5E0xC0294nppyW+4ga4JB9SFuvHISKHy3BJLtFtnYN20EqLHVau3ZU7rYhp0EkkDUAD/ALdV7Qw4DfrzhnT/OfspAXd/r4+XUV2Wur3GXsSwCr15ao2S3ROGAPwuoCS1I/nAqr+qqUCHWsSFG6bZ4/6eG9ZpxJ3NF/p7zbztBjWsT43hGfzqxLC9oomRYyNSD9uB5QUtCi1NlSc/GBzk9zj8LmFTLZEMywKQdDPSz3jHqrZPKP/V15goecJc4pp22XK25X434ubL+ICBHphtxREAYXWermxrqqdg8hRAlqNSugBcLpJvLEStbLk38u3RIyiXfsis3YkrkGsGsJQVpKC5LCUrd93ZaBQuWbq5aqykQG2VikVlCWv04fuj7iz9DFi4L/uspcja+4Z4aNq7mLqKJUBjpcWnRaWGKOURSDwjC+6hPBNfb6xl6w+nzQysjQ/poL8ZqW0JgCXGf8fq4q1W2kRKeyccQDFtruDWib/Q0Uk7cVgO082dlHBoDtVu1K2KZNb9u3nkn6zoADM413XXWdcxy/2Insx1KYdRyxPC1OVHEVzQQHetoFghVFJmN5sC6clU62zhoBSwBmGjVUPxueu5ZtX+C/8Fm98CXdRfjG7OYccC85UGqkKnYJIExAamhgKqitm7ErfwuNuNdcbVtoUNMgMgK30DQ6CUs9EWhQPdSTSg+xW5/38p34kJsXtPKdwrdhE+I6dApPylSu05Csl1O55q2V92G7Pci5FB5TLBgJLwlkwgTUQGqlloiHu2iekGylXI2sJa7+rTmMg8xTsGoSiU+eAXOemDopKmtkG0q5uAseh/QtR7nln75yamto3trW5xat7+SNd5GQATRdJOXl8uYc8ZxbBecczEzeBeHZQlXRYSZTp2wSK+Xz0BX6Grtk8vbL5xawDmRwTl2MrdkPv/unvF9z9w+9Xh4+1zacHSdYNC3oUJMXHac+FYv0gA+fFh8gPtWRYWCGJG6MUALRjUH8o1slcKsYnixJoKBjWodlDXO791wdvte+zqqRnAOEtBDl/ZpMQ6/rfc0WcMWOliuvmxoSV0qOYFzRyXzZIApPKuCjypeUMa4X/e7u/rY0ZJZD1HLHzB5L8YwJR+7XZAx6Xd+M8fdE1QlcZtSIVzNgfWambgGZowoDJLAQCcvD48yJpv0j340OnOBgLpU+qzkCn1XLVg6gmVWLESoDkW60iDCYmF3vxaCw6wXzwj4O6NoldPLHnwqzE3c+4Hms/Ebtk2G6qSIMvAFnjkwWJiQDtxKeLeTJ5bCigSorBjX/2gUfxHPaZM+rKZPK67rkiTZF80Q1sl/8QVTXrWlFd8Abo64GNPZCZZEaeIRJ+STk3V6XBVlO+qc0MK+f1/lDm6bjDb8plWOjIlSx8UdSSSGG3mQ5GkxXBEOdNFa3CFSilGU5cQe1YD6QXLk+AEsBwp/LfErm6IixpIgS7Xm1VgWFcS0CmAMZYLAWEwAMnczRVJPZYDauiNKkpx7XxG0OPexcFTrR7VzlOGGYx1BhHrE36OJZRhE7o3/DrsKXPergq0Yh/eSlImECcixMU5FSIe0YDvwBYJ4U4E4RMwU3ilZ6kliZgu6xNItZ4enaLtzAILs5gHMm2cIN3KPIaH7KSrUaiXlOmD2xCIW6FMdL+E2myOVQPiYD/fhnZhsdMQ/c/499uJVbvUsY3YiCbhmJqBcNGTFTXqceWPk8yOPCj9AFbk2ChDKgc2B2ApLMhOcXKX+e5gy6Gv3paOik5aHxw579jm/+Z8TSnB0sjdlhRJgdnWvHdjvh3SV0Y5eh85KetVJUdM0EzI5LkJ3eZNkLMEFnQ/NTaiCVt7LkFC1IkAANrQtK/VymH/7+OTVwU8j3D3mbF1/BoxSgiVJAuSi9KCne/9F1mX92/42NzH4W9dcDShm0KMU2P4XKoEqWaLNdlPUCoWOkBUDErHe8DVMOpWnD0OuVseCNSMxXsoUmFw8EKVSf9v4v06fEcj5VpE/dm9Hp02vO/9OnKH/qmh3fN73JtIhVn3t2W3YjqVgP+pRYpkkPmqJFMzpN8cO5svXpSu66iQ2vvWKt+DtnYeGRfkv1oE+JiwR6QAmINQ1KW5wrUZ8SbWi161NEYij1KUAK1ad9qPSpwcQExOmkn2S2DkYN381iSwP3fPJPLrg2q5ceQgIXZ7qQwEwFeV8qyHVOZrPGIK+CZDaSGniYqiepgYcls5HUwMOS2Uhq4GHJbCQ18LBkNpIaeFgyG9FD08hYg1qRVMSI1fP0kLEWqzcmW1Yhk/+zOpIkRRUxJhP3/DV4YkzFE2LZQj3wpB8VT3ILH/Wb8vRr6P7C3fu3D3uMP+dXK4onFog0C7RSKTYXFlMK71CrMs0USxQCZXEhhSBNwVQWZyV9bWLdRZJH0UbbWUYnyCQiUS9oseBF9YasBE245+6EG7x+QwOO/HHSt/ePGt+pNKFZb7lAFgMeH/valoGS1HgRzNWClWBh4R++UIG+O/Aw4C7Hk4x1BJZgpXo1FqVbcRgljYAC9WUzMqawLcJ5siShmCtIxBlAS+XlXrBnh/p1c+X1GIlU/SqhBGyPVpzMfxqdskFAjJLBc4MKofKpTLGnIptQMt7IUDEflt3C4DUyhxfh1ovaJcRXF6FlhZUBAewEIuSJ2LAWlJohUsgEvBTV78Z9ZTyp6h5UVPtTiarBmGViFVA9LdUR5V8PdjnTkc4u8x0xuzzA4DEnllc13OXRODs6zP3tMMwHUmGus5m0YlSdmSSpm4uZSZK6uZiZJKmbi5lJkrq5mC/0qnad3PjflofMbsiLbdpn+DU1X4i7MDunWUyzkNVfBvRmL3Lx1TCuUOuTChKxGK8ejOsgKk4aaMsxYtHhKms5JmpN13JsaavKbjkW7XZy6vGnbuG5I+q33r03E19otXpajvFb0zVw6dbaAPomFRcXV0HLsRdvdsbPzW8UvKjz3CGHS3ZsN4iWY3a03HndygC4UyUtx6RXYn5r+sOdlWuSy/Ny+nneIFqOFbWiY85SQ2AOozpbju37MPtFpvwVu3DocIfP2efxOcfV3XJMQcs8bvUwzzBbjh3r3a7Vg3OL2dsabjuYFDoDv6NX9S3HWtBy7kfL6uYcvKnSWo5139PweaPTo9gH1x+1a9FhK74yXXW1HEN8CMqWY0ARon7qYAaFn/rf1HKM2BajmluOTXWhaznm7VJFLcc+Lejmdftb6GpOhsUps6mf9d5yjFjcTA9ttDJc6NpoxbpUVsuxMe/2BsxrODw8c1nq3biFTZ/rveUYUUfoAStvWqzMXP5PtRwbQqXG/leE/z8qwk/sJlRlRfiL29AV4U9uUxlF+PfUkTfusmlK2PSkls2uTaoboMfT5nrWkbBm+aM2dDXLC9tUSRF+8/kzA1dseNBjE2PCtTsjkjyrvQh/Fi0qQG4MJnbQ7eCP/orw//OjyaGGTn+Fz7jq57HA8uxpgynC70/LOofqYV2VF+G3vyesKz+0K3h2/C+nJle736zmIvyIlqGsog60TJUV4Q92tM69e6xn8BbRuH3XrL/htXP1FOHPogUnuU0VFuE3sr5faicJDZvZLD/tvNOA3QZQzgIi5E+LEJjTqN8Wx6Dw2zgsV7dSv2usDQ+cNl5Z/rYdvo4AcohPKhEBi67ps5lR4NyhbItEWHY/WgsDIC6TpCYlM1VNY3Wp5UDssEj5tJpVD9SI2ub2teQwZroBfHlsuOhCwPcSwPepa0UPVtmVPRa4imJB+uq1L18IGxp4KKhg0ErehaUL7Cveu4vgQhEVYwVdKCZALxOi15RNIp0OrhzGQDedXKjayunLFyTJBOT+5a1//1z06bsoPH/Otp1Tl3YVE05IITeSnJBSXtd72V/w/u1p37+2W3U7SyrJ1MFRgo8slPCFCTS1bUbvWDzR5blV+KLMD9eH7i8W4GUVG0BTVlWUymAGmKw0zDjoahDuD0OXHQvPMLFEAcwXLwGunbp4+4GQFUQWKe5MH7+EZImM785s6ycfLlMgv5B7q7n5my4t93oRub5d0b6WSW6b8XYNfkG0Il1E0v+yjFQZzMqmZZaoephFmDlwKJ281fplC93iVFm8nGYG3WEsNrF+ZhRx+M0R9z1fXaZXJFSuIDuyvFFFDo96XtKoC+XD2RzhppuXimpyGm/rDPeAqEHXVcHr1tUafVscPbpaw14IQGMMgFskAEDVopMnipky6iIT2+52tb9yxys4++eg8NwxitYEU1a1h30hAAWuNAD0SXfFHE0e478rH4fYmLvK8nGmetDl4xS6V3Y+zpdn8YP/Le4esddmhBH38OyeBpCPk+FBt7sZ62EASQV//vlnFeTjZN3ctXhAUELouqh+HezOn480iHwcb1rumBkCd6okH6fFlwV9xUuN/OfneZ0OskrcbhD5OI/c6ZgDtEn1M4dRnfk4dSS7eyaZW4dsPBuSbHz+t0EGlY+TRcu85OphnmHm4zxc0MvN6cjBoDlbd/y2YNS1TtWcj+NPyzmHaudcpebjTOvEP5DW7Ql3g6VX0uTJ0zYaRD4O4kNQ5uMARYj6qfGM/w/ycba0tX914nqtgKxm7cX2n871qeZ8nCxPunyczp5Vk49Tb7PZ9dgH4WFL/F7bb3jYYq7e83GIsbkeckymetLlmMR5VlY+jvfiSTdj5+QErtiRu2zADof3es/HIeoIPWDVmRYrW8//U/k4CVRqbPgRoZswYhN77+FI0fOnA97id0p6psKzk8EynjRZ84SpDtsXLQKFcik8PabazUn3UJ4yZfJgzbwk+A2kklfMLrIrPrkwYEuXoc9q1D8ko3w+zZ0cdaKG/JlHAxUWqX4Ui0QqieeetJRK1Wgk+TTGsDBXAzb8Szj/ObQ1Z1INp1NW0QIRYJiAHwr0eho2HMJWJSv5VKzU+Uyai0q2K/9MWoMsp8stP/3NnXCnVZT71wnv1c6kNZ0TMaSNl1WPjfXa27zZ0PKX2pm0G6U/3/m33cFZLzNKWBKddVjtTJq8D+9iHdOisAM9I+OXF48cpXYmbeeNEEn//e3Dlw+9ncTuHMFTO5P2cN2s4K/ubyInPgxmpq94/FrtfP4IhmTvZ+v+3F0zajjU+mPlTrVmM10WnG3594bJ/lv/NtlYPy07DJDMUFJ25G+3k6++CFqw71JhQuTxWYBkjpKu1VvEWTEwkLN032CrnsMvvwQkC5QUfnD++6EPIiPWfZbdX3MuyhmQLFFSiEWpjOfN48xaLXPzHfZ+JSDVRkkWdQdl/1sQF7breOCEopTb6wHJCiVljr07bljP7ICNOxoUjc58Ao/hWWNPmDDLJLbO3sDVojq1337PsAIkG5TkOrXfwKTmO8LWpJ2cHbKi7WhAssUUcj/F/TD5vMgZfzv1sj7jCTGsg5LuLukyPHFT/7C19gM9piyxyAGkuijp+JmhB1oV9gtdJ09j+opuQy7XQ0l9R3Zo/oPbOCSjfrDx7GDb5oBkh92153H0yp99glbejxmw4YoCIl8fJd33jDO9sZgROH911+n/tlyQCUgNUNKcOYse+HxpGLbN2nuaqHjYSECyR0l7v06b/uRMt+CV+2PCJwzYPAWQHFDSZbdpTWWNjrP3P3nJjTh3JguQGqKk0X4Z9icFnQMORrY5u0Z+vzsgNUJJk19GuXQc+iFwep5X1632/9wDJEeUdCFQ0uvOr/1BC20d1+XtC2oJSI1RUn6fVUuvTH/tv3Scc0zxwgtQ2JpgEmUimvPkntw/s0HPH51/uaYBkhNKWlW8zK9DZvPQrXW/BIwelykFpKYo6dnK28lpnG8Re10T/OaumgCrSzBRkpXvxjHu965z9qc3SDo8+MVbjcOWzgyKw5abpi95c885LWLCoMVzHj7OfqiHw5YCKhVVP3Fffu7Js5ylW56MOtd4TB5+MZGTJhVJ+CQZBFSNSVuhd6hyPpFS6/IUnkgElBBaxV7LlAGigiJ9NM11TpSgbe0reKrG5xTUryTeb5Q7h9HYR7cmEGUZlcoHIX03E78X+z2Xu7NXX9za1tnpgD4TKvXs5DJggVUIEJ/McTsD3LpAH52yATr0Ag6TDFm74wtgmV6JXIikUIDnE4pg02WVnDCBB8XkwZArgRRFl74F/R+ceBhQuDC5yehWNT/it0BV36O5BVpG0nt5VRdEYmjg+uhtEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+VjmlwoXjSh27hBZNb1Hs2INCOsFqODkuyWo5R9M09Ww9U2APJuJfjiQi7xo6pjsA5Y4k92KK1gAgkKVgbf33tvy32D+6MHec5ZwubF1Q8jUgPYDWmBQuIOmp/EhkU9ud/pw/+o9MHRA+9yk4fHG1Ld/rAv21lnD7wSK//NEAxN7Tweuu6Lh+DQvVoLIkaSA+nDwrb0iVrZ7WtktMHDvOCuhxsnOm/b0LsP6HZP6Oq/fRBMi0qQG4MdKfk/7F3HVBNZF8/uqgogg0QxBI7IsXeCyGEGoqAvUYSIBoIhiioqIgNBRU7Iir2hl0RUcG1YFd2bdh7XxXbrq7te28yEzKVZBmS7PdfzvEcmctMJr/73n33vfu79+ov+2DqA4evO1sfcMtWNGixsEH/3kaTfWDDqLritkbqzrCcfSD2zWpTLeGy9yzF012tXoqnGjj7ALEytPRxYGX0ln1weeAEn/S/G/pkFux/dqJD0yNGkH0QwQiOazs9Zh84D6jWXnxprueWuYP2fHUqxvc2Nlz2gQ0jQmBOo35bOIfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PA9AW7uQXCVXOEYDyqG35Ka1M05+S33uPz2hy415uRffEoLs8G6KIDtyuTRPiWj/WOjbch8CFE01CLmtgYUL0Cl2ZoMAhI0Le7FUAYYvkFMvtiHDehcfaN/BZ379v5r+Nb5+On5aumM3k6dliag0wHZf/DwhflFTj6S7L5M+5jewZQGwVEbAwIgyiBOlWjPg37Tn0P2QUzpNGXRphuiSwaoKC+NHvXO4FbD8TeHZKZmPXtRGknGAMgRx0QqJOnSHOLU8t2D7Aa3K5gATVLvuVv7slccO+yX+kWU96WfIbhZU68qoWhsDqZbKP07VrQFc6f1LX6RW9Nxu9cHj4LaB3V+9UFgYrH8pxxm1SbB/aTRpf+uMTDF0YYzg0CyMblfq3hnXea/r9sHDbJL7HcGXBraEJTeV8OgTsnElMD4s0aHrmQtfHgkgVxX+RB4jLnkMsjksaXYmBoNEqxWRGLYr/YVJ6qD8K229EXhg2gWA/tyNognaCDD4H3cua64eT6gBCjxugKV8obchj+LaYw28AHqqJD74P5VNi4Gn0fJYCU0GzoPJM9aN7pQjyE2oPursbylFeBuD9EKlaBGHXi/NxjSr8an18G+d3dbfmNvw8IF1NmW0MakAZksIs4kbRduvtFYIzGU9Em6uoX716VaoPCpGEjoWGR6whQT16ebWPotrHX1Uw3O2Sea8vi84+IrqZiXPJW9/cULWM5ocUdiGUMFW5ITAhpoEKZ1JOGfR9EPbTnK/me/f+jpfniIgNgyOlolCJVz/sTIZhS2gc5idsPui4H1wzEqjxolkUrFqkMdKlRFcOdimKLS3BMQoPcN7UjU21hBrSz1rKeD06AzQNaMKvmVCdDuVde5bw0UNaX+ohO36oJGEiNH0fLwQ2PF2Vd6MRv4jO6/yf413n5EHkd1n1eXSpjORlVBWOhVArgNEbi2VywC7l1TvTOs+a4mcnRo5BW6owaFFCV/idadqSUG/+2+9Y9s/tm77RXiqNjpAqEM6eCnbsxiiBUYSA1qHO+nVwcJe1DRkfLREE4emGpwdZ1/g0kpkzvBvYpw9vYZDJzdcoiCwhOFPWQ23NbJAQsWCR4BN9XiVqqmzKAgLU1kmSVl7KDujs6CYR0UqdEFmgU4HYTaqNqbQV0DWKmzoiymhMDVfGvPD/4XwkGRv4C3LFw8IgQn4rSgCE8jl8oACGeK0UIAhji5Uozg0C5XR1K0nWkt2WviUQ9l6105MZeu5ashHGz3kRG4cO5A3Oz/lS1TtH/yp96ZmPngY34gFyIu7M0Fe2B2DXEYHuc6szBoY5HpgZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKDFW5qxfZnmKtl51z9tRWMvq8cWhJMobHLyUo49Iv2SB8hZJp/8mviec7uyu5rHJRDzy2ouaeP3XUR3282XyGOguIgEcslNemWa2NfGQwpY9EbDHjeoByJYS7jNRGoJ24X0i5bTUVySBQ/VH2nrlYKvI7QAmWRHV2TVsB5nZXqezaztVtA3JBpFD1QA8wC/0vCBbRb+tyUNiXPc8PzHZerBLj7LE2sr3GLsQYGXTAV12i0kJ9mBbfbs9pR9Oh5WVmhKhiRUlSmaXvgaa9BvAX5Rde/6qSun1WaRFTO3r/+n0xjiPLfLZXklu44+xgBIYMwwoidvr1qTdMRCbV8hkQzDDphzc6mHcM4ZQybcO434k5nlnu7dPnMWVnjBgPBe2X0QGEWVA7ijYBhe3182NdVBHDyFEoRo1K+AKhLNNlODMn9ytefqr9byFUssmXLs6w40gaglBOt2eCaTM9rrFdZu7S1XfXH1UVTJkkMAivYGKrfe03wqz28Kk0AG/zft1+UV8FBF7LjmKqJaUBzpxjOgEtsccoygOzcL4qp+/0MTlC3/JuvMeawK8B5EP4skroQkNuI3x8Vw11S1WrlPZOGKChbaxAW3Z38AwDekIYDtPlfvIAbCZdCyHMO3FrjMC8pz7+y+7+qR2d5PmhNJ9SDyWZlnHCUuz4kQTV1YmOLDTIRCsQKoxlglcc8eOOq11FghYEjDT6KFyrbokcpDXKeF64aVxuc5r++ItkQDcSw2UhkjPLgGEyYQRptsddFvsSg+hEWPNBguhQUuDjBEYQiN1Eo52RqBB7ZCczg7xW5536TrtnjDTY807ZVfbBsRz6EhRNFd1TkNxXk7nmrdU3YdFe5C8FBE3ShILL0kU0lB0gdTKLBGTuxjekOqkXEOsJa6usIyLbwGsmkThkycA1Hf56GSoLJAwlOpwF7wOdZmAnlaLTb5348+qFb7Pq9dg/LeshDyA7CKpLpc254h5bmWcc5CZbA/hyaKr6MDx1YlNYq56H6ZCXw79fmY9e9GQt7hwdN/mfdeuxEf/VPeTo3/o9dLwqVOvrmnPxxeEG3K/Da4xq1cbFvAp8mHCBwwfQzAMTBHixjgVED04xB/dKoGbh4gU4RIlk9Jkrie3dyv66Zpj8uH75sqtCNXZVPeTlYZeZ/3MFhYTY9TKCKPSSnE+phWdlq8aiMGLlohR40upGOUSq/wJlnO8j3x7sOZa5kg7vGL8kPvJikGvs60YV2fUnMBjRtJ+NcFFwPnDR7cNmZ0aA2RjIZOWhodFRNjFMUvP87I4opOvBfPH41m1fNUDyKxaTFAeiOzyYUJE6YOt69EcmnV910Lfj4O7d/Oe+fG70vT4zQ94Has+UXsyTA/1DgO/gHNjI6ShEcCthLmFopgYWNFAzYpBl3/tNh/EPG2q9yWPSdV1XXii3ihPlMR+cQW7ul3eZY2A10ddDbjYS1VFamAKk+pNKL/4ZM9JCT7e3p6bbB/cHHzLBh/IrULn2KgFel78ESopxLANFUeD64BgqJPF6uGPjihVWU5cohbkA8WozgdgKUD4/xKfkjvRfxJ1aRvCem7QqqBwX4sAZkMFGKzFBABDJ/MYuslsNIEr4mhiqcc1MczBQuTK0ZspclVdjbmCDnP/Ax4Xz3BO8BMG2XaXvvSpha8ahfSTj5ZJQ5G0MLIhpUPazg/4A2B5UoI7ZdxI3FO0spPEyhRMr0UuZoWXa3twAzbZQn8AZwrVwQ2MUXz0KzBXn0ZinhO2nlTzhrYUp0v4SVWQy95ibAwMFJ+eVyG/qnvum7p+5q3rFGLyCjRyswDEvJDGiKnqOv2DVe+DvC78E6aNWwMPqQLYHMhOQMhMeH1R6ufIySYXjn8I8tioWLjaxmYinpJagUeeHTzS7KhAmB2dsq37pPp09ZtTv8lMr6Od4st6ZgJmhztUZxsq9gIk6NT3L9AAqbSTpYbBklA5sNC6oNRm+/pMs27Wbll5M3y7X9raC4+SGxklt1JRetVXsXF9mJPbjkJf8YXFv0ezgBIY1gwonfcrQMegeiwxsl1U9QKhY6QFQETWO34NUz2KvIah18vjwBsZMZ+pDprsnRCkUHsa8y+zp8RyPvqyp0JGe+r7nz1F9dP2QNUXue0u8LamD1w7u6h+YxbsKbFMExv2VMhoT4XlbU/T6jyevm3PQq8DCtvKozZXaMWCPSUeErBhT30Z7alvOdpT4hpqeHsqZLSnvpg9VdLZU6PZExCnEztkto4VbN/N5Ue7Z39yjdh1ZW4QC1uCDF+mLUG8GvKxdJDrTGazwCDXA5mNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKyNY03JZnpU8j+rI0lRVBFTMjHmT9KJCZ1OiGULWdBJLJ1O0nPuD5z1+LN3bs7+3N2jH+A3VZUCRVESGblAK51hs+dxo+EdGlWmuVFypURVXEgpiVNyVcVZqdk6hLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJltDxasME+9tdPJOS3k7z7b+aNrfZtG+MRBECXh/72Obu8rEjZZCrBSvBwsI/YqkS/e7Aw4BRjocJGwkqwUr1kg6lWwg4AwTAgHblcxJm8av5iRTh0iihJAy3AJqpLgfBnh2a16uqrofIozWvEkrA+rQQePUXFNRAQAxUwLxBpVT1VlWwt6KaUApRrHeUGJbdwuCtUBVehKEXjUuIry5DywqrNgSwE4hUJOPDWlAaC5FSIRFFqn836a8QRavvQYdqHN1QNZplmVgFlKWjOuL4Z2Fd/ixgWpeLBNi6PN7oMSeWVzXe49GUHkyYy3pgmE+gw1znZdKco79lkqJuLrZMUtTNxZZJirq52DJJUTcX84WKMpf3/Dhrr9uOlDomkaIqXTR8oQ7FilpmZlvcDxXvHJ1jd70iaXGFVp+6NSShGC8Li+tEOk0aacsxYtFhvbUcu9+HqeVYzT7l3XLsw0qLj53P7AtI6TDk69bEQWuNoOVYUR+mBi67+hhB36T79+/roeXYisV+Q0/MT+NleL4am/sk7qtRtBxLYtTOCGPQjl5ajh38u07C27Adfvuqv7zWp1crPH3VUC3HujAqp6YxKIdjyJZjV3sJju47UJGXPmPuz53hXvuMquXY80Am5R0NNJ5CQQZvOfYtL/JSkysz/TbtCWybeTEs0cAtx9IYNRdtcM3Bm8qt5djOoU2W/3rhT++9Ixo82/9hl4lRtBxDfAjalmPAEKJ+ajyHxk/9N7UcI7bFMHDLsW9BTC3H1gfpp+VY2yVng+TVAwS503O6zbsSdZP1lmPE4mYstNH6GMTURut8UHm1HBu0Itu8z8Y6AbNMHYdZbVi7kfWWY0QbwQJW6xmxig/6n2o5NonOjP1XhP8fFeEndhPSWxH+ISFMRfhvB5dHEf6CBa3uuVWO9Djwx+jPa0Lm49utly3bnGUbCWuWh4Qw1Sx3DNFLEf5+sx3OWG+o7TW7j7ha7eQeNQxehN+EERUwboxm76Bb4g97Rfhrm83d3MfbR5AVudV29PoI/LG9IYvw7wtmUl2KYVSn9yL87UPqC8IHB/olVl31sfaRkXwDF+FHrAxtFXVgZfRWhH9ButAu/nG6V+6gyl+W1rqCL5hlmCL8JozgAGOjvyL8ljObfKnZd4X/3MDfPrVXPMeX0zFcEX5kTtMiBOY06rdN5tD4bQKeQ+ufPa/wNt9tuOX3VW8JdQSQJL5ouQys6GSfzZQG544lIRJpyf1oLQyAuEI+NjyCq24aq0stB2KHRdq3JVc90BBqy+1rLgALMMBXxIeHLgR8CwG+A/qWNbHKsuS1wFUUC8qv/mXd6jo1pN29l7yIOHSlsC+e0fuPencRXCiiYSyjC8UF6H3uC9BrxKcYnTYOAk5hX51cqOqq6SuWhCsk1P7lmcRux94VPeGvTbLKu7mu2JOQIYXcSJEhpbrOetlf8P03M37/hL6GdpbUI1MHRwm+slQuloYy1Lbptdl72mz/YJ/Flkq/hG2Lk/FjFXsAeayqJeWhjAGMymhjGGUQ3R+OLhELZ98ouRIsX6JQeHZq36Yn2LKCnUWkI7dtz9AIuULsyG3XM2aMQon8Qu2tBk+7WlRwpqlgwcBnL4pvnJHj1zX4AcHK8TKK/pclovJQlimjsu6HGMPMgY/SyVu1KjnojhqrGBnDMIMS75hZuYwM4E8/lLko8H2n5mXZKpdRHaltUEMOUz0LSXWh2gq2Heurm5eKWnIGb+uY9WyxadWHvAMpM7K7e32eYdBtLwQgFQOgiAIAaFp08kSxpYy+yIR7/uOaMw8FuCfvvTFoT4M+9Qya7AsBaMYEQL/XIZijOYXz7+LjEBtz642P860/Ex/HsX9583G422In7s8vclv35Nc/3hZNOm4EfJyP/Zmim+f7GwGp4NSpU3rg49wcXiGnU99h7ttvKfdWD38TZxR8nPWM2ok3Bu3ohY+TH8AZ0SLA3Cu5UcKuxsuHDjIKPk4Io3IcjUE5HEPycfr8lvrk6Cm+b0Jm++SDu3aYGhUfx4RRebf7GdrZNSI+jkt1u6c1sgqE0x49aTzncNduBubj7OvHpLkUg2uuXPk4jhvF1/jXV3ku2TpvZerQvRlGwcdBfAhaPg4whKifmsD5f8DHebrmRkSc4Iv/AYfQngvWJsYbmI9jMpCJj5M1QD98nIRLGZMXn8r0TIlbPFB2oN0W1vk4xL05CxyTbwOYOCZXBpQXH2feCd8VD8cO8cheH97yxy9HN7POxyHaCBawymLEavqA/yk+zlQ6MzYmX9pa6r+VfyAvQPbs8WB8G1+zPmNh7qSnQhQdQc4w1SF80cxdGhMNs8fU0ZzxTqosU64I1swLh59AOfLMu26Jd7x9VZA73jo8b9gL+vcjR3I0haTxVzUYmLAAzVQsilFJzHvSclSqn0bBp4nwAqPSmg//EfI/R7UUeIV7FZgHS2RAYRKxN7DrcdjjELWqVJlIp0qdc9Ls1WO7/HPSFo35O/aXBv38V6Ss6jV1yqneGjlppzsuPHyviidveyert527b3mjkZNWI2y2henZ87zZ3VxSX7RvlqCRk+bR7eevf/y93W9l7QPz7kztHaORk3a/7rkRkfsceFt/bWb/efniPRo5ac3l3d9VnDaFl7kgRxqa/+ilRn5+s51PTS7/edZz7qy8b4VXuq3TaDZjlX45YOrV4T6zDvn+2Jr3pR0QmaKiQ9XHFef0PCPY1/uRvTB2fAcgqoqKXk2xdFnUoJNr0qy/pvI+bVsPRNVQ0ddpn795dVrMX3TQ6enBv7xCgcgMFdU+2bB4avYmYbLJVc/efW/sAKLqqOhs+qIqX9uLveZJqhx5ndnhFyAyR0VffG779J+y1Wd3ld1bzp7adw6ILFBRaubzopOKq15rk8T3/zDffg+IaqCiqtL1qxLzvgWs3rf3yd7Ld+Br1ERFb+p5bJx3NNEnc9jtyo+WO8LPqoWKWj4zzaqRt9VnUfvpkmWpdyOAqDYqOhlscb24w1nXLbVkzwcVLo8EojqoaHjKhjmcnk5uh/Pfzr0bZH8diCxRkcLz/N3t/jPcdvvWWBr0pU5NILJCRWfOH8tQnm3unfowv/Wr1ZkjgcgaFVWK7J5fnLrLc7NNw9xxed3DgKguKhpiP3vFsKUrAtYsuxlV9+TH00Bkg4o+LVvX5/P7TwGrsrycggbXfw5EtqjI837/Y75XN3vPvNf51Keu+7oDUT1UtKnYZeru2es9p678sbxNq1B4lx0qmp9jZtou65L/tCejugwbctoCiOqjonfSg29fdT8rSJzTvt2G77M9gagBKnpkZ9Hw5tVit5mtG+/t/ar2USBqiH2vttO6fTqRyNvnMt3KYUD4UiBqhIo6t7nT3y7Wxn/BxO6vbt65uQyIuKjI7UlkgmLF+YAZU7Y5HLrV6AIp2bIxhybZMqO43T2rufd5C0IbtXu+5IMjhdnQNdlyGp2Jsgo7uDP95BlBRtbDCefqx2fiDxMFcdEyuZiCQUDXmLQFeoea84mUWo+JFMlkwAihVey1pAwQDRTlq5HPOVGBtrWvwAoQN6wA2lcK7zcQ9nEbplsTiBJGpepFqPn4qUuqbcjt6r/j0qXI9LUvs1kkVLLs5HLsBZxoCJCYynE7Ddw6r2E6sQE6BgGHSYGc3YklsEyvPEaKUCjA+0llsOmyepxwgQfFFcEtVyglitt4XTestFP453aokpt2I/4WPgSq/hxyCLRExHp5VXtkxDDA9XmoUcSryXQ9HduGOqETTVyiLmWESAn2L6MlXOCAqNsw0cdKC2YIz/xqv5a386lb5js392WE03L0sRSn5ZiEbe3VdEIHuzuV9tKckcFOipjqCFxjjNiDHVpLiEBSglVxQU3HW5Uq+y0P4ORcuyCqVHYaEQtgcRnBAkMdXX+mc2jWn/+yD/5R9gHRQ9db9sGJ4UzZB+7DyyP74MKTYptbVZv4rfq7R+cG1c9ZsLhYEi0QC9kHh4czkbUXD9dL9kFR/Yvjn3eQea5wkPU/9jrymMGzD2SMqIBxY6SREv1lHyzdsODPj58GeSx+lH5U/jUWf65iyOyD+oyq+zjMSN0ZlrMPBqVbx8g8KwlnNx1ULTnrWRcDZx8gVoaWPg6sjN6yD5o3FNZKiRG6Hhl362f1fqYyI8g+kDGC4z5cj9kH1rEubSfdvu25oMP+82YLTI4YSfZBfUaEwJxG/bYZHBq/7cwKkfB717qeiRsbVnnZdGIe3htFetYFuwu1Pzhww7eMRD1hsEMMA78Cv2u8Zl9FYGzR8Qp9L9R1m6SV40Q8v6R+b7IXjUl0aO2SNhFt7UJylVyBBmwmlkNvyYduU2RXx2zzn1Hp9Iphue9tCEF2eDdFkB25XJqnRLR/LPRtSYUARVMNQm5rASdiok6xMxsEIGxc2IulCjB8gZx6sd16SpA9ddIk/oxffX9bd+vmJPy0dMduJk/LElFpgB25FHz7ayW+78quDfcMb+NgyQJgroyAgRFlECdKtWbAv2nPofshp3SaMujSDNElg1WNsVIOT3rq7LZzjV3Rt9+evq2NJOMAZQjiohUSdegOcWp5bsH2A1qVzQEmqDbYawtnaI9c373XPByiZvq5sqDa4glMqj09wXj841TdGsCV3r/0Q5XgxRlm7p7TXV2aLK9+IMBg/Us5zqhNgv1Lo0n7W2dkiqEL40wOzcLodqXunXGd97puHzzMJrnfEXxpYEtYclMJjz4hG1cC48MSHbqeufDlkQByVeFP5DHikscgm8OSZmdiMEi0WhGJYbvSX5ikDsq/0tYbgQemEgD6czeKJmgjwOB/Li5rrh5PqAEKPG6ApXyhtyGP4tpjDbwAeqokPvg/lU2LgafR8lgJTQbO2eMb4rlnUnxW/CZZ3dp3+BO8jUF6oVK0iEOvl2Zjqnz7YSL5e5D7fN67Hg8fCMrKv0gFMNtAmE3cKNp+pbVCYC7rkXBzDfWrT7dC5VExktCxyPCALSSoTzd967w4bsVf77O6pljgnDSkDp5VUPJc8vYXJ2Q9o8kRhW0IFWxFTghsqEmYRWcSzlk0/dC2k9xv5vu3vs6XpwiIDYOjZaJQCdd/rExGYQvoHGYn7L4oeB8cs9KocSKZVKwa5LFSZQRXDrYpCu0tATFKz/CeVI2NNcTaUs9aAp9GDNA1owq+ZUJ0Q8s6963hooa0P1TCdn3QSELEqElVAStd/1g3kLe0ws+jXxtKn+LdZ+RBZPdZdbm06UxkJZSVTgUrOULk1lK5DLB7SU0xrfusJXJ2auQUuKEGhxZ1n8Npjx4+uTrNc+Ht4E+8n7l/46na6AChDungpWzPYogWGEkMaB0N1auDhb2oacj4aIkmDk01ODvOvsCllcic4d/EOHt6DYdObrhEQWAJw5+yGm5rZIGEigWPAJvq8SpVU2qZuDCVZZKUtYeyMzoLinlUpEIXZBbodBBmo2pjCn0FZK3Chr6YEopWmSaRG+QzvJdn5wRPiVu9kxCYgN+KIjCBXC4PKJAhTgsFGOLoQpXEoVmojKZuPdFastPCpxzK1ruHMpWtb6aGfLbRQ07kxrED+VvZ4lVVTQfy9z38e0RLl8EfWYD8YwQT5FciMMjn0EGuMyuzBga5HliZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGiVHdNIpMoMVam8/3ePeeOKfLYNXhmgm0fPx6J8gYHL+XoI9IvWaC8JdPpv4nvCac7u6t5bDIRj7z2oiZe/3VUh/18mTwGuotIAIfslFemmW1NPKSwZU8E7HGjegCypYT7TJSGoF14n0g5LfUVSeBQ/ZG2XjnYKjYTgUlWRHV2DdtBrh+h09m1nSrahmSDyKFqAB7gF3pe0JR9Dc4OP2Hhn+i1s9Hew9sWlyXWVr7H2IUAq/oidNktJiXYg231/RGUfjgdVlZqSoQmVtQckLW7s1v7bvKYc3rCO+9uVaewSIuY2tf/0+mNcR5b5LO9ktzGH2MBJTBmGFCKGKFbk3bHQGxeIZMNwQybcnCrh3HP6EMl/VLPrrrQcr7n9rtjvO1ePHhrwHgubL+IDCLKgNxR2H5xhG5urIM6egghCtWoWQFXIJxtogRnZWfh9ffdj/qnXU2YK1jdZZYRRC0hSOdHMIG0foRucd3m7lLVN1cfVZUMGSSwSG+gji6XPshpE+md8+dhy5SLFyfjo4jYc8lRRLWkPNCJZ0QnZATmGKVwaBbGV/38hSYuX/hL1p33WBPgPYh8EE9eCU1owG2Mj+eqqW6xcp3KxhETLLSNDWjL/gaGacRIANt5qtxHDoDNdGQ5hGmTO/lsPD9aLFxzKfBKV3fuKvxhJxKPpVnWccLSrDjRxJWVCQ7s9AAIViDVGMuEpbhG6rTWWSBgScBMo4dqQHrjHnMD+rkn3h+xP7VpZzzrtaoA3EsNlIZIzy4BhMmUEab7It0Wu9JDaMRYs8FCaNDSIGMEhtBInYSjnRFoUDs0l84O8Vued+k67Z4w02PNO2VX2wbEc+hIUTRXdU5DcV5O55q3VN2HRXuQvBQRN0oSCy9JFNJQdIHUyiwRk7sY3pDqpFxDrCWurrAP2LgCWDWJwidPAKiPGKeTobJAwlCqw13wOtSFhj5POh++/E+3dRbnZEvW96yNd5GQB5BdJNXl0uYcMc+tjHMOMpOLIDxZdBUddo3TiU1irnofpkJfzg8+ztzU6oH7phX7TEZn1b6Ej/6p7idH/9DrpeGzd/g77+Iuv3klCMcPm7VI8hcL+CQx4gOGjyEYBqYIcWOcCogeHOKPbpXAzUNEinCJkklpnlWlMX4TrvHy70W7dLywoBCvNNX9ZKWh11k/s4VBHEat1DQqrRTnY1rRafmqgRi8aIkYNb7U27HG+RWbja7KWz3i2u2Fyyrj47+V/ZD7yYpBr7OtGFdn1JzAY0bSfjXBRcDJGKfbhsxOjQGysZBJS8PjacEI+cE/agmTLF5VbdG5Cz61rQpf9QAyqxYTlAciIxgRaTYOW9fncWjW9V0LfT8O7t7Ne+bH70rT4zc/4HWs+kTtyTA91DsM/ALOjY2QhkYAtxLmFopiYmBFAzUrBl3+tdt8EPO0qd6XPCZV13XhiY5FeaIk9osr2NWNGFvWCHh91NWAi71UVaQGpjCp3oTyi9vNvtHswIY1wqSf0Z+zq6/Dc92r0Dk2aoGeF3+ESgoxbEPF0eA6IBjqZLF6+KMjSlWWE5eoBflAMarzAVgKEP6/xKfkTvSfRIkocT03aFVQuK9FALOhAgzWYgKAoZN5Pt1kNprAFXE0sdTjmhjmYCFydVvJFLk6rMQwT6XD3P+Ax8UznBP8hEG23aUvfWrhq0Yh/eSjZdJQJC2MbEjpkLbzA/4AWJ6U4E4ZNxL3FK3sJLEyBdNrkYtZ4eXaHtzA0kvjAZwpVAc3SIxifIG5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj8bRdU2VVv11GP/psKqU51lnXD6qcAjzw4eaXZUIMyOk95/Pak+z8Qtb+8c092tClLKemYC47pQnW2o2AuQoHN+fIEGSKWdLDUMloTKgYXWBaW2G1wTZ05Z5r191K4lGaIZI/EouZFRcisVpT8tujflf77mvvzbqktVJtnFsYDSekaU4scXoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD1d8C+zp8RyPnqyp4FxTPb0c+x/9hTVz5yj3quLL/b13rXazsPq09XmbNhTQpkmFiyFVxyTpeDGlbc9nS5d97pH2ymeSx7ZWll5te3Kgj0lHhKwgBIY1gwoFcaWoz0lrqEGt6fIiKG1pwAp1J4upLOnRrMnIE4ndshsHSvYvpvLj3bP/uQasevK3CAWtgTCWKYtgaMa8kV0kOtMZrPAINcDmY2iBh5m6ilq4GFkNooaeBiZjaIGHkZmo6iBh5HZKGrgYWQ2oodGYqxBq0g5xIjV81hgrC1mTclmelTyP6sjSVFUEVMyMeZP0okJnU6IZQtZ0MkSOp2k59wfOOvxZ+/cnP25u0c/wOf5VQoURUlk5AKtdIbNnseNhndoVJnmRsmVElVxIaUkTslVFWel/NrEuosUr6KNtTMLDlXIZbIguGLBi5oNWQmW8M2ZOueb3fd1X7zg929tzjrSMqlN+8ZIFCHg9bGPbe4uHztSBrlasBIsLPwjlirR7w48DBjleJiwkaASrFQvqRlLCwHHZAwwoF35nIRZ/Gp+IkW4NEooCcMtgGaqy0GwZ4fm9aqq6yHyaM2reCtsEtRCsKPimIIaCIiBCpg3qJSq3qoK9lZUE0ohivWOEsOyWxi8FarCizD0onEJ8dVlaFlh1YYAdgKRimR8WAtKYyFSKiSiSPXvJv0Vomj1PehQXUo3VI1mWSZWAWXpqI44/llYlzePYVqXk8Zg6/Iyo8ecWF7VeI9HM6RMmMdLMczT6DDXeZk05+hvmaSom4stkxR1c7FlkqJuLrZMUtTNxXwh04X5L9OX7HWb8+7TxfaPb9TT8IUcRiVn/1rwxifncVCfqMK3zUiLK7T61KFzQjFeFhbX5XSaNNKWY8Siw3prOZY6ianl2NH48m45ltbiqumgTTO89nQKHj3vcaOVRtByLGkSUwOXEZOMoG/SjRs39NByLCA26Hpj2fuA6b+unD1BPtPMKFqOdWHUTk1j0I5eWo4tqZgz4LfJF33zvnW8FBF8c7RRtBx7Hs+kHGBNDK8cjiFbjkVWKM4IFuf65b9YOCFi0cFpRtVyLI1RedGGUZ5xthy7fOeh17evXgHZspt/Xlo3cbWBW455MWqOa3DNwZvKreUYLzTTLKS10jPpZ7fWlrb9+EbRcgzxIWhbjgFDiPqp6RwaP/Xf1HKM2BbDwC3HsiYztRwLmayflmPcWkFj/oo7KNj5N8cjSDh8Oestx4jFzVhoo7V+MlMbrfjJ5dVyLP/HvWaeL5t7LC/eNKTQq+8K1luOEW0EC1iFMGLlOPl/quXYCjoz9l8R/n9UhJ/YTUhvRfgrJzAV4U+ZUh5F+MfY/zz4zSrEb07r6ydfhG3Bk8jKlm3Oso2ENcsrJjDVLL89RS9F+B9+bxWW7Wjpt9d82lS/GhtbGrwI/74pTKiAcWM0ewfdEn/YK8I/+NFqW06vCJ/sQXv2NKnk2NpoivCLGVXXwzCq03sR/qi0mHpV5lZ3XTD41sFVHQ6lGbgIP2JlaKuoAyujtyL8LgWrW97/fYDbwsVTNiwcl13ZCIrwI8aGFpyUKXoswv+mmuWQBdIi17zYnnmbJl3ebgTlLCBCYkaEwJxG/bYMDo3fJuA5tP7Z8wpv892GW35f9bY9vo4AksQXLZeBFZ3ss5nS4NyxJEQiLbkfrYUBEFfIx4ZHcNVNY3Wp5UDssEj7tuSqBxpCbbl9zQWcIjg9RXx46ELAtxDgOz2hrIlVliWvBa6iWFB+9V/bf67c+tQj/sJRF/3aVtmG77L4j3p3EVwoomEsowvFBehdgeg14lOMTht4SpygkwtVXTV9xZJwhYTav7Ryunn/qSDTbZbZxl9znyWvJWRIITdSZEiprrNe9hd8/yzG75+WYGhnST0ydXCU4CtL5WJpKENtm2VbnwhzEz77ZUh8HzZ6368xfqxiDyCPVbWkPJQxnVEZ0YZRBtH94egSsXD2jZIrwfIlCoVnp/ZteoItK9hZRDpy2/YMjZArxI7cdj1jxiiUyC/U3mrV7dk3fMbNcZ0+vPUskwneffDrGvyAYOV4GUX/yxJReShrCKOyvIxi5sBH6eStWpUcdEeNVYyMYZhBY380aj1s5hr/QxWqvvz1etf7Zdkql1EdqW1QQw5TPQtJdaHaCvoeTNDNS0UtOYO3dURqMmFDi43eR6xuNGqckdDPoNteCEAmBkARBQDQtOjkiWJLGX2RiSZRy6eEW1dyTW5T+4RY6PDYoMm+EIBRTABs9U/AHM2VnH8XH4fYmFtvfJxrU5n4OFFTy5uPc+NVwcjtN4O8Ml832G+9a0JtI+Dj/D6VKbqZN9UISAX5+fl64OOMbnIkfcnEUGHuSw6n9avMAqPg42xl1M5SY9COXvg4ifWT6twIOO2+10O6eq/woKlR8HESGZUTZQzK4RiSj8N5/FfE9c/D/Fa9ul1BWmPIfKPi4wxiVJ6HYZRnnHycfm26JM44pPTMzjeP+97d+aWB+TjtGDXX0OCaK1c+jlVkhx5jCnJdVw8Y1+uSpIfIKPg4iA9By8cBhhD1U1dx/h/wcTq3udPfLtbGf8HE7q9u3rm5zMB8nEGJTHwc50T98HEuWe+4675ht3dSfm7K7P6K86zzcYh7cxY4Jv0SmTgmbonlxccZdPhaXceNc7xX1b9xvfP9T2dY5+MQbQQLWDkzYlUv8X+Kj7OazoyNyZe2lvpv5R/IC5A9ezwYX5verM9YmDvpqRBFR5AzTHUIXzRzl8ZEw+wxdTRnvJMqy5QrgjXzwuEnUI48tyeRCYoV5wNmTNnmcOhWowu070eO5GgKSeOvajAwYQGaqVgUo5KY96TlqFQ/jYJP4woLc1nz4T/8qBw0qqXAsoeywDxYIgMKk4i9gV2Pwx6HqFWlykw6Veqck2avHtvln5M2JLRWj2dhJwUL7n84t67dOpFGThr36+XAux9re662bbvV++u8Axo5aeZmU2Ov/VDyVg8Z1cliej2lRk7ajuNWt39kFHktWrur4eRjA4I0ctJshx/qMqZHhuesbvGHpLIm+Ro5abwB0c/vrBH4zH3ovH9y55Phmvn5jtGbEsbGuy9u2LnSqIXjBBrNZvpbvHqd1e6lz/L+A3JuLJx4DYhMUZHpzm/n91WQ+ubaJjTYlDfgKxBVRUWVB/b9i78mT7Dv6amkUSE7o4CoGipqdcd/1ZPZsQEbMn98G/ym9SkgMkNFDVr9/eH9u5Ee01e6Dje3ePsaiKqjorsP32+I+StUsCzYbNjuu+1gcQFzVCR88mzIlvXT/bPObVha8XzELSCyQEWzAiza3PIs4OUuMYla8bHSZSCqgYomVD65NLHDUY+MBRe4+wfvdQCimqio84uC8aOCQ/037nn+d6uuLj5AVAsVVaghyLpTb7vnVM+6RVcebikAotqoqLnXwIc1PeYEpEe19PHPrXUDiOqgoludxue37xfLnzkiKNmx6cqzQGSJip4cTJ9xcr6599TXjY+/W1VpPxBZoaLdl/bPrJfUQbB86avEHpWfw69sjYr6nNn6fLqysc/+uPWvTsYLnYCoLip61Glcd9frfoI9drMsq7baPwWIbFDRq0shXiN/6eOWu7rlD9fzcjjYbFFR9fj3L9L6TPGbc9Rh1PnsmRuAqB4q2rW09piYS5t8pw83WfMh0RqK7FBRo4jb3XqZt/Nf03bpjGNXT8LPqo+KPKcfbLH3ppffPDurvVUrrTUBogaoyGZn+Jttx9b5bt31+Uw9q+5pQNQQFfEfzY7bMD2Lv8HGqeeBWr13A1EjVLRRaV3r07J5PqnK5U3qVNwMX4OLirbseXn7h2CAcO3cZPtea7udICVbNubQJFuKLW3M21y657dwxNAtF/q5RFCYDV2TLdfQmSirsIM700+eEWRkPZxwrn48PjhdRRAXLZOLKRgEdI1JW6B3qDmfSKn1mEiRTAaMEFrFXkvKANFAUb4a+ZwTFWhb+wqsAN2mF0D7SuH9BjoKOBbTdWsCUcKoVL0I5Xcb5iYMqiuuyFt/z61Oy57NX7FIqGTZyeXYCzidIEBiKsftNHDrmkzXiQ3QMQg4TArk7E4sgWV65TFShEIB3k8qg02X1eOECzworghuuUIpUQx99Ml110lT/7SCoc9db38LxIdA1Z9DDoGWiFgvr2qPjBgGuP6eZhTxajJdT8e2oU7oRBOXqEsZIVKC/ctoCRc4IOo2TPSx0uBW6459syrw3VF4dcCih8d6EU7L0cdSnJZjEra1V9MJHezuVNpLc0YGOyliqiNwjTFiD3ZoLSECSV1zqGb8wsob/+JlX0znDOj3NLXsNCIWwLJgBAsMdXT9Wcv5L/uAzewDooeut+yD+9OZsg8ydVsrtcw+KL6rHLXi53uvQ3aba1eJGRzB4mJJtEAsZB/cns5E1j6t22L5T7MPvB++X9Bn5XX3fXMnNj8+QbzMoDQMJPuAERUwbow0UqK/7IOZ0x9v7WOzxy+h78feeyLfHzOa7IMURtXFGUZ1es8+aBnw5cOkDFuP3PYr7Arfrh5q4OwDxMrQ0sdPU3gp5ZV9sO57ZJOPm3bw5zawyKh/Nx5/Hmig7ANGcDKn6zH7oF29L3PPdF7veWiqjWVl/9E/jCT7IIURITCnUb9tHYfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PF6ItnYhuUqusEL5wnLoLfki1P7njo5Lvab5/NFxfrW/zxKC7PBuiiA7crk0T4lo/1jo23IfAhRNNQi5rQWc8wt1ip3ZIABh48JeLFWA4Qvk1Ivtfbcb1/Z9vC7cLBRNqzw94g1+WrpjN5OnZYmoNMAOHL+W1v5yst+MCgfbvDlaT8YCYDmMgIERZRAnSrVmwL9pz6H7Iad0mjLo0gzRJYNVPb3y1GTh9OMBe6ddWTS7ujy/NpKMA5QhiItWSNShO8Sp5bkF2w9oVTYHmKDa/tPv1Kkf9kyQ4X6s97Snzz+z0cOIUbXxBlItlX+cqlsDuNL7l76c0iKtZYeb3rOHKoN2zo1MMFj/Uo4zapNg/9Jo0v7WGZli6MK4nkOzMLpdqXtnXOe9rtsHD7NJ7ncEXxrYEpbcVMKjT8jGlcD4sESHrmcufHkkgFxV+BN5jLjkMcjmsKTZmRgMEq1WRGLYrvQXJqmD8q+09UbA4J83C4D+3I2iCdoIMPgVs8qaq8cTaoACjxtgKV/obcijuPZYAy+AniqJD/5PZdNi4Gm0PFZCk4FjF+NydHfbw26Lq+V/H2HST4q3MUgvVIoWcej10mxMsvDGx2/j2vHWPnp3Z9m2XoPLaGNSAcxzIMwmbhRtv9JaITCX9Ui4uYb61adbofKoGEnoWGR4wBYS1Kebmcd/MX9TONtjy6FDcwunD++IZxWUPJe8/cUJWc9ockRhG0IFW5ETAhtqEjbQmYRzFk0/tO0k95v5/q2v8+UpAmLD4GiZKFTC9R8rk1HYAjqH2Qm7LwreB8esNGqcSCYVqwZ5rFQZwZWDbYpCe0tAjNIzvCdVY2MNsbbUs5YCTkOIrhlV8C0ToPt+ZlnnvjVc1JD2h0rYrg8aSYgYNdfY7fT6tB8dhEvufD51v00vHt59Rh5Edp9Vl0ubzkRWQlnpVAC5ehC5tVQuA+xeUnkWrfusJXJ2auQUuKEGhxYlfAOn2bWp92BPQPLIlDXxM1vE4qna6AChDungpWzPYogWGEkMaN2dqVcHC3tR05Dx0RJNHJpqcHacfYFLK5E5w7+Jcfb0Gg6d3HCJgsAShj9lNdzWyAIJFQseATbV41WqptQycWEqyyQpaw9lZ3QWFPOoSIUuyCzQ6SDMRtXGFPoKyFqFDX0x9aL1JPt9wvZrHqlmGxqeuP8kmRCYgN+KIjCBXC4PKJAhTgsFGOLoQrWRQ7NQGU3deqK1ZKeFTzmUrc+cyVS2PlUN+Sajh5zIjWMHcknFYfvq/F3smWhSWNAmu+IeFiCPm80EecRsDPLNdJDrzMqsgUGuB1YmBYkSY2VSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2Uuyjh3NU041HPHhM9+suAxtUiUNzh4KUcfkX7JAuVtC53+m/iecLqzu5rHJhPxyGsvauL1X0d12M+XyWOgu4gEcMhOeWWa2dbEQwpb9kTAHjeqByBbSrjPRGkI2oX3iZTTUl+RBA7VH2nrlcPjqBlgkhVRnV3DdpCBM3Q6u7ZTRduQbBA5VA3AA/xCzwvqX6t4cpCbm9+2WwejAjL/LCpLrK18j7ELAVYpM9Blt5iUYA+21VEzKP1wOqys1JQITawoUTphIpt6z3lhwNbv22qGtXtYn0VaxNS+/p9Ob4zz2CKf7ZXkNv4YCygFMqLUboZuTdodA7F5hUw2BDNsysGtHsY9ow+VJEcecVjiwxcm3h4riY+a7mzAeC5sv4gMIsqA3FGwDY6boZsb66COHkKIQjVqVsAVCGebKMGpMf1Mt14JP/kbM+/WXVHXx8wIopYQJDEjSIEzdIvrNneXqr65+qiqZMgggUV6A+UYvqZnYFFvz/W1+q/c5SAwwUcRseeSo4hqSXmg04MRHfsZmGO0lUOzML7q5y80cfnCX7LuvMeaAO9B5IN48kpoQgNuY3w8V011i5XrVDaOmGChbWxAW/Y3MEzO0IU/T5X7yIFVHskHUGUP094RnehTwUPmsTfuD+Xw7KQ6+MNOJB5Ls6zjhKUeIRNMXFmZ4MBOO0CwAqnGWCZwza1n6rTWWSBgScBMo4cqzreiV/zz1YL8lpta1Ww1cTjeEgnAvdRAaYj07BJAmCoywvRGx8Wu9BAaMdZssBAatDTIGIEhNFIn4WhnBBrUDm2js0P8ludduk67J8z0WPNO2dW2AfEcOlIUzVWd01Ccl9O55i1V92HRHiQvRcSNksTCSxKFNBRdILUyS8TkLoY3pDop1xBriasrbHqVWgCrJlH45AkAda9UnQyVBRKGUh3ugteh/JZ/v+iatMk2xnPpAue293b/IHRsRB5AdpFUl0ubc8Q8tzLOOchMng7hyaKr6BCdqhObxFz1PkyFvkZnjJm6OXm9z+JLUaZ5ya3H4KN/qvvJ0T/0emn4zPrp/GzD5h/ui248Xup/s99GFvAZwogPGD6GYBiYIsSNcSogenCIP7pVAjcPESnCJUompd2q/2akw4MMv8WbXA7wXzfdjFea6n6y0tDrrJ/ZAq10YNQK16i0UpyPaUWn5asGYvCiJWLU+FIqZsHU+9ebhQ8XbluybOjmefXG4hXjh9xPVgx6nW3FuDqj5gQeM5L2qwkuAk5Yqm4bMjs1BsjGQiYtDY/nYY87e7zOd5tR4FbkMvZ3Vzyrlq96AJlViwnKAxEvRkQcUrF1PYtDs67vWuj7cXD3bt4zP35Xmh6/+QGvY9Unak+G6aHeYeAXcG5shDQ0AriVMLdQFBMDKxqoWTHo8q/d5oOYp031vuQxqbquC090PsoTJbFfXMGu7vT8skbA66OuBlzspaoiNTCFSfUm1N2iHjS3HfvD3CN9yuNFG3ZZHsEPPjrHRi3Q8+KPUEkhhm2oOBpcBwRDnSxWD390RKnKcuIStSAfKEZ1PgBLAcL/l/iU3In+k6iHEmE9N2hVULivRQCzoQIM1mICgKGTeTvdZDaawBVxNLHU45oY5mAhcjVzPlPkapwa8x10mPsf8Lh4hnOCnzDItrv0pU8tfNUopJ98tEwaiqSFkQ0pHdJ2fsAfAMuTEtwp40binqKVnSRWpmB6LXIxK7xc24MbsMm2hlTNFKqDGxijeLmgwFx9Gol5Tth6Us0b2lKcLuEnVUEue4uxMTBQfHpehfyq7rlv6vqZt65TiMkr0MjNAhDzQhojpqrr9A9WvQ/yuvBPmDZuDTykCmBzIDsBITPh9UWpn5CF7puXVljhO/3AidMTw+zww6YCjzw7eKTZUYEwO1bNe2J7+KxDQO7gKw0Hmowoa9cmDpgdtaE621CxFyBB58eCAg2QSjtZahgsCZUDC60LSg9bjvqUZ7fdfd6KRdkvC1+a41FyI6PkVipKn8133SmWBHqsOzX7ZOSm4tEsoASGNQNK1xYUoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD3d+S+zp8RyPnqyp64LmOyp5X/2FNNP/Ib+O7w/7PFdcnv4xG8O8Y9ZsKfEMk0sWIoejJbCvtztaeSYphlN83q5Lb0WHVXU02kHC/aUeEjAAkqWjChxytOeEtdQg9tTZMTQ2lNLtT3dRWdPjWZPQJxO7JDZOlawfTeXH+2e/ck1YteVuUEsbAnyUpm2BDvUZyq76SDXmcxmgUGuBzIbRQ08zNRT1MDDyGwUNfAwMhtFDTyMzEZRAw8js1HUwMPIbEQPjcRYg1aR+iSZUD2PBcbaHtaUbKZHJf+zOpIURRUxJRNj/iSdmNDphFi2kAWd7KXTydLnn1Y69U0RHjwb8Kvnz8wm+HIdJXmoeMUwxZysS0oWRcGaUOgDqpFzWmt5BAT58ULsm0xs0y1oUhPHgFZa+ZXE0o2VhfLQ0RKx+ia6r0CuOFIi0zbU0ULASUwGtq4Tn+acMyyZwr80QeGi8C8Rl4XgX6Z9T8hds2CAd/amLf6uT1rfYst/ZKx2XYIFd5xIIRWNlFFzhvpEdzy7bGGua/YqvlnHZ2dymdHvhz6KG0B2lAJKdZSINTXLWtYIaG9yMuookbPgWiDaIzpKTP6kZYmjVDLQKVG7Otq2yYexHPc9k1rcvrb7z/eMqNE5TVTHfWUNiLRFITnqSgFJdFsEEtSG7KOzIek59wfOevzZOzdnf+7u0Q/wucKVAkVREhm5yDOd+bDncaPhHRqV6rlRcqVEVaBMKYlTclUFnqlHJ6F2K8WraOMxmQWHKuQyWRD0euHFkrTx4t6EMervYvWb7d5Q110L1rp1nbhvL90YNe0bI1GEgNfHPra5u3wsnBmhMlhNGhYPE0uV6HcHuxQYKX2YsJGgR6zcN0mPYPCmzgV67MrnJMziV/MTKcKlUUJJGG5QmKkuB8G+P5rXq6quh8ijNa8Sykj7tBBcnz+3oAYCYqAC5h4rpaq3qoK9FdWirBDFekeJYek+9WivCi/C8K3GJWS/L0NLk6uMP+wmJBXJ+LCenFo1lYOVCokoUv27SX+FKLrEgKiG6n66oWo0rj2xkjBLx/3E8c+Cb//HXCbf/vZczDxkGz3mxOXEeEMs5xmTgw6rk4MO0GGus6ttztGfq01RextztSlqb2OuNkXtbczVpqi9je2nrBNGt+vYx94rO31t/boN61XW2E9N+PJy68N104SH7nf47cwm7y0kBx1afcqBRCzozYKDnkOnSSNtW0gsXK63toX3FzG1LYxbVN5tC8XNbTpMO/U2IKtdlZDbHX+RGEHbwtuLmJpAnV5kBL3XfvvtNz20LWw5aEW2eHodvwzLAe/r26TPMoq2hfsYtZNpDNrRS9vC6h+f9Pzl3nHBjN+T7x1cboJv9GyotoUpjMqJMwblcAzZtjDxbOMO34dy/PNOOq+tlbEBXx/R0G0LxYzKCzSM8oyzbaH88oU1xYU1+Hl1JZ8Cm9m0NHDbwh6MmrM3uObgTeXWtvDx9eRzH+Y/8NvvkzJ18rhRV4yibSHiQ9C2LQSGEPVTD3Jo/NR/U9tCYmsdA7ctjFrM1LbQbbF+2ha2thLyW/t8FWxODrXpmMnF9+Nmo20hsUAiC634Ri1masXXb3F5tS08sH/t/dAbC90Pn+pSbNpQblL2KUzAimgjWMDKjREr58X/U20Lc+nM2H+NPP5RIw9iRzK9NfJouISpkcddsu1koZHHqwdHz7z/u4tvdljvlLPvVj1ksWIFyzYS9j2ot4Sp70HlJXpp5CHweRPw9x/zXY+8zrqRV7sZvn68IRp5vF/MhMpd/VpDxr2DbsmD7DXyyPiccnbuuQr+KVPjvxyqN3iC0TTyOMuoumzDqE7vjTwmnqrd1vzrJWFig2HRZrPiLQzcyAOxMrSdGICV0Vsjj6mpNS7vPDDVe6PJc4dqF3i3jaCRB2JsaMEBxkZ/jTw4o/q8+TJ7i/vqXtleqRPrZhtBSRyI0FlGhMCcRv22Qxwav03Ac2j9s+cV3ua7Dbf8vupte3wtEiQROFouAys62WczpcG5Y0mIRFpyP1pPByCukI8Nj+CqG0/rUg+G2KWV9m3JlVM0hNryg5sLOMVweor48NCFgG8hwDdjSVmTMy1LXgsyiFRYUH717kfCnFYm3uPnrY0taif/FV9s9B/1/yO4UETDWEYXigvQ+wOi14hPMTptHAScIt1cqOqq6SuWhCsk1P5l4LO2SQ//+EWQ8bV4UA/nNycJWZbIjRRZlqrrrJcOB9//BOP337XE0M6SemTq4CjBV5bKxdJQhvpYh50ubMtrkxQwzWvd+/Hjh9rixyr2APJYVUvKQxkZjMpIMowyiO4PR5eIhbNvlFwJli9RKDw7tW/TE2xZwc4i0pHbtmdohFwhduS26xkzRqFEfqH2Vu+k9Ap/PHK/YPvA5LE+26sfwq9r8AOCleNlFD10S0TloSwlo7JGGMXMgY/SyVu1KjnojhqrGBnDMINeZL97NjR+oc/U3ut2vkzec6QsW+UyqiO1DWrIYbp4Iam2XFtB39909FJRS87gbRVzfT2P2WcFzDk7SbDpQfAMg257IQA5GABFFABA06KTJ4otZfSFarJ2flt7qfFuQXr9iDeFLd7UISxl+i0YAAFIZAJga9gSzNE8zPl38XH4j2bHbZiexd9g49TzQK3eu/XGx3mzlImPM3NpefNxNv3we+llUcl3oY9zu3c1P4QaAR/n5VKm6Oa1pUZAKsjJydEDH+dhvy+KQcuL/FfG9X2W8cWvhlHwcY4xameHMWhHL3yc9sX8lMA3h303LDlWFPnn3vFGwcdJZ1TOTGNQDseQfJz1wRe37fCP917QYG2aa+TaB0bFx1EwKm+YYZRnnHyc1zmH5JWGtXJNfHjsdVann5kG5uP4MGquk8E1V658HG6KPPHJaKHbylqN84f52KYZBR8H8SFo+TjAEKJ+6hHO/wM+zkalda1Py+b5pCqXN6lTcfMGA/NxFMuY+Dgey/TDx+lzt9qvi3vfEWweU9C7X09hf9b5OMS9OQsck6hlTByTQcvKi4/ziddwinX/s35zl7xdHPotYyvrfByijWABKw9GrNot+5/i4+TRmbEx+dLWUv+t/AN5AbJnjwe/xUdK+oyFuZOeClF0BDnDVIfwRTN3aUw0zB5TR3PGO6myTLkiWHczHH4C5cjbsufl7R+CAcK1c5Pte63tdoL2/ciRHE0hafxVDQYmLEAzFYtiVP7D/Gj10yj4NDawuJ81H/4j5H+Oaim4Xnd+gXmwRAYUJhF7A7sehz0OUatKlfl0qtQ5J81ePbbLPydtk6CDnaXzFf6S6EmhByq4Z2jkpF1Ly94d/7tCsG+/W9xDcdJDjZy0qzXnyubYvnY//E6i6JVxoqdGTppf20fBmQ6LBcsPTN8+6GFOA42ctKTxq6YMnMb1SzntPLz9xx5fNXLSGrw4uVRaYCfIP1T11tSXWYUaNT46LVnCETbd673lyIC5he893TQaVs3NGzSBe9bTf/vEZeETDt38CESm2APD1nVpumWt5676jd8nVvvlHhBVxUTyFbn1G05zXZB+tTbvSCMZEFXDXt52WGHkkyi/TW1Ctihn3aoJRGaoaEfwHx6ffh3vn7Rh+Ndefw9OBqLqqKj/MPm8z9mxvLUiYZcN8n2wGIY5KlqzstntKev6uU9b2rqlX73aEUBkgYpu+6XGHuh5RDhjxLW7NTvO7wVENVBR3b2nryQE3vBKHpx1t93RzXWAqCYqkldPP3K8Zxfe+lbhTT/trm8NRLVQ0buonjVXjh3ksW7vG5/aNW9sA6LaqIiTZu9XFFLZY8PxE8kB/WcOBaI6qGhbhcUTo6t8DNht18JrZ/aTZkBkiYq6ra51cr5Div/c22EX/57k9wiIrLDXeNCbG/u6ofu+pCqht3oe2gVE1qjoZ5j92+ajNvNmzoz3eT1M5gVEdVHRERFn2dpzHb3mBDV66t814TMQ2aCi0VPiR+88ONZ31q6UofefXO0GRLaoqOOT1zsTfPL95gya2W7NsecvgKgeKkoeo/QfMq2WcMagsVkLE9MCgMgOFf1a+eWlKgmWwj0dvppWyxlTBET1UZHlCJ8m7btu9Tj8/b6isdR9MRA1QEWT8yfnLE2V+Sw6fsL27P2zEPmGmL6k9dc3XX/d+/Avp37y7vvCAdAIFV3wCjwu+/iXf1KTMbbykKRlQMRFRY+mvYib/LIqb+Xp83lNkm96kJItG3Noki0zLq4wc0qc6rPt5tchl36av6cwG7omWx6lM1FWYQd3pp88I8jIejjhXP14/LasiiAuWiYXUzAI6Jobt0DvUHM+kXYNMZEimQwYIbQThpaUAaKBonw18jknKtC2fh5YAb6lFUD7SuH9BjoKOIVpujWSKWFUql6E2v93WDTsu6i234w07nDugeu9WCRUsuzkcuwFnM8QIDGV43YauHWP03RiA3QMAg6TAjm7E0tgqW95jBShUID3k8pg43b1OOECD4orgluuUEoURRkvjgm2fOKnye7KK92svxwfAlV/DjkEWiJivUSzPTJiGOA6nGYU8WoyXU/H1sNO6EQTl6hLGSFSgv3LaAkXOCDqVm4M3bgOWgb1/3rL/UiHvq07P74tIJyWo4+lOC3HJGxrr6YTOtjdqbSX5owMdlLEVEfgGmPEHuzQWkIEkrpncb+GnKxOq/xT7tW4163xS17ZaUQsgFXICBYY6uj68yvnv+wDNrMPiB663rIPNi5nyj4IW14e2Qcf/hwR9+HKVf8FVy97Hmpa+zmLiyXRArGQfbB2ORNZe95yvWQfKPjVvZOf+gvm36oStihwdlODZx9MYEQFjBsjjZToL/vgx5qxC0f1tuBnW9zZ/2DF/GZGk30QxKi6XoZRnd6zDy73rT/QNGac1+FUF4dt5+ZNN3D2AWJlaOnjwMroLftg3jK+ycqBs9zyuINlHZeuwhdMMEz2wQRGcMKW6zH7oEfDcf7JV/d4zDEZWOVNv7ghRpJ9EMSIEJjTqN92jEPjt51ZIRJ+71rXM3Fjwyovm07Ea90U6XsZ7C7U/uDADd92FvWEwQ4xDPwK/K7xmr1ZgbFFxyv0vVDXbZJWjhPx/JL6vcleNCbRoT3U7U1oeyiSq+QKNJCxqRz609au4nhOGrXLbd3p1UtyKwXWIgTZ4d0UQXbkcmmeEtH+sdD7qQgCFE01CLmtBZwTm3SKndkgAGHjwl4sVYDhC+TUi633ySO9XqzfxVvZ/nn+WfeMY/hp6Y7dTJ6WJaLSANv7a4u6kSHdAxaY7jpr3im/rDXvIWC7GAEDI8ogTpRqzYB/055D90NO6TRl0KUZoksGq8p7eitgSL8Tnmnejgsbxj/8WBtJxgHKIJdcrsxzC7Yf0KpsDjBBtfu+/Vj95inPIz2vV8LVCc0usKDaJEbVKg2kWir/OFW3JpKl90BWNnk0alATW8/VpkEbm7jm5husBzLHGbVJsAdyNGl/64xMMXRhPM6hWRjdrtS9M67zXtftg4fZJPc7gi8NbAlLbirh0Sdk40pgfFiiQ+dEF748EkCuKvyJPEZc8hhkc1jSMFEMBolWKyIxbFf6C5PUQflX2nojYPCHZADQn7tRFBgfAQZ/l4yy5urxhBqgwOMGWMoXehvyKK491gQQoKdK4oP/U9m0GHgaLY+V0GTgePtcF7SOjOMttY1Tfmj/Ft9muTLST5mizSR6vTQb8+f4Ixciv83kL+7ZZmTLb8s/lNHGpAKYAyHMJm4UZa/TWiEwl/VIuLmG+tWnW6HyqBhJ6FhkeMA2NNSnm2E9unZuZPl3wMrVKyaZFeThW9GZlTyXvP3FCVnPaHJEYRtCBVuREwIbahJO0JmEcxZNP7TtJPeb+f6tr/PlKfhjbvMgSbRMFCrh+o+VyShsAZ3D7ITdFwXvg2NWGjVOJJOKVYM8VqqM4MrBNkWhvSUgRukZ3pOqObqGWFvqWUsB5/EKgK4ZVfAtE6Cbs6Ksc98aLmpIC1UlbPkJjSREjDqlxMzm7OOPFYUHP98ImykZ1w7vPiMPIrvPqsulTWciK6GsdCpYFxYit5bKZYAdkM6voHWftUTOTo2cAjfU4NCihG9pbc9M69RKvsu2HgzpOWjrUDxVGx0g1CEdvJTtWQzRymFEa/0KvTpY2IuahoyPlmji0FSDs+PsC1xaicwZ/k2Ms6fXcOjkhksUBJYw/Cmr4bZGFkioWPAIsKker1I1pZaJC1NZJklZ+7A7o7OgmEdFKnRBZoFOB2E2qlbI0FdA1ips6IspoXibN3NJlN8brwPv7r+oX/O3RoTABPxWFIEJ5HJ5QJHDCAUY4uhCdZJDs1AZTd16orVkpw1YOZStD1vBVLa+nxryAuOHnMCNYwfyDu9GZkw8WNtn5ereH8/WkJT11AhC3msVE+TOqzDIT9FBrjMrswYGuR5YmRQkSoyVSUGixFiZFCRKjJVJQaLEWJkUJEo1K5NMosRYmRQkSoyVKQs8XVi1Wj3+Gp+omfU+Cz+SKG9w8FJvQgn0SxYob6fp9N/E94TTnd3VPDaZiEdee1ETr/86qsN+vkweA91FJIBDdsor08y2Jh5S2LInAva4UT0A2VLCfSZKQ9AuvE+knJb6iiRwqP5IW68cbBX7pYNJVkR1dg1bylqn63R2baeKtiHZIHKoGoAH+IWeF/R3WOXjq+XN3HMOj+xyLKp4UFlibeV7jF0IsApKR5fdYlKCPdhWd0in9MPpsLJSUyI0saJEafDHCfmXKih4uY8yWgQcOFSRRVrE1L7+n05vjPPYIp/tleQ2/hgLKFkzovR5OfnwgclPcwzE5hUy2RDMsCkHt3oY94w+VBL+vWXvvIyWgsRLHVeY+TarYcB4LmzhigwiyoDcUbAN7pWumxvroI4eQohCNWpWwBUIZ5uokzX9XTp//X2PT06LbasrCMfNN4KoJQTJgREk63Td4rrN3aWqb64+qioZMkhgkd5AjavTZ/TA3xf5bWt3IPmbwAnfzM4Uey45iqiWlAc6FRnReaOO6Z7h0CyMr/r5C01cvvCXrDvvsSbAexD5IJ68EprQgNsYH89VU91i5TqVjSMmWGgbG9CW/Q0M00cI23mq3EcOgO20bkuddmHavOTBl6/deOqx17lvjM1ix+r4w04kHkuzrOOEpVlxookrKxMc2OliCFYg1RjLBK75bd3WOgsELAmYafRQ3Ru1b0QVywLvVSeHP9rxZ0Eq3hIJwL3UQGmI9OwSQJhOM8K0L123xa70EBox1mywEBq0NMgYgSE0UjfyaGcEGtQOnaWzQ/yW5126TrsnzPRY807Z1bYB8Rw6UhTNVZ3TUJyX07nmLVX3YdEeJC9FxI2SxMJLEoU0FF0gtTJLxOQuhjekOinXEGvbtbSlgJOwoQBWTaLwyRMA6q4bdDJUFkgYSnW4C16H8ltOuORi7VG0znXumAorc7fvHIN3kZAHkF0k1eXS5hwxz62Mcw4yk+MhPFl0FR0iNujEJjFXvQ9ToS/BpEBR4aI1wrzQcRKPJkm/4KN/qvvJ0T/0emn4dPUb8/B7xie/gz1vn0s79uodC/iEMOIDho8hGAamCHFjnAqIHhzij26VwM1DRIpwiZJJaX+PXxSwM8fDb0HQZ/OMtOd4Knll1f1kpaHXWT+zBVpxZNSKjVFppTgf04pOy1cNxOBFS8So8aUuSZI2fkCnSB+3aWsrDzDvwDmMV4wfcj9ZMeh11ntEO6PmBB4zkvarCS4CzrANum3I7NQYIBsLmbQ0PL586mQ+gGfhm/Tjk1NDlw6N8axavuoBZFYtJigPRFwZEWmyAVvXz3Fo1vVdC30/Du7ezXvmx+9K0+M38ZEj9BO1J8P0UO8w8As4NzZCGhoB3EqYWyiKiYEVDdSsGHT5127zQczTpnpf8phUXdeFJ7oe5YmS2C+uYFd3dH1ZI+D1UVcDLvZSVZEamMKkehPq7e2TL5Wc31T33BrM+3x7+Xr8aWwVOsdGLdDz4o9QSSGGbag4GlwHBEOdLFYPf3REqcpy4hK1IB8oRnU+AEsBwv+X+JTcif6TKBElrucGrQoK97UIYDZUgMFaTAAwdDKfp5vMRhO4Io4mlnpcE8McLESuJq9nilxFqTG/QIe5/wGPi2c4J/gJg2y7S1/64OndFkg/+WiZNBRJCyMbUjqk7fyAPwCWJyW4U8aNxD1FKztJrEzB9FrkYlZ4ubYHN2CTbQGpmilUBzcwRvFwY4G5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj+jO9UtqPTbU2Fq31u2T/dnTMXppwKPPDt4pNlRgTA7WlZb85bTaIzfqju9Q/MvFR8v65kJmB3VoDrbULEXIEHnz40FGiCVdrLUMFgSKgcWWheUQtY5WnYK+NN//uJrme1jfnPHo+RGRsmtVJRmv3N8d3Vlsm+ik9PmwVkTyppdClECw5oBpYsbC9AxqB5LjGwXVb1A6BhpARCR9Y5fw1SPIq9h6PXyOPBGRsxnqoMmeycEKdSeXvyX2VNiOR892dMuG5nsafX/7Cmmn74eJ0bNaNjF44DHuJqXhg9UsGBPiWWaWLAUHRgtBbfc7Wk3s5VOqdcn+aZHDN7cfZVJFAv2lHhIwAJK1RlR+ryhHO0pcQ01uD1FRgytPa2utqeX6Oyp0ewJiNOJHTJbxwq27+byo92zP7lG7LoyN4iFLUH2BqYtwUb1mUohHeQ6k9ksMMj1QGajqIGHmXqKGngYmY2iBh5GZqOogYeR2Shq4GFkNooaeBiZjeihkRhr0CpSDjFi9TwWGGu/saZkMz0q+Z/VkaQoqogpmRjzJ+nEhE4nxLKFLOjkdzqdpOfcHzjr8Wfv3Jz9ubtHP8Dn+VUKFEVJZOQCrXSGzZ7HjYZ3aFSZ5kbJlRJVcSGlJE7JVRVnpfzaxLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJlnB6q6X+D5od909ZOHfhkfvvntFZQtO+MRJFCHh97GObu8vHjpRBrhasBAsL/4ilSvS7Aw8DRjkeJmwkqAQr1Us6lG4BdjxrgQHtyuckzOJX8xMpwqVRQkkYbgE0U10Ogj07NK9XVV0PkUdrXsVb4cq+LQTjzq8tqIGAGKiAeYNKqeqtqmBvRTWhFKJY7ygxLLuFwVuhKrwIQy8alxBfXYaWFVZtCGAnEKlIxoe1oDQWIqVCIopU/27SXyGKVt+DDtXLdEPVaJZlYhVQlo7qiOOfhXX58VqmdfnKWmxdvmL0mBPLqxrv8ehCRmJ/oprYf5UOc52XSXOO/pZJirq52DJJUTcXWyYp6uZiyyRF3VzMF1rq8aVe93gef98h3uBFQ/bxNHyh3p6u3sWDkj1yrzysm746fB1pcYVWn3IgEYvxsrC4XqPTpJG2HCMWHdZby7GizUwtx6I3l3fLsf0tU48Uxvt7LQo6rZT3T+EaQcuxK5uZGrgc3WwEfZPOnDmjh5ZjL/7gV6ux/g+f3DN90g5MamdvFC3Hshi1k2YM2tFLy7FvT/Z6u5yw8Nhdo7i3JC0XT2U0VMux6YzKiTYG5XAM2XJs7bmr8UGr+/gtr3h5acRfSW2NquXYEEbleRlGecbZcmzKi+SUygPvCab9GPis6coCjoFbjnVg1BzX4JqDN5Vby7GjJz2b2dlV8M7PHLOikfCPrkbRcgzxIWhbjgFDiPqp1zk0fuq/qeUYsS2GgVuOhW1hajnWbYt+Wo6ZuFg/nrPpOC/ResuBdVlP8XxgNlqOEYubsdBGa+QWpjZa/lvKq+XYy5r9kms8kvtsumnxcMGWPbNYbzlGtBEsYNWNEasWW/6nWo4V0Zmx/4rw/6Mi/MRuQnorwm+9lakI/zWy7WShCH90L+/WZ1te8s0+0Fq+K997D4vZ5izbSFizvPZWpprlP8g2sjyK8B/5XD+vGq+579YanRyWH8zGF5k1RBH+l1uYULmmX2vIuHfQLfGHvSL8Y+9NeD1U5ihc/du0wW2b9scX3jBkEf5jjKrbYRjV6b0If/sVb+r0rzbbY1G+KDwsqZuNgYvwI1aGtoo6sDJ6K8KfvKnKTesKNYSrr6Xer5rT08oIivAjxoYWnGtb9FiEf6p8/YPFFRt4Jhzcub53zZhTRlDOAiJ0jBEhMKdRv+0Gh8ZvE/AcWv/seYW3+W7DLb+vetseX0cASeKLlsvAik722UxpcO5YEiKRltyP1sIAiCvkY8MjuOqmsbrUciB2WKR9W3LVAw2htty+5gLOczg9RXx46ELAtxDgu3hrWROrLEteC1xFsaD86oXvwjqE+2wO2H/qTLPY07/hG9X9o95dBBeKaBjL6EJxAXqPIXqN+BSj08ZBwCncqpMLVV01fcWScIWE2r+MqdexW+Wwe6655+4dHL2xCv4opbI7ciNFhpTqOutlf8H3P8z4/TdvNbSzpB6ZOjhK8JWlcrE0lKG2jemxYbGOUZ/911n+9sfZic3u4Mcq9gDyWFVLykMZixmVkWAYZRDdH44uEQtn3yi5EixfolB4dmrfpifYsoKdRaQjt23P0Ai5QuzIbdczZoxCifxC7a1WfJVbs/K4TV47lb/cVDw5wseva/ADgpXjZRT9L0tE5aEsGaOyBhjFzIGP0slbtSo56I4aqxgZwzCDks02/8j5UNH3QMeajivdjjcpy1a5jOpIbYMacpjqWUiqC9VW0PfMVt28VNSSM3hbF5xfPaud4xuQEjoo+phlo6oG3fZCAHZhABRRAABNi06eKLaU0ReZuJB/qH3jm2d8cqZV/trkU95ywlKm32RfCMAEJgC2DtuKOZo3Of8uPg6xMbfe+DhPtzHxcSZvK28+zl2TCxfrze/qsWnz241t9o0LMwI+zsNtTNHNi9uMgFSwa9cuPfBxavzZ7MbbGt38Nn1J8ggNG/XUKPg4uYza2WgM2tELHydm4luX9SfWBGRs7Di4x1+mDkbBx1nIqJzJxqAcjiH5OLm3VuWMcH7jOquOWc3i57sSjYqPM4pRef0Mozzj5OP8YRLwNcGstvuMDOtv5zZU/WhgPo4bo+acDa65cuXjvPYZHHEy7qxPsuXBh2kfe7Y3Cj4O4kPQ8nGAIUT91Fuc/wd8nAtegcdlH//yT2oyxlYekrTMwHycUVlMfJxeWfrh47RYXhDsOGW4YOm11o9P7Pklm3U+DnFvzgLHJCyLiWMSlFVefJw+Zi1eD3zTzSfPNqnrgaq8j6zzcYg2ggWsejFi5ZD1P8XHuU1nxsbkS1tL/bfyD+QFyJ49HvwWHynpMxbmTnoqRNER5AxTHcIXzdylMdEwe0wdzRnvpMoy5Ypgzbxw+AmUI+/RtBdxk19W5a08fT6vSfJND9r3I0dyNIWk8Vc1GJiwAM1ULIpRScx70nJUqp9GwaepDgtzWfPhP/yoHDSqpWBGtfUF5sESGVCYROwN7Hoc9jhErSpV3qFTpc45afbqsV3+OWnZl+0bf7862WON89Lzn94uGa2Rk7a61wnHuqm/uB0SNcl6VN/XRiMnbfK4RG7nyt28Z7u125ErDJFp5KS9fGZ20GHxV8+9r8Q+Ez+2KNbISRuyukVNru0W3znff3nof+EPqUZOmuePU8ulE4oDUopqb/WzfDRKIz//RueligUvqwiTBwVlZfDHpms0m9n6aPYa/117eDv7x7VpERNwBIhMUVHPyM3TJr9/6bk2/veTzWuapAFRVVS0ZFzmyZDGFm75igzHb0MCNgJRNVTkUXfTFpfMrx5pM5N/y7q7JACIzFBRA6VNh3fXFbykO79Y7fPtBBPZq6OiLnUvV6jzu0K4p06vaKunqZZAZI6K+sz1KB4WfUKQ03/Z35t+9kkCIgvsezX8fbmX913/LWcrNrN8ad0eiGqgori79hsEk+vych4s/vp0wf4TQFQTFf2+YtJP8wNJHknmopA6A9vMBKJaqKhmUY+JktSKAfn7w8Yqq594BES1UdHbt08tnq835S/oWGz9blWj70BUBxX5+0RkTtkW47/mauTz+ZcPXwQiS1Tk2kIQ8LTtMt7OoUM7mYSF3AAiK1T0qtaT+e1rz/fe/Ndlvyt/1v0JRNaoqHbh1JcpL34NWNj/znTpYd9fgKguKlq8qdvJg10dhGustlccZl5hNRDZoCLn6SnrRh7/6TXnbY5bl++/bwAiW1Q0sPfrdsom7T2WpNz+PveIFdRyPVQ0LciiXe09ll5bBy+zv1xN+QWI7FCR1yLF6dNPV3vOfG0663b9s2eAqD4qCmlWw0L+wYd34PrBw9YcG4hhA1S0zKKgV5eZHTxzPs0/JAuvFw5EDVGRd2a3P5bldQhYUJwXNG7YjgVA1AgVPaxcY7JlhDcvXVlxcMvDkROAiIuKLvw+fEmfSo/9tvEOee5dtkVMSrZszKFJtmwmufZsm/MF/4ShRy4PzH89h4Vky7t0Jsoq7ODO9JNnBBlZDyecqx+fiT9MFMRFy+RiCgYBXWPSFugdas4nUmo9JlIkkwEjhFax15IyQDRQlK9GPudEBdrWvoLFw7cXQPtK4f0Gwg6w23VrAlHCqFS9COV3Wzn+zTBFhVGuSyMXxbeYaFOzLFGi8nVyOfYCThwESEzluJ0Gbp14u05sgI5BwGFSIGd3Ygks0yuPkSIUCvB+UhlsuqweJ1zgQXFFcMsVSp3jsyH66HnhG7eVk38VNe0x+iY+BKr+HHIItETEenlVe2TEMMDVY7tRxKvJdD0d24Y6oRNNXKIuZYRICfYvoyVc4ICo2zDRx0rPVr4xdoywtfeeV82s6/V14RJOy9HHUpyWYxK2tVfTCR3s7lTaS3NGBjspYqojcI0xYg92aC0hAkndevX+vrp1phxwPzLg/9i7DrgmkrcdFBXFgmCvsYIKiL0rSQi9KYi9RAgQDQkmYC9YDrti7wp20BO7goqcCtZTzt4r9oaKZ9dvZrMb2N3ZJZElyef//P28kx12s3nemfd5Z+ad5126yXxr33WFTyPiACx/VrBAV8f55y6PgX/+O33wS6cPqBG6wU4f1N/OdvrggX5cqePpA7Ppk66M25Mg2LPaO7WX3cadHJIl1QNxcPqgzna2ZO0y2w1y+iB9qU2jAe+qiKcEbe7S88fsUUY/ffDvn2yoPDAOJ+qwU2K40wdZ+8TDL4XP9Dp069vKF/Ou7zCZ0wfnWE2XaqrhDMenDzb3Cs1NmTRanDzh0cLpS+Mo9ZAMfvoA8zKM6ePAyxjs9EEnnmzIvskdvCfl7Ilp1eAMeVfdOKcPMGfDCM6DPw14+mBhhTf8UGGY156KFcae961kbiKnD86xIpSqjdvu8RjitlMrJd7fO1R1m7ypTqnnDcamkaNRrGZdgIu37gsHQnLJSDwSBjPEUPAjiLtG56+rCJwt3l9h7IWHbuN1O4dAWb9Evzc9iiZa9CjtUuYQXtqFFio5AwucPlgEtSVPPe1e16bZDeeZZiUuNJZUbUfZZId3IzbZscsFRUpU/8dB3ZaSEKBIVCfkNxPz3h3Ua++sGgYQ0S/sQmQq0H1BO5psnURdz1Z6H+15aEHdF/5de8wlD0sX4mb6sMxrKggw/zHXpJMHZwiTytdcXl34biEHgN05yAYY6FFGCaI0nAF/pxWP6Q/9SKcFiy0tMVuyeNVLfhfqZP1s6DJftS76Y906T6yxwzjAGOJRkSqpdusOC2oFwgC73k0KFwBTTCsYbtVqeN/a4riPa2dHDXnky4Fp97Gadp2RTIuKj+P0KwBXcP3S9wNOjowdlSPe1rLpvBL+Di2NVr+U54j7JFi/NJI2v3XEhhhOjPd5DMQovFT19oh2u53/7Dew2qygw2Rp4EpQcjMKLn3CbFwp3B+W6lH1rLlIGQEg1wh/Yo8JyXsMNjnMK3YWAjqJToxI3bYr+IVp5kD+lq7RCOj8WTsA6E+FiCJog0Hn37OjsGf1BN75QIHLDVDKF0YbSgXfjijgBdDTHOKD/9L4NDVcjVaOlDKcwOn7pdHCz9UTBfOLfcvode7GLbKPwWqhIkrE4dcL9DFX/nj0aste560HbpWdVGdUUiF9TByA+SyE2VyIKPu1rAkGc2GXhBvlM792dStYqVBLg6Ox7gFLSDBUnWt8JaBYu/Y+WzKldx/cHdqGnFWQ91z69JfUyPmJJnsctv4o2K45YLDhLuEBk0s4U77B+xZtlT6x7954OV6cKKYWDI6US4KlfN9ouRzhC5gCZgfiPgW8D/ZZmWKERC4L0XTykbKocL4STFNUunsC6i49y3uiChvna9Y19cxWzBsM0bVEbb7FA3RbF3rsV4GkhpU/jILl+qCThIghAWh/3a1X6a4LBEkVrfb6lq/TgBw+Yw+ih8+aywUNZ2pWQmHTqaAYIERuHSpkgNVL3Hcwhs86IldTi5yK1NVg10LvWye9HXZ/Nd83ttiooY65/hPJqdp4B0Fv6ZBbuR7FEK3WrGjxdxg0wCJe1CJwdKQ0Pw4N8uXsOHqBkFYqd4S/o3Z0cx8Eg9wwqYqSJQz/FNZxV8EIEhoWPAJMqkdrTI20MpWYCjNICltD2REfBTkCVFJhc2wU6LUQVk1TxhTGChhXEV0/BAnF+Wrly0+8qRIsmHbNpefJEj8oGxPwWyE2JrDLRQFFa1Yo+FqieshjICqT0a2nektuSvgUgWz9g2Q22foLyQTk2SYPOTU3jhvIJfV++tQdNtFtq3vJajVbOF/mAPLUXWyQJ+0iIH/EBLneWZkVCMgNkJWJSKIksjIRSZREViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiazMByvrfm25q6nPhn5hZ2bu9XGkpbzBzovsfdT0Sw5S3h4z2b++13GH2zvLuG42Dxly5ZkV2f42msV+kVyphuEitoFDD8pLMoy2+q4yWLInHNa40TwAm1LCeSaehqDb9j415bTAV6SBg/olXaNyMFW8ALeXrqHWrmE5yAXb9Vq7rqnZbcNOgyihaQAe4AfmvKAvp9SevbdUc990z2nsI8+MAYXZayvaZewsgNW57Tjt5tAO2INp9Q76hj8bVpW1KRH5sUKiFHHQ/fmrbX+KDti42bTvnliPw7SIST19P5zcNMo1UTnDfbpw9FEOUFrAilLUdv2KtNv7E+MKG2wYZsSQg1M9IveMeask8OLx5S5vh7ovGxga2/vlrbFG3M+F5RfPMe7npoNpcKqe+7lNtbuHEKLgfJoVkIFIvgm9a+kV4HLnj9Lek5q4zDvXKfGHCexaQpA2sYK0YLt++7qNXGSab65dqsrrMtjGIrODetT9S9Nhj5r6JNu4//NtzZoY8i4i8Vz6LqK2pSjQmcCKztDtRGD0hMdAjC+CfL3Nm38WLV5/1jXBz6MvfSGezoTmDODWI+/nalPdRir1ko2jHrDQdW9A1+xv4JgiYQh/FnX2kQdgc0kugm3aJcdzomLbTnFbs6Jvde+LV+6QFzux/VgGWic1FuTFqS6usJngwE/LIVj+qD4WD9WdkvXiuvIYWFIw0pih6pmxvOKhNb1dD0dtc+efsiOTXGkxuBcNVL4mA4cEECYXVpickvUju4K30Kh7zUbbQoOeBusjcAuNVkk40hGDBvdDT5n8kMj2bPMOU+56x7smvI3qUL02dR06QhLJ16zTINbLmUJzW819xG4Pdi5FwldIR8JLUpUsGCdIndwS9XAXyxuiVsrzNeuIq7OtmLc9JROqJiFi8hiAuiJFL0dVHtuG0izugtdBfss6ddf2X+jw0SM24Kjy6uCbq8ghEvYAeoikuVzQmKOecyvkmIOZyUkQnm1Mig5LUvTKJimneR82oa/ZxWcErXs2wWt3j+ctXO+PMSPv/mnup+/+4dcLwiey25h/1rTe7zLLxnPl3nr3IzjAZzIrPqD7GCPDwAJL3BihAaIzj/pHPyXwcoESVZg0is1oHY+Osr15rKRP4oVo1eqeE1+Rjaa5n240/Drna7bAKn1ZreJqUlbJOUJYRS/6qoA5vEhpCO58kYZpO3PrI3HxBcL9lqmb76UPlZAN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW82Sn6TchqajHAJhZyWUF4nDp498sSl+euhz9nDLdu8qM5OatWpHkAPauWaCgKRBSsiPinELz+jMfA6zsWeOX269TRIzb3e5TFsRvvyTbWfKLuyTCdtTMMMoHzR4bLgsNBWAnPFkrUaqhooM2Kwelft8kH9Zw26n3pfVJzXZ880RQ8T5SW/eIMZnWvDxR2B7wWHmpAspdpRGrgESbNmyC/uPjWw1tDQ146x72ucbVE1RRyKfVSTIGNtsHA5I+lkkIMnVA5GvymGIZ6eazOvniP0shykg5qwXwgtWZ9AEoBwn/nxZT8sb7j0QVUKHxuVFVQOK/FAKuGAgxqMQHA8MH8nGkwm8zGFbU3cVTjmrrNwcHO1bYDbDtXq7SYv2DC3He/67lTvOOimL7VO8mee1Ykq0Zh9eQj5bJg7FgY3ZEyIV3TB8QDgJ6iwJ1yfgTpKTr5SaoyBdtr0cWsyO26LtzAg9QwZXY2auEG7lFYHcwsp12NJCIngk/KeEBfSrIl/KRS2GWPEKIP9Ak5OdfsSGmX1NdVfco1s8ki2s0Y2i39MPdC6yMWmuvMD9a8D/a68FfYJm61XWUq4HNgdgKWzES2F9I+wV+c42tWaueT4N39Yab/jhkk+5gJ6KNDQBsdZpTR0WdqsVbb51p47a8UHeQxYOarwq6ZgNHRHprTCZW9ABN0Gh7MzAdSQStLdQKkwUrgofVB6dDCNbvqvfvpHDel4bjzonhyBqKZkI6SsECU6t9/ebBcmc+iw3X2PR76xOUuByhZsaL0LTUT74PavsSa7aLRC4SBkQ4AUbPeyRymeRSdw/DrRbHgjfWYT6iFJjsHDCncn778f+ZPqXI+BvKnoals/rRj6n/+FLfPxhEN57ey43vPPNO5kVL2cigH/pQq08SBpxiSyuYpfFOL2p8+WyGWzR0/3XtByykjq2ckzeDAn1IXCThAqSMrSo2L0p9SOdTo/hTrMYz+FCCF+9NXTP7UZOYE1OHETTJbG7Pqb+eIIl32fXAO33FpTg8OpgTZKWxTgkvaNZXXTJDrncxWnoDcAMlsCA08wtUjNPCIZDaEBh6RzIbQwCOS2RAaeEQyG0IDj0hmo0ZotIw16BWRXYyqnsdBxtobzoxsaUAj/5qOJEJUkTAydc+fZhNzJptQZQs5sEkOk01WHLjXZ1r2J4/UA3tTdw67Tz7nV8JfopDK6QKtTI7NTsCPhHfkU5nmK5RRUo24UJR0VBRfI86K/NpU3UXEq+ji7SwDglVKubwHZCx4MX9BVoon9Lrm7GBRarJw3rbRD446dbdh8oQWPdVSVSB4feJjG7koo4fIYa4WVIKFwj8hsij8u4MIA+5yPIjZRDEJIdVLW5RuDFzkPuBAO4h4MdNEZXwkqjCZwlsaSiJAS83lHrBmR/7rpTXXA5WR+a9SJGA9G4uPXdiXWQED0V8Fzw1GyTRvVYp4K9SAUklGeihCoOwWAa9ZaXgRbr3ku4TF6nJcVlgzIYCVQGQSuQhqQeUjoiiVVBKh/dm8l0oSqb0H76pvmbqqydAyVQWUo6U6av/ngJet97PxcrH9BC+/M3nMqfKqprs8+oM1sf+1NrH/PRPmetNkOZ7haBKhm0vQJEI3l6BJhG4uQZMI3VwiFjroePrGmca57tP/sJ0g4ldYkC8W2rCkbnP1aqFrSnBZf4v54Tk0coVeHz1doYjxckCuuUyWNNGSY1TRYYOVHCt5mK3k2JpDRV1yzPPHM5v7WUGCNatnO9ZzWBttAiXHih1mK+Dy+pAJ1E06evSoAUqOuW2tfnTZJ2vhthNJmV2Hu1GKuRip5NiNQ2zWyTQF6xik5NiESMcde3OvuG5zGpec8SMlxCRKju1iNc4aUzAOz5glxyrPXX7i21/7XNM2HDp9seW3QSZVcmwmq/FGGMd4pllyrMO0jCsWL90E87Ku2ueqL6cbueTYEFbL+RrdcvCmIis5NqZV55k513r5bpg37kndR2GlTKLkGBZDMJYcA44Qj1M/8Bji1P9PJceoZTGMXHJs0WG2kmPhhw1TcqxN689rhcdCfBfPW7p1/esL5D1tLkqOUcXNOCijFXeYrYzWuMNFVXIso0oj74a5sa4bIoqV+Kv4to2FH8IUrKg+ggOswlmxCjz8P1Vy7F8mN/afCP8vifBTqwkZTITfJY1NhN88rShE+HcdPTl6WmA750l/u92bODljMYenzTn2kVCz3DmNTbPcPs0gIvw37R0CJ43ycE6pPXTNj5njyMqKxhDhr8aKCug3JjN30O/gD3ci/LWjD6/p77beZ4ZqWROvyRdHmowIf85hNtPdMiyREaYzuAj/owrZ9SeN7SucfbTk6nW7enQ1sgg/5mUYVdSBlzGYCP+Pl+r+4wI+uy1+YF/9aNbVIyYgwl+NFRzzNAOK8Bd3rbfs1UBXv4QF3eIrzlekmICcBUQIG9OMCIExjcdtH3kMcZtY0LTZzy6XBFvu1Em8sOYNeenXEjvEF6mUA0anx2wWDDi3ydsikeXdj2thAMRVyuiwcL62aKw+Wg7UCouMb0tXPcjXqGtuXyMxr8oRgK9EBBddKPhmAXyP0sMkPQ9WVcp7LXAVxwL51WfsqvZ3hb9fC2PPWiSbPS/9uvC1uyghFNUxFjKE4gP0rCF6dUWI3lkNbtbqF0KV1QzfEGmYSoqOL39szjDzshN4re+ojl/50ekM5YQUdiPihJTmOueyv+D7P09j+/5XjB4saXumHoESfGWZMkQWzKJtcy2Af3RjppnPYc9px+0ONO9P7qvEA+h9VdtSFMY4ymqM7cYxBjX84emzY+HopVBGAfqSBMO1UzunLmDKCmYWEfb8Fl2Cw5WqEHt+yy7q4aoo7Ad0tCpZunTQ2/ZlfJdN9HtY9+S1ADKvwQ8IiBotR9S/zGsqCmOtYDVWrEmMHPgovaLVynkL3Ypo1RA1ywjanzHducSb827JL9fVOnb/3/KFmSoX0hxxTrgjh0c9s2i6UC3EPT/qGaXinpwl2losrfrmtFOC8EjKIf/u7bvcNOq0FwJwJw0H4BoCAOha9IpECSpjFpnwvnwx+cLYZb57k0pkn3x0Icioh30hAFvYAEianUYEmp94/7/ycaiFuQ2Wj1MpnS0fZ9uRos7HWXT+SsYZawePPU5uw/w8htU1gXwcq3S23c1vR0wgqWDLli0GyMdZu9RqZUD3Hu4HL6/y2XS/yzGTyMd5eoTNOpdMwToGycfxGzu6ZfKo2x67+3+cmf6u016TyMdJZzXONlMwDs+Y+Tg3jqbUXc5LdZ+Rmf4g2i8xyKTycZaxGm+qcYxnmvk4Lv/O+5i2Ksh5/5Derpm3Zi42cj5OJKvl+hvdckWajxMw7dUDWa/lzksa1Tg40KrvD5PIx8FiCMZ8HOAI8Tj1M+83yMd5ULLChErhHoIVUcX62R6KGGPkfJxl6Wz5OPJ0w+TjNOuXE9RxUrL3qv6pNuOqFxvNeT4OdW7OQY7JonS2HJOY9KLKx5mRkHXrwPXFgrgLGwYc/jj/KOf5OFQfwQFWclaseqf/T+XjfGFyY8OPyJrJfJNE+9P85E+y+70h75R0j4ZnJ91Ukshw+glTPbYvGrrI1JHw9Jh2N2e0g+aUKV8CNfPC4Ccge97fFwYt7l4i22er4KDb7qWJIYzvR9/Jyd9I63+lA4AL88t/FAvRK6nnnnTsldqnIfJp2kNhrioi+Jdy/nOordin7YHMcgFSOTCYNMQD+PVRxOMws2pM+ZXJlK32+Ao7NuvjnpYc4zMzJ/kqxcsD86mUco1QtR7F/9qKR4H+FazZAsWXI/FH4TUsYT7UMIUSVrMM5etVe2S9w46F1xxnOM/hB8b6H593g+2NEbxEatdDMjumYgaPd1yIyGlKh160QkYR5DQFXt5U5+E6uehg0g/FEF6PMA5zmjiuoMEHCA2GCMEKGrTStDBeBQgVtgpcPRG5D+ETal/Yvxzg3oQjEsVa48Z+qmr7Wrjnxf47TxdXJhcdL8nQUYjrnOfK2ONA8VEkA+XJ060yaAveegJVo5cULv9gCJHHHRqhH1U3HM5scc9jvvhInLjk9Gvk5Tr8YfTlOqKhKDDiW7FhRO1MxX4BI2x/C09lATgV2Ismd1ucvOqmS+Ly1xPK+mz5Rh6L8GGIsoKay0WBz73ybPg4l8/AHf83Jsff5HvVatv5xcV7hTlfpXXCyI7fEqu3yJRPyzQPqe0jlaijVZp8Vs0GjMa7Q3Vb3Zx7nfVdTp+JCHfds3779dW8NiLGt6Izd75Gfdx6JYDjUSFC3NYKuPV4G5pb1zMHo7QQ1myBACC/76x6gUemLzzju1F92GOdupkLtTCCmp4UpblakH+nOj0u/DuEapkAIckKU/wAVIz+HZmcQq1kKVPwvZEYHZ40Jf7rOBfPGSlPdy1pGL7LGktrAd9dPApM3bRBMBY+93ZoYdTtvKxmOE4wbYqG0z17DCd8aH7HhxJtaJq3yBWUP5Hlvr5t2xtmyQ2OFfeWDSHaEp6urjWoRZB3csl5sh9Py5Bn5fjWnybpRPdxy3eTaiI1TfqLRspF77gs0ax7w5PeAaLYCysGlepseYr5zeiroPlb9eiRzmUB0odQg/cetIOlXjEZXxuThaHhQOugt7sz5thYB/HGvbm17HJ4NqYbojkDwPhl8RCNrqrcFANMr7W86i6U/qKtdYYumlr6740nvW8Lksa49z+76K8wyrazYTOo4u1xNKxQAxVyKEADH6g/eAwcuuTph9UOPWd7p5z2+8vtZ3x9cjZ2nnuiL+UxLa9UyTuRouBLtQ8oQ3d1JQQOwmYtdBqZZWLXZZYt98ZzU3dHq96e9WsyvSY9aTyvTY/ajDHVMjS1GZE6nfyqGYXW6Vz2PSY1YX5vj32bE32dHzW7SdXppLYbQqfTJg8rMCBUMskQOXoYXHoy2ffbGLHP3PmO5xuWerWNbI0g/Fb+L8l0UqmSg7qIg6E1kQKUdsChpFfN0EOmU2eMeM1LLh/wwd0zdkrSP4ruwvYMGP2SSCfVDXGAEejTLBjFVMnQR6SzUp5IZ54DQKK0+f7y6uOvt/dNOT8h3KdZ1h9GFegc7ID3FaRAZ29HDCXcof5kcqhVHsxxse54XpTQ5uGR5JMjXRBsil5SrKjZb0DAySujaSLJ/uDbEzQ5IHRmv+YD4ZJjsFIO19lg/wXmCZMqsCoMGOWhE6sftDK3KX37oM/ctYuG2vm5tzVAqp12p466gQUYfkeJDLg8AxkPNwVET39TmAkNboZfkfg9bX+sypnic32OzPhQ74WF9cpfkPgtLOqDAerOK6mom/3OqE9rk8WfnvJAtMDnijRQsPGpEVCHff1TDhX1Yr8z6s9ynqbmNl3tvKhvYg2L78f7Ggn1e/UzKagX/51Rf9FTtWlDqINwe5ZXyN+LLkQaCfXOPlTUzX9n1P8t36mB6NMVl+Xf1pwvNb7mKCOhzh9NRb3E74z6p3I7budI/V3Xn5iREbE5Z5iRUI+fT0W95O+M+oy39m8vr57lNdnBYUu/bWPERkI9bhMV9VK/M+pU3XUjoX4glYq6xS+hrsk6MTjy1nlr/Hh1aPQs6Wv1NhsGtuztfDjh40PvU/ZKxLsjZknY5SLx622pkWNpJtR//LFrg42juXBf/2orNkX6oNSLyaiXKXrUdZZe/vgpe/PftXLcY7sq/omrfwGlAf0r0stlfNr++8/q+u7Jnte6DWx46W8dF1jYLOIfQbVImd/SIjF77e+ebHBGnJS59Fwnx/qVOLJIaOWAz2ax41ynme1XKep5TefAIjGXqRax/C0t8qJsxRVDuq5xn1td0rtu0PBLHFlkdu9KM9OWlxLs33nucWb30EccWIRfmcoVZX9Li1yLX94ld9pu4fbZNuYRklLtObLIP81m1FXVOCpKffDc2/fMyTgOLNK7C9Ui5X5Li1gsOPJ8xeLdwplvP5xrlX29BkcW+bB0ffdP7z74rdnm7tCjX62nHFgkfCjVIuV/S4tUiRnWsk13O/d9K9bVqlqnRkmOLPLifKD7kOLdhalrbX84n1Xu58AibWdSLVLht7TIEtfPNTqNE4j2HBT0W9h/j4AjiwybOG5Yckq017Qdswfce3S5IwcWyV1DtYjVb2kRahEKjizyi+nfbBbpu5tqkYpMFun+8K5fKfk5t7UpacUm7qtHlnwsExAuC43iw/wxslngWTumVO6afqGhMP1eIpfnJWrhKX1IXJfVVjjdmRLuPq3aNgez7Et3mF4BAa6uW40Ak5PnQfwZiErHjrQHrecKm7dXDksnjFLC44Kh6A5kc2ly920zInz2nP/LouvBGuTEM3Tung79Z+RtO953z2bCNYcDPPrHLO1cWLFJuIpwHk/co+udNAOceD5DL6UkjQWVWK9A4rItuvyCjsODRZuqJFs2fzn2Cu0YZahuwBQ2SxZ882qs3xz0EhM4Qon1QD3OlVvC2lps5daafuz0cbNVV/d1kw90sG1+jrwngVXmMhT8o86xwW9nHPhpqkiFPZagGRFQ4Y8py3fst8a+LW6N8znUy+yQf1LVp7/oKQp7gtUBdwXpzogzGjB/AwwInGCsTZhgBrrXf1754GPnTSHekl6V5k4rGoJpaJ3JQjAbKhZWnE8HgimxeolNjZ+eonltLv456p8a9bghmOJJEaN6DDzmlnxZ1HO+5O9gDgimFsSKcZznVtRPiq9AgpnRL8xzWJDKM7lEz0VpTxYcMCLBnK3I9s1BL/kdCcbt1fUSq+5U9Zk9SKQ8vrBUU+MRzDhW+AONA78RCKbaQQfbSz9DvdZem1Gp5eez2cYjGMwVMBIMGBA4wdiYMMFMKz7NTZJ02SVte1bFytnnBhQNwczuyEYwZTsagGD2Nq5d7sHeNs5zWo52Kr4+4io3BJPUfVHF9IcV3GaYx8/t+YyXwgHBTO3INs77d+SYYF7/7NZpWt+vgp2e5058TAl9bUSCac36zUEv+R0Jpowk1v6+63TfFCfFkAqtEo1IMNkd2OA/1OF/hWAanp34WWH9QzTp7qT4+w/G1TUewWCugJFgwIDACaYSE8HEz58T/dLzk9uS4VXUK2bak717SVdYJiFK9wM77TQ38NXKCCk/BPQAfrQaihtFyiXB0nClPAR0D0zsIBT7PUz4KEoSptbp4M7PTrY3316uKthq/SS2WPbflUp6K4OHSUO0N6FenZ7wr7mu65lYOzHPyQdMEouJUFIHAGInL8QBHggR5GDEAR74l3qAx/ePO10DTrxwnnpmT4zFW79L1AM8U3olTLwR2d99WXr88sfLZncl2ovx0Od0dD7gQ/1gxAEfRq8F68TjZkRvFR8oF+HdvItL2r+LG75qtnZ4YazFve4xsKsVtOsq1JnxOODqIr0NuhxDvKilIlouH6QG30ERpv2yJfN+xih3rFPHHuMRB42YbGXtmjfagqPlUdEq9DmjQ347c87tnusWGzPz4mK/SwmsJisl0jyJLoRANBSF0bK82IwGBqMxGMjcW6RxqPCWidpxj9mGGKNMZFMfviWMS2UKtVSF1VcBH0FymEhbjesd8IJ3Nk28+M9BXpcqVGtJtVUpn+goeCpMCz7lfCn8VCc6SzkVeGCsxOsZ0YI+M92ndxf0+1vp7lzYo/TAqHGebEbN8aAdGGM7VVce7+yAv6OAi0KCJ9gZ3rhMtVreUwZFbOp9OWQta0c3h56OrjuAXeU8yHLE/VK6AEHpzs2xLo5TeuXfgNI3/tHOfk2/68JddaKsTte5NN1AlM6fwEbp/HH/UTr6hGWNjWPm75/sEls33S2j676uJkfpvAlsjmTw+P89So8RZC+eMobvve5EsbijG297myClp49jMxoYjP8rlF7yZVRd5/b2okkOY2Yu27f2ksEo3Ttwav+tq8xdlw/5d1PVg2O6cUDpMWPZjHpvDOeUfrzTrQFLJZuEOyKH3ev5+ryDSVE65pcYKR10cZzSq/wGlL47UTgz2feO9/bwj01Wbmo9y0CUbnGNjdItrv5H6eiaHF9+ikV9pH4bJRfTTi7ZM9/kKP3TVTZHsuXq/x6l9x+1aWLFWuNdt14okT6nv3dFE6T03qxGszCs0YxJ6WNn9F2TmtHCa/oLvxdNeZb9DUbpv3jGhc2oB66wGTX8CueUvq5eRGzIjZmCxc7ZMe0TRm83KUrH/BIjpYMujlN61d+A0r2XLFpWP7C++/qP/XqKltp1MBClO1fJZKH09MqZ/1E6ylqx6nIPr02x8V3f7UncxchB3UyO0ttDuzI6EqsqBt1FNAlKv9EyYeg5m8nCdZ/Np/mIrzcyQUp/WpnNaGAw/q9QevDIDwr7ksW8py6+1uxaRNxlg1H6Lx6SZDPqMlajRlbO5JrS992cfEXSZ6jwyOmMDj2/FftiUpSO+SVGSgddHKf0ar8BpbfOUVW0tEx0OZiTPOxAzavFDETp37qyUfq4rv9ROtJaOVsOHx5674TXsh5e4zLGt7U2OUrP7crmSM52/d+j9Cuz1S7i9JKu8894qpbfOfPBBCl9A6vRxhnWaMak9KqNjiUnH7juHisZ0utf+arrBqP0Xzxlz2bUQFaj2nflnNLtL9eJsbvV3m369DdTvHqtrW5SlI75JUZKB10cp/TqvwGlNx06a99fma89D2T36K7IetPQQJReVs5G6bOH/UfpSGtVaKTcMTrH1nteiwOVQ6tcWGlylG4uZ3Mkt4b971G61aSWnS32NRJOk94ZXq6bfwMTpPQ9w9iMNtuwRjMmpbdLXzyp3jOl3847sk87/+hXw2CU/osyLWxGDWE1audhnFP661M2Zxve83JZNP/CN6fT9s9NitIxv8RI6aCL45Re4zeg9DGfnyc9WD/F++C91v+c2uyRaCBKfz2TjdK3z/yP0tEB2PLBt77M3yhcaFPFpfgJFTs/GIPSn89kcyRXZv7vUbrjNf/6P75Mdd/Qz37gV5fn3U2Q0o+yGm27YY1mTEoffitxwg/eA5/YdorNBxZ3rW8wSv9FnS82o65gNWrsTM4p3bd55X+q7w523jF/nbDD2D27TYrSMb/ESOmgi+OUXvM3oPRubs4eOX1nuaZeelB1xdqw9Qai9Dtr2Sh9zdr/KB1prf0Hj7/L7tjW+Y+hdv07jb55yOQo/cZaNkeSufZ/j9IlLc49nyxxEc4aN26+4Ghj9lOixqH0XaxGW2NYoxmT0le2HHN7w7utvqmegjqXglNnGIzSf1Eoks2oM1mNOmIt55Q+tckS3/sNj/nOXjBnweF7b5+YFKVjfomR0kEXxym91m9A6RuW1G2uXi10TQku628xPzzHQJTedA8bpT/f/R+lI60lldcJ3Jy1zz3N7a8Wb2qnzDE5Sm+8h82RWO/536P0KHn3Nna9/nLZPdOx5HeH/v1MkNJ/7GYzGhiM/yuU/k/aC5vDT+I9Zh2++vp074flDEbpv6g0zGbUK6xGPbqbc0r3uubsYFFqsnDettEPjjp1tzEpSsf8EiOlgy6OU3ptJkpvsaFHRr/kRNctGyqcOTrhwxKyjpSbShkdSWZ0O+1wUKpCyAJLJUVKOfhG8FJD8CP8P7LYkYAfBp8La+64qSRqdbgyMhKW4MHeVF3Mw4XoPrYpE7cPy+jjMmV+FfODTW4NBE0Eze1qNSFmyYWD3vtayz1qZv5wB03E6Nmt6Jjt/aiRaN3CMhOXJHxpBpqK401PT31+b/E+zH3qwSz7tn/nykGTOd60ruGATuLYty4JL98PG/v1RF3QVAJvejzWb/rBlk084zo+tNnQsV48aCqJN82vPrlT4t7iXjvVnqUCux07AppK4U39/6rZ4sZdB8/49WlVHskGNAdNFnjTsaE3hu/Z+1V4+JPVk7POw/4BTaXxpkk1Ol/ofPSLaGezYor78eL+oKkM3pRyofmi8Rl9XafdU8bUWjsDomGJNx2o/Hz+E8l+5zjrCmfnNbpuAZrK4k0ds1S7BIdUoqVBnyxThpw6BZrK4U13hx5/d8t9lPOGEovu/LG20RjQVB5vEp24bV/8T0vf9QmbZ7U/Zl0VNFXAmzbP3fr5cfVvfgmnFpyXxC/fD5qs8CbXFcUyGx/y8En5tmvjnwkj4VeuiDed3DL7zWr5Sec98jZ/t1/T8yVossabzvzlu+TZsEt+0/o12vxI1LwnaLLBmzzm1Kye6trPbVFum7t3/n18ATRVwpv+Fk9LvlrM1nvmW/nBOrZHbEFTZbzpRcVH81pZz/PY8vGiz6V/q/4ETVXwJrc/Du+e9NRNsKh1ibq773yCpqyKNy2oJbv3sccY8ay+QQfkjfzPg6ZqeNPaeY9GpNbc47xzWo0fpZMsA0BTdbyp7oWbI2LKevnO6d/l9uj+5yeDphp40+JOj4d0rPKv964BszolVb90GjTVxJsuPFzrPPBIkufcMNHrU9nb4QNr4U2vkuJrfB9VwiV13pEOFZ1OTQFNtfGmTfe7j9zzp69w36USk/kuXWDvrYM3jT8zWLrybm/hFGGTKstkW9+Bprp40/vHPzdV75wo2FK249mXSzMSQBMfb3p2Zkn3i3vFgsWXkg72SQuysPBwGUTyRvXAX6RTrNXy3G5pG3ev2UsqeYclH6yAcBs0L0j1azzCr2lcVB0mF1U5NCV5RcYp8aptD8acqTUunhxZiEdFypUhlJrLcOQyaS02xu/gSzRVkQGZQgXCCIlcDpwQUQTMUadZBtVBIV+NHvTgDTr6+Xu2Yp7T0UzoXxEF6/3txTzzozQlRjbWs8KqN8M4Qqp5EeR3O2KzOKjK4K4+S7wOf82oerVQdaEpYcH+jOnOJd6cd0t+ua7Wsfv/li9kWAAnXvYQoBBUWHCyiZhX7ahe8ottekhB11DLAEgh0mBlRKRSLYPtfPB+Mjmm0kn0E75EBXpSlDJCFoxEcVjW2mfyvkd8t9neOe88aDBZCLi09nNoSOZr4jpugHCZs8KV85dJiAaaFVY00AEfaCF55ooKB0FzhGSYlA8CkKhwKX+IRC3VOAKk/VI25lrUiL0hXrWx3Pxbwr86kexnEYA/lma+vBaurWflgHd2F5T1ljlinZ0EnJn+wNULAtMLGfhNGKNBlKRUIJFgvV/7Mndjn+2i2e0Xx06U/tWQDBbxTDpY2paiAMucFSzQ1XH+qcvEP0F1iw1btNNKmJIgf9NpvIU76VtVEEORUEmUlO8tVYRFhdN5qBQDxilm2lsJJgJdE/wTgAEewA+VBEcpVcDZKMFMXAa6rhz7AEf8g/B2NT9YouAPkfLV0ZGRchmw0BAlaAT3ax4ZrYC3wlU0BZzqyGVjwK9gFx35onCJIkyK2bef7wB+JLEyBZkhShkWJgejQxo1UipVYL8TNVLJjwCdQEdupEborLDR+gT1F3RVLQZceQUavDJqDW4H4Mol+nFlxTyuxF8IXTvpeOaqiFpTXA+vS1hj1rx4AodkSfVAhdUqBghdgAjNRQ2JA8D7p+lHlvVJ/RGrXqvpejhgMob6tcJNxYQua5MEMZ8Ot0w1W8QnrzkwdAviOudzaYBKEisqoN8YWce4JI/4c6+bPlrGrT1C+YGqaKk9NorJ1pKp8/sFOydHJ/4EfgtHpyZIk2WG17i9/ly4x6qt84ZPGNigMVl13Ff7IJrZ8rcVhekms5pOYRzTFRzOlGRxPLX9lWBiAikBWk0dKQ2WhUL3rmEBpHlGNV4VerPFCrfDf5awXjv+aBmyE8KeR3dCmstcGyXSAfcy7iij8JpjXoYWpbDh0TgQkhVAZIRUw4t6AHN8SsnXRxfd9EtpNfL70hk3VpGnafiD6dM0oqEowEliBWcJBZxiBYBjq2GpPAbXB52G1mVyd8lOuse0/Ox7s/PPueQpina/ij5FyWsqCoQmsyIExjQet/GZ4rZTKyXe3ztUdZu8qU6p5w3GppGjUW8Qo/EDXLx1XzgQilRSTbQmh/fikTCYIYaCH0HcNZoPsFVF8SPhiALOFu+vMPbCQ7fxuol1UdYv0e9Nj6KJFh0xjgfTwLQsgPEtISJUcgYWmJCl37IC9gL5MEB+u3mt/5lzLbm/e0xgn6XzTtwkl0YqEQDvpjspzeWCIiWq/ytkpJQOAErNwusa0johv5mYtymLFimxba1VwwAi+oVdiEwFui9oR5Nt+F7V0ucRk303z27bdGPY5VDysHQhbqYPy7ymAussVTtwadfR98LVudWLB7VcV1j1AgjYAlbAQI8yShCl4Qz4O614TH9yaEGVBYstLTFbsnjVS2V3W34/6OCR2vPNuPN/BF629lAATwmMIR4VqQJT8HzPKikQBtj1blK4AJhi2s0Z40YvXPlWuDfVOnBUreaPOTDtUFbTBhnJtKj4OK6bXqFWWe98/hxpzFczcybGpbn7xKSvdzsnuZ5FrS2hoM/uNFc5X7tzxH3SDtSe3w5HbIjhxFiPiRiFl6reHtFut/Of/QZWmxV02Jv0bSrBsrJRcOnTRRYaKlVJARRqOkkWZ8CyuUgZASDXFLfFHhOS9xhscqgpawQXlmDOj06MSN22K/iFaeZA/pau0Qjo/FMzAOhPQee/R+38g2GB0ozClkISeOcDBS43KCOlKhhtKBV8O00fV/MBehixYv/S+DQ1XI1WjpSGoElk++IBVYMtcnwPhdZOSJy4vgHZxwRh9W3oPga/XpCPafriTfEKh767T3VtOPj1X7MvF9LHxEGJWgizuRDuaVMX65pgMBd2SbhRPvNrV7eClQq1NDga6x5Y+S0klgujtyY7HfVzXXh8eM0DT9xukbC0zHsuffpLauQ808Ueh60/CrZrDhhsuEuoz+QSzpRv8L5FW6VP7Ls3Xo4XJ4pJ361cDymWYsL3jZbLEb6AKWB2IO6DeUpYn5UpRkjkshBNJx8piwrnK8E0RaW7J6Du0rO8J80K5GYd0d1hK+ZVguhaojbf4gG6T48XduxX8cBKvsFVV6kay5PDEEMCsHP3t+9jNu7xjInwuxv4WkHOPimBPYgePmsuFzScqVkJhRzOWQA5K4jcOlTI0LupmPftOGP4rCNyNbXIqUhdDXYtJHzmf5vv6XXtkfhgzWIlUpQb00nwlcU7CHpLh9zK9SiGaIGexILWpeNGSTK0CBwdKc2PQ4N8OTuOXiCklcod4e+oHd3cB8EgN0yqolRfg38K67irYAQJDQseASbVozWmRh/6pBBTYQZJIe062BEfBTkChF39m2OjQK+FsGq+GLYwVtCUisS7fgi6PESFfkuOrdztsaXBhM11HRsOoWxMwG+F2JjALhcFFFgXZ4QCdHGcqBowERU/rMG+6XNmCBce2+a9/HPKWPL3gUHeaDJBMfhipnmdjQD0MZUmfB2Np6QhgaV6S8SL0DNgCvTBi0fEZwTWKy88olpl/62/36bC+mDgN5ZAyPlwjYcKuRWIHGK1kDc0ecipuXHcQO5hvvFH1/HxgnVHgz4sLbX4LgeQK06wQT7wBAF5I86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZnXS9VyTN0hcZlyvcvD7SUONKOlvMHOi84EoaRfcpDy1pjJ/vW9jjvc3lnGdbN5yJArz6zI9rfRLPaL5Eo1DBexDRx6UF6SYbTVd5UpQrDNgWD8AdiUEs4z8TQE3bb3qSmnBb4iDRzUL+kalYOpYuwxMMiuodauI8GM3PWYXmvXNTW7bSCQjFQpsV0FJcwKZM4LaretXr/wR6UEaQ1f368hid1RmL22ol3GzgJYTT6G024O1SGlg2l1yDFkHM6EVWVtSkR+rJAoZb8tU6zVEz+/1TOuewSfOJvIYVrEpJ6+H05uGuWaqJzhPl04+igHKLmyomR3jL74wBan2fsT4wobbBhmxJCDUz0i94x5q6Tbm5Z2H4q/dF6ctXX8eatjdkbcz3WyxzsRckMOnm1THNMvjG2q3T2EEGngCVFGwMwnwEAk34QOBl7v/+dqheGea0+fqLjx3bhvJrBrCUHqywqS6zH99nUbucg031y7VJXXZbCNRWYHJTjZcvvgT9vddh1bsstV8JW8u2BBPJe+i6htKQp0WrKiU+cYERjZMhHjiyBfb/Pmn0WL1591TfDz6EtfiKczoTkDuPXI+7naVLeRSnyVVTcipB6w0HVvQNfsb+CYGsIQ/qwQsQDFA7B90o/qdNumfbUs1ubUxZ4ei/sMvOm/7OxM8mInth/LQOukxoK8ONXFFTYTHPhpPgTLH9XH4kFoXha95sQEVnkMLCkYacxQnY//5jvnwCv3DeOXjuzXL5o8EywtBveigcrXZOCQAML06RgbTNl6kl3BW2jUvWajbaFh1USP41tofFrs6IhBg/shOyY/JLI927zDlLve8a4Jb6M6VK9NXYeOkETyNes0iPVyptDcVnMfsduDnUuR8BXSkfCSVCULxglSJ7dEPdzF8oaolfJ8zTri6mwr5g05B3CtgUq9jQGo1z+nl6Mqj21DaRZ3wesgv2W5XerviyXdffck9a7t+TXSnBwiYQ+gh0iaywXuoFPOuRVyzMHM5IEQnm2oMWcFxpznOb2yScpp3gfvE0h0/rBsOGBaWiO/FMm721NHxm0h7/5p7qfv/uHXC8LnSuUGrfeku/mlVdvf6sK90ML6JIhPW1Z8QPcxRoaBBZa4MUIDRGce9Q89bYQtF7dcoEQVJo1iM5q1Inl/qeWDfOI6l2l14X0C+dxVSc39dKPh1zlfswVWKc9qlS9/m5JVco4QVtGLvipgDi9SGoI7X6RhBp+yvTOqfnWfPTPfn+l7oF8K2TA+2P10w+DXuTaMsyPuTuAyI22+GtNczHM+p9+ErKYWA2xiIZcVhEfCibjlrXvbeG/cUulHn04ralIUHzQPQCg+4A1FgUh9VkTMzxG83oSJ13cs8Mrt16mjR2zu9yiLYzfek22s+UTdk2E6a2cYZALnjwyXBYeDsBKeLZSowUw3X1YMTv+6TT6o57RR70vvk5rr+uSJ/o3nidKyX5zBrG7d34XdAa+FhxoabYtgeXQIPJbL17wJ8ot/HGk/wdbjtPPU6efvbrvxLpPc+ZgCG22DgckfSyWFGDqhcjT4TTEM9fJYnX3xHuWi6VH5D2rBfCC1Zn0gXBYWDv+dF1Pyx/qORxdHofA5RQME+xh6V8Kvc57n5oADVg0FmJMjBhg+mJua/MYVtTfpsnFlxi94CZSyzcHBztXgv9l2rvy1mDdjwtx3v+u5U7zjopi+1TvJnntWJH3V8j7R8ihZpFwWjB0LoztSJqRr+oB4ANBTFLhTzo8gPUUnP0lVpmB7LZopKO26LtzAg9TnAZyzUQs3cI/i+HmEHBjBJwg5MPhJVDkwqpwXVQ7sl+W+qDci5L6YfFNtV5kK+ByYnYAlM5HthbTPqsZ/nvxxfKzHjg4pzTa1tx5Mso+ZgD46BAVqD60LPXBk8ZuqwtQbtVOHdvzbrbBrJmB0vITmdEJlL8AEnWvnMxE6W0wg1QmQBiuBh9YHpStVWpUPbjFZuCjyeeTISgPJYgJmQjpKwgJRGj8ore3CLoN9V/Z2jLcOP/aTA5SOs6K04zxNoYk126WHVA2AgYGRDgBRs97JHKZ5FJ3D8OtFseCN9ZhPqIUmOwcMKdyf2v8/86dUOR8D+dMarP709bn//Clun6eHvPcErdrvOm1wB8m1h3XncuBPqTJNHHiKKqyeoliR+9NWNYqVa7iyn9vyzYlLD306X4YDf0pdJOAApdfn2FC6ca4I/SmVQ43uT6uw+tPX2gm+g8nPCajDiZtktjZm1d/OEUW67PvgHL7j0pweHEwJlp1jmxJM10LuyFkyW3kCcgMksyE08AhXj9DAI5LZEBp4RDIbQgOPSGZDaOARyWwIDTwimY0aodEy1qBXRHYxqnoeBxlrzTkzsqUBjfxrOpIIUUXCyNQ9f5pNzJlsQpUt5MAmTkw2WXHgXp9p2Z88Ug/sTd057D75nF8Jf4lCKifbpDSLY7MT8CPhHbjAizpKGcFXKKOkGnEhqJ7KH4EdG0N+baruIuJVdPF2lgHBKqVc3gMyFryYd+QzpxvFEyZ+cDmauGSb+5Kk4G9JXS9nM3lCi55qqQrqsxIf28hFGT1EDnO1wPtgwj8hsij8u4MIA+5yPIjZRDFJCQYH6t9YzIs5AxxoBxEvZpqojI9EFSZTeEtDSQRoqbncQxYWTrpeWnM9UBmZ/yrZC5/o3licOPFMZgUMRH8VPDcYJdO8VSnirVADSiUZ6aEIgbJbBLxmpeFFuPWS7xIWq8MEGe2lsgFQVUIiF0EtqHxEFKWSSiK0P5v3UkkitffgXbWFydMyVQWUo6U6av/ngJczz7Dx8r4zBC+3NHnMqfKqprs8uos1sX+dNrG/FWc0WY5nOJpE6OYSNInQzSVoEqGbS9AkQjeXiIWWLbw5PfY0X/jH7n/aR7qaVcgXC32fGPRhko296xaraZbZgyMu0sgVen1kR6KK8XJArq2ZLFk6YOmITdFDXZJffZK24ye+I8vb4Rt/PuA/KuAqdVcFrEFsGSr4fpFShZs3PwJ/hm4bglTRYdbXoqvuUX5Bx6Hhbyvmpf4Dd2tEYJzQlmbAzKzHP7QtQrY0idqark2oT0IJgWgo0xkuUQCSQ37xuV2ONCnWb4Rwcb8rT5a1mj6cvCHoonkCfUOQaOBcwQhAsg9CsoUpcWLdP0ZJnCgRDKDVOo3U1NSf+oj98cmGgfpS0XKJCttnlMPwBZ05Ydu2jdewwe6rey0Z0PPAU/IygkUA/hCEiCrRUhTWmctqnTGmYB3gjX7qk11UVxwhU2OyxcEkMxEuBGmcStNX9JZ3bOqVutPjxb7pL13IxtE8EbGIm9dSFMYJZTVOD1MwDrRPfuMQzMRknHaCCPiRmE3A66jBrVJF8GiN6GIXvjJSMhxqNLbAfsr7DfSIamf/ZWtihauClDaP5uyedXUn+Rx7YL7n08+xk1qLwnhdWY3X1DjG00FI07wAC3bJs6A6XKYYrQBBMDAfMJdCqYCmA/+SK0dijfBHJ9gUIRmluYC04/NztVSRvsWF+08GnVk57Z+rFDW0cFRaNH65KCxXhdVyxYxuOXgT3FHRK1XGWrMeDQsasTrC8cECu13P1nmsf3YqZGVa0h6yI2SMmfJaOF/wdsRjCDjjOEkLq5pjjhCPU9swxanVzccGHD2Y63fEIvlR47Zj7ck7dSLNQo6/SjpCJh1Jr93GlNlmK4CqQ+p8i0GYgGyYVBkhjVKN5kdqHqiu4KHJ5vJQ9JAq8PkLc/BKLYvB9q70XUVye/kg8J9IpSrKVSaP0nwwKtxnPGHaRMxzvwCwX4babYwDIW2tC4xZb8jZsBuBDXZwEntHnSL6pCXPLljta+0RF1XZ7uAw61xytySeSu+W2paC5slUcbPCzpMBci4QOWeUH/FvJuY5XdAr0b1yYL4Qhq8cIVWpZAw1Ky67VVvZxPe+MDF78tmPM5xuFH4IU9MlKD6CA6xqsWJlccGgPpdYxyyFT7ngL8Fg53b87Z8WUjziIy4KnYQ/S2DcRmVVC2JiQPwq/H/Z/GEP+Q7tdLstkxv7T4T/l0T4qdWEDCbC/+kCmwj/Abrv5ECE/22V7OVHvg91/tOjwp6xzyeSj7sU7rQ5xz4SapbnXmDTLL9H95FFIcJv1/XdWYcEO58Vz6s2MMuWOBtdhP8sKyoHDOsNWecO+h384U6EPz3WukOpld3cDp2YO6tJqfXkHQpjivBvYDVdnHFMZ3AR/nqSyzv/npMljnt4dtZIxyvzjCzCj3kZRhV14GUMJsJ/4q3HFdHLUn4z4qZatHuWu9IERPjPsoJz4IIBRfi9x/b/UzncXHiglGV5UfJmsp6M8UT4N7AiBMY0Hre1Y4rbxIKmzX52uSTYcqdO4oU1b1qRdQSwQ3yRSjlgdHrMZsGAc5u8LRJZ3v24FgZAXKWMDgsHMZxaii3V6KPlQK2wyPi2dNWDfI265vY1EvNOXwT4SkRw0YWCbxbAd8TFwh6sqpT3WuAqjgXyq5eIm/7+Up/HbnODmg45ZhWuLnztLkoIRXWMha0FDNDLhOjVFSF6ZzW4WXtRrxCqrGb4hkjDVFJ0fGk7N65nw8m1xVOzT9woXS/Tg3JCCrsRcUJKc51z2V/w/dewfv+ZF40dLGl7ph6BEnxlmTJEFsyibfMo522FF/GbxLHlnGd12rKenH1uQTyA3le1LUVhjBGsxhhiHGNQwx+ePjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerozo7vPnrdar3yrbX3o7ceXoDmdfgBwREjZYj6l/mNRWFsXxZjdXRJEYOfJRe0WrlvIVuRbRqiJplBNW8HTBHcnebx5Qzizyen7jRtDBT5UKaI84Jd+TwqGcWTReqhbjn1ov6Ram4J2eJtkJtWvWs+Km+cEvq+F7B38fXNOq0FwKwgADgGgIA6Fr0ikQJKmMWmVi1YLxiW6kXbn9uftr5mjTFhUJlhj3sCwHozwZAkvNFItBs//8sH4damNtg+TgnL7Hl4wy+VNT5OJVXuB3cW9XRb1HPOo5relwrbwL5OMcvse1u7rhkAkkFCQkJBsjHab9ylcfswefEexZaqdun8v1NIh9nFat1ppuCdQySj5PVqUST4sceuy8sN6Z4wrw1rUwiHyeK1TiDTcE4PGPm4xy/lLDZLsTVc1+WJChxwY6DJpWP481qvPbGMZ5p5uPcjdwaVvxlB989kz/739zaZZGR83EaslrOyuiWK9J8nH/iHTzOvm/iPPdioOIBL7OPSeTjYDEEYz4OcIR4nNrhd8jHef/456bqnRMFW8p2PPtyaUaCkfNxvC+z5ePwLxsmH4dfYvSyx172wj+ffSsbkfFKzXk+DnVuzkGOiftlthyT1peLKh/nYYiA92xOVZ+5nSpfXWP+6AHn+ThUH8EBVnxWrMpe/p/Kx+nI5MaGH5E1k/kmifan+cmfZPd7Q94p6R4Nz066qSSR4fQTpnpsXzR0kakj4ekx7W7OaAfNKVO+BGrmhcFPQPa8Z2eWdL+4VyxYfCnpYJ+0IAvG96Pv5ORvpPW/0gHAhfnlP4qF6JXUc0869krt0xD5NNlnQa+sIoJ/Kec/JbbiVg/PZpYLkMqBwaQhHsCvjyIeh5lVY8pOTKas8mCOi3XH86KENg+PJJ8cSV4LMhOiDVhR490RNuOV0TSRDlnhZEA7fMWVkgf1kPwvKHnoGh2YMVjJCURkcihPAUvkpgtw1Dszof7jj10bbBzNhfv6V1uxKdJnY4GnL8sUPfI6n9iknt7j6MTmL44bNouUP0m1SBcmi8TPnxP90vOT25LhVdQrZtoPIK+JusLkmSh6RMY4vdTcwFcD1tfUu4xWw5AXq9UWrpSHQDlGmBIYiv0eFg5HScLUOsUg1COSJb2VwcOkIdqbUK9OX87VXNd1t9pOzLsDwSyGSuqDouprTiLklyBEcB6HkF+Cf6nyS75/3OkacOKF89Qze2Is3vpdosovTemVMPFGZH/3Zenxyx8vm92VaCcOo/6yPBP1gxHyTEyWtoTqAbgZkdaatftYh+FbQ71jfMdmlckMdCiMtbjfDQN2vQHtugoV8sTBg+YnjVJ40hLWdxykBt9BEZbnMPJ+xlzNWKeOPcYjVKKYbGXtmjfaQEAUFa1iCFwfjGrUaNQI39SyWwXNBmStYTVZKZHmSQitY7yhKIy2i9VoawxrNMIFm3uLNA4V3jJRO+4x2xBjlCnYq++Cl76WKdRSFZZ1Bz6C5DCRtlrRveWrAbYXPRfmWDx7/jJkFtVWpXyioyRD5FoBCx5lswt+qhOdrpwK1Pr6RbpiM+pMVqOOOEnT+mItoIB3dqlGnwUJHlUmhbWjm0NPRy/TgV3lPKPUEfdL6QJEpXvn5lgXxym9KxOld39416+U/Jzb2pS0YhP31Ysl58oGhMtCo/iwriyZ1iFfMdW0rukXGgqnIhK5HC+/KoOF86B4tyMSYMd73brMGX7NdUe/2Jjq3X0ETK+AiJd0TbcHPaN/GEAqUIgqhmcv5t0KLWweWTms+i4Ym2r4wmjxhameB3oUb+obc6H60utfq9WjFnhBfsUCQ0Ivm2fHKos2eK61ChE7Tu9vU9jEe4BVIMRqmQCV+wEm+PZh+mWNaSyoxHoFEhcvdatGPuXu+eyUbT+6ObPhXdqScqhuwBR2PIFvbs76zUEvMYHlZKwH6rHHZgl1htikp446ShxFH4U+s1b37/Oz2J0X5H4J7zYU/HtC2eCfbRz4aRlihS3UrRkRMNsZfBOkRd7IF60pbdFHtOfBl8G2zfvl/qKnKOxqvgPuCtKdEQQz2AEbEDjBdDNhglm46szlZd4D3LaP+eQjDxhesWgIZsV0NoLpO90ABHP+uDrE/OQj9ylTSz6ase+rIzcEE3+seLnXWTNcEw8enJM1dVAbDghmyXS2cT55OscEM2dFlbU/vwa5zfDxOjNu0CAvIxKMgvWbg17yOxJMjRUfSvz770236U6dbnc9cX+g8QjGlRX+lsaB3wgEIy02cI/Nlxy3yeZZmU77iu0yHsFgroCRYMCAwAnG2YQJRu5/Mqt0mRqiBE9FbI1P3rlFQzCxq9kIxnW1AQjGek/rI3Z19ngmnQ8c9s3BO4Ebggnt3KFd3Upf/FavXTneMjPNkwOCmbyabZwrVnNMMDMqtRbdu7jdbenavltL+l5YYUSC6cv6zUEv+R0JZrGk6pA16a88tnTf3Wh+TunnxiOYlqzw1zEO/EYgmNZvh6wam2LtuXptt9zTFaRTjUcwmCtgJBgwIHCCEZgwwTxYWfdry11NfTb0Czszc6+PY9EQTO5ONoLZs9MABJPqkxFQZ4y9x+KRxec03fl0DzcEM6LxlYBi7dr7bMmU3n1wdygXM5icnawLRTs5Jpiuw4KOd+5w1ndFiTGv1/r1zzUiwZxk/eagl/yOBNN9U5PZq65Zio+06NZxa6VZ/Y1HMPGs8M82DvxGIBhJvZ8+dYdNdNvqXrJazRbOl41HMJgrYCQYMCBwghGaMMFcL1XLMXWHxGXK9S4Pt5c40KxoCGZTJhvBhGYagGC2jrcPPDlhqteCNa93fnmx7DY3BLMwemuy01E/14XHh9c88MTtFgcEsy6TbZzPzeSYYAZHfuz1r9cfzttq5d63vrPAxYgEM4b1m4Ne8jsSzJh3DRuZfTojXn979ZPrP1e5GY9gerDC39U48BuBYDzMN/7oOj5esO5o0IelpRbfNR7BYK6AkWDAgMAJRsREMHrXVLDTWq/oayrUvFPn7V+jJnkv+fbu49LotLR8NRUcjyU/FFep5z1L4FBnbkvBzHw1FaZN2F3rijrIc0nQ9p7Vk2/OzldT4U54i2cDVt7zSuUVj8+sGLIgX02FJm73Q17wrF3mPl4fXUkW9ClfTYXHY/2mH2zZxDOu40ObDR3rxeerLzW/+uROiXuLe+1Ue5YK7HbsCGgqhTf1/6tmixt3HTzj16dVeSQbAGtZWeBNLn3sFvZrPsRj/YHUyOBba2EFrNJ4U6snSZPir/k4p2ap5jvluvmCpjJ406fZRw8OGNBC+OekATWDts2CtSIs8SZ+n58NxU0veyzdPXHilWdTt4GmsniTvTwx5c6CEx5JWx/uWXjYJxM0lcObpi5fszFjQXFR3JaKLdztXbNBU3m8KWteywXFnq72m755i4N/7a5tQVMFvOn2xua+38xOue39ZN7n6/nNPNBkhTcFdXk798b7Vj4xfq2syn3p+hdoqog3LbL+N+mu5J3bevuKzT5nFR8CmqwJeIOKLau4X+23ZGbinS1OrSDyNsQD40onj5m/3DPxisfzbweTG4CmSnjTgiZVZ329X1G8rFf2rMYn65UGTZV5jKU4qhAPnDAx8riPnTD50vc6JRrnTARNVfEmpffnlesW3fRc8c/PR40sSkwCTdUIo9h96j5o8XW/Jb2fm/XZfbkDaKqON4VWW1im1TR795mu8ZtGzAosA5pq4E2v6r8pF1F9neuO9hueJD1aMQI01cSbqqrvpbdvs8krZogkef23kpVBUy28Kcki6+sFv2Euu32/5Nr2CQsCTbXxph7lzCKjLTeL1/5r38L8mmg0aKqDN23/GpjQxOmM8/YOZ/a9LP73LNBUF29aM97RN/d2qPfGf1+cCvvYdBRo4uNNG+qeTTv9b7xgZfmFkiXJK9/SioXU4zEUCzkszZxd4dxa0QbztFU1e1zfiXAb+hYLcWFyUZVDU5JXZJwSr9r2YMyZWuPI5a9KiUdFypUhCAUspgC4MX4Hn9AslSlgWBgBAmLghNTSsAipzpJXVAeFfDV6ZiPeoGvtVlsx7861TOhfEae3/EF4vOuaXoqgVnmKoJoXQX63mFOZ30bwu/tN2msmeCJ4u5BDQVCOD2nB7OobEKAQVO7fySZiXuY1vWLiNj2koGtgZ89DpMHKiEilWoZJgIH3k8mxqRPRT/gSFVS9VUbIgtE95MGqn522+Hrt/Tnvr9Hy8YFkCR/t59AlfPKauI4bIFy7WOFac80kIjm63KSekZwDPtBC8swVFS6J4kdIhkn5IACBcgJDJFCLg1Hrp9mTazd6Hn0n3NzVYuTpFZ3+oag94I9FqD0QLVxbz8oB7+wuKOstc8Q6O03xR0/g6hHCdITogpQKJLokcKkKx+52sBbtfDo4qH6viU8LL4PHAVi7WMECXR3nHzET//ynnv1L6tnUCN1g6tlTr7OpZ7tcLwr17BOfm52TO1sJd1UMvbutV3owh2RJ9UAcqGfHXGcTG5ZfN4h6dsq1ex992wW47ZuygNc716uv0dWze7OiAvqNiSp9FLTAxJ169oLrztZD+XddD14aeuT6znX7TEY924nVdLWMYzqDq2c3kiUdE1z44jYnPe1R9O15fCOrZ2NehlH+GHgZg6lnf1xnV0Ua6yVYO0We3vFvc/IWhnHUs3uzguNy3YDq2eVzvy1tE//KL3HeuR4uq32Gmoh6thMrQmBM43GbK1PcdmqlxPt7h6pukzfVKfW8wVjy5NzCG8Ro/AAXb90XDoSEmiEfVnQmImEwQwwFP4K4azQfYKuK0uhEA2eL91cYe+Gh23idAifq+iX6velRNNGiI8bxYBoofwIwvoXadXMGFrB/ot+yAvYC+TBAR0otKz4o3k/gsj95ZaBs4OxWlN0keDdCJAq7XFCkRPV/hYyU0gFA4U/wE/C0TshvJuYFPtFL+6UaBhDRL+xCZCrQfUE7mmwjFJXrBa1s7rk4/cm3iDsnZeRh6ULcTB+WeU0FFmS6csP7lfVSt8Wv4p/MP3ntPQeAObMCBnqUUYIoDWfA32nFY/pDL0liwWJLS8yWLF71eYJ7z5gHSo9dfabX3+CWWccaE5MHxhCPilRJtdIzWFArEAbY9W5SuACYYtryS2dsnOB2Wrh86KW0jpejfDgwbTVW05obybSo+Dium16hVlnvfP4cacyKHvNvh14t6bXKbfrpEVMahVA3/BDCdpqrnK/dOeI+aYcAsee3wxEbYjgxujERo/BS1dsj2u12/rPfwGqzgg57k75NJShAEgWXPqGarBTqG0nVdJIszoBlc5EyAkCukUHBHhOS9xhscqjJNYELS1DYQydGpG7bFfzCNHMgf0vXaAR0/pa3AOhPQee/R+38g0Hnr3KrsPkpAu98oMDlBmWkVAWjDaWCb6fp42o+QE9ThAL+S+PT1HA1WjlSyqAgX3ZlhoPAra9rXFDpnqIhPS3JPiYISzqg+xj8ekE+5kaldP8FLx95bYzxEyzz3RBVSB8TB2B2hDCbC+HBdepiXRMM5sIuCTfKZ37t6lawUqGWBkdj3QPLiULPIj51Ge57Y5Z46oChgsRRdmR5S8u859Knv6RGzuUs7HHY+qNgu+aAwYa7BHcml3CmfIP3LdoqfWLfvfFyvDhRTPpu5XpIMR0Jvm+0XI7wBUwBswNxHxQjwfqsTDFCIpeFaDr5SFlUOF8Jpikq3T0BdZee5T1pViA36yqdaCvmHb0J0LVEbb7Fw1NKNws79qt4YHl4cNVVqsbEcDDEkAD4lqhv5lOymefcL0Ne/Zw7pQs5fMYeRA+fNZcLGs7UrITCygEC5NIgcutQIUPvpmJe0k3G8FlH5GpqkVORuhrsWkj4rnZe4FkiONvtjwoPdr76+IZS+hvvIOgtHXIr16MYorWEFa3JN42iJGQRODpSmh+HBvlydhy9QEgrlTvC31E7urkPgkFumFRFSYmDfwrruKtgBAkNCx4BJtWjNaZGWplKTIUZJIW062BHfBTkoNLm/Jtjo0CvhbBqvhi2MFbQ5O/iXT8ECUXtid9KXG/0Rbg/MEVxwb5XW8rGBPxWiI0J7HJRQLGEFQrQxXGi8mAiKn5Yg33T58wQLjy2zXv555SxBSr/Mfhipnmdzip+VG+pi4ofr0AfPKlG5wudj34R7WxWTHE/Xty/sD4Y+A2Xm7jocgxNBhtEDq21kHuaPOTU3DhuIM/cFhvV48Upl7jvtXLHVJ93hQPIa91hg7zsHQJyL86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZlty9+PeXdlqevKTItXD70aWdJS3mDnRfY+avolBylv3kz2r+913OH2zjKum81Dhlx5ZkW2v41msV8kV6phuIht4NCD8pIMo62+q0wRgm0OBOMPwKaUcJ6JpyHotr1PTTkt8BVp4KB+SdeoHEwVW98Ag+wa8sQImJHn6rfNX1Oz24apmSuhaQAe4AfmvKCmgYoUUa2ZngmqjIebg5d1LMxeW9EuY2cBrJxu4LSbQysQBabV1jeQcTgTVpW1KRH5sUKiVEea1Lp2486+B69UuvK91vvzHKZFTOrp++HkplGuicoZ7tOFo49ygFLudTaUrlynLz6wxWn2/sS4wgYbhhkx5OBUj8g9Y94q+SN3Y+4AuaMwzsFfXmfUNG8j7uc62eOdCLkhBwVsa93QL4xtqt09hBAF56u5BhmI5JuQ4PxckPhh6r6awn0rrcJDQreKTGDXEoJkwQpSrp77uo1cZJpvrl2qyusy2MYis4NSf+ieeOfBU5+l+/dkf3J3OETeRSSeS99F1LYUBTr3GPd0ITpntXu6PkzE+CLI19u8+WfR4vVnXRP8PPrSF+LpTGjOAG498n6uNtVtpFKvssfUAxa67g3omv0NHNMF2KnOChELUDwA26YbRbBNK34+aqN0zRbnVXzesNNeXckV6Cyx/VgGWic1FuTFqS6usJngwE+fg2D5o/pYPAjNU/XjuvIYWFIw0pihathV2nLw6kDRhhpjHi+sU6YN2ROJwb1ooPI1GTgkgDBtYoVpwQ39yK7gLTTqXrPRttCgp8H6CNxC49NiR0cMGtwP+TL5IZHt2eYdptz1jndNeBvVoXpt6jp0hCSSr1mnQayXM4Xmtpr7iN0e7FyKhK+QjoSXpCpZME6QOrkl6uEuljdErZTna9YRV2dbMc/qUSas+omIyWMA6lnZejmq8tg2lGZxF7wO8lt6/+j2+WzV2YK0uj+k+w8PppxDwh5AD5E0lwsac9RzboUcczAzuSyEZxtqzMGKZJ+y9comKad5H7ZCteu7Rjv5THovWHz9YJsNGXOTybt/mvvpu3/49YLwOX+i7s6IUw4uC4btTlsor9iNA3yys9nwAd3HGBkGFljixggNEJ151D/0tBG2XNxygRJVmDSKzWhvru+t4eq1zn3ysKGhi9qfakg2muZ+utHw65yv2QKrHGK1yhaTskrOEcIqetFXBczhRUpDcOeLNMzobiNqJ9rO8Ni0Z9bzvR7ri5EN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW819n6TchqajHAJhZyWUF4TLFbUrv5DCv3IynDWlWr8Kw5payD5gGIsg54Q1EgkpXNhsiubILX/Zh4fccCr9x+nTp6xOZ+j7I4doMcpeCfqHsyTGftDINM4PyR4bLgcBBWwrOFErUaVuTSZsXg9K/b5IN6Thv1vvQ+qbmuT55oNp4nSst+cQazOn86r+u5A14LDzU0BSywIovwCJPmTZBffNfBF9Nu7zzsm/jqltfEiddXkjsfU2CjbTAw+WOppBBDJ1SOBr8phqFeHquzL96jNGXlSQe1YD6QWrM+AEtZw3/nxZT8sb7j0QrRFD43alV7OK/FAKuGAgzWEvXXDmZ/k9+4ovYmjip+Ubc5ONi5Kp/NtnP14yGBeXcmzH33u547xTsuiulbvZPsuSdZUL28D6kYHd2RMiFd0wfEA4CeosCdckpJO538JFWZgu216MVYye26LtzAg9SPAZyzUQs3cI9C9RhR84vgE0TNL/hJ1Jpf1Jpd1Jpfv1zTi3ojoqYXk2+q7SpTAZ+jTwnCBc03D6731Mp3seTIxq1LLSeQSxAK6KNDUGCBoW+HVk7vMKGz54KHxU5sLiN7V9g1E6jjD83phMpegAk6sY8zEcW0mED6lUKNqxrHHoqyLe58xFHy/EdpCXmpUbdCjVSUpjx/2Odr9y+us24snHN/1jguUFKxojTwMa0ME2u2i6beNQyMdACImvVO5jDNo+gchl8vigVvrMd8Qi002TlgSOH+tMf/M39KlfMxkD89+YjNn6569J8/xe3TZKvI0WH9Tt+EG7NC/3qZeo4Df0qVaeLAUxx/xOYpdjwqan/aobLnovFNGzjHbrbeNLbt+gwO/Cl1kYADlFaxojT9URH6UyqHGt2fYj2G0Z8CpHB/GmDycwLqcOImma2NWfW3c0SRLvs+OIfvuDSnBwdTAtdHbFOCtlrIAzlLZitPQG6AZDaEBh7h6hEaeEQyG0IDj0hmQ2jgEclsCA08rcQgXQOPSGajRmi0jDXoFdGTHop6HgcZaz05M7KlAY38azqSCFFFwsjUPX+aTcyZbEKVLeTAJkFMNllx4F6fadmfPFIP7E3dOew+NX9IopDK6fXpmRybnYAfCe/ABV5gWXS+Qhkl1YgLwRKpbBq2VN1FxKvo4u0sA4JVSrm8B2QseDHvyGdON4onXG/5+naNyCYuqa5S9cZi81RMntCip1qqgkVYiY9t5KKMHiKHuVrgfTDhnxBZFP7dQYQBdzkexGyimKQEgwP1byzmNX0AHGgHES9mmqiMj0QVJlN4S0NJBGipudxDFhZOul5acz1QGZn/KtkL1wtsLP7a5EFmBQxEfxU8Nxgl07xVKeKtUANKJRnpoQiBslsEvGal4UW49ZLvEharwwQZ7aWyAVBVQiIXQS2ofEQUpZJKIrQ/Y8LE2nvwrtrL5GmZqgLK0VIdtf9zwMtRD9h4OeQBwcu9TR5zqryq6S6PDmZN7PfXJvb34Ywmy/EMR5MI3VyCJhG6uQRNInRzCZpE6OYSsdCDlMFP292r5r1sZocuvEXXsvPFQoMW/HUu0SvDc//Qh7aNvMeH0MgVen1kR6KK8XJArn2ZLFk6YOmITdFDXZJffZK24yeSp0YV8I0/H/AfFXCVuqsC1iC2DBV8v0ipws2bH4E/Q7cNQaroMOtr0VX3KL+g49DwtxXzwp/C3RoRGCe0pRkwM+M9pW0RsqVJ1NZ0bUJ9EkoIREOZznCJApAc8otn1ojet/6Kg2DNgi5ntj61KU7eEHTRPIG+IUg0cK5gBCAJgZBsYUqc8H9qlMSJEsEAWq3T2LVr1099xP74ZMNAfalouUSF7TPKYfiCtE3AG8+HB7zG+ixeVMXi0wbJLYqIKv4QhIgq0VIU1unMah07U7AO8EY/9ckuqiuOkKkx2eJgkpkIF4JOpD8iut5s32nPHQ9l63J3ridvjVlonohYxM1rKQrjVGI1Ds8UjAOhy28cgpmYjNNOEAE/ErMJeB01uFWqCB6tEV3swldGSoZDjcYW2E95v8GQnn1V0tl7W1fBn8s/J9nMXxxBPscemO/59HPspNaiMN7LJ2zGu2ZCQkFkIU3zAizYJc+C6nCZYrQCBMHAfMBcCqUCmg78S64ciTXCH51gU4RklOYCWlMkS2277VVpj3V/mO2omb5+JK22DiItGr9cFJY7zmq5HUa3HLwJ7qjolSpjrVmPlinC2B3hnZCPTvtPtvHbUnbgGLOUSeTo0YIxZspr4XzB2xGPIeCM4yQtrGqOOUI8Tu3HFKdWNx8bcPRgrt8Ri+RHjduOtSfv1Ik0Czn+KukImXQkOUyFmDJlttkKoOqQOt9iECYgGyZVRkijVKP5kZoHqit4aLK5PBQ9pAp8/sIcvFLLYrC9K31XkdxePgj8J1KpinKVyaM0H4wK9xlPmDYR8/6F2C9D7TbGgZD2ND2kJSbIyNmwG4ENdnASe0edIvoKnXc1a1C7o8fm+k6ZI0+ZkbXHLIin0rultqWgeTJV3Kyw82SA3DuInDPKj/g3E/PuPNUr0b1yYL4Qhq8cIVWpZAw1K3h7PUYrpWPcFsYN+rfirPctCj+EKVhRfQQHWJ1mxWqfYUMdYh2zFD7lgr8Eg53b8bd/WkjxiI+4KHQS/iyBcRuVVS2IiQHxq/D/ZfOHPeQ7tNPt/kxu7D8R/l8S4adWEzKYCP+mZ2wi/KHPikKEf1J8j6eVFCPc97VYmubfe8tGDk+bc+wjoWb5umdsmuVznxlEhH/+qyD/Xu+2iBfwsx69XT7ulNFF+MewogL6jcnMHfQ7+MOdCH+5quq3K8bwnNe3Hrqtf6jjMpMR4e/BarquxjGdwUX4l10NvT9vbU+/rQGb43I9Z3wzsgg/5mUYVdSBlzGYCH/p9QnltncLd5s62yu07VXviyYgwj+GFZzQZwYU4V9dfUqpWndruE6zeV1vZWy40gTkLCBCPVgRAmMaj9sGMMVtYkHTZj+7XBJsuVMn8cKaN2S5d0vsEF+kUg4YnR6zWTDg3CZvi0SWdz+uhQEQVymjw8JBDAerXCtD9dJyoFZYZHxbuupBvkZdc/saiXmjngN8JSK46ELBNwvg2/B5YQ9WVcp7LXAVxwL51U+OGiBdOFngvvSk3/ZP7lnmha/dRQmhqI6xkCEUH6AXBdGrK0LVI4abtc/1K4StGb4h0jCVFB1ferZ2KZvwcL9PzLpKJw7Z/lhKOSGF3Yg4IaW5zrnsL/j+3qzfv/1zYwdL2p6pR6AEX1mmDJEFs2jbLL7PS7fiLfTao3zQr/nOfyl15ogH0PuqtqUojNGQ1RhWxjEGrTi2PjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerj7tX873qeV+8efrtXUc6Rn0l8xr8gICo0XJE/cu8pqIw1rdnbMZ6avRpBpFXo1e0WjlvoVsRrRqiZhlBSR/8e+6ZHe+Z5h8yU53bt2thpsqFNEecE+7I4VHPLJouVAtxzz7P9YtScU/OEm1Fv5y/+OWcWL+FFb6GW6Y6eRt12gsBcCYAuIYAALoWvSJRgsqYRSb+uD03qaTDN/G6pNNNpgS9aUGhMsMe9oUAlGEDIOm1NtAc+P8sH4damNtg+TgjXrDl45R/UdT5ODturh56v1yO14GF/QZmZedkmEA+juoF2+7mwBcmkFSwfPlyA+TjPOq3WW3e0sVzw+1/2tVb8CTbJPJxPFmt09YUrGOQfJxZfnW83u+299g5IfvD6kequSaRj1Of1TjlTcE4PGPm45SPsIqt/c8b52Vlc6ZstrCOMal8nC/P2Yz32OjTRBPKxwlrYsazmdDQZ1123By7iGm3jJyPc4HVcmlGt1yR5uM4f2/3ZmqDjm6Jd2we2379P/a+A6yJ5P0/eihNRFERRTFWsIDYFcsBIfQmWO7skQSJBoJJEBEL9or1VCyn2FBUFLtiw947p553NixnO3uv/5ktgd2dXRJYknx//+N5fB7Zl91sPu/MO+/MfObz7r1mEnwcLIdg5eOAQEjkqf3/L/Bxlo1yC317Mzp4zfunpwZ9aDLcyHycz0+5+DjnmSltqfBx9krsrp2sUsVv888Hcp9MWCvnnY9Dn5vzwDF5/5SLY5L/tLT4OJrr/4RXGRPqudBsUKcvHx/H8s7HoccIHrA6z4lVjmFTHWPzcQawhbGhB+VN5aHrRbsOhCn+ud/7BXWnpGsCPDvpp5LExzBPmOqxfdHAR66Oh6fHtLs5Sa74KVOhBGrmDYKfgGx5q+ucPXD6fbrXkorzJAs2L3nF+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg08y8B1qlvQj+o53/lDqLJ6beO24TKVMAh8mkASCuDycfh7kVd6WEzZX2+ak+dh4XRCva3Du4+WSiD00FA+3Aynh0R/hMYIWbKIesiMGAcfiKLyUP+iH5Yih56JodlGHxkjvIyGpCuR9YIjfXi0B9IBvq3yduXV3Fzcx7Zx+HxRnxITSyEuL0pVXpI6/ziU366T2+TmwWr99weWTfLbpHotg8kj4nNeFZ4Ee/BUPt1YunNetLXRP1heQZDTMjY51e4jcI1WDUx+tdJqhhyovVaotRKqRQjhFSAqOxv8PSYY1kkFqnHIR+RLJ8sDJqiEyqvQn16szlXPy6rrvVLmLBjNsAzLIoUh8UVQ++jZBfghDBeRxCfgn+o8svhU681SXyxFPPCWe2p1i8Csujyy+N77lizI34Pv5puemLHqbN6ELaycOoxZZnon8wQp6JzdPWUD2AcCN6D8zyw+oOc5cE7lB6tb+1+0C7kniL/90w4Ncp0K9LUSnPbHjQ/LZRCk9aw/qO/dXgO8QNKggYBb9joSbZ3SNiFEIlis1Xdr4FvQ0kRJoEFTpxfeJ3qnW3Cmc8p8RMOOxWq8s1TpeZi/AnIbSOCUNpOG0Ap9OCDes0MgSbBYvwgApvGaPt95hvyD7KluzV8yFKX8vj1DIVxroDH0EJmEhfDem6vd/IR8u89tXe3zIwqPoauq/MQxI0koEKrYCFgLbZBT/VnTlcuRep9VXM4YrLqe05ndrgNkPri7OAAtHYZbg+C7pEAE0mhbOhm8FIxyzTgV3lnVHqRsSlXC9EpXvP5lgTJ4Z0KduQ3vXe7TBzxXm/5XsOlB2zs+4kKlc2MkYerRHCurLUYR2OV2w1rR3DoqPhVESiUBDlV+WwcB4U73ZDAkwvOMj2Coh8SVe6PWgZ3W4CpLp5o4rhNRMLqt4sKY/MBqu+C/qmGr4wWh6/7uatXw7nBs4Zk/nkH/OXWfQCL8ivWGRKSC+6XlLiPTx4D7FK80JxP8AEv9NN/VhjuAeVWKtA4tLbP6397cmbRal/h0dNnLWhMWNJOVo3YEran+Chds5vDlqJCSwnYy1Qjz02a6gzxCU91T1sS0rNnyaIxvdV1jy540Y2tV3Cuw0Fv4AT/md/mwZDrKSFuvEeAdnO4JugpTpoFXeLGSlKuprvSoSCXE/EADPAFesQxAAjYxtg9NbzcdF6r/T1fDRzckcPPNnea3+t1KRFiXWTC+n5tFhyzvO3pTVC0o5OePTv9il2hfR8TrlN/uVE9JqwOW1mDjnT3zqkkJ7P0Ur7Ggx1kIetKyOa/Pq2eEkhPZ89juX84mvle+3avGJKXN8/ZhXWNmRW/iW1DRGVf8lCvYjKvxaEaVH1fn365aR7p3T/K+DhHx+gMKMlYSq/v+Iau7huwb/XO/vmQ2hQRWCyIkz1KvhufL5/XtCeMbHjJLY144DJmjD5dD0WOcr5pNfsWus/e0/e8A2YKhCm7DsjGtt3uuybGfnzXcX8vp2ByYYw3c2bWD3F+l3A8ua/nZ5Q46k/MFUkTC19le+b7/vd+/cRibl+R/y2AZMtYVobM7pm6onqQavs1o5pMLtXJWCqRJh+it1xrLbtM/GyL/3Sex8y9wamyoTp9d/bL6+LHiz6/d/YF2XXbd8ATHaE6f2zid12Onb23yWJGDIx2lIFTFUIU50uz3esPZkmWv1+dovkvPRUYKpKfq9hC2qPmKQJW2GZ12rR9MdRwFRNwCoDZU+YNnweEdNwdqBofeWfT/0lmeoATNUJ052E/V2i+/j6zn7sMPbggK+1gMmBMI29k1vmTpO2nst7NGp7otqwocBUgzB9W7Khyfpmwz33Djz+540vr9YDU03CdP+1JuOux5TAiQtqvuk14o/fgcmRMLVyOLz73otXwUumDp4XmXUEAlWLMMXc+b5swsiDXpkLOzX4s9mzxsBUmzDJ2tWf96a7d8iW5F52q5rubwhMTqS/dnQwv37zi/eaS1Gv69WKh6KddQjTPbFz4IiHKvGS5TlZnd4vmgFMQrI7RL5ZkhTpH7LLvfb4jb1GOzOEquoKWISq7it+ldQ5X8F//qe/XTxmWV3kQagqmi1EVYves3nxsVPipRvzR5ypNTKdOnUVD49XKKWI0xdsCXAj4g4heV4WK1OnjgUJMQhCRAVAHY9b0AMU8tWYs2rCoKtuuDOYVj0/DuMrYucwHBZkf65fAc2C06j4iyC/2z+1Fnd8/CDGf8XFz0fshtfZxONhVJ43COHKXmsIkBQ17zzZWCwQPtcrJ24TIQNNA+M9SWWwxJFSLceOn4D3kyuwqRPZToQSFTxxrYyVR6GZaiOSm5SpOypw7dL2d2S5O1dQ6ePaz2HSxwtMvJemccFaDAdcH/81iUyOedRRz0zOleho0gJ3aWIkGmGsZIhMCBIQbQlrdp65Rbby0Kg6W/w27zc7FhWiqENjGhKPRTANSQvf3qvkSjR2H5T30tywxs5gm+sJXF3yUBRJ+JPRgUSC5d62r1jl2Cx4WhOfkye7zaFG6mIdweIBrAqcYIGmTow/g9jGn/+UG4ql3EDP0A2m3HDrOZdywzL9xkodlRtedP7lL9vcKgE586Ujarw/d4/HwZIegXhQbrjxnOug+3H9BsviKjd0d1rfdOelwSETPtU1a2q/NsHoyg1bOVEB7cZEWaaGU27wvl+uzdy4e54rXcsFS+97DDIZ5YZpnK4bZhzXGVy5QVgmY6NyWm/RZodvUcrDU58bWbkBizKsR++PI7KU0lJuODFcaDts/s7QiTtr+q+amb/eBJQbtnKCs+y5AZUbGk20vOOySho44/2bqFsfDlGLshlPuWEaJ0KgTxN5Wwxb3nZqiST4W4fqfuMynMyf1E8+QM1Gg0GOJoz0CdZ94cBbWwwXVhMgM2EwQ4wGv4K8K0kIsFVpcI0CEGyJ9gpzLyJ1G6VT4kRfv0S/NzOLJi16lMU9/pUoi8tIlTyBByZ91W9ZAXuBQhggv12G4Eq/Q2dv+k76d77H9hFvBtJ2k+DdiAMK2OWiMiV6/OOh5u3hrwT7itEIhU3Fgk1f9eIdO2AAke3CRSpXgeYL7OjB1qK5tXDbqkchq6s/U1k5jqTKGlv6kDczu2WBqSjAxtmeW365wlPxtuz35ge7tWvIA2CLOQEDLcooSRQ+ZsC/aSVg+2HKYVlw+NIa8yVHVG1ufmb+E0nZgE1pW1an3Lz2ww4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa/eGp9UXD4kI2tz+1dvxa7NdeHCtitO1/YzkWlR+PPtnvVKtCsGF4jnSmaPv9Ljlf2q4Z1qdCxHJmdf30Tf8EIeq8Ku8r925ETEpG0UqyXbDuhgxMMrZBkbvvOo3h7Xb5pnVu5/D9B77qeIBVSH5VQOXPuFJZhnk1sv0qBjfXKSMBZDjFFzsMdKCx2CTw4JC8ZBUqtOISN+2K/qFGe5A/pWu2Qhkjr4CoD/yRhSQHwAaf/yrkvJTvIILgQKXG2AZJJhtKOOELmTxc4AeLoAE/4fHNDVcjVYmyljUS/7I7J7atslT0bJjdn/Xcl9KHW3L98BIB8wYQ1wvKsbU/HirceIH39Dtiz0aWbfovqWEMWY2JHJCmM28ESXT0xpjMJd0SbhhIfdrV7eilHFqWVQC1jwwThRaW0t45++dl4/47x5v7xnw/i614KF1wXOZ01+KkXcqZTMCtj4o2K67YrARIWEwW0g4U7H+mxZtlSGTXr8IcrsyRkz5bjYRMozDKAxNUCgQsYAtYXYl74NEWKzNyuOGSRRyKd7IE+WaGKESTFNUukcC+i49x3syvEA163psz1ksqAXRtUZtvqUDdF++LGnftw/AeHhw1VWmxojYGGJIAIa7Tfrm0W1s2IwdT8rUO3m9FzV9xh7ETJ/xy0V1ZzoroaRH0QByDhC5laiUAVZ+NXvFmj7riJyjFjkVpanBpoWE7/3mYbbz1lTxHt/++S+ffTyoSXUFooGgt3SoVr57MUQLtCQOtP5+aRQWu0W3pHhZYRzqF+LsuAWBlFamcIN/o3bz8+8Pk9xBMhWNEgd/Shq47bEBEjoWPAJMqpNwVyO9TB+YStJJSujXAW5EL3iJos2FN8d6gV4LYQ6hGLYwV8D5u0TTlyKhaDJ6yYg1N9aHjW9nVf7gsLAbtI0J+K0QGxPY5dKAAmvirFCAJk4MVEPYBiqTqflHj5b8lD8uhZJ/y15ylfybqYVcYfKQ07lx/EA+1qx8q7ke0QFLNB1X7nvq+DMPkA97wwV59BsS8ljeWJm2JOQGYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszM6psvdmS0W+C2Yc0hyxtvidQXmDjRfZ+uj0Sx4ob3Fs/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHHmC9DJriNPjIAZeegLvdauHfHdNkxJQwldA/AAv7DzgrrN/D7iYddnwWmxLhl1puRvL8leW+kuY18EWE17QQy7LxnihGBarXiBzMPZsKqmpUQUxgqJ0ryFPaL/uersub7xm/nrB03w55EWMbZ76LuTGcN9M5VT/ad4Jx3mAaVQTpTcXzAXH7jytGbhZL/COhuGGdnl4FSP5J6xb5U0mf6xzKYu/waPsz5bW9XP5rUR93PdmxGNCLkhBw9PD3uhXxrbRLt7CCGKKqT3CUcgSmxCgnMs2Sdn4JNq/nPCt81JuTq+twnsWkKQBnKCFPpCv33dhj5y/Jtrl6oKmgy2scgeoF70W9/GxTcrcK2n9WqX0O404iL5XOYuotZSGuh4cKLT6AWZGCnZBsanPUKDzZp/Es1fddZ3RVhAL+ZCPHMkNGMBty51P1dLdUtU6iW5Tz9goevegK7sbxCYmsEU/qw3YgFKAEsTMxegSr5N29rRtvefAxZ7TWgSXTmw5TNqGWZrbD+WZVinGIuK4vQQV1ImOIjTLhCscFQbSwepedWXeo11FTGwZKCnsUOl+bXB2nI71X4z/my3tadtvbPUSCQG96KBKmQycEoAYRJwwvRMz8Gu6C00+l6z0bbQYKTB2gjcQhMyckc3DBoiDsWzxSGR89nmHcbfDk73XfFK06FGbfo6dKwkXoiv0yDWy9lSc2f8PnK3BzuXIhHGyRLhJZlKHkUMkDqFJfrhLo43RK2UFzLriKuns1gw+PNxqDiNyMlTAOpNPusVqCpi21D44i54HfRy+I9RKeu83nnvfuXhJPa4RS15Wg57ADNFwi8X1efo59xK2OcgMzkawrMR1eegGmbEZ73YJDb4+3CJpP/8/MYEV4f2ASmNjv0VuKhSJnX3D7+fuftHXC8Knxp5+U+GtdocMtaviUXvfr0H84BPF058QPMxBsPAAiNuDMOB6CSg/+hXRc2mm0Q1SKbhctqTrdJ6n9dmhmV3GZLnpOwVQXUafj/TacR13tdsgVfsOb1S1qS88vIg6RW9hi9bLODFy6RE8EU65mbi0qn72m0SLXNoOSyo3ZgLVMeEYPczHUNc59sxnm5EOIHLjIz5akpzscD/s34TMkctBtjEQiEvCo/wdXVOug6dHpy5I2TrPjO7vTRJIfwBCEkhwlAaiDThRKTCZ3JcH8o2rmfPDXrbu6NHwKS33zQWR268ofoY/0TdyTCdtDMM6gAuTIyRR8WAtBKeLZSo1VANUsuKIYZ/3SYf9HPaqPdltkn8uj480U8ET5TBfvEEs7r1n0q6A16LSDVw8SRM4BceYcLfBPnF3Z7NDo9V3g2Z77TxnZ95tzbUxseW2GgNBh78MSopxNAdxdEQNsEw1CtidQolWhRe0oRyUAvygdT4+gAsowD/X5BTCpNDRyERpY/nRq2oAue1GGAOKMCgjjUAjOjMKpPfuKK3Jp7UJunbHDzsXMV84tq5+kWLuZoN89BdvudPCY6KUnrV6Ch/EliZqrgdQhFCZQZSNqQdQ0A+AIYnDbhTQZNT1SlO0pUpuF6LKQROteu6cAMPUn8BcM5ALdzAPYqzXxB6k+R4gtCbhJ9E15uk60XS9SaLrSdJvxGhJ8kWm2r7ylUg5ugjf/us8jenRpZuXjP7NT7WOafhn1T5Wy9m7/AqUtzuc5eYck3aPQtb+nJk/t1cp+UlXTMBveMtdKc7ir0ACTp3vhxHCDmygVQckeBvp25nda5XO2TGbZuVQdPrUc9X6yYSTEfpTvv6ox98lQbknHiiaNDke0k5nBCls5wo7f7CkADkZLvgtRZgYqQDQHTWO3UMwx/FHMOI66Wx4I21mI+ohSYXVwwpIp5q/sfiKV3Ox0DxtB5nPH3/+b94SvhH5i2pNlHzLHDuhujMxuXdlvEQT+kyTTxECifOSGFV6vH0uc1c8aJXwUHLW3R9UzHz8mge4il9kYAHlN5/5kIp/3MpxlP6GGr0eOrEGU/fayf4CSY/J6B3J37IbG3K1HiVKor32fnOMyY7LzWChylB+meuKcFsLeTDeCOzVSQhNwCZDaGBR4Z6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYajIrIJkZXz+OBsZbIm5OtDejk4ulIIkQVSSfT9/wZPjFj8wldtpAHnwxn88ni3Xd+nXz/Y0DO7h05W4bcpZ7zKxcuiZMpmLVR2AKbi5cwHt5RqEKXME6pkeHiQlCem0vDlq67iHgVXaKddWSUSqlQRMARC14sOPL58mdaJNzR+/ur25nlw+aoTw99PrkGK5PaortapoIC4OTHNvRRJgxUQK4WrKIDhX+kcg3x3UGGAXc58lMyaC4hyxwxCtk2EgvGfQABtINIkDJZZBUiUQ2SxwXLoikDoDV+OQLWOy183RK/3k0ZX/gqNQpX7dFIfHnsh+O2GIjhKnhuUCPH38qcfCtUh1JJEgPipFB2i4S3jCW8CLdeCl3CcnUFUZIJnxDAKqpyiUIEtaAKDUQalUwSq/0dEybW3kM01SSTH5bpKqA8LdXR2z8P4/L5D1zj8oEP5Lg8wuQxp8urmu7yaA4nsX+9ltifzNswaSMw3DCJ0M0lh0mEbi45TCJ0c8lhEqGbS+ZC0V2qRN6dVE+0d+KIr2sO1wkrlAsdHp908PrO8V4Te53vZzvy0S3G4AqjPnp9jCbGy8PgOpLNkyZarp0uOmywcu2Hv3GVa+/1rbTLtR8fsvhdWodQ3zlHzJscH/hrtAmUaz/wjav47fpvJlBzesOGDQYo1x5wzsnj2a9pYcv2318Z2WEJreKokcq1L+D0zjhT8I5ByrX/FH4pX701xvN3Qez0HYkZS02iXHscp3N6mYJzBMYs13427HxezuneXruiH5aPGHKMWpfW2OXafTmd19I4zjPNcu0HKmTVc3Bf6jVt3zrZn5ctqNWqDF+u3YnTc1ZG9xy8qdTKtXeQfai20s0xeMe8VeO7hG+makMYq1w7lkOwlmsHgZDIU0ex5an/S+Xa6WUxjFyuPfw7V7n2Bt8NU669yvuQFYfmhATse+8X67y63BDey7XTxc14KEEe/J2rBHn776VVrr3S+Ozq8yctDl3dtX2rJKfBu3kv106PETxg1YATq0rf/78q1z6aLYz9J8JfLBF+ejUhg4nwC35wifDnMmMnDyL8f3Txcp9Tr73vitGO8bI1aVR58pKdNuc5RkLN8q/fuTTLHzFjZGmI8K96eTbz+vWm/qvcnnZwWyXuYHQR/jxOVHINGw055w76HfzhT4Q/2ibv5zf7W4RMrL90T6PtTtTS9cYU4d/I6bo047jO4CL8XeYO/eVTrao+GxMnPYuocJW2q2JwEX4syrCqqIMoYzAR/uyTV09LOouCsms1/nrxQiPqzppxRPjzOMHJ/W5AEX6PYz8O7v9jjs/Gj8t622S6U6dpxhPh38iJEOjTRN42hi1vE3s1afqjc57XultOmZeXvWhF1RHADvHFKxVgRGfmbBYsOLcp2CKRF9xPaGEAxFXKhEExIIeDVa6V0XppOdArLLK+LVP1oJBRV25fQ7HgMkyTJCK46ELD9yLAd/SPkh6sqlrwWuAqgQXyqy9V966Xlv1StOywbfNq/eKpEtfFqt1FS6HogbGkxeYBeuchenVEqHrEcLP2h36FsPHuK5UNUsnQ+WXDtYsFXqMqB8+4vtFhy5FoIe2EFHYj4oQUfp132V/w/TM4v//cH8ZOlrQtU49ECb6yXCmVR3Fo24S3MVuUdHG7z/bLle9psi60o7ZV8gHMtqq1lIYzRnM6Y7BxnMEojq3PjoVbUJxSA4YvSRRcO3Vx7wymrGBmEdtM2KJzVIxSJW0mbNlZPVSlwX5BZ6s3oi4+qREa5r/k0e7AWbmtVlPHNfgBkZokBaL+ZYGpNJzVg9NZ3ibRc+Cj9MpWqxUsdMclqAaqOXrQ+KmazID8hYG7m9wakf6h8v6STJVL6I7Z7kQgh0c9LzJ0oVqIu2/7oV+WSkRyjmxrbbs7GSeOKUSrVp4+EfCsy0KjTnshAItJAK4jAIChRa9MlBzK2EUmGrb0P2rZZoPnXsu+w2aM0eyjDWWGPewLAZByAbDe/weZaKb8j/Fx6IW5DcbHiRGc4ODjtBacKGU+zsot4XU/T34UOnnsnG1r2qSsNQE+TjSEhHV3s4/ghPFJBXPmzDEAH+d62sstdk0zvSfXKNPyW4XUZSbBx4ng9I6/KXjHIHycjnVmnH6XJwzbtfuPUx0+db1oEnycLpzOaW0KzhEYk48TE3M1o4PfqtB5WwOnnukcet6k+DhNOJ0nNI7zTJOPs2i7W/uVjd/5bow+tHTYlzYNjczHsef0XAWje65U+Tgr5/VsccpOGLJg185jHr+tvGoSfBwsh2Dl44BASOSpY/8v8HHuiZ0DRzxUiZcsz8nq9H7RDCPzcdZD7Fn5OL8xU9pS4eN8SR1/qooqICTj4qaTr6qfFfHOx6HPzXngmKyDyLFyTJZRkeORj/Oumvq9v9my0O3dFrUo3+j3JN75OPQYwQNWv3FiNc2wMdfYfJxxbGFs6EF5U3noetGuA2GKf+73fkHdKemaAM9O+qkk8THME6Z6bF808JGr4+HpMe1uTpIrfspUKIGaeYPgJ6BLRka+WZIU6R+yy732+I29Rjuzvh9zJ6ewkdH+LCNBCAsrfBQL0Srp5550bJXapyH4NA8/HhcI7EXwH+38Z7SzuM+Dj8dtImUK4DCZNADE9eHk4zC34q4cz+ZK+/xUHzuPC6IVbe4d3Hwy0YemgoF2YGU8uiN8JrDCTZRDVsRgwDh8xZeSB/2QfDGUPHTNDsqweMkdZGSaL0SJ3FwvAvUJbKh/n7h1dRU3M++dfRwWZ8SHrCny9KVV6SOv84lN+uk9nk5sFrPfcHnE/i3dIxPZPJI+JzXhWeBHvwVD7dWLpzXrS10T9YXkGQ0zI2OdXuI3CNVg1MfrXSaoYcqL1WqLUSqkUI4RUgKjsb/D0mGNZJBapxyEfkSyfLAyaohMqr0J9erM5Vz8uq671S4gCEEwy6JIfVBUPeMtQn4JQgTncQj5JfiPLr8UOvFWl8gTTz0nnNmeYvEqLI8uvzS+54oxN+L7+Kflpi96mDajC2knD6MWW56J/sEIeSY2T1tD9QDCjUhvWT3tlPp3ZvPQ/TEvE/OGVM4vibf43w0Dfs2Hfl2KSnlmw4Pmb41SeNIa1nfsrwbfIW5QQcAo+B0LNcnuHhGjECpRbL6y8y3obSAh0iSo0Ilru8sN2p7rlBK0Lq9G9Qqyl/c5XWYuwp+E0DomDKXhtBxOp2UY1mlkCDYLFuEBFd4yRtvvMd+QfZQt2avnQ5S+lsepZSqMdQc+ghIwkb5aHiZz7TpqcVBG7DPzwUtuDaD7yjwkQSMZqNAKWAhom13wU92Zw5V7kVpfxRyuuJw6l9Opo98ytL44CygQjV2G67MgwaPLpHA2dDMY6ZhlOrCrvDNK3Yi4lOuFqHTv2Rxr4sSQPoltSO9673aYueK83/I9B8qO2Vl3EpUrGxkjj9YIYV1Z6rAOxyu2mtaOYdHRcCoiUSiI8qtyWDgPine7IQGmFxxkewVEvqQr3R60jE2vAVLdvFHF8JqJBXGvS8ojs8Gq74K+qYYvjPyi3rZ2z5fcehI4c8a+oXbHP4fTC7wgv2KRKSG96HpJiffw4D3EKs0Lxf0AE/wFr/VjjeEeVGKtAomLvcvbpyN72gbtHbRS2uTXr98ZS8rRugFT0v4ED7VzfnPQSkxgORlrgXrssVlDnSEu6al2it1pnnlzRfP8Z//Y0S6kD7VdwrsNBX8vTvh9jQM/gyFW0kLdeI+AbGfwTdB6P7SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigJnMNsDorefjovVe6ev59HTq1jTp8B6vFf+O6Vrtzc/BhfR88r5e/euLy1BxjrRxhR0BVg8L6fmMzr66YNn6XwJnaypPfd7i5dBCej5RTQX9H3//22tZXp58e/8+Vwrp+czNauo8O/5S4MKz/hUP3W30qpCeD6LyL6ltiKj8SxbqRVT+tSBMt4/WbGHbY0bw2E8b/q1x+sERYLIkTBbJ5Va8lz8LyVwzQJ65SwHRsCJMdzscqtHppxueqRU1/pFDHrcBJmvCdGXI09//7pEvSh0a2Hf/NafzwFSBMN3cMu90s+UXAjf4tRa0+ivvNjDZEKas5B8LPMPk3mObtTrzY55/EjBVJEz+4e2k7ufVogPSJ5nTrnVZC0y2hCm5uYUi8fZM/5xOX++lZcvnAFMlwtRum/TKP282BqfciVt059iZ2sBUmTBNe3XO6bGsfHD6qTN/5w+8bgNMdoTpbOcdF7/kVAtNa9XmYtyLAa2BqQoJb8PRZVYduxR44MyCBu+2PzoKTFUJU/kXdx60yRwi2lH9+paPV1v2AqZqAlYZKHvCNGXdgxdbIqYFbO57pN91ae0BwFSdMPnOyRv88515AZNclic7Lup4CpgcCNOEVPXRNXe6eE255D9AdeTEXmCqQZjcpm2JDk0f7LPGtezGvr2drwJTTcIk3rrj3DvF4+DJdT0qiKb2gApRjoQpoorZ+vN/XxLNPtP4zI22jZ4AUy3CVNWpvbtGecp7efOZ1XZ9fQzbRm3C9HnZyC6v+n31Tt31SLjTLHslMDkRpg7Z8og7jUf4TJeOrragvX0uMNUhTBXKNhZvrjjCd9L0uBu5i6rAzxISpk9OHmfmzmnou3ZWBf/POy+EM4Sq6gpYhKqsljc817NHc88V/TWzFuzPUfIgVDWFLURVi96zefGxU+KlG/NHnKk1kioaby4eHq9QShGnL9gS4EbEHULyvCxWpk4dCxJiEISICoA6HregByjkqzFn1YRBV91wZ7HgZZkTML4idg7DQXp8owxj55CzgGbBaVT8RZDfrcwbP/XCnm6ida+6De26ZFI5Hg+j8rxBCFf2nkOApKh558nGYsH9MowNQq6UrE2EDDQNjPcklcESR0q1HDt+At5PrsCmTmQ7EUpU8MS1MlYeha5g57Dz8LQ1+WETj4bdG7xUQi1Daqn9HCZ9vMDEe2kaF6zFcMB1sYxReBlFH3XUM5NzJTqatMBdmhiJRhgrGSITggREW8KanWfe4V7sq8pLP4RsfH46Z7GZkFrMziKSeCyCaUha+PZeJVeisfugvJfmhjV2BttcT+DqkoeiSMKfjA4kEqwZK6f8bPdcFDq3zIOJ232aUk9IFusIFg9g3eAECzR1YvyZyjb+/KfcUCzlBnqGbjDlBlHZExzKDfXL6jVW6qjc4Pgu5dsA1zOinDVnek0/ZOHC42BJj0A8KDd4QYRYD7q3K6vXYFlc5QZB/eTt80ff9Fx1qOm4zP4rrxhducGVExXQbkyUZWo45YZK//Z6d/T6u7CNWQtcBe+7Ubf8jancUIPTdbbGcZ3BlRuq98tybR6f5bXolvnVVv1ox3sNr9yARRnWo/cgyhhMueFCxsHsOYPahWV9fxB0fY2QqqtjHOUGV05w6tPAKVXlhji3T773Uw+HLfPY/aXa+DLvTUS5oQYnQqBPE3nbNLa87dQSSfC3DtX9xmU4mT+pn3yAmo0GgxxNGOkTrPvCgbe2GC6sJkBmwmCGGA1+BXlXkhBgq9LgGgUg2BLtFeZeROo2SqfEib5+iX5vZhZNWvQoi9vO8gReFpeRKnkCD1S31G9ZAXuBQhggv92/9oPape7tEpYesWjrpK9mA2i7SfBuxAEF7HJRmRI9/vFQ87YNBCge1QiFTcWCppZ68Y4dMIDIduEilatA8wV29GA79d2OF/e/HvPcVkVetck2P6oOj6UPeTOzWxaYigIsx/na7L8G9PHJvvvTlPanjuTyAFhdTsBAizJKEoWPGfBvWgnYfphyWBYcvrTGfMkRVW2f399a+5SH//oJ3du82vkwyw4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa09tSjl9d8hfITmnXV2aDbHx5sG1Npyu/clIrkXlx7N/1ivVqhBcKJ4jnbnA502ixbMOfr9LNt57HbrLm77hhzhUhV/lfe3OjYhJ2ShSSbYb1sWIgXE628DonVf95rB22zyzevdzmN5jP3XVuiokv2rg0ic8ySyD3HqZHhXjm4uUsQBynIKLPUZa8BhsclhQKB6SSnUaEenbdkW/MMMdyL/SNRsBjX/xTwD0R96IAvIDQOOf8RPr0R0dV9y8gguBApcbYBkkmG0o44QuZPFzgB4ugAT/h8c0NVyNVibKWNRLqtfO+v5Z80Q8TXn1090Z76h7J+V7YKQDZowhrhcVY2r73bQdvGmTaE3cs+fSJrOWlTDGzAYwp0GYzbwRJdPTGmMwl3RJuGEh92tXt6KUcWpZVALWPDBOFBLLFm9z86Y/3+63paKgTq+Lba9RT2QUPJc5/aUYeadSNiNg64OC7borBhsREmawhYQzFeu/adFWGTLp9YsgtytjxJTvZhMhwziMwtAEhQIRC9gSZlfyPkiExdqsPG6YRCGX4o08Ua6JESrBNEWleySg79JzvCfDC1Szrsf2nMWCgRBda9TmWzpAN7jEfd8+AOPhwVVXmRojYmOIoRuhJLyzKKO27/y8SQl+i2fWpqbP2IOY6TN+uajuTGcllPQoGkBuAERuJSplgJVfe/zEmj7riJyjFjkVpanBpoWE7830VTm1G23y3z3v5aCq38v/Sj3mTjQQ9JYO1cp3L4ZoBXOi5f2TQRMs8kUtuiXFywrjUL8QZ8ctCKS0MoUb/Bu1m59/f5jkDpKpaJQ4+FPSwG2PDZDQseARYFKdhLsa6WX6wFSSTlJCvw5wI3rBSxRtLrw51gv0WghzCMWwhbkCzt8lmr4ULcuZazm1/Zvm3nMq3frz24dqF2gbE/BbITYmsMulAUUwJxTe2oEqlW2gMpmaf/RoyU/541Io+Vf/J+LAP7Lkn6MW8pkmDzmdG8cP5NG/OfaUT9vnmdrlw8NH5uIPPEA+y4wL8slmJOSzeGNl2pKQG4CViSBRkqxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIn7w+ubzu1me/cBX+2DP+0exmD8gYbL7L10emXPFDeZrP5v17QUdebW6x815pJB159XInq/yr4Yr9IoVTDdBHbwGEm5eVZels9XzksdxwD6wPjD8CmlHCeSdAQdNvep1NOi3xFBjioP9I1KwdTxSVwf+A68sQImJEn67fN74jvtmFKGkroGoAH+IWdF3Q0sJt9/Oy5oTOeNe7cfELH0yXZayvdZeyLAKtFZYlh9yVDnBBMq6cxN/y5sKqmpUQUxgqJUtoRl6n7ct6F7Ci7oFXNa+PO8EiLGNs99N3JjOG+mcqp/lO8kw7zgFIyJ0qKsszFB648rVk42a+wzoZhRnY5ONUjuWfsWyU/7NJrLNw8IHiPi/rquWwPjRH3c92bEY0IuSEHD0/P0nM/t4l29xBCFFVI7xOOQJTYhARn45tZuaEff/LLKdds0dVh49xNYNcSgjSRE6RkPfd1G/rI8W+uXaoqaDLYxiJ7gPqY5fybIj7fPyPzqWeg7980Lh75XOYuotZSGugM5URnkHZPdw7bwPi0R2iwWfNPovmrzvquCAvoxVyIZ46EZizg1qXu52qpbolKvST36QcsdN0b0JX9DQLTEwjbWW/EApQAFoHQb6jTbZt2zo1djx+VXxU6/tuvkS2GH9xFXezE9mNZhnWKsagoTg9xJWWCw8JDEKxwVBtLB6n5Lf3GuooYWDLQ09ihepLwMLh6mp//hBavkyedH0EVc7cUg3vRQBUyGTglgDDlccJ0Ws/BrugtNPpes9G20GCkwdoI3EITMnJHNwwaIg7NZYtDIuezzTuMvx2c7rvilaZDjdr0dehYSbwQX6dBrJezpebO+H3kbg92LkUijJMlwksylTyKGCB1Ckv0w10cb4haKS9k1hFXT2exwNLiBFScRuTkKQD1x+Z6BaqK2DYUvrgLXgf5LQPLzjox/ceWgEnb6u16E5PVhJoiYQ9gpkj45aL6HP2cWwn7HGQmm0N4NqL6HFTD/GauF5vEBn8fLpH0zUPyhZkNrL03brl0pOyUE/eou3/4/czdP+J6Ufg8PNGycXiVqZ57kzN9LP5tVdJ1E4jPG3MufEDzMQbDwAIjbgzDgegkoP/oV0XNpptENUim4XLavl7lphz7bbPf2rAl2UPbfA2iOg2/n+k04jrva7bAK7c5vfKHSXnl5UHSK3oNX7ZYwIuXSYngi6658DhLsKXzCu+ZOadmtK0W5kR1TAh2P9MxxHW+HePpRoQTuMzImK+mNBcLPprrNyFz1GKATSwU8qLwWJYs3tc+rXXAjOe96o3MXyilSQrhD0BIChGG0kDksTkXIjfMyXF9Htu4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51m3zQz2mj3pfZJvHrevBEd5kTPFEG+8UTzOoymeO6njvgtYhUAxdPwgR+4REm/E2QX9xyozpy8tvGXntjY1vWlQ+gDm3mbImN1mDgwR/S53ZADN1RHA1hEwxDvSJWp1CiReElTSgHtSAfSI2vD8AyCvD/BTmlMDl0FBJR+nhu1IoqcF6LAeaAAgzqWGdqO/NvJr9xRW9NPKlN0rc5eNi5mmLOtXOVosV8Phvmobt8z58SHBWl9KrRUf4ksDJVcTuEIoTKDKRsSDuGgHwADE8acKeCJqeqU5ykK1NwvRZTCJxq13XhBh6khiP0DNTCDdyjyLE4wdSbJMcThN4k/CS63iRdL5KuN1lsPUn6jQg9SbbYVNtXrgIxRx/5226TD+XcPH5YtDjmzd6jP22sRpW/9WL2Dq8ixe1eqp1Gm4UMDlv2r/m3sGMPTpR0zQQKSUJ3uqPYC5Cgc9TiBELIkQ2k4ogE3ww+Lhs4N8R/juXpiGZO7dcXQySYjlLSr3dTK1ReHXBw6KdmfarJSsrhhCjlcKKUbXGCLgHIyXbBay3AxEgHgOisd+oYhj+KOYYR10tjwRtrMR9RC00urhhSRDxd8D8WT+lyPgaKpzLOeBr2Xzwl/TN994agFq3+9V4xq5KZ+s97N3iIp3SZJh4iRRRnpPi11ONp8uw+XV5NdQ1e4XcvZ/TqvQ15iKf0RQIeUArjRElcmvGUPoYaPZ5GccbTMG08XWjycwJ6d+KHzNamTI1XqaJ4n53vPGOy81JLKhYBpwQNLLimBLW0kKfxRmarSEJuADIbQgOPDPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDUYFdF7uDT1PB4Ya4t4c7K1AZ1cPB1JhKgi6WT6nj/DJ2ZsPqHLFvLgk8VsPlm8+86vk+9/DMjZvSNny5C71HN+5cIlcTIFszYKW2Bz8RLGwzsKVegSxik1MlxcCMpzc2nY0nUXEa+iS7SzjoxSKRWKCDhiwYsFRz5f/kyLhB2b1zhZc0pdz9n1YgSPaiaw6i5bdFfLVFAAnPzYhj7KhIEKyNWCVXSg8I9UriG+O8gw4C5HfkoGzSVkmSPGonQjsWBeeRBAO4gEKZNFViES1SB5XLAsmjIAWuOXI2C908LXLfHr3ZTxha9So3DFgEZim7nlT9hiIIar4LlBjRx/K3PyrVAdSiVJDIiTQtktEt4ylvAi3HopdAnL1RVESSZ8QgCrqMolChHUgio0EGlUMkms9ndMmFh7D9FUl5j8sExXAeVpqY7e/nkYl/eW5xqXt5Unx+WlJo85XV7VdJdHt3AS+zO1xP7feRsmbQSGGyYRurnkMInQzSWHSYRuLjlMInRzyVwo56z7md/WnRFv+WPCiGuCrg0L5UJL/ty+yOtx+4A5FeNarQkaNZoxuMKoj2xIdDFeHgbXZWyeNNFy7XTRYYOVa99hyVWufSxTSobncu0PelUqWzZlVEhaUvPU+bv6dTGBcu3bLLmK32YaRzCDWnN61apVBijX3t+1YWT0tNPixZMn9hxWW7zQJMq1L+f0znxT8I5ByrVfOl5r/WLNNM+p36LNIl5bPDCJcu3TOZ0z1hScIzBmufZVFjcVe3fleG6TXT98W1HJ1qTKtSdyOi/WhISCjF6u3f5GL2G5obdE82//dPpQ4DhHI5drj+L03K9G9xy8qdTKtQtlv1Zqst/Vd3GneLO1Fe9dMoly7VgOwVqufaxW7Gk5W576v1SunV4Ww8jl2r9acpVrf8hMaUulXLvS50KfaUv+8JleLzroX8u1O3kv104XN+OhBPlnS64S5C/1k03Uo1z7X5VblV3Rf5vP1g5pZRq3kU0qeRemYUWPETxg9ZATq78NG3ONXa49nS2M/SfCXywRfno1IYOJ8Hez4hLhb21VGiL8HYVjGh0WrhHNP3T3206zrrd4PG3Oc4yEmuURVlya5f5WBhHh/+foDY/B2V/D1pb7mnDkSL8Ao4vwd+FEBbQbk5k76Hfwhz8R/sDTZ24me57zPDjfwtGt7uezJiPC34TTdULjuM7gIvw1O/6uyNn/LmBqy777h167+p6202loEX4syrCqqIMoYzAR/uGKFX9+epQbtvJHlNXYsKgpJiDC34UTnNZWBhTh/7t5b8vtrb8HLrlYPv3zoSTq1Md4IvxNOBECfZrI21aw5W1iryZNf3TO81p3yynz8rIXrag6AtghvnilAozozJzNggXnNgVbJPKC+wktDIC4SpkwKAbkcLDKtTJaLy0HeoVF1rdlqh4UMurK7WsoFuyH+EpEcNGFhu9FgO88Zpqk58GqqgWvBa4SWKDJQv3mf7jUsmrQ+iM3uyWftqAVOitO7S5aCkUPjCUtNg/Q2wvRqyNC1SOGm7X6pVAV8O4rlQ1SydD5pXSUm+rrl7reO38/8jRhU04c7YQUdiPihBR+nXfZX/D913J+/9+NnixpW6YeiRJ8ZblSKo/i0LYZXbve+k1XBL5To3Ltl3Ub1YDaVskHMNuq1lIazpjH6YypppH+CPTZsXALilNqwPAliYJrpy7uncGUFcwsYpsJW3SOilGqpM2ELTurh6o02C/obHXch9GCldELglYMSfP9bUX/5dRxDX5ApCZJgah/WWAqDWeN4XRWgkn0HPgovbLVagUL3XEJqoFqjh7kOHP2lJH2fwfsXTD093lVJyaWZKpcQnfMdicCOTzqeZGhC9VCvCFLzyyViOQc2dYOdXh8EycHv5Tle/18WlY6ZdRpLwRgBQnAdQQAMLTolYmSQxm7yMSxF3fSUqVm/nP/qH+336w7SbShzLCHfSEAk7gA6DFcm2iu/B/j49ALcxuMj9PJmouPY2Fd2nycv553Ew/t9S14nmxj35i+zioT4ON4WHPtbrpbmwCpYNq0aQbg41jN2DvFu9MN7+WTnBP+riM5ZxJ8nEac3qllCt4xCB/nwGBxbL97PQKm9n8rqvteHWsSfBw7TudYmIJzBMbk4yyLiXRaWy8+OHXGtLONbZ0+mBQf57sVl/PeGj3ZNSE+Tv6VNe7JXjO9t0zziht6vEZTI/NxnnB67o7RPVeqfJwfHw74NW7UzmueXfukadK8zSbBx8FyCFY+DgiERJ666v8CH6dC2cbizRVH+E6aHncjd1EVY/NxRltz8XFimCltqfBxxo05FPPhRbJo71zPFhNsnV/zzsehz8154JiMtObimKisS4uPU3nHa6VZa5n34jXnPWw7Ro7lnY9DjxE8YBXDiVU/w6Y6xubjrGYLY0MPypvKQ9eLdh0IU/xzv/cL6k5J1wR4dtJPJYmPYZ4w1WP7ooGPXB0PT49pd3OSXPFTpkIJ1MwbBD8B2fI+OXmcmTunoe/aWRX8P++8EM76fsydnMJGRvuzjAQhLKzwUSxEq6Sfe9KxVWqfhuDT+EBhLnsR/Ec7/yl3Fl8WmZ+wiZQpgMNk0gAQ14eTj8PcirtyDZsr7fNTfew8LohWtLl3cPPJRB+aCgbagZXx6I7wmcAKN1EOWRGDAePwFV9KHvRD8sVQ8tA1OyjD4iV3kJHNtCBK5OZ6EahnsKH+feLW1VXczLx39nFYnBEfsqbI05dWpY+8zic26af3eDqxWcx+w+WR22Z0j6xl80j6nNSEZ4Ef/RYMtVcvntasL3VN1BeSZzTMjIx1eonfIFSDUR+vd5mghikvVqstRqmQQjlGSAmMxv4OS4c1kkFqnXIQ+hHJ8sHKqCEyqfYm1Kszl3Px67ruVruIBX7lAJhlUaQ+KKruXA4hvwQhgvM4hPwS/EeXXwqdeKtL5ImnnhPObE+xeBWWR5dfGt9zxZgb8X3803LTFz1Mm9GFtJOHUYstz0T/YIQ8E5unraF6AOFGtPjg5ycjnF9uFs9/k3vuc/e9u0riLf53w4BfxdCvS1Epz2zQhTqWM0rhSWtY37G/GnyHuEEFAaPgdyzUJLt7RIxCqESx+crOt6C3gYRIk6BCJ64nm4iXrLxXOST79R+KIe0z/+V0mbkIfxJC65gwlIbTWnA6zdmwTiNDsFmwCA+o8JYx2n6P+Ybso2zJXj0fovS1PE4tU2GsO/ARlICJ9FXiq0/Px699Hzq9dYOM7KWjBXRfmYckaCQDFVoBCwFtswt+qjtzuHIvUuurmMMVl1Nrczq1SjmG1hdnAQWisctwfRY0Z5omk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+jq2Ib3rvdth5orzfsv3HCg7Zmdd6nkQq8gYebRGCOvKUod1OF6x1bR2DIuOhlMRiUJBlF+Vw8J5ULzbDQkwveAg2ysg8iVd6fagZTSFaU43b1QxvGZigbVZSXlkNlj1XdA31fCFkV80yH3fooylB0Mnds1pMLH7BKrakBnLVywyJaQXXS8p8R5g1RhileaF4n6ACX4dM/1YY7gHlVirQOKS7d70TmOns96Tqmxssz7/sy1jSTlaN2BK2p/AN6/G+c1BKzGB5WSsBeqxx2YNdYa4pKdyd/QbXmWKzH9uK+Gw29s7HaO2S3i3oeAvwwn/B8PW9ybhZzDESlqoG+8RkO0MvgnSI/SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigMlkG2D01vNx0Xqv9PV8RKnbenm6fAvc1dB/bM/z5dWF9HxcnzcUJKWuC111wfZvzQL7zEJ6Pm0bdRodu+Kg57aLjo9y1zmXK6TncyokeXrmw8qBc5++WCnZGf53IT2f1edWPnIcPTto3Y4W4+9VOd62kJ4PovIvqW2IqPxLFupFVP61IEwtF1YN2LDtu2ha7e+HPO+mrAYmS8K00Nw3ob23PGCmz2/1T384Pw+YrAiT1cw1oeH9vUIWTth3L3zMNE9gsiZM+cNDlyd8WBKyyzatb6cX76H6YgXCNHvtyoPJYTY+B2ZMix/Yq2UAMNkQJo+frvlWfv8saGq5cxcyWg44AUwVyQeuuXdxStyN0PVrqrV/IW1nCUy2hCmm2a/dXVUtAhddLfsmtvfkEcBUiTA1jreq1l94wC9L/M1i9O24KcBUmTCpWniGC1wv+x0oe85vtPedVGCyI0ztvo4d61NeHDRuebDn53FtFwJTFcL0eL3CRhrfOyR96sdzZv/2eAtMVQlT9NHH5nuHfPaZEH/r7fW+c/4BpmoCVhkoe8J0pXeTbxVe/eaZvXpl1IJ1D7YBU3XC9Orp0SNBVmOCFg70XmrbYh4UUnQgTCN3zogJtunqt+VwnLSnh9QCmGoQpu0O5R42vJUQsjDraq3RFxceAqaahMl69F/dhiy6FrTFudHeVr5TVcDkSJjsHzxufGbOi7B5aqvKEZ6VZgNTLcI0uZdF8MSkn8XzU4e+ihv9yQyYahOmepGup/Y+Ge69vO/73fMc2kOTE2H6RTTz15Euf4ZsHyGsVCnHYREw1SFM/o01v90dXtP7tyGXWmVVSXoMTEKyE+05ePRKxsiQrHZ53rEeDmcYQlV1BSxCVTGvlPva1Dwbtkw2reHGyfVPIcKGvkJV69lCVLXoPZsXHzslXroxf8SZWiPTqVNX8fB4hVKKOH3BlgA3Iu4QkudlsTJ16liQEIMgRFQA1PG4BT1AIV+NOasmDLrqhsMSVhVOwPiK2DkMB+nxqQr6FdAsOI2Kvwi6WH2Fu1Ovtw73XTq29Yfmp+5RpehLdhiV5w1CuLJ3EwIkRc07TzYWC65U0CsnbhMhA00D4z1JZbDEkVItx46fgPeTK7CpE9lOhBIVPHGtjJVHIVHs9/jlxkkhwoAlDX5/3Tky/iGVPq79HCZ9vMDEe2kaF6zFcMB1sIJJZHLMo456ZnKuREeTFrhLEyPRCGMlQ2RCkIBoS1iz88ytruw4PN/3vCgt5tXm1629qtOYhsRjEUxD0sK39yq5Eo3dB+W9NDessTPY5noCV5c8FEUS/mR0IJFgLQ2tOXj/i6U+83+3vH/y521UHcxiHcHiAaxTnGCBpk6MPxvYxp//lBuKpdxAz9ANptzQ0oZLucHOpjSUGxwsLi4/fiw2dPnSLXXfLMttxeNgSY9APCg3uNtwHXRvZGMQ5YZl5pfXTTxpL8rJanSnajPLtkZXbqjFiQpoNybKMjWccsOFoAoBbb/EBa6rsitl1cTpvU1GucGC03XfTTWd4Vm5wWrUml6nLeaHpX8/+vn3227UGnGGV27Aogzr0XsQZQym3NDWcV7K829fxAvnS8z/zRz7wwSUG2pxgmNnY0DlhiW/VMwfvbyJ3+8OGfvqR6x/ZiLKDRacCH3X5m0b2fK2U0skwd86VPcbl+Fk/qR+8gFqNhoMcjRhpE+w7gsH3tpiuLCaAJkJgxliNPgV5F1JQoCtSoNrFIBgS7RXmHsRqdsonRIn+vol+r2ZWTRp0aMsbqOqRFlcRqrkCTxQvqp+ywrYCxTCAE2K/23b37dlY/y2L6mR02lwzCvabhK8G3FAAbtcZKZEi3881LxtUJVgXzEaobCpWFCzql68YwcMILJduEjlKtB8gR092B6J3JPZ6NQvwSsTek/JTH74ndotfcibmd2ywFQUYI9O3GlQN35O6LSHwqd7uu5owgNglTgBAy3KKEkUPmbAv2klYPthymFZcPjSGvMlR1Sd8OztxUoT/UL2V+v+MmPl1t52mJAJcIZ4eLxKpqU9Y0mtl3ekyy+NS5YA01w7UJXU4Nvsd/7bnk6tcVtlH8yDa79W4XLt6yqmkx/P/lmvVKtCcKF4jpYsW2lhN9VznueOiUtH/rns/R76hh/iUBV+lfe1OzciJmWjSCXZblgXIwbGLLaB0Tuv+s1h7bZ5ZvXu5zC9x34q0aEqJL9q4NInPMksg9x6mR4V45uLlLEAcpyCiz1GWvAYbHJYUCgekkp1GhHp23ZFvzDDHci/0jUbAY1/akUA+iNvRAH5AaDxJ1csKT/FK7gQKHC5AZZBgtmGMk7oQhY/B+jhAkjwf3hMU8PVaGWijEW9ZOAG98NVJuzxzp54aGHY8TrUssTle2CkA2aMIa4XFWNGBf95IvWcp/+0YZuCWgpu7SlhjJkNYJ4MYTbzRpRMT2uMwVzSJeGGhdyvXd2KUsapZVEJWPPAOFFILPf8tfIP7zGfPGd4Xnx6eeP4mtQTGQXPZU5/KUbeqZTNCNj6oGC77orBRoSETWwh4UzF+m9atFWGTHr9Isjtyhgx5bvZRMgwDqMwNEGhQMQCtoTZlbwPEmGxNiuPGyZRyKV4I0+Ua2KESjBNUekeCei79BzvyfAC1azrsT1nsaArRNcatfmWDtDtWOK+bx+A8fDgqqtMjRGxMcSQADQc827KWfFA39//nWIxJaY/jYyFPYiZPuOXi+rOdFZCSY+iAeTCIHIrUSkDVvm1Imv6rCNyjlrkVJSmBpsWupCL84gFoT5DA9Y8rTn5s3JJf+oxd6KBoLd0qFa+ezFEqyMnWi0qGoXFbtEtKV5WGIf6hTg7bkEgpZUp3ODfqN38/PvDJHeQTEWjxMGfkgZue2yAhI4FjwCT6iTc1Ugv0wemknSSEvp1gBvRC16iaHPhzbFeoNdCmEMohi3MFXD+LtH0pUgoBuVPcOp36ZLn+uYtN4d/TT9P25iA3wqxMYFdLg0oOnJC0UI7UG1mG6hMpuYfPVryU/64FEr+2VXkKvlnpYU82+Qhp3Pj+IH8q/zKY6tGXX3WPVQu9BeOyuUB8tG2XJAPsyUh38IbK9OWhNwArEwEiZJkZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKVueB4Vm1nxSffne0UWebZ2ZsZlDfYeNG7KzT6JQ+Ut61s/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHEa3B+4jjwxAmbkg/Xb5nfEd9swJQ0ldA3AA/zCzgsav+jql5nmqaLMn/46+bL52skl2Wsr3WXsiwCrKTbEsPuSIU4IptVJzA1/LqyqaSkRhbFCb2XctXWfEvDVc3x7x6xrDy4s4JEWMbZ76LuTGcN9M5VT/ad4Jx3mAaXBnCj1tmEuPnDlac3CyX6FdTYMM7LLwakeyT1j3yoJPHXzry5tHoTtHfPP+nsZ1f4x4n6uezOiESE35ODh6dF67uc20e4eQoiiCul9whGIEpuQ4GQ1DG/Q2mlPcOoUdYZqfLrSBHYtIUgaTpAG67mv29BHjn9z7VJVQZPBNhbZA1TbZ6lW/2z+03dmapOjbarvaU/dRSSfy9xF1FpKA50BnOj0sCETo21sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMf0LYznojFqAEALYj+g11um3Tzmh73npD6l++Oy5teHDpo98A6mInth/LMqxTjEVFcXqIKykTHMTpaxCscFQbSwep+Tn9xrqKGFgy0NPYoRo99Oq4G1a3/NbbHe6a1svJgxqJxOBeNFCFTAZOCSBMRzhh2qPnYFf0Fhp9r9loW2gw0mBtBG6hCRm5oxsGDRGHtrPFIZHz2eYdxt8OTvdd8UrToUZt+jp0rCReiK/TINbL2VJzZ/w+crcHO5ciEcbJEuElmUoeRQyQOoUl+uEujjdErZQXMuuIq6ezWPDR7gRUnEbk5CkA9et2egWqitg2FL64C14H+S2vPet/vcHh4QFZA9of+3IhfxQ1RcIewEyR8MtF9Tn6ObcS9jnITH4P4dmI6nNQDfOZnV5sEhv8fbhE0rM2pO49Mr2WaJNj5tnvccFUlSPi6zJ3/4jrReEzZNtn+cVLtr6pNy4k5NuYC3nAJ58TH9B8jMEwsMCIG8NwIDoJ6D/6VVGz6SZRDZJpuJz2cXKr/a3++dUvZYD9nciqN1tSnYbfz3QacZ33NVvglfOcXjlqUl55eZD0il7Dly0W8OJlUiL4opXw/Q9V8H3jFLZgyMaDIzKHlqc6JgS7n+kY4jrfjvF0I8IJXGZkzFdTmosF/9jpNyFz1GKATSwU8qLwGFb2+tlxc2/5bPx50aHqnzv2pEkK4Q9ASAoRhtJA5DonIqfsyHF9B9u4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51XIWjndNGvS+zTeLX9eCJZtgRPFEG+8UTzOrSmOO6njvgtYhUAxdPwgR+4REm/E2QX/yniTWmBC74HjS2/NOVPmU71qI2PrbERmsw8OAP6XOrIYbuKI6GsAmGoV4Rq1Mo0aLwkiaUg1qQD6TG1wdgGQX4/4KcUpgcOgqJKH08N2pFFTivxQBzQAEGdazTtJ15p8lvXNFbE09qk/RtDh52rhLtuHaulFrMd7FhHrrL9/wpwVFRSq8aHeVPAitTFbdDKEKozEDKhrRjCMgHwPCkAXcqaHKqOsVJujIF12sxhcCpdl0XbuBBakiZnYFauIF7FJlVEHqT5HiC0JuEn0TXm6TrRdL1JoutJ0m/EaEnyRabavvKVSDm6CN/6+WWl791hNRvbJ37sz9s//SYKn/rxewdXkWK24U3Cbo++OFZrxy/lId1L7VpXtI1E9A79kN3uqPYC5Cgs63KCYSQIxtIxREJdu2rHLPMwzkg/UDq6hkL644shkgwHaUGmX3Va++dFs+Xtj3UcOBIKx5QyuREaXkVhgQgJ9sFr7UAEyMdAKKz3qljGP4o5hhGXC+NBW+sxXxELTS5uGJIEfF09/9YPKXL+RgonnbjjKdd/ounpH8y341Pr3rtZuj+fSf61khUneQhntJlmniIFBGckcK/1ONp7ajD7Resu+27Rv7038BfN7XhIZ7SFwl4QKkLJ0qtSzOe0sdQo8fTCM542kUbT/eY/JyA3p34IbO1KVPjVaoo3mfnO8+Y7LzUCB6mBFWqcE0JrLWQ5/BGZqtIQm4AMhtCA48M9QgNPJLMhtDAI8lsCA08ksyG0MAjyWwIDTySzEbP0BiMNRgVkU2Mrp7HA2NtL29Otjagk4unI4kQVSSdTN/zZ/jEjM0ndNlCHnyyj80ni3ff+XXy/Y8BObt35GwZcpeaDZcLl8TJFMzaKGyBzcVLGA/vKFShSxin1MhwcSEoz82lYUvXXUS8ii7RzjoySqVUKCLgiAUvFhz5fPkzLRJW7H4hUNr8dVjWlzr118xsV5ktElp0V8tUUACc/NiGPsqEgQrI1YJVdKDwj1SuIb47yDDgLkd+SgbNJWSZI8aidCOxIKUyCKAdRIKUySKrEIlqkDwuWBZNGQCt8csRsN5p4euW+PVuyvjCV6lReJZ/I/GbMZVP2GIghqvguUGNHH8rc/KtUB1KJUkMiJNC2S0S3jKW8CLceil0CcvVFURJJnxCAKuoyiUKEdSCKjQQaVQySaz2d0yYWHsP0VT3m/ywTFcB5Wmpjt7+eRiX11fmGpdXVibH5QMmjzldXtV0l0fTOYn9aVpi/0HehkkbgeGGSYRuLjlMInRzyWESoZtLDpMI3VwyF9qyz7nxiXULArZfcLJWf1c1K5QLXT5y/XDDWS+CUxPDr8YeVBxiDK4w6iMbEl2Ml4fBNZfNkyZarp0uOmywcu2rq3KVa49nSsnwXK7d1mHnb8fkz0JWXf5jXKuMw6ZQrn1lVa7it2nG0UKh1pxeunSpAcq1T5s3xDIwJTZ4sXvElUl/nEo0iXLtMzm9M8EUvGOQcu2fFY0i7RquFG9X1b7XuUY4dSfdWOXaR3A6J94UnCMwZrn2udbZ8ZrNEv/FL/9yTv5wnCpLbOxy7dGczutjJA0okyzXfsS+e0pvj7nBaUGTdrgeTMgwcrn2CE7P+Rvdc/CmUivXnlzTvF5KvbiQub42Z5PsplELmxurXDuWQ7CWa4/Xij0dYstT/5fKtdPLYhi5XPvTqlzl2v9gprSlUq5dMP7PjutO3/Db1W/hX7UUUzfzXq6dLm7GQwnyx1W5SpDf1k82UY9y7R+XJ2ert1cN2zwmf0qtv/pX4L1cOz1G8IDVH5xYnTFszDV2ufbDbGHsPxH+Yonw06sJGUyEX1SNS4S/frXSEOHvOa225vnE1r4b1w2+fPic5z0eT5vzHCOhZrlXNS7N8nbVDCLCn3XpUezZi7V85wcdst03Vr3D6CL8rpyogHZjMnMH/Q7+8CfCX35S1Hb7sDz/7HOrR0YNcuhjMiL8NThdZ2sc1xlchP/qwy45Qe9CAhcMvZjxaFDaTiOL8GNRhlVFHUQZg4nwP5SmrLzS2NdrSs/4cLOG1WeZgAi/Kyc49asZUIR/5xOLzrm53fy3Hdp9vFX9P1+YgJwFRKgGJ0KgTxN52xG2vE3s1aTpj855XutuOWVeXvaCWhjHGjvEF69UgBGdmbNZsODcpmCLRF5wP6GFARBXKRMGxYAcDla5VkbrpeVAr7DI+rZM1YNCRl25fQ3Fgo0QX4kILrrQ8L0I8B3HTJP0PFhVteC1wFUCC/TUaYzUe+OOtX5ZFl3G36mylFrTtli1u2gpFD0wlrTYPEBvPUSvjghVjxhu1uqXQlXAu69UNkglQ+eXG+/MyP5+dr7fhhoBzf/ulEHVUizvg92IOCGFX+dd9hd8/wWc33+G0ZMlbcvUI1GCryxXSuVRHNo2TT7Osc+SVfLJbBIe33H9WlpbJR/AbKtaS2k4YxynM4abRvoj0GfHwi0oTqkBw5ckCq6durh3BlNWMLOIbSZs0TkqRqmSNhO27KweqtJgv6Cz1Qed7Hd3Gd/TK+P1ns2dYytTl/Qs4QdEapIUiPqXBabScFYcp7OkJtFz4KP0ylarFSx0xyWoBqo5etDxOW5n+nU76j9+c9WtvSzNnpRkqlxCd8x2JwI5POp5kaEL1UK8YameWSoRyTmyrYTHs7x2vXbxz/Q5s1yQ+3mCUae9EIDZJADXEQDA0KJXJkoOZewiEx3Kfd/4d8om35zurZ3al+s11qiHfSEACVwA9BikTTSP/o/xceiFuQ3Gx2lqz8XH+cDMLHnm4/i2DZvyzKJr0IbesoEXV5//wwT4OI3tuXY369ibAKlg3LhxBuDjjOow5sf8OauDlu/xvpIuzn9iEnycapzesTYF7xiEj7PEYf4zRd4y7x1b+33zTDhRxST4OGU4nfPBOPmSCfFxok533nU0uJFnlveDCrWyyj4xKT7Ov9W4nHfP6MmuCfFxnHJW93qW19Mv5cyXWjt8zjUwMh/nT07PXTC650qVj1Otw8EdK5TjAyY/XbOobdmpk02Cj4PlEKx8nA/aPPXY/wU+jn9jzW93h9f0/m3IpVZZVZIeG5mPE2vPxcfpaW8YPk7lO+Nk6munvFa9HO4ya5/rMt75OPS5OQ8ckyH2XBwTiX1p8XHOpS7u6e62JWTTi3YPzl2/eo53Pg49RvCAVU9OrEIMm4cam49znC2MDT0obyoPXS/adSBM8c/93tT9KuuuCfDspJ9KEh/DPGGqx/ZFAx+5Oh6eHtPu5iS54qdMhRKomTcIfgJaKmfPwaNXMkaGZLXL8471cDjD+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg07SEwlz2IviPdv4zxlm8s4XdCZtImQI4TCYNAHF9OPk4zK24K0+wudI+P9XHzuOCaEWbewc3n0z0oalgoB1YGY/uCJ8JrHAT5ZAVMRgwDl/xpeRBPyRfDCUPXbODMixecgcZ2SiyRG6uF4H6STbUv0/curqKm5n3zj4OizPiQ9YUefrSqvSR1/nEJv30Hk8nNovZb7g8ct6W7pFTbB5Jn5Oa8Czwo9+CofbqxdOa9aWuifpC8oyGmZGxTi/xG4RqMOrj9S4T1DDlxWq1xSgVUijHCCmB0djfYemwRjJIrVMOQj8iWT5YGTVEJtXehHp15nIufl3X3WoXsaBtJQBmWRSpD4qq21dCyC9BiOA8DiG/BP/R5ZdCJ97qEnniqeeEM9tTLF6F5dHll8b3XDHmRnwf/7Tc9EUP02Z0Ie3kYdRiyzPRPxghz8TmaWuoHkC4EV0goLXT1hVl8v1+88gYvHby8TYl8Rb/u2HAr62hX5eiUp7ZoAs1qWSUwpPWsL5jfzX4DnGDCgJGwe9YqEl294gYhVCJYvOVnW9BbwMJkSZBhU5czX8X/nj762nR8uibhxKc7NI5XWYuwp+E0DomDKXhNCGn0+wN6zQyBJsFi/CACm8Zo+33mG/IPsqW7NXzIUpfy+PUMhXGugMfQQmYSF/dGD7izDx5tnhbhU3fR/3T14XuK/OQBI1koEIrYCGgbXbBT3VnDlfuRWp9FXO44nJqBU6nlq3E0PriLKBANHYZrs+CBI8uk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+mm2Ib3rvdth5orzfsv3HCg7ZmfdSVSubGSMPFojhHVlqcM6HK/Yalo7hkVHw6mIRKEgyq/KYeE8KN7thgSYXnCQ7RUQ+ZKudHvQMmrCNKebN6oYXjOx4HOJS1TbYNV3Qd9UwxdGftGhv797/Gfsz+LZ/1TtOihrK1U5xYzlKxaZEtKLrpeUeA+wcoBYpXmhuB9ggl/RVj/WGO5BJdYqkLh0HFDtJ7uFcaEbY8o/bWF99jxjSTlaN2BK2p/ANzfj/OafDVtgmmU5GWuBeuyxWUOdIS7pqQPrq9ZUTLLynVzu9r/PFD2oa1CYSpGh4H9ZkQv+h8aBn8EQK2mhbrxHQLYz+CZIj9Ar7hYzUpR0Nd+VCAW5nogBZoAr1iGIAeYM2wCjt56Pi9Z7pa/ns/+lyqzDyIv+2/OnhY1Y0EBYSM/HrqeFV9djWwNWVFpoP2Gt4l4hPZ8jiZtunO5wISBdfv1pWlRAi0J6PkfuDZ7Td4kqaM/id5b1RrS6VUjP5/3dtat3qYZ6zg+0ia42wO54IT0fROVfUtsQUfmXLNSLqPxrQZgmWbYP3DO6dmj62APJ9zo9tgYmS8L0fM+fyfE+fwRumx6829WlzThgsiJM1+cuyNj1MsJz8eqVC/uMbPszMFkTJosGd3seudo7aOfIuZqE5N0iYKpAmDqOrdBMuu8Xn5QLZ2SNN9/fC0w2hOlRmfC1XyMeBW5veHXh0K1VvYCpIonGz5bdB4cN81z8vU+PiL+2/gZMtoTJ9WgP+w+TrnivuHW1x5w9Ej9gqkSYyow0DykrFPgsy2+Q/3D2sZXAVJkwlW3vF330H3fP/X/UtJkwotkkYLIjTDtHVuiQef6O1/ajYSuXPWg1AJiqEKaxbqH7I375GpCVcuttt0p75wJTVcKUGFhLXmbn8aCDV3s8sv34VwVgqiZglYGyJ0zbN//ZTKACD3y0y3Hak+hrwFSdMA0e8bRs0uv8gFl31n8coXq6G5gcCNO4hBq/Ln4ywX9TmShNxqckd2CqQZhmjz9Soeu7vLBllxb/NMu56ShgqkmYfHacE5i96Bg22f214+G83AbA5EiYfFOfXZ/yZVPgWE8fdfvcpdDLtQiTx9UF+bUffg3ZKV6eFPhTeagrVZswVW+w8Z6ojNp3p6+qyl672lHA5ESYnJ33vl6y+R/Rby8ez/9lSkU5MNUhTJ1TLisTfRt5bh/1dOzNXguhQKiQMNUbt6PPpx8OYQd/vfVhqmvgYoZQVV0Bi1BVh0crh7Vau9Zzz8wN15bvfZ/Og1DVWbYQVS16z+bFx06Jl27MH3Gm1kjqZ5mLh8crlFLE6Qu2BLgRcYeQPC+LlalTx4KEGAQhogKgjsct6AEK+WrMWTVh0FU33FksOF39BIyviJ3DcJAeb6+uXwHNgtOo+Iug6+9Vjgo906FL0LqTT6/N95syg8fDqDxvEMKVvZMQIClq3nmysVhwoLpeOXGbCBloGhjvSSqDJY6Uajl2/AS8n1yBTZ3IdiKUqOCJa2WsPAqJ4unHcTU6WC4MnBNwYuPC0RXnU+nj2s9h0scLTLyXpnHBWgwHXOurm0QmxzzqqGcm50p0NGmBuzQxEo0wVjJEJgQJiLaENTvPXNBo0tXJnYd6r734245Lj7r3pjENiccimIakhW/vVXIlGrsPyntpblhjZ7DN9QSuLnkoiiT8yehAIsFanBhUp22lg0FTLfZaB/r3pc4Ui3UEiwewtnOCBZo6Mf6cYxt//lNuKJZyAz1DN5hyQ20HLuWGb/qNlToqN2hetJk39cF1z3W3Bl345dms6TwOlvQIxINyg6MD10H3yg4GUW6oF2G3O7PxatGS23+1N7vffrnRlRvMOVH5ZpwxUQeWqeGUG9zO3b94Lf2MeIGy8eqyR1ZtMhnlhjfVuVz32FTTGZ6VG8Ysi7vzdvEAvzWrO/ed8fjaWSMrN2BRhvXoPYgyBlNumNPs1k/W7sdDMltUvug5pyGVFG0c5QZzTnC+VTegcsOP7jk/en/b7jPff/lgy2X/UCUcjafcgPVpVoQea/O282x526klkuBvHar7jctwMn9SP/kANRsNBjmaMNInWPeFA29tMVxYTYDMhMEMMRr8CvKuJCHAVqXBNQpAsCXaK8y9iNRtlE6JE339Ev3ezCyatOhRFrdyHaIsLiNV8gQeeOWk37IC9gKFMEAfUHgeP9dnoJvncqeAGp2vBF2h7SbBuxEHFLDLRWVK9PjHQ81b2zoE+4rRCIVNxYJydfTiHTtgAJHtwkUqV4HmC+zowVbdYv7Ek5deh06fO1r575jGnand0oe8mdktC0xFARag8H/cP79N0CzFqcCeY85U4wGwL05cgIEWZZQkCh8z4N+0ErD9MOWwLDh8aY35kmvMObbofnqX957ZbRs+/SfBtrIdJmQCnCEeHq+SaWnPWFLr5R3p8kvjkiXANNcee/0j36dfV98DzjfnfBrT1oMH1/7D6dqbRnItKj+e/bNeqVaF4ELxHOnMTjPWr+0w8+fALM2TrNEDhZ70DT/EoSr8Ku9rd25ETMpGkUqy3bAuRgyMF9gGRu+86jeHtdvmmdW7n8P0HvupZZWqQvKrBi59wpPMMsitl+lRMb65SBkLIMcpuNhjpAWPwSaHBYXiIalUtxGRtm1X9Asz3IH8K12zEdD4NTUA6I+8EQXkB4DGH12jpPwUr+BCoMDlBlgGCWYbyjihC1n8HKCHCyDB/+ExTQ1Xo5WJMhb1krW9lRXrCTNCtq5t9YdEPJ56iL18D4x0wIwxxPWiYoz3ovPxG49YeW512DZryC9L65QwxswGMKsgzGbeiJLpaY0xmEu6JNywkPu1q1tRyji1LCoBax4YJwpN01v74Oacz37BS8b2mPfs/qQl1BMZBc9lTn8pRt6plM0I2PqgYLvuisFGhISLbCHhTMX6b1q0VYZMev0iyO3KGDHlu9lEyDAOozA0QaFAxAK2hNmVvA8SYbE2K48bJlHIpXgjT5RrYoRKME1R6R4J6Lv0HO/J8ALVrOuxPWexoBNE1xq1+ZYO0G1U4r5vH4Dx8OCqq0yNEbExxJAAXFh/Zs7z/HI+27p07r/73Mld1PQZexAzfcYvF9Wd6ayEkh5FA8h5QORWolIGWPnVvQZr+qwjco5a5FSUpgabFhK+1xsbT1nwaVLI+lt7ag9bL7GhHnMnGgh6S4dq5bsXQ7QacaJVq4ZRWOwW3ZLiZYVxqF+Is+MWBFJamcIN/o3azc+/P0xyB8lUNEoc/Clp4LbHBkjoWPAIMKlOwl2N9DJ9YCpJJymhXwe4Eb3gJYo2F94c6wV6LYQ5hGLYwlwB5+8STV+KhMJRPqzmtfRnPjnzb92bG7mlHW1jAn4rxMYEdrk0oGjECUUt7UB1iW2gMpmaf/RoyU/541Io+ffNgavk3zsHEvLLJg85nRvHD+RWg97nNdwcF7RwR6i4ztvsVzxALq/JBbmkJgn5Fd5YmbYk5AZgZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKViSBRkqzMod5BI/vX6xo4e/ewC8le+acZlDfYeJGtj06/5IHylsfm/3pBR11vbrHyXWsmHXj1cSWq/6vgi/0ihVIN00VsA4eZlJdn6W31fOWw3HEMrA+MPwCbUsJ5JkFD0G17n045LfIVGeCg/kjXrBxMFRNgXLuOPDECZuTdHfRau3bEd9swJQ0ldA3AA/zCzgu6fGtSskWnCj6T41/td13hNrEke22lu4x9EWCldiCG3ZcMcUIwrZYyN/y5sKqmpUQUxgqJ0sKfbj8I2hnp9fuX0c+3mX+pxyMtYmz30HcnM4b7Ziqn+k/xTjrMA0rdOVHydWAuPnDlac3CyX6FdTYMM7LLwakeyT1j3yqJ6bDljMuv30PHrk3/o07faYONuJ/r3oxoRMgNOXh4Wq7nfm4T7e4hhCiqkN4nHIEosQkJzjDP27fqBDwVZwZE/xp8oXqACexaQpD6c4LU3UG/fd2GPnL8m2uXqgqaDLaxyB6goq7/SDhxr4HPxNYeG5ocs5hK3UUkn8vcRdRaSgOdIE50vLS56B9sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMRyFsZ70RC1ACANsm/YY63bZpa2T7nsoTpgcvGHYnufnqMdTNKWtsP5ZlWKcYi4ri9BBXUiY4iNOHIVjhqDaWDlLz3fqNdRUxsGSgp7FD9dJxmvTlinr+m1JqXHrWa9Y2aiQSg3vRQBUyGTglgDBt4oRptZ6DXdFbaPS9ZqNtocFIg7URuIUmZOSObhg0RBy6yhaHRM5nm3cYfzs43XfFK02HGrXp69Cxknghvk6DWC9nS82d8fvI3R7sXIpEGCdLhJdkKnkUMUDqFJboh7s43hC1Ul7IrCOuns5iwb3aJ6DiNCInTwGoH6mtV6CqiG1D4Yu74HWQ33LN9BmzW43c679D/NOe20kRrakpEvYAZoqEXy6qz9HPuZWwz0Fm8l0Iz0ZUn4NqmNdq68UmscHfh0sk/XCZB7077OnmueKL+RbrH6Ig6u4ffj9z94+4XhQ+luu6XXph7R+8s0n9s5LAdfY84HOOEx/QfIzBMLDAiBvDcCA6Ceg/+lVRs+kmUQ2Sabicdv/zywFlTmwLntE2slPm8ZttqU7D72c6jbjO+5ot8MoeTq9sNimvvDxIekWv4csWC3jxMikRfJGOGTe9XcTwo7dDsu+5Palr1YK6KFM+BLuf6RjiOt+O8XQjwglcZmTMV1OaiwWXa+s3IXPUYoBNLBTyovC4U6bsq10f9vgd9CrTrGFUMnU51lyEPwAhKUQYSgORI5yIbK9NjuvX2Mb17LlBb3t39AiY9PabxuLIjTdUH+OfqDsZppN2hkEdwP9fe98B1kTy/h+VUxSxiygqwQpKs2DBlpCEXhQsZzk1QoBoIJgEEcuJYlfsKGLF3nvvZ2/n2XsD29n1PO/UO/U/syWwu7NLQpYk9/t/eR6fR3bYZPfzzrzvOzOf+bzClHhldDxIK+HZQrlWC9Ug9awYIvwbNvmgn9NGPS+zT+LXjeCJzqxD8EQZ7BcRmNWlM+O6kTvgtYlUAxdPwgR+4REm/EnQ9V+qTg3o0Px8yHZ5nwnuh07LqZ2PLbHRN5g5+EP63HSIoTeKoyFsgmFolMdqH070KLykCeWgFuQDafH1AVhGAf4/P6cUDg8fiUSUHs8tWlEFzmsxwBxRgEEd63T9YL5p9RtX9N7Ek9okfZuDh52rAXW4dq566TG/xYZ5+G7/C2cExyVpvWq2U74IrkxV3A6jCKEyHSkb0k5hIB8A4UkH7lTR5FQN8pN0ZQqux2IKgVPbDV24gQepIWV2KmrhBu5RzKmL0Jsk4wlCbxJ+E11vkq4XSdebLLKeJP1GhJ4km2+q46/UAJ9jjPytPHCt95kBqsB9tZoEhMnbZVDlb8XM0SEuVNxu4G93Pv5Ywls0s8TceW0H925h6poJGB1roDm9UewFSNBZXPcUQsiRDaSiiASf7bNjQ6XL+2RZN1K7Jg15FlkEkWA6SlHpK7edea4IXytI/BIbOK8BDyjN4URpcl2GBCAn2wWvtQATIwMAorPeqTEM/yhmDCOuF8eCN9ZjPqEWmlw9MKQIf3r7P+ZP6XI+ZvKnnTj9qdv//Clpn1bpR/eV+DlEunXfsb+7v+gu58Gf0mWaePAUHTg9RYti96dXf57a5lj/xJDdNVq2PfzoXhQP/pS+SMADSm6cKDkXpz+lx1CL+9MOnP7UTe9P71j9nIA+nPghs/mUqPk+Q5Ik3fVRFL/lakYkD1OCb5xTgr/0U4K7vJHZKpCQm4HMhtDA05PZmBp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxto93oxsZ0YjF01HEiGqSBqZvufPsIkNm03osoU82OQ+m02y9zzsOeHxp6B9e3bu2zool3rO74fO8kSFilkbhc2xuYqFSfCOAhW6hIlqnQIXF4Ly3FwatnTdRcSjGOLt7KKiNWqVKhJGLHgx/8jnu040T7h8WFju+LeHwvZ2XyBLldoPZfOEtt20Cg0UACe/tqFUnTxABblasIoOFP6JUeqIdwcZBtzlyEtbRTMJWeaIsSjdSCZQ1gYOtK1EkDZBUi5MrolTJoYqYikB0A6/HAnrnRa8Xha/3lWdVPAq1QsvDmskWxtf+1RFDMTOGnhuUKfEn6oM+VSoAaWRpwQlxkDZLRLeEmXhRbj1UuASlquriJJM+IQAVlFVylUSqAVVIBDpNAp5gv53TJhYfw/RVR9YfVimq4DytFRH7/88xOXM2lxxOaM2GZcfWj3mdHlV610encJJ7E/XE/tzeQuT9gLzhUmEbi4ZJhG6uWSYROjmkmESoZtL5kK/Zn0dvfzMT6LxCa//+HeZ/6gCuVDnp+8rLcko55++afzJ3l0eJzOCK/T6yI5EF+PlIbjmsVnSSsu100WHzVaufbozV7n23s7FXa79nG532Joy0bIVwff2B835hTqfsky59gxnruK36c5WUHN6zpw5ZijXPvB0ZpO+v1YJ2Lph9Za0H//Osopy7amc1lFbg3XMUq797JvfSs6r4yTK+PZLsvxgTaq2iaXKtSs4jdPbGowjsGS59iZrXs+J3isNPtxljm3N0IPXrapcexdO4wVYxnjWWa69077fv+cELg5aUlbVsNSCtz9YuFx7B07LtbC45eBNxVaufXEF3yDh4RVBa55uH1PmTcd/rKJcO5ZDsJZrB46QyFMfseWp/6Vy7fSyGBYu137dmatc+xFmSlss5dodorbZKN3dAtb/nbvo4ve+w3gv104XN+OhBPlVZ64S5GeNk000oly7LvT4uLUp+yTbo5d3k49aV930IUzDiu4jeMDqCCdWu8zrcy1drv0xmxv7nwh/kUT46dWEzCbC7ynkEuGvICwOEf6d++5Ne/BlhDTnxgH/PudbleHxtDnPPhJqlrsLuTTL6wnNIsLfYnJYx0M7q0Ws8pk7YsSEClKLi/A7cqIC+o3VzB2MO/jDnwj/XM3TKmV2tgmY2r9Osq5mdaoYpiVF+G04TffFMpMHs4vwV+6oq1n2gE6yut/0DzO+PzplYRF+zMuwqqgDL2M2Ef57yxYNsq2+OOjgma4r25953cMKRPgdOcGpIDSjCP+sD83np5brELawWUhD59F/jbYCOQuIkA0nQl/0088nbHmbTNyk6fcOV8Vr7tdde3nxWyqDzA47xJekVoGIzszZbFlw9snfIlHm309oYQDENerkuHiQw8Eq1+pYo7Qc6BUWWZ+WqXpQoNFQbl9DmWAexFcugYsuNHwvAnwTmGmSkQerquU/FrhKYIGWm3f3bbXmVE7oRPm5RgsWLVhteu0uWgpFd4ymFpsH6GVC9JwlqHrEcLPWuBSqPD58YxRxGgU6v7w4s/49+wPPxbPm1hZPdT+8mHZCCrsRcUIKv8677C94/9Gc759i8WRJ3zONSJTgIyvVMcpoDm2bXhu+fI9vFSHO3Hzm0eGPoRWpfZX8AGZf1bcUhzESOI0RbRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbSDNTrsF3S2WuZIQoy7/LN0Q7/Fu6r45FK35MvCL4jSpaoQ9S/zm4rDWD05jRVhFSMHfpRR2Wr1/IXuxGTNAC3HCPotq/JhB3X1wJXOA8dc3p9215SpsonmmOFNOHJ41PMiQxeqmWz9BCOzVMKTc2RbF0SKT5ouW0P21/QJe/Bszx6LTnshAMNJAG4iAICuxahMlAxl7CITlR+dDLXP7h4yp261nZXkj79Y9LAvBKA/FwDdI4Vkovn0P8bHoRfmNhsfx8GFi4+Tx8wseebj/PBO7NpLmBWU2eSXDfceOP1kBXycai5cu5vlXKyAVDBs2DAz8HEeLh4Z9zUlQTRvVau+1Za9eWoVfBwBp3X+skxItgAfZ/RxF0l8i/r++6tM+rWW98sAq+DjvBJyGSfPGowjsCQfJz1QO7/PwjOhCw43mvNg6JlNVsXHuclpvAsWT3atiI9jP29kXc+jN4KnlHo80Tdh8WsL83GOc1pun8UtV6x8nG07xHUXLfKK2LG918PMa8GJVsHHwXIIVj5Onj5PffZ/gY/TIe2yOsW/kWjHyJej7/Wad8rCfJwfXbj4OH4u5uHjtHNL/VAi8UZYWky3lv90WLGKdz4OfW7OA8ekuwsXxyTUpbj4OKd7v7syzv20NCvU47FdvWsJvPNx6D6CB6z8OLFqY95ZgqX5OL+zubHBh5VNleHrJLsPRaiePe79lrpT0iUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAbkD2v3pidfT5/d4w43PP+35M8grNZn4+5k1OwkdH/ykYBFxZR8CgWolfSzz0Z2Cv1n4bg0zjBU/gOEviPdv4zobFMVavOKfsohQoYTBETBPz6UPLjMLPipnzOZkqHvAxpFd/fJDk+jw5vPp1C5YCU8EMbsDLu3RE2E5TDmyiHrIhgwDh8xZeSB/2QfBGUPAzNDkqwWMkbZGTxZIncI2IC9RdsqH8bt21FVU8bv119HLNXJYWtLPT0ZbniR97gE5v003s8ndgs4rjhssjeWnSLvGSzyNKZGcmvgj8FzB3soM2e7E5dsSrtD8kzOmZGxjq9xG8QakHUx+tdJmthyovVaotXq2KgHCOkBMZif4elwzp5nNagHIR+RLJ0qDp6kCJGfxPq0ZnLufh1Q3erXWUCFycAZkkUqQ+KqpdwQsgvQYjgPA4hvwT/0eWXwsfd7xh16qVo7LkdabbvI67S5ZfSe+SMup3UJzDryNL5T7OmdiTbycOoRZZnon8xQp6JzdJ2UD2AMCO6Ck6O84ySKTclm1zjP+69H93QFGvxvxsG7OoM7boQlfLMAEOoupNFCk/awfqO/bTgHRLj8h1G/u+Yqxnu7Rs5EqESxWarKv75ow0kRLpkDTpx3exeLm7BrXV++0fevlQ9obKQ02RlJPgnIbSOiYbiMJodp9FKmNdopAu2CZXgDhXeMko/7jHbkGOULdmrJyVKXysTtQoNxroDX0FxmEhbdX/0qXTptekhY7dsH7wiZ+A5uq3KhCXr5ANUegELAW2zC36rNzNceReu9VW0cMVl1L9rcRn1dS2G1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0L6K7aQ3uXRg4gyqgsBS/YeKjlqlwtVprBcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3siAaYXHGR7BES+ZCjdHvSMH2C/6eqHKobnLhM8MblEtT1WfReMTS18YDS/89SwF8syT4myh//mEOUZTi2IasPyioWmhPSi66YS7wFWpSBWWWIU9wNM8D8zi1JzssZwC6qxXoEuG39meYths/+Q7FixsOFy5S9yxpJyrGHAmDqewJu/rcn15k/MW2CaZTkZ64FG7LHZQZ0hLump+fUdRl94PdF/TvqbOqczWoRT+yW821zw3+GE/5Jl4GcwxEwt1I2PCMh2Bm+CtAi94m4RPYWpq/kehCs4IkIEmP4e2IAgAsxrtgBjtJ6Pq956xa/nU/2il9uS366LN94+1eDIm8xTBfR82vw1v38V8QDxQtVnyd/R3s8L6Pn4/nrl8sHaS8XTZ/f89PeJ3dcK6PloHl5dFHN0lXRfqdvn5+ZO/6GAns+Rr7Y3cvcdDDwc/XtY2K34twX0fBCVf0ltQ0TlX7JQL6Lyry3RtG55w1vl20cGTLZL2ORZzeF30FSWaGr7ceqwR8+PitN7Hf9y02ZhKdBUjmia0fmZy5UpL4O39Qz/+r7ThxOgyY5oqhvcaMeT2d/8M9o30X5daf8UNJUnmu5lja2yuE2ngJzggcdr1xZoQJM9CVR0u1HtW63yT98y+Kdrv64YDJoqEE3CvBVHl04qJ9u4o7Oy+S5pKmiqSDRNFtUr59ba2X/XtuvPSrin+oCmSkRT58yjx2r+czdwaxff0T1ajHQGTZWJpoP2n7KOKiaJpg63OV3RaT9UUqpCNMXFPxkoDKwUlPblacXAst3jQFNVomlNldy/mjaeLEqrlZs7/kwA/MBqRNP6LJ9FS3vcCt09JMd/x2PNMNBUXcAqA+VANH0+6TDizJG10uVZMxpm+h5tBZpqEE3yl227uvuG+GfVu1f18rywi6DJkWj6npR+3MXTV7pRUrbygQZxItBUk2hyr+p3qqNkld9Ue9syX39++hI01SKaLkyqsvN2tWi/KcuTfu00p3l30ORENJVq2jpCcHtk2HbvUi2rzNdAPcfaRFPmmi/nm/iWCjnUdtikXle3LgJNdcgO8Mvsb6ebO4ZvfbTnXu0bTiGgqS7RlHE6pEOlR+v9py8Kmlyt5asjoMmZaOryvnzjEBeNaLrX0chmHyR1QJOQaGq1fc+6slFBQYtWnSh9LLeMLUOoykXAIlTVrvbV6k+X2YeuzHK68aTXwWiE2zBWqOoNm4uqHrt3c/aJM7KFG/KGnas9Yil16iobmqRSxyBOX7AlwI2IO4TkeVmsTJ02ASTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeo/inoXxE7h51BevyinnEFNPNPo+IPgny3/vemt9e9HhK+/kRNl5mS4BweD6PyvEEIV/a+1QMAxaDmnafdZII/6xmVE/tEKkDXwHhPMQpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vicoo9EK3RsdSw2uZRex73r5Rd0PjO9GpY/rv4dJH89v4r00jSvWYzjgeljPKjI55lFHIzM5D2KgxeSbSxcv1wkT5IMUQpCA6EtYs/PMvx0aNKR27QjJHMGVE107rOhIYxoSH4tgGpItfFuvkgfR2aUo62V5Yp2dwTY3EjgX8lAUSfhT0IFEgqWp0X1t1IOx0plTxT3eCPw7mH4EiwewXnCCBbo6EX/essWf/yk3FEm5gZ6hm025Iao+l3JDi/rFodzgseNEUvPXEwPXNanWfdTMeat5DJZ0D8SDckOX+lwH3QPqm0W5YcKoWcmbI3YHzG2T1n1/17sXLK7c0IETFdBvrJRlaj7lhjPrdCW2fejoN3vgpmvldxy4ZjXKDW6cpnO2jOnMrtzwolrNFxUm3Q9b43/y+alKs1wtrNyAeRnWo/fAy5hNuUHjO6T1+Eqp/pOUq5b/8rgGbQZpEeWGDpzgtKhvRuWG5D2zbwapzwaPWXds84UevR5aiXKDGydCYEwTeds7trztzAJ56Ne2NQLGrKpb5kX94Yeo2WgoyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRhkle0dYv0c/NzKLJFiPK4gY0IcriMlIlEbBA4ybGLStgD1AAA+TbtZZEB8/4+q80/UKNq//+2ZKWKUXBuxEHFLDLhWVKdP/HQ81bWROCfcXohMKmMkG7Jkbxjh0xgMh+4Rqj1IDuC9rRwbbzlchSB6+VFk3cu8S/yxolteJnWSl5M3NY5jcVBtjAWpva1H3oJF3tIJQ36X1DyQNgzTgBAz3KIkkUHjPg37QQsP0w5bBsOWxph9mSw6tOPX785KxLw6Xb4q73O6p9nV0FEzIBxpANTdIo9LRnLKkV+0W5/uhmWgJML4vZuXXl/qd+D5yYPtHtwsPJP/Jg2jqcpq1qIdOi8uMZnYxKtcqHFvDnaHbui6nlBkR89N88r96H2Y+6OdM3/BCHqvCrvK/deRI+aQuKVLLFExtiRGB8zxYY/a7WuDek9XbRxt59Had0P0gtq1QNkl91cOkTnmRWQG69woiK8V4SdQKAHKfgYh8Tk/8x2OQwv1A8JJUaFBHp23aFPzDDHMi/MjQbAZ1/XQMA+u9+iALy/UHnX9jAVH6KOLQAKHC5AZZBgtmGOlHoShY/B+jhAkjwf7hP08LVaHWKgkW9ZMBdr1tPMtdJt3f3KjtQuUdB9THdMdIB08cQ1wvzMT9J+i/wyGsomqvL6Tq+f49dJvqYGQDmNRBmGz9EyfQsNwxmU5eEGxYwv351K1qdqFVEJ2PdA+NEIbFMHKC7VG/QVP9Vn5ruvvXymyP1REb+5zKnv5RG3qmU7gRsfVCw3fTAYCNcwh9sLuFchfofmrVSh43/422I55VRMsq72UcqMA6jMDxZpUL4AraE2YO8DxJhsT6rTBwiVylj8E6eotTFC9VgmqIx3BPQd+k5npNhBWqzocf2GssEGoiuHWrzbSlAt4/JY98hCOPhwVVXhRYjYmOIIQHIuzdy08vKt8VpvW+s+D664TFq+ox9EDN9xi8XNpzprARTj6IB5JIgcstQKQOs/BrbgDV9NhA5Jz1yGkpXg10LCd+ic2MG/23zJHDNoDqKxC61N1CPuRMdBL2lQ23lexRDtPpwohXZwCIsdtuuqUmKgjjUL8DZ8QwBKa1C5Qn/RusZENgPJrlxCg2NEgd/THXcDliAhIYFHwEm1am4qZFWpgcmUwaJiXbt70mMgnco2lxnL2wUGLUQ5hiOYQtzBZy/S3T9GCQUpUY3uTD89OGAdQcrTQuaOYrmL7C3QmxMYJeLA4o+nFBE6gPVB7ZAZTU1/+jekp/yx8VQ8q9FA66Sf031kP9p9ZDTuXH8QC7s+E9Y5eYzpRkOm90r7I9cxgPkSxpyQT6vIQn5R95YmRVJyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZn2yqfWgz4lTAin41Ssg7P/uVQXmDnRddm5FGv+SB8vYXm/3rhRz3uLe1nP9qm5gB159Xotq/Kr7YL1GptTBdxDZwmEl5aZbRVs9fCcsdx8P6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6nierg/cBN5YgTMyKcYt83vhO+2YUoaamgagAf4hZ0X1KT3mzt37lcO3Lxw6Pda4+/4m7LXVrzL2BcBVmvrE2H3HUOcEEyrs5kb/lxYVddTIgpihT5S4+q++fGnhsEzex7Jq/VSq+ORFjG6W/jH06uG+q9VTwqc6Jd6lAeUpnCiNKI+c/GBK09z70yOK2ywYZiRQw5O9UjuGftWiX/v6BVl/gmULbT1mTxGMTrVgvu53u5EJ0JuyMHD00uM3M9tot89hBBFF9D7hBGI4pvQKwFDmkScLhkh23ArcVLjs6/PWMGuJQQpkxOkKUbu6zaUKvE31y9V5XcZbGOR3UE5Dlba2jV4ErqgkuM/OQP+rkXdRSQ/l7mLqG8pDnRGc6KTot/T/ZstML7sHh5q4/VZkrn8vH9ORFAv5kI8MxLasIDrQt3P1VPdUtRGSe7TD1gYujdgKPsbOKYvELbzfogFKAGA7bFxoc6wbdpX5Wrtm5i9JHjn2vIpT9++aE1d7MT2Y1nCOqWxMC9Od3GmMsGBn/4EweqM6mNLQWr+xrhYVwEDSwFGGjtUO0ecv/4sdUHguvEJO373+Zta9K+sDNyLBqpAk5lTAgjTY06YbhsZ7ArfQqPvNVtsCw16GqyPwC00ISN39MSgIfzQJzY/JGl83qtt+oPQpf4573Vta9ahr0MnyJOE+DoNYr2cLTVvjN9H7vZg51LkwkRFCryk0CijiQBpGIuEdriL4wlRK+UFmg3EVdRYJqjpdgoqTiNy8jSA+mdXoxxVBWwbCl/cBY+DfMtmB174qsqOD9j8wXlo0LZrjakpEvYBzBQJv1zYmKOfczNxzEFmcg0IzwbUmINqmPZuRrFJ7PHn4RJJD0/t1/Zblw7B65//OKb1q5vUSQrxuszdP+J6oQfb23496ZZaJ3TT5ujX/46r3oMHfEpx4gO6jyUYBrYYcWMIDkR7Af3HuCpq9l3lmjiFjstop0seHt3yl17i2SeHf2/48Rfq0brS+P1MoxHXeV+zBVZ568pllSdWZZV3h0mrGBW+KmIOL0kRQzhfdM2FwVFBCv/+QaPDxfN71Fpwj2qYMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQS2bsZNyJz0GGATC5WyMDzm9e3yjzS0Q/gy4fLay/4a258mKYR/AEJSiGgoDkQ+u3Ih8sKVjOuf2eL6llkhf/Zu5xs0/s+vOttjtz9QbYx/o+FkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vMw+iV83gid6ypXgiTLYLyIwq9vLjOtG7oDXJlINXDwJE/iFR5jwJ0G++F9zPqTk/fs1eM38x665fzenkufKsCU2+gYzB39InzsBMfRGcTSETTAMjfJY7cOJHoWXNKEc1IJ8IC2+PgDLKMD/5+eUwuHhI9EyL7R4btGKKnBeiwHmiAIM6ljv1Q/mL1a/cUXvTTypTdK3OXjYucpy5dq5mqHH/B82zMN3+184IzguSetVs53yRXBlquJ2GEUIlelI2ZB2CgP5AAhPOnCniianapjeJE2ZguuxmELg1HZDF27gQWoYoaeiFm7gHsVZN4TeJBlPEHqT8JvoepN0vUi63mSR9STpNyL0JNl8Ux1/pQb4HGPkb9fJfr0wesvzwFmvt/2j2R4zmyp/K2aODnGh4nYzzkRVKvlkSeCm2ydlzdNnmHpuUgBGx31oTm8UewESdK66nUIIObKBVBSR4OSJY0R5G53F8w7PmjPcdm2rIogE01Ha/aHG8t/HvfA/vHbP3+VXHjOVcABROsuJ0hE3hgQgJ9sFr7UAEyNDVJRprHdqDMM/ihnDiOvFseCN9ZhPqIUmVw8MKcKf/vsf86d0OR8z+dNkTn/a73/+lLTP/N6KyEc2G0Qr7vZ7c77rkp08+FO6TBMPnkLL6SmUxe5PD+546ruvVvfg2aF5G9OWDnzFgz+lLxLwgFI/TpS6Fac/pcdQi/tTLac/7af3p1+tfk5AH078kNl8StR8nyFJku76KIrfcjUjkocpQUs3rimBux7yb7yR2SqQkJuBzIbQwCNdPUIDjySzITTwSDIbQgOPJLMhNPBIMhtCA48ks9EzNAZjDXpFZBejq+fxwFj7zpuR7cxo5KLpSCJEFUkj0/f8GTaxYbMJXbaQB5tAgyBtkr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChU7zM6v1HhmQWXJ8taBZrmfYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIsSjeSCRY2Bg60rUSQNkFSLkyuiVMmhipiKQHQDr8cCeudFrxeFr/eVZ1U8CrVC3cPbiRrsaDxqYoYiJ018NygTok/VRnyqVADSiNPCUqMgbJbJLwlysKLcOulwCUsV1cRJZnwCQGsoqqUqyRQC6pAINJpFPIE/e+YMLH+HqKrlmDrqlYTlukqoDwt1dH7Pw9x+Vxjrrh8rDEZl0taPeZ0eVXrXR79hZPYv1dP7C/FhrnRYdJeYL4widDNJcMkQjeXDJMI3VwyTCJ0c8lcaGzLeQurPpohXZ3WfkPM2D+OFciFbqzvfnDAb/XCl6elyLpcTVnDCK7Q6yM7El2Ml4fgasNmSSst104XHTZbufYTTbjKtc9kSsnwXK79qm7f4I/SPMnhKXOnPHvq8s4KyrUfa8JV/HavZQQzqDWnp06daoZy7U/+yKhcLny63+64oC07dKnU1UJLlWvfzGmdldZgHbOUa4+uXOd7h5B2kunX2wQfaxNKXWG2VLn2BZzGmWkNxhFYslx75WulXva8Pyh4XkTrdpUPdy9jVeXaJ3Aab6QVCQVZvFz7tHoTPcZIK/rvr3Llz/67FCMsXK5dy2k5pcUtB28qtnLtZT7vnhN7Xy1ePir7k3DZ549WUa4dyyFYy7XP1Is9/cCWp/6XyrXTy2JYuFx7+aZc5dr/Yqa0xVKufWDU3UHh85cGLFb+9HzZT7tocpA8lGuni5vxUIK8XFOuEuSCpsVVrv3lAXHJf/0uhW240G9El6lvTvJerp3uI3jA6q8mXFi9Mq/PtXS59tJsbux/IvxFEuGnVxMymwh/TFMuEX5p0+IQ4X/5Z+Keg68dgxa82fltlnudejyeNufZR0LN8gFNuTTLf2T6yOIQ4a8wdnNa0M6W4Ztqlb/w5VFAlsVF+MM5UQH9xmrmDsYd/OFPhL/qHMdNQbGlJHs6Vu7Vq9aXilYjwu/LaTpvy5jO7CL8v9548G/i1jai6aO7Rm5fV74ibafT3CL8mJdhVVEHXsZsIvwZBxw/J/8yVzxDlPUt1/1ODSsQ4Q/nBEfa1Iwi/Hc3eF4YW3+53/LyOz4eW1N3uhXIWUCEfDkRAmOayNvKsOVtMnGTpt87XBWvuV937eXFb1tQdQSwQ3xJahWI6MyczZYFZ5/8LRJl/v2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVpmaoHBRoN5fY1lAl+hfjKJXDRhYbvRYDvcmaaZOTBqmr5jwWuElggX33o+8vSytW6S+dOa79glX8vqp5KkWp30VIoumM0tdg8QO8cRM9ZgqpHDDdrjUuhyuPDN0YRp1Gg88ugKqX9yvq2C8u6n91i0/X1j2knpLAbESek8Ou8y/6C99/N+f4bLZ4s6XumEYkSfGSlOkYZzaFtE97ucbnzvzz0m/+1qSb330gVta+SH8Dsq/qW4jDGck5jzLeO9EdgzI6FZ0iiWgfClzwarp26encAU1Yws0hwFzbrEB2v1sS4C5t30A7W6LBf0NmqqNPSq38JjwWMdeyy8+v6mVRuR1n4BVG6VBWi/mV+U3EYazqnscZZxciBH2VUtlo9f6E7MVkzQMsxgtbtFPWcOrFM6Mz71aoHXR/z2JSpsonmmOFNOHJ41PMiQxeqmWz9QSOzVMKTc2RbpZRf6+95Pjxwvaq0eFMj560WnfZCALaSANxEAABdi1GZKBnK2EUmbuZ+Dm2gbi8+MGnStmYvg8dZ9LAvBGAuFwDdJ+oTTdv/GB+HXpjbbHycUHcuPo6je3HzcUbEDYr+2T43bN6OzInXq6b3twI+TrA71+6myN0KSAVakNIXPx/nXo9fp63uMiw4c2+6yz3bm2Wtgo/TitM67tZgHbPwcZLSN9famnbef96dng9XfUk/aRV8nHqcxnG0BuMILMnHya1179v95XbhK3Mj1n3ZM+WIVfFxKnAaz8YyxrNOPs7EUktdA0v8LJm39Kp72vWHfhbm43xpymW5d1YxTSk2Ps6EDz1vzLk2V7x2we5Hr8o2k1oFHwfLIVj5OMAREnlq2f8LfJwu78s3DnHRiKZ7HY1s9kFSx8J8nGnuXHycocyUtlj4OM1edd4zaOLLwC1Rn52bbrsVwDsfhz4354FjMtWdi2Myxr24+Dj28V6Jg1Z/kqRnB7e1qZl4hHc+Dt1H8IDVUE6sEs0bLS3NxynH5sYGH1Y2VYavk+w+FKF69rg3tRCbXZdkeHYyQCNPimeeMDVi+6KBVKlNgqfH9Ls5qR74KVOhHGrmxcFvQPa8Vtv3rCsbFRS0aNWJ0sdyy9iyPh9zJ6dgI6P/lY0CLiyi4FEsRK+kn3sysFfqPw3BpwmDwlwOEviPdv5zYGPZX6Gup+yjFCpgMEVMEPDrQ8mPw8yKm9KOzZQOeRnSKr6/SXJ8Hh3efDqFGmdL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrLFbkSJ3CNiAvXybKh/G7dtRVVPG79dfRyzVyWFrSz09GW54kfe4BOb9NN7PJ3YLOK44bLI24Z0i9izWWTpzIzkV8GfAuYOdtBmT3b/ibom6g/JMzpmRsY6vcRvEGpB1MfrXSZrYcqL1WqLV6tioBwjpATGYn+HpcM6eZzWoByEfkSydKg6epAiRn8T6tGZy7n4dUN3q11lgh6NAJglUaQ+KKreuhFCfglCBOdxCPkl+I8uvxQ+7n7HqFMvRWPP7UizfR9xlS6/lN4jZ9TtpD6BWUeWzn+aNbUj2U4eRi2yPBP9ixHyTGyWtoPqAYQZ0ZoP7rsPqKpqQuc8HfIlqeKF86ZYi//dMGDXbtCuC1EpzwwwhEIaWaTwpB2s79hPC94hMS7fYeT/jrma4d6+kSMRKlFstqrinz/aQEKkS9agE9fBcYc+LOy8OTAr9ajgxrqEJZwmKyPBPwmhdUw0FIfRxJxGa21eo5Eu2CZUgjtUeMso/bjHbEOOUbZkr56UKH2tTNQqNBjrDnwFxWGiBdN3594YevOteNv+lK01W92dQLdVmbBknXyASi9gIaBtdsFv9WaGK+9Ctb6KGK64jOrBadT6jRhaX5wFFIjOrsD1WZDg0WVSODu6DfR0zDId2FXeGaWehF86IkZUuhd5YV2cCOkV2EJ6l0cPIsqoLgQs2Xuo5KhdLuOpXNmoeGWsTgjrylLDOoxXbDWtnSJiY+FURK5SEeVXlbBwHhTv9kQCTC84yPYIiHzJULo96BntYJrT1Q9VDM9dJnBqaCqPzB6rvgvGphY+MPJFI17eH7OlcaZkedbF8muGxR+kF3hBvmKhKSG96LqpxHuAVVuIVZYYxf0AE3yvhsaxxnALqrFegcTFbmhEiex1iyI2i1XdO/4kL81YUo41DBhTxxN484acbw56iRUsJ2M90Ig9NjuoM8QlPdUjWuYydJpENL1svxr3s+evo/ZLeLe54K/MCX8Zy8DPYIiZWqgbHxGQ7QzeBF20gFZxt4iewtTVfA/CFRwRIQJMfw9sQBABpiJbgDFaz8dVb73i1/OJdxoffn9m68CJBzJrpqxuVVDb8FPmufPvI5TS6Vf2TTjyRbClgJ5PH1mD3BJ9B4q2xB9uHHu3pWMBPZ+xSW9nNz1dPXzW9UlfAk4OaVVAz6dExJOV1eL2Sw5UuzxE2FDct4CeD6LyL6ltiKj8SxbqRVT+tSWaSi21n3lxVU7EgQP7xH65ufVAU1miaWlyyvA5G677zVgy/GsLxchaoKkc0bR9bUVRr4GDpYdfjzr/yfsb/EA7omnIEM/hSx6rRFkfBtdM+5peAzSVJ5o6/7z2uOM/ZaUZecMn/OKfkwya7Ikmz7cOl6dFHY2YdebOsqdxfjNAUwWiqZ/XsbDbNU+Hbty93rFZ0AMxaKpIGuXLipnbf7kVeKB56NpjuwfCx6hENJWv5z/Cc4+TdFOLMlu75fRzA02ViaYzS4SPvmVr/NNSNmf8PkL0E2iqQjTZ3vvzQC+72oFbI/w7uiV16wSaqhJNDh0+9tw/rmHIHP++I34dp9gMmqoRTSvTYl81O3hFdLhNv9ZBgaeqgqbqAlYZKAei6cHxbHHN+UtFB0v16PteF+0LmmoQTfapZfdXmFNZlu2x7Ilb7bOwAzgSTSEfFmhSms0KyOx2oPelN4nwu2qSVu65JySwVrJofKvwVZOz4rqBplpE08XsXoerSOeI9pQKudWu7rTpoMmJaNof0LBJ9XIrAhZnXs9cGe8hB021iabffr309H7N8MCcHy+Pi7dfshM01SGatg3KdBJOOSlbdjekp/LbuTzQVJdosrHr4l11/QjZjMu3BonfV7gDmpyJJv+WO7ydb8SE5axM7xp1wucmaBISTXkXPOT/vpkjHn334rF3FW+dYQhVuQhYhKriNj/xLd/zr4gDD5LPV477bM+DUFUlNhdVPXbv5uwTZ2QLN+QNO1d7xFLq1FU2NEmljkGcvmBLgBsRdwjJ87JYmTptAkiIgRMiKgAaeNyC7qCQj8acVRMNhuqGN5YJFnuegv4VsXPYGaTHEz2NK6CZfxoVfxDku/VMCOwRs7qi/7ijqw//NFl1g8fDqDxvEMKVvYUQoBjUvPO0m0wwy9OonNgnUgG6BsZ7ilHAEkdqrRI7fgKeT6nCpk5kPxHKNfDEtTpBGY1EsfebSuVr1XMImbWi+YOmU7fPpNLH9d/DpI/nN/FemsYV6zEccP3saRWZHPOoo5GZnAcx0GLyzaWLl+uECfJBCiFIQPQlrNl55mvqdg5wz+4k2Tb3nz5Tl1W8SWMaEh+LYBqSLXxbr5IH0dmlKOtleWKdncE2NxI4F/JQFEn4U9CBRIL1zq7jv+Nm+Ug2ry03IutS+RjTj2DxANZETrBAVyfiT2W2+PM/5YYiKTfQM3SzKTe89+RSbrhkXKw0ULkheXJJjeTgUfGEe67yq74fHvAYLOkeiAflhreeXAfdnxgXLIuq3FBtXKl6u+a0DTq8Kv7wuKNzqf3DEsoNdzhRuWSZmGgAy7SwBSb+lBvOfn1Wpf/4x2ErWxyZ6eF3tJ3VKDec4jTdQWtNZ3hWbki2r+r9surysEnrP2adrFzyi4WVGzAvw3r0/gkiSyku5YY6J7M2VtsiiNiTUfZj5TqfqAQhyyg33OEE55KnGZUbJpZxmrI+o3NEWtzwklJp55ZWotxwihOhg/q8rQpb3nZmgTz0a9saAWNW1S3zov7wQ9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6uZlZNNliRFncJz5EWVxGqiSC9Ut9jFtWwB6gAAbIt2sQV2pi0vTL4ftGeoVW8p1GO7gbBe9GHFDALheWKdH9Hw81bx/5EOwrRicUNpUJbvkYxTt2xAAi+4VrjFIDui9oRwfbXj1sW0+63li05+7jx9OGCyZQh6WUvJk5LPObCgPs2bWYpuOy/pJkKGqnbq+nOsADYL9xAgZ6lEWSKDxmwL9pIWD7Ycph2XLY0g6zJYdXDVvpnhbWbn/Q3skz3/QoPcWzCiZkAowhG5qkUehpz1hSK/aLcv3RzbQEmGbas3U+/N5+2jBJZo7bm5dzckzVe4Om3c9p2q0WMi0qP57RyahUq3xoAX+OPtLo/PvOuNEPpYvPOw2M9vG7St/wQxyqwq/yvnbnSfikLShSyRZPbIgRgbEqW2D0u1rj3pDW20Ube/d1nNL9ILWsUjVIftXBpU94klkBufUKIyrGe0nUCQBynIKLfUxM/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/K0GwEdP5AbwD6736IAvL9Qef39TaVnyIOLQAKXG6AZZBgtqFOFLqSxc8BergAEvwf7tO0cDVanaJgUS/J05as+HmWd0T2wGM5iyWtqEX6SnfHSAdMH0NcL8zHKHKv5fQRrfAfl+SqGf81Mt1EHzMDwOwPYbbxQ5RMz3LDYDZ1SbhhAfPrV7ei1YlaRXQy1j0wThQSy3kTPb9JckTSXem5g+JnBt2hnsjI/1zm9JfSyDuV0p2ArQ8KtpseGGyES6jG5hLOVaj/oVkrddj4P96GeF4ZJaO8m32kAuMwCsOTVSqEL2BLmD3I+yARFuuzysQhcpUyBu/kKUpdvFANpikawz0BfZee4zkZVqA2G3psr7FMUAmia4fafFsK0P3iZerYdwjCeHhw1VWhxYjYGGJIAM713b45NU8QmPPwvTDd/1xbavqMfRAzfcYvFzac6awEU4+iwYPbELllqJQBVn618WZNnw1EzkmPnIbS1WDXQsIn6zxlW5W7ZUOmOL872jyjP1V4qzzRQdBbOtRWvkcxRAv0JA603nlZhMVu2zU1SVEQh/oFODueISClVag84d9oPQMC+8EkN06hoVHi4I+pjtsBC5DQsOAjwKQ6FTc10sr0wGTKIDHRrv09iVHwDkWb6+yFjQKjFsIcwzFsYa6A83eJrh+DhEI7LeLotWVdg8Y+63Ppw1sVjd+FvRViYwK7XBxQYF2cFQrQxYlAVZ0tUFlNzT+6t+Sn/HExlPy75MVV8u+MHnIHq4eczo3jB/JjJ+7KG453CFkx8NLDeUc+xvIAeYdmXJD7NCMhr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+wFn65vKm6RZDUqnTlm6t5kBuUNdl5k76PTL3mgvDmy2b9eyHGPe1vL+a+2iRlw/Xklqv2r4ov9EpVaC9NFbAOHmZSXZhlt9fyVsNxxPKwPjH8ANqWE80yChmDY9j6dclroIzLAQf2RoVk5mCoGQb92E3liBMzI3ZhZOdfatRO+24YpaaihaQAe4Bd2XlDd5rXGPpkzI2jaD4vCAprUSTRlr614l7EvAqwCyLD7jiFOCKbVbbyQeTgbVtX1lIiCWCFR+vefw32qd7sim7ti4IwDujFPeKRFjO4W/vH0qqH+a9WTAif6pR7lASU3TpRqeTEXH7jyNPfO5LjCBhuGGTnk4FSP5J6xb5UMOHIqt8WR7sGzRE/CBGtGKyy4n+vtTnQi5IYcPDzdwcu4NLaJfvcQQhRdQO8TRiCKb0LXiRWutn20MFc84cadFW/LxU+2gl1LCFILTpDcvIzb120oVeJvrl+qyu8y2MYih4M6PeLJ+4PHw8bOf/5Tqe+nN1F3EcnPZe4i6luKAx1nTnSq63PRmmyB8WX38FAbr8+SzOXn/XMignoxF+KZkdCGBVwX6n6unuqWojZKcp9+wMLQvQFD2d/AMWVB2M77IRagBAC2McaFOsO2aeOcBv7ldbeULE2U+nHr2ydnqYud2H4sS1inNBbmxekuzlQmOPDTcyFYnVF9bClIzacaF+sqYGApwEhjh2rmqNf7p3qVlU2KbuD2YsPe9lRPJAP3ooEq0GTmlADCNIYTpqFGBrvCt9Doe80W20KDngbrI3ALTcjIHT0xaAg/VIvND0kan/dqm/4gdKl/zntd25p16OvQCfIkIb5Og1gvZ0vNG+P3kbs92LkUuTBRkQIvKTTKaCJAGuSW6Ie7OJ4QtVJeoNlAXEWNZYLdLU9BxWlETp4GUJ/X0ihHVQHbhsIXd8HjIN/yQa9Dp+pdmChblzr8364n2zhQUyTsA5gpEn65sDFHP+dm4piDzOSdEJ4NqDEH1TDXtzSKTWKPPw+XSHrt5Ffyq/36SrI89kSsEi3fQN39w+9n7v4R1wvD58j0XbUTrs0LXzEw536z7A0XecAnhxMf0H0swTCwxYgbQ3Ag2gvoP8ZVUbPvKtfEKXRcRju49UralMhBkkUnB/lf2hAbTDUafj/TaMR13tdsgVUyOK2SblVWeXeYtIpR4asi5vCSFDGE80UapnXpbO2I+KsB03M23nnWaQ/1sF/pMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQSrWho3IXPSY4BNLFTKwvBY3lu5Y9Cr22GLMmpMSsw6702TFMI/ACEpRDQUByLzOBGZ2JKM605scX3LrJA/e7fzDRr/51ed7bHbH6g2xr/RcDJMe/0MgxrAhSnxyuh4kFbCs4VyrRaqQepZMUT4N2zyQT+njXpeZp/ErxvBE1W0JHiiDPaLCMzqejDjupE74LWJVAMXT8IEfuERJvxJkC/+ouGIE/4DW/ovv7Nsblj3lbTOx5bY6BvMHPwhfS4aYuiN4mgIm2AYGuWx2ocTPQovaUI5qAX5QFp8fQCWUYD/z88phcPDRyIRpcdzi1ZUgfNaDDBHFGBQx7qHfjDXtvqNK3pv4kltkr7NwcPOVauWXDtXnnrM67BhHr7b/8IZwXFJWq+a7ZQvgitTFbfDKEKoTEfKhrRTGMgHQHjSgTtVNDlVg/wkXZmC67GYQuDUdkMXbuBBakjVnIpauIF7FPE+CL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOv5KDfA5xsjftnaM+nRRKvHbc/75Mt3Oa2qq/K2YOTrEhYrbDavsNaVi+SvSXUGqDUM1LQeYumYCRscIaE5vFHsBEnQ0PqcQQo5sIBVFJHjL0B3v784f7zd/yuNd51wOXimCSDAdJUWPyOAHa9tFTN909JD36Is7eEApnhOlvj4MCUBOtgteawEmRgYARGe9U2MY/lHMGEZcL44Fb6zHfEItNLl6YEgR/rTuf8yf0uV8zORPq3L6068t/+dPCfu8LLk+pvbIn6RZBz0/KQNsyvHgT+kyTTx4isqcnqJMsfvTM5JDW2p5TgpbPPFATM3F4qKIrtNRoi8S8IDS15ZcKH1oWYz+lB5DLe5PK3P606/6/NTZ6ucE9OHED5nNp0TN9xmSJOmuj6L4LVczInmYElzmnBKc1UMu5I3MVoGE3AxkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8HxpoLb0a2M6ORi6YjiRBVJI1M3/Nn2MSGzSZ02UIebFKPzSbZex72nPD4U9C+PTv3bR2USz3n90NneaJCxayNwubYXMXCJHhHgQpdwkS1ToGLC0F5bi4NW7ruIuJRDPF2dlHRGrVKFQkjFryYf+TzXSeaJ/ytWcCWG4kjw2Y33vrQv/NDDzZPaNtNq9BAAXDyaxtK1ckDVJCrBavoQOGfGKWOeHeQYcBdjry0VTSTkGWOGIvSjWSCti2AA20rEaRNkJQLk2vilImhilhKALTDL0fCeqcFr5fFr3dVJxW8SvXC7yIayezbtDhVEQOxswaeG9Qp8acqQz4VakBp5ClBiTFQdouEt0RZeBFuvRS4hOXqKqIkEz4hgFVUlXKVBGpBFQhEOo1CnqD/HRMm1t9DdNX6Vh+W6SqgPC3V0fs/D3FZ2YIrLstbkHG5gdVjTpdXtd7l0X6cxP4eemJ/Q97CpL3AfGESoZtLhkmEbi4ZJhG6uWSYROjmkrlQ0w3DZ3daN0461md1yA9jPW4XyIVU92d1PFkhN3inyz13cfYaMSO4Qq+PVk6hifHyEFwbsVnSSsu100WHzVauPboVV7l2r1bFXa79WE3hyM3aM7K1s/zayBfWpp7stEy5dnkrruK3PVpZQc3pcePGmaFc+5oWM3T7l2aGb7uZPPpBVAx198VS5drDOK0jsQbrmKVce632mfYu4g9+E57N2V/iZsddVlGuvS2ncbyswTgCS5ZrPxp6VjmoVoh475R+fetXGkNV2rV0ufaGnMZzsozxrLNcu2TB6BpdquhkizP7nDxZPXSvhcu1V+a0XBmLWw7eVGzl2su973XcvuUg0WK7zNpnS26QWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1dK65y7XOYKW2xlGv/O63Zo1H9vgVsnpX8e5/N2VTBRD7KtdPFzXgoQb6mFVcJ8sWtiqtc+z2HK6H+K/sEjO5wSChSXMrlvVw73UfwgNUcTqwmm9fnWrpcuyubG/ufCH+RRPjp1YTMJsJfsjWXCH8e03fyIMJf+pe/xjhX6hg0+9HE/TvvH3vK42lznn0k1CwXtObSLP+L6SOLQ4Tfy6fXvdfTe/ktlIRv3+i9l1oH3RIi/K9acaGSZ/EMtOCOk2VE+GvUTlDZRu6TLqhRI33ryn4LrEaE/yan6S5YxnRmF+Ev89Ft1KPAbL8VW2Yln/Zq+8bCIvyYl2FVUQdexmwi/I8vvkh3+fQgKNPNu7EsQtbUCkT4MWfDCk5eKzOK8A9dtn1eepMnklmN1m4u2WDnPSuQs4AI3eRE6IJ++unGlrfJxE2afu9wVbzmft21lxe/bUHVEcAO8SWpVSCiM3M2WxacffK3SJT59xNaGABxjTo5Lh7kcLDKtTrWKC0HeoVF1qdlqh4UaDSU29dQJhgEh6dcAhddaPheBPiKW5t6sKpa/mOBqwQWyFdvU75ryNHk+RF7dk6dfaBW6nHTa3fRUii6YzS12DxATwnRc5ag6hHDzdrWxhXCxodvjCJOo0Dnl4Pnda7afP7biM0OzTSjkmtTCzGXlmI3Ik5I4dd5l/0F79+N8/1DWls6WdL3TCMSJfjISnWMMppD2+b3vUfXrq011W9M90NvBOmfqXrgtuQHMPuqvqU4jCHmNEZryxiDURzbmB0Lz5BEtQ6EL3k0XDt19e4ApqxgZpHgLmzWITperYlxFzbvoB2s0WG/oLPV+g9HKrd/niRaGPTIb1vQUGo6VBZ+QZQuVYWof5nfVBzG8uA0Vn2rGDnwo4zKVqvnL3QnJmsGaDlGUI7P0PITE1767Y0KHZZhl/vWlKmyieaY4U04cnjU8yJDF6qZbH3v1sZlqYQn58i2xk91GfRmbKWw+Y0TRzrUy7pi0WkvBCCCBOAmAgDoWozKRMlQxi4y0SqtxvoN9Z6ErbkbWWXYttA6tFBm3sO+EICWXAB0b9SaTDSb/Mf4OPTC3Gbj47xozcXH2cXMLHnm49geHTJ6W/jY0PlDV/88SPtmjBXwcX5vzbW7ed8yTp9KKhg0aJAZ+DgpNWaualyrkmRb3V7Nf415ILQKPs5VTuuctQbrmIWP0+vb6xqxzyJDDq8ecD9j/IaPVsHHOcJpnF3WYByBJfk4JUdNim+fnuI31/tT0pHvXyOsio+zgdN4yyye7FoRH+dT8siMVkmxkvRas6d+6LW+loX5OFmclptmccsVKx/H41enRXNT1oZvXHnup5m/qN5aBR8HyyFY+Ti79Hlq0/8LfBz/lju8nW/EhOWsTO8adcLnpoX5OO5tuPg4Dm3Mw8eppfy+/LBfL+mm05ubTRNcrsM7H4c+N+eBY9KkDRfHRNimuPg4LjHVHIPfLg2bfOTqsjxp5RW883HoPoIHrBw4sSrf5v8rPo47mxsbfFjZVBm+TrL7UITq2ePeVOds1yUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAb0IUPL3jI/30zRzz67sVj7yreOsP6fMydnIKNjP5XNgq4sIiCR7EQvZJ+7snAXqn/NASf5gU87ecggf9o5z/VjWW/PW9xyj5KoQIGU8QEAb8+lPw4zKy4KT3YTOmQlyGt4vubJMfn0eHNp1Oo1dFL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrL2ZIncI2ICdU821L+N27aiqqeN364+jtmrksJWFnr6slzxI2/wiU366T2eTmwWcdxwWSSjGd0iXmwWWTozI/lV8KeAuYMdtNmT3amaRqX9IXlGx8zIWKeX+A1CLYj6eL3LZC1MebFabfFqVQyUY4SUwFjs77B0WCeP0xqUg9CPSJYOVUcPUsTob0I9OnM5F79u6G61q0zwEYJZEkXqg6Lq15oh5JcgRHAeh5Bfgv/o8kvh4+53jDr1UjT23I402/cRV+nyS+k9ckbdTuoTmHVk6fynWVM7ku3kYdQiyzPRvxghz8RmaTuoHkCYEWmt/po/N26o7x02O/PQ8YfOe8NMsRb/u2HArh+gXReiUp4ZYAg9b2aRwpN2sL5jPy14h8S4fIeR/zvmaoZ7+0aORKhEsdmqin/+aAMJkS5Zg05cLzg+71QvtFforHVdzjx9Vrk+p8nKSPBPQmgdEw3FYbQHnEa7Zl6jkS7YJlSCO1R4yyj9uMdsQ45RtmSvnpQofa1M1Co0GOsOfAXFYaKPPHtFO3ttLBmye0bJPJcl4xvRbVUmLFknH6DSC1gIaJtd8Fu9meHKu1CtryKGKy6jnuM06i/NGFpfnAUUiM6uwPVZ0ARxmkwKZ0e3gZ6OWaYDu8o7o9ST8EtHxIhK9yIvrIsTId2bLaR3efQgoozqQsCSvYdKjtrlMp7KlY2KV8bqhLCuLDWsw3jFVtPaKSI2Fk5F5CoVUX5VCQvnQfFuTyTA9IKDbI+AyJcMpduDnnELlpjt6ocqhucuE+w1uTy9PVZ9F4xNLXxg5It2319/w5ojC8L3zqnQf+yy5Up6gRfkKxaaEtKLrptKvAdY3YBYZYlR3A8wwf+VWZSakzWGW1CN9QokLlPHTfxyPOcH2fZhPj4bPFxKM5aUYw0DxtTxBN78GOebg15iBcvJWA80Yo/NDuoMcUlPBXm+e3nwbrXg/avu32nx/sJEar+Ed5sL/s2c8K+0DPwMhpiphbrxEQHZzuBN0FIdtIq7RfQUpq7mexCu4IgIEWD6e2ADgggwzdgCjNF6Pq566xW/ns9tYbXdq7U20oNtn9iUan8ppICez4en5cIOZw8MXbirVxkH2X51AT2fcF34rZCwZSGr/xQlBwRnrCmg59O9anTeYNdzfjOjptyxOVsnrICez/322R/tOw+QHWr1ya6S12JFAT0fROVfUtsQUfmXLNSLqPxrSzQ1amnXrI9DTtCiH17nqLbH/AWayhJNz0vmNjixPUk258fo6x2P1vUDTeWIpsa1Xq2NapkasSQzZE6bwN9agiY7ounOxrXxtz0GinPkNy8NvXynJmgqTzTNKqs9Mf/xLvG2xGsO8XtXJ4Ame6Jp6pgOT7Pb3wqd5t8/+1/tvO6gqQLRdH2gS3RgLV3wgpTaTic0VW6BpookUHbj6vzxKsRvu9PeWntthN1AUyWiyfeO7eWqdknBa/yPSkbatDgEmioTTRW6+uR2dUj22zVmaP+Xw6f3Bk1ViKYWEen/vtg6RjJpb4vcK30a2IOmqkTTyWsXIvf98Nxv41ZR/W+tfzwNmqoRTT3KfXjv9DkoYNUgjxLDQ0Nbg6bqAlYZKAeiKeDQ8ZvtwsaFZe64mjku68Ye0FSDaEp4/6NTztrb0g1dfJycfce6gyZHokm5e1ngvKslxOM3uPY87zjjDWiqSTQN9VB1+SpzCdr+e7PaQ67YLwZNtYimYZNPXh0gl/jNEt38uOji4QGgyYlo2vssr2X2sn8Cp0+Ovjr47oDnoKk20dTMJn7rmi03xBkfHJ412Tb9PWiqQzSN/XHN9J/t2oUuUVVt2qxkX2ivukRT7OEz1d2PnBCN3n6yW4r7hDzQ5Ewif+JGeMZkUcCkL/fO7pMOnw+ahORdczteWra4hXh9qFvlaXV2VWAIVbkIWISq5uwRLuvtODF07d7aHVMlTod4EKpqzuaiqsfu3Zx94oxs4Ya8Yedqj1hKnbrKhiap1DGI0xdsCXAj4g4heV4WK1OnTQAJMXBCRAVAA49b0B0U8tGYs2qiwVDd8MYyga/vKehfETuHnUF63MDXuAKa+adR8QdBvtvINhN8c91WB02tMCzr0NJeZXk8jMrzBiFc2WsDAYpBzTtPu8kEnr5G5cQ+kQrQNTDeU4wCljhSa5XY8RPwfEoVNnUi+4lQroEnrtUJymi0hG3utjXXS22TjM1c8mZV7ME1VPq4/nuY9PH8Jt5L07hiPYYDrlq+VpHJMY86GpnJeRADLSbfXLp4uU6YIB+kEIIERF/Cmp1nHtm+fv2w7h8l03o8Gu8ZKv2HxjQkPhbBNCRb+LZeJQ+is0tR1svyxDo7g21uJHAu5KEokvCnoAOJBGtn16UOJ8d2lU67MrNL5pW/B5p+BIsHsBpwggW6OhF/WrDFn/8pNxRJuYGeoZtNuSHDl0u5IcG4WGmgcoPt+GvyMatcApaO3uOo2brZk8dgSfdAPCg3TPHlOug+2rhgWVTlht1/DL546c6l0NV9L94LnJxLKxNqAeWGFE5UEiwTEw1gmRa2wMSfcsMToSQ5bnht6cyWg8vfXfqCeurIksoN0Zym62mt6QzPyg25Le9P9/SJDp79T+9DD2v2sbGwcgPmZViP3o9GZCnFpdww8XXjbzunb5Ks93z6KuRzqUFWoNyQwglOgq8ZlRsm/lz6wHpHkXTi1jiPk3dfPbcS5YZoToR66vO2lmx525kF8tCvbWsEjFlVt8yL+sOpaxS2oSBHE0ZJQw1fOPDTF8OF1QTITBjMEGPBryDvShUCbDU6XKMAOFuiv8Lci0jdRhqUONHXL9HPzcyiyRYjyuKOFhNlcRmpkghYQC42blkBe4ACGKCPvi+OnRfxVCnaNy/57ABVqTzabhK8G3FAAbtcWKZE93881LwdJSbYV4xOKGwqEySLjeIdO2IAkf3CNUapAd0XtKOD7bgFVTUCzfnwFTeaZ7/0mPaAOiyl5M3MYZnfVBhgV/uWDZ+SZxuyynvZuPvO95vzANggTsBAj7JIEoXHDPg3LQRsP0w5LFsOW9phtuTwqi1LHn83YtW1wKnZwYcWzL7UvAomZAKMIRuapFHoac9YUiv2i3L90c20BJhm2nN9d9RNWj9PlO7y923l0+rteDBtD07ThlnItKj8eEYno1Kt8qEF/DnSmBtXDAxsFP6DeMGc2BOu8Vvq0jf8EIeq8Ku8r915Ej5pC4pUssUTG2JEYPRhC4x+V2vcG9J6u2hj776OU7ofpJZVqgbJrzq49AlPMisgt15hRMV4L4k6AUCOU3Cxj4nJ/xhscphfKB6SSg2KiPRtu8IfmGEO5F8Zmo2Azv+4HQD9dz9EAfn+oPNfb2cqP0UcWgAUuNwAyyDBbEOdKHQli58D9HABJPg/3Kdp4Wq0OkXBol5y13n49s0LSwfv/ePNnib+a6jqVaW7Y6QDpo8hrhfmY/aVzK0XcVMmmaB173TptmuOiT5mBoA5D8Js44comZ7lhsFs6pJwwwLm169uRasTtYroZKx7YJwotBOo+2n5siHbwsZ8mbnmt7c/X6CeyMj/XOb0l9LIO5XSnYCtDwq2mx4YbIRLaMXmEs5VqP+hWSt12Pg/3oZ4Xhklo7ybfaQC4zAKw5NVKoQvYEuYPcj7IBEW67PKxCFylTIG7+QpSl28UA2mKRrDPQF9l57jORlWoDYbemwPHj+G6NqhNt+WAnTnmjz2HYIwHh5cdVVoMSI2hhgSAO0X3ZYN96eEr7y79P3OkBFXqekz9kHM9Bm/XNhwprMSTD2KBpBbB5FbhkoZYOXXpe1Y02cDkXPSI6ehdDXYtZDw9f5rz+i4dvaSeXev5bwZadebesyd6CDoLR1qK9+jGKI1lxOtqe0swmK37ZqapCiIQ/0CnB3PEJDSKlSe8G+0ngGB/WCSG6fQ0Chx8MdUx+2ABUhoWPARYFKdipsaaWV6YDJlkJho1/6exCh4h6LNdfbCRoFRC2GO4Ri2MFfA+btE149BQlEx3nfNs9QfxHNKrClzcJrzeNrGBHwrxMYEdrk4oJjLCcVUfaBqzRaorKbmH91b8lP+uBhK/iW04yr5p9BD3sbqIadz4/iB/E3UhzF9Ss7y29vL5diWjzvdeID8VnsuyC+1JyFvyxsrsyIJuRlYmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCszYWRZ8YGICwEz+lbo371/3jUG5Q12XmTvo9MveaC8+bLZv17IcY97W8v5r7aJGXD9eSWq/avii/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MfwA2pYTzTIKGYNj2Pp1yWugjMsBB/ZGhWTmYKj6B+wM3kSdGwIz8hHHb/E74bhumpKHGisGrISuQnRc0+FhFhax/hGRT6zkxy/bVWGfKXlvxLmNfBFg98iXC7juGOCGYVl9lbvhzYVVdT4koiBUSpT0H7+6ct8gnKHNipevzPWTLeKRFjO4W/vH0qqH+a9WTAif6pR7lAaUTnCjt8mUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdOXCzpPb9wcu3vqh5bqYL98suJ/r7U50IuSGHDw8fcvI/dwm+t1DCFF0Ab1PGIEovgkJzquVP0xMdH4QsSftdNqP+79vsoJdSwjSb5wgnTByX7ehVIm/uX6pKr/LYBuL7A4q5cGAIwt9qoTPePR3ZHKpqz2ou4jk5zJ3EfUtxYHOfk50tur3dNuxBcaX3cNDbbw+SzKXn/fPiQjqxVyIZ0ZCGxZwXaj7uXqqW4raKMl9+gELQ/cGDGV/A8fUEqbw5/0QC1ACAFtd5gKU6du0bn2ck75vmy9ZmfJB1XrF1tXUxU5sP5YlrFMaC/PidBdnKhMc+OnmEKzOqD62FKTmrug1JzawKmBgKcBIY4cqdlXt9JtPS4Xvcj07b3bOjH+pnkgG7kUDVaDJzCkBhKkuJ0zVECvtpm2h0feaLbaFBj0N1kfgFpqQkTt6YtAQfqg9mx+SND7v1Tb9QehS/5z3urY169DXoRPkSUJ8nQaxXs6WmjfG7yN3e7BzKXJhoiIFXlJolNFEgDTILdEPd3E8IWqlvECzgbiKGssEUaJTUHEakZOnAdRbiIxyVBWwbSh8cRc8DvItXXeNPnur+yjR8hulMjZ0vkiVLf0B+wBmioRfLmzM0c+5mTjmIDO5C4RnA2rMQTXMAJFRbBJ7/Hm4RNIX7F/WIGy1U+iGL9ofvR+GlqHu/uH3M3f/iOuF4ZPyaMm/LWrODtn9cpR75vB5a3nApwMnPqD7WIJhYIsRN4bgQLQX0H+Mq6Jm31WuiVPouIy2Ym2nWWs3/RIweeaF9ie3xt2lGg2/n2k04jrva7bAKm6cVnG2Kqu8O0xaxajwVRFzeEmKGML5Ig0zKfrfmPZ1ukr39u59aM7acw5Uw4Rh9zMNQ1zn2zAiT8KdwGVGxnw1zUsm8BMZNyFz0mOATSxUysLwKOU/OnbsgfcRB/5sNttp5qiSNEkh/AMQkkJEQ3Eg0oITkQYiMq53YIvrW2aF/Nm7nW/Q+D+/6myP3f5AtTH+jYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U8zL7JH7dCJ5oCRHBE2WwX0RgVvehk6k74LWJVAMXT8IEfuERJvxJkC8ecvV9Wt3VTwIO9J177e+tgzpQOx9bYqNvMHPwh/S5751OwQkcgqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+Pz+nFA4PH4leMKDFc4tWVIHzWgwwRxRgUMcaAEYM5o5Wv3FF7008qU3Stzl42Lm63Ilr5+qsHvNObJiH7/a/cEZwXJLWq2Y75YvgylTF7TCKECrTkbIh7RQG8gEQnnTgThVNTtUgP0lXpuB6LKYQOLXd0IUbeJAaUjWnohZu4B6FjRihN0nGE4TeJPwmut4kXS+SrjdZZD1J+o0IPUk231THX6kBPscY+dtNI/6sF3BoZ/CEB20q+fSeXYkqfytmjg5xoeJ2GyY/S2lbMVW8aWq/8/3OXDB5aQmMDkdoTm8UewESdCqITyGEHNlAKopI8JNS284lhPQLnzQyTOs58cWkIogE01E6OfYviVBZO3D0hcnecxtl1OcBJRtOlL6IGBKAnGwXvNYCTIwMAIjOeqfGMPyjmDGMuF4cC95Yj/mEWmhy9cCQIvyp6D/mT+lyPmbyp5tFXP50vuh//pSwz2WF4EjG4HaBC+WTFq+7HDiIB39Kl2niwVNsFHF5iuWi4vanHe02t8qbcSwi66fJnZ6NPt2eB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym0+Jmu8zJEnSXR9F8VuuZkTyMCVIFHFNCWL1kPvxRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChS3zLsjXRMnGduxZen37S2fYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIUsm0kE1zuCBxoW4kgbYKkXJhcE6dMDFXEUgKgHX45EtY7LXi9LH69qzqp4FWqF87q2kg27lLHUxUxEDtr4LlBnRJ/qjLkU6EGlEaeEpQYA2W3SHhLlIUX4dZLgUtYrq4iSjLhEwJYRVUpV0mgFlSBQKTTKOQJ+t8xYWL9PURXlVl9WKargPK0VEfv/zzE5R84l+q+diTjsr/VY06XV7Xe5dF/OIn9H/TE/gDewqS9wHxhEqGbS4ZJhG4uGSYRurlkmETo5pK50OxxTdY5fvCX7bulOzVvcrXNBXIhz54pswc+/xC2enApr1LSH4MYwRV6fWRHoovx8hBcA9ksaaXl2umiw2Yr1/5dzFWu/RxTSobncu1dbFxqdtl0UbrsVeVVbcZ5UnfnLVOu/auYq/jtB8sIZlBrTo8cOdIM5drPjqgvaXlssGxChY6j/2xQhXq63FLl2p9zWueBNVjHLOXa/3z761ufMz9K56y51GDf+r7HraJc+zVO45yzBuMILFmuvW1d/7+bl4wLmT4981TC2ZhZVlWu/RdO4+22IqEgi5drvzPgfckbITVCVix6dvbgRVk5C5dr38hpueUWtxy8qdjKtb8tu61O+VPvArY6T3j4MO/5K6so147lEKzl2s/pNxCD2PLU/1K5dnpZDAuXa/f34yrX7u1nnnLtPUbffTjt2eLgLS9q+OXV3SDivVw7XdyMhxLkUj+uEuS+fsVVrn3k7ZT5WcMy/Xfkqm0bHNz5lfdy7XQfwQNW3pxYNfL7/6pcezCbG/ufCH+RRPjp1YTMJsK/2I9LhP9npu/kQYQ/+kevj8eUnuFpDTSJx8r1mMLjaXOefSTULF/ox6VZPovpI4tDhP9K+YuDBTuayPaMejrv8kSJ2OIi/BM5UfnZvN6Qc+5g3MEf/kT4T2h3Ju14vz1spc2z3ya0e7zRakT4dZymG2gZ05ldhD+kljjy59SKwSucnv7TySfPkqINcOEV8zKsKurAy5hNhH+C+PPNF00qBm/8e9uONppj1H5rGRH+iZzg/OxnRhH+P/ptrxBUabtkVrt3PoNqVbxmBXIWECEdJ0JgTBN5Wwhb3iYTN2n6vcNV8Zr7dddeXvyWKkBrhx3iS1KrQERn5my2LDj75G+RKPPvJ7QwAOIadXJcPMjhYJVrdaxRWg70CousT8tUPSjQaCi3r6FMUEYC8JVL4KILDd+LAN977FNMAw9WVct/LHCVwAKdPPX9+KXf0BMBS6KubfH/XULTCylK7S56sXmaYzS12DxA7weInrMEVY8YbtYal0KVx4dvjCJOo0Dnl9cdf8qeWn9+YPblb/MDX7tSy/6WlmI3Ik5I4dd5l/0F7//ej+v9n1k8WdL3TCMSJfjISnWMMppD26a2+LRM5zdRmrWyQbelMyedovZV8gOYfVXfUhzGuMdpjCvWkf4IjNmx8AxJVOtA+JJHw7VTV+8OYMoKZhYJ7sJmHaLj1ZoYd2HzDtrBGh32Czpb/dXl3IApa8ODx03adfTHyl4LqHENfkGULlWFqH+Z31QcxjrDaazDVjFy4EcZla1Wz1/oTkzWDNByjKDwzjZB0oYvZDOkC5tO8Wnax5SpsonmmOFNOHJ41PMiQxeqmWz930ZmqYQn58i2fhyf2W3c/fCIhe9n57rNbORs0WkvBOClHwHATQQA0LUYlYmSoYxdZML3X3cv54VTg3akyqY8rB1w1KKHfSEAF7kA6H5Un2iG/sf4OPTC3Gbj44yXcPFxIiXFzcepeLv5897VkoLnHu6cbvtmyQsr4OOMlXDtbg6TWAGpIDo62gx8nEkVzo96fD8teMf9T9N/H/oh2Sr4OEmc1om1BuuYhY9zLGnLaceJy6TL67y6FNlpl6NV8HH6cBon0hqMI7AkH6du2p+fjz/rHTinZrVfXv4dNt2q+DiBnMbraBnjWScf5+7u2U9/+7Oi6OD8JgdP1Pn2wsJ8nJaclmticcsVKx9n7tWT3x33xgStabhzeblK/VOtgo+D5RCsfBzgCIk8Nez/Ah+nwokb4RmTRQGTvtw7u086fL6F+TinJVx8nG3MlLZY+DiSfj1LRk59K5o56e3Q1lsTVvLOx6HPzXngmJyUcHFMDkiKi48TV7Hfz6X7h4QvuL3p3cUWgY145+PQfQQPWG3jxGqNeX2upfk44WxubPBhZVNl+DrJ7kMRqmePe7+l7pR0SYZnJwM08qR45glTI7YvGkiV2iR4eky/m5PqgZ8yFcqhZl4c/Ab0vHtux0vLFrcQrw91qzytzq4KrM/H3Mkp2Mjof2WjgAuLKHgUC9Er6eeeDOyV+k9D8GnGwtN+DhL4j3b+M6axLDC90yn7KIUKGEwREwT8+lDy4zCz4qaMYDOlQ16GtIrvb5Icn0eHN59OkdJUMNAGrIx7d4TNBOXwJsohKyIYMA5f8aXkQT8kXwQlD0OzgxIsVvIGGdlNEVEi94iYQL0zG+rfxm1bUdXTxm9XH8fsVUlh1DCCOn1ZrviRN/jEJv30Hk8nNos4brgs4taBbpEubBZZOjMj+VXwp4C5gx202ZPdf6KuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6kiNHfhHp05nIuft3Q3WpXmWAmBLMkitQHRdUHd0DIL0GI4DwOIb8E/9Hll8LH3e8YdeqlaOy5HWm27yOu0uWX0nvkjLqd1Ccw68jS+U+zpnYk28nDqEWWZ6J/MUKeic3SdlA9gDAj0lq3z3z6mvzj1vDVY9stFHeVdzDFWvzvhgG7Tod2XYhKeWaAITSug0UKT9rB+o79tOAdEuPyHUb+75irGe7tGzkSoRLFZqsq/vmjDSREumQNOnFdVGNPztGED/57b21/8eanzy04TVZGgn8SQuuYaCgOow3nNNpg8xqNdME2oRLcocJbRunHPWYbcoyyJXv1pETpa2WiVqHBWHfgKygOE2mrM3O/RUYuGCnZXC3NP+hWO8bwKhOWrJMPUOkFLAS0zS74rd7McOVdqNZXEcMVl1HjOI36UweG1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0J6JFtI7/LoQUQZ1YWAJXsPlRy1y4Va/bRcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3uiBUVoBQfZHgGRLxlKtwc9IxkKU3T1QxXDc5cJurU3lUdmj1XfBWNTCx8Y+aK9OmQIfk4WSqZsr+ffTXvrIL3AC/IVCyfe04qum0q8B1hpIVZZYhT3A0zwle2NY43hFlRjvQKJS0yViRGbt98UZWo9f1L2y53HWFKONQwYU8cTePN+nG8OeokVLCdjPdCIPTY7qDPEJT2lqRFd88qMxv5bzh55/e10eRdqv4R3mwv+EE74xZaBn8EQM7VQNz4iINsZvAnSIvSKu0X0FKau5nsQruCICBFg+ntgA4IIMFFsAebMAnno17Y1AsasqlvmRf3hVF1xW6woVpQ0lEk3YQsvftSadERBLWGMIhb8GiMckFqwcJs7mDDidHw4jyROpo00aAK50DfpYavbqf47VLa7pz/d5oV+bubCLNliIMbvQEojmnVCIPgdFZreAYxFM0/wX7zOadriW58W1AnY2GPq9XLdP02iuVx4N2IXD7tcWDxadFdees2N++JlLX54IosJPmRiPKoED4BCgMaicj4hcAsPqQAVNsFxxAAi+4VrjFIDui9oR7MzxRW/dx/pnCs5VOF6n49DP1JrGpeVkjcz2Zn5TYUBtrO2Ys3ikCni9LAbEzP3BefyANiMmVyAgR5lkTCGH4mBf9NCwPZj3JkxO8yWHDTGY98yR8lPlgzJ/Jry6cW1kSctSmOElnk3g8syS2dYxjLI03uHea5v2GfrsAOH/DqKsgIbdvt7yf5wi9U33OJJuJQtqIlTfy9shBBxrStbXBPuu7FL99tM8eru9RyWJ3pTy3+WjlTrGCd2uCZNzvgNIKqR58Y08JkhqVI+VKlFT5y6Xm1Ur++xPgHTKm87F/LXLH/UIyC0p7Hrhs64oTOZewIvbcQIT5VAeJqRaVx46o6/H6xZiD0I8s2e7hn3pY78n6DRfaMej3+d24X6ZvhHMN+MuF6Yv43Jsy0dKpkSmhPUsc2K9xdfmuhvRQCiNAiRFDWqA8Go9p6LDFCsM0nMQvAwEjQ9Ep8d/Tquqb54nHT00ScbfvPPopYttBGD25hDCbtaGDb0McoDNg8zubChdR/4QbYCjrIM+dgkwoP/rspE4jySFh2//9lQt9P7LyND9r1vPHqO8+x+1ERHDD+EmejglwvDSlsyuUZ4nUrBs7b+uXXgh93tWbHqplXgR5zyRWONwE/Eid+7OdYTMYxkOVXAPVEM4fKQ5ut/+OAHp/19/MfmrelZ4V3rVaY5AhPjxkUPYqTb+CHixk1PrDcTcaNbkfaS8Z5n9v1ko0cVveubMqpM3FSGhJQ9s0+QW5j/Dw==
                    
- true
- 
                      iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
                    
- 1d3929f4-53e5-4579-ad62-84b2dcfe9025
- true
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- false
- 37
- 0f8c31d7-f100-4fc9-b99e-8708b1064c87
- 11426add-2dad-4504-a229-f384e437c631
- 12645ff0-d3ae-4dc0-b2a5-8da9d45fab94
- 13fa3828-fd39-410e-8b31-5743271817f9
- 1b9b32b3-e98d-400a-b04a-b8a3506fe77a
- 2c104d71-3268-4080-991f-2140f3080675
- 3a85fc51-6d5e-4555-965e-c47db2a072c7
- 54161844-030f-441b-ae36-6c8e6fd9361b
- 5524a6eb-ec21-4259-9620-fa93f7ba2dd1
- 5cea064f-6531-45db-86c9-02cf6ea8c994
- 61c94a5f-b514-47c9-92a0-139978a51dd4
- 7546bc4b-23bd-446d-b103-122a40b7decd
- 79063066-5dc0-4aad-b30f-37377464d8ad
- 7a04a069-f807-4718-8d13-7f0f8da45782
- 7fbcf0ef-f454-4ef9-86b0-8101eea0d23c
- 83120356-2358-4a65-bce7-37c29ead52a8
- 8659f01b-c78f-46b8-9eaf-29709ed0a33b
- 881d4b81-c60b-4b8b-8dce-2c40a6a7de3c
- 88326248-5e84-49e9-991f-f69c5ce76ffa
- 8d481224-cbdc-4fa9-90a5-b7c7d290f9ca
- 9e655fb0-3ebd-45f4-821b-a4410c510d1a
- 9eb3a9f5-048d-48f2-ad5a-3c4fe73de0e4
- a24fbf38-b1b9-4511-9bc8-bfe921f44089
- a6730e96-7e8d-4fc3-b6c7-7e677cc49cb1
- a90416e9-5e32-4045-9607-50c791a8677a
- b79fc36c-baff-4074-ba1c-7c3e26c598a5
- bd991454-448e-439e-be40-a2e9bda8dc8e
- c974d321-6663-4f14-b910-114ab3f151d2
- c9aec53c-3f22-480e-b045-ec9e1c2f1461
- d15cd278-895a-4f56-ab56-168db09bd1eb
- d3b685ff-4a01-4f1c-8451-d6c384158081
- d4a86874-2cf0-4b31-b7bb-8c7a64ae5e7b
- d822a4a3-62e1-41b6-bd94-a583fc00c4c0
- e693c8d5-0cfb-4d7b-8c03-ffef28614bbf
- f1bca0d8-e2a3-4ef1-b20f-8d05e83df880
- f80e638e-6497-41ea-ac05-21b35434865c
- fa22da94-54ab-4228-8fec-9daf748619da
- daca2ebb-26cb-48f4-8885-277e43200f92
- b2a58353-e9c9-4e65-a900-6efa66489724
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- cb30ccba-a894-45cb-b1d5-847ad7005125
- aa2a8593-f318-4546-bad9-74c7978a14af
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- 1af94696-7c3b-4341-b4bb-415b935cb441
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
- 43f684c6-6920-481c-81ce-8a3096268d23
- 326b8016-5135-4828-b69a-a21c171e1a06
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- 8de15979-110c-49a4-bf71-f92c5c15659e
- a67255eb-66a4-422d-aed0-4b64cd94d270
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- 17750273-1d4e-4a10-92b1-f4b16af3b73c
- e860b9e2-e037-4c18-988a-393d0094d8e4
- 937bac2b-aa3f-4485-8435-a74b05842dda
- 88db9398-ca86-4220-85b3-d1387046010f
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- 9c973484-e313-4490-a780-3cac6484f2c3
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- 20d03587-b988-43e2-924d-d6655441a5e8
- 735da924-e3a7-45ca-9564-36c125627c0a
- 53133e66-86e1-4322-bb85-7afca5c21f4f
- 
                          1444
                          1406
                          103
                          404
                        
- 
                          1505
                          1608
                        
- 20
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- 61c94a5f-b514-47c9-92a0-139978a51dd4
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1408
                                  47
                                  20
                                
- 
                                  1469.5
                                  1418
                                
- Second item for multiplication
- a90416e9-5e32-4045-9607-50c791a8677a
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1428
                                  47
                                  20
                                
- 
                                  1469.5
                                  1438
                                
- Second item for multiplication
- 5cea064f-6531-45db-86c9-02cf6ea8c994
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1448
                                  47
                                  20
                                
- 
                                  1469.5
                                  1458
                                
- Second item for multiplication
- 11426add-2dad-4504-a229-f384e437c631
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1468
                                  47
                                  20
                                
- 
                                  1469.5
                                  1478
                                
- Second item for multiplication
- f80e638e-6497-41ea-ac05-21b35434865c
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1488
                                  47
                                  20
                                
- 
                                  1469.5
                                  1498
                                
- Second item for multiplication
- 7a04a069-f807-4718-8d13-7f0f8da45782
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1508
                                  47
                                  20
                                
- 
                                  1469.5
                                  1518
                                
- Second item for multiplication
- b79fc36c-baff-4074-ba1c-7c3e26c598a5
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1528
                                  47
                                  20
                                
- 
                                  1469.5
                                  1538
                                
- Second item for multiplication
- e693c8d5-0cfb-4d7b-8c03-ffef28614bbf
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1548
                                  47
                                  20
                                
- 
                                  1469.5
                                  1558
                                
- Second item for multiplication
- d822a4a3-62e1-41b6-bd94-a583fc00c4c0
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1568
                                  47
                                  20
                                
- 
                                  1469.5
                                  1578
                                
- Second item for multiplication
- 2c104d71-3268-4080-991f-2140f3080675
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1588
                                  47
                                  20
                                
- 
                                  1469.5
                                  1598
                                
- Second item for multiplication
- 83120356-2358-4a65-bce7-37c29ead52a8
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1608
                                  47
                                  20
                                
- 
                                  1469.5
                                  1618
                                
- Second item for multiplication
- 5524a6eb-ec21-4259-9620-fa93f7ba2dd1
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1628
                                  47
                                  20
                                
- 
                                  1469.5
                                  1638
                                
- Second item for multiplication
- 3a85fc51-6d5e-4555-965e-c47db2a072c7
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1648
                                  47
                                  20
                                
- 
                                  1469.5
                                  1658
                                
- Second item for multiplication
- 7fbcf0ef-f454-4ef9-86b0-8101eea0d23c
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1668
                                  47
                                  20
                                
- 
                                  1469.5
                                  1678
                                
- Second item for multiplication
- 12645ff0-d3ae-4dc0-b2a5-8da9d45fab94
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1688
                                  47
                                  20
                                
- 
                                  1469.5
                                  1698
                                
- Second item for multiplication
- f1bca0d8-e2a3-4ef1-b20f-8d05e83df880
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1708
                                  47
                                  20
                                
- 
                                  1469.5
                                  1718
                                
- Second item for multiplication
- d4a86874-2cf0-4b31-b7bb-8c7a64ae5e7b
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
- 
                                  1446
                                  1728
                                  47
                                  20
                                
- 
                                  1469.5
                                  1738
                                
- Rotation angle (in degrees)
- 8659f01b-c78f-46b8-9eaf-29709ed0a33b
- true
- Angle
- Angle
- true
- 0
- 
                                  1446
                                  1748
                                  47
                                  20
                                
- 
                                  1469.5
                                  1758
                                
- 1
- 1
- {0}
- 0
- Contains a collection of generic curves
- d3b685ff-4a01-4f1c-8451-d6c384158081
- true
- Curve
- Curve
- true
- 88cf909b-1dfc-4acd-9ac8-315b06ce095d
- 1
- 
                                  1446
                                  1768
                                  47
                                  20
                                
- 
                                  1469.5
                                  1778
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 256
- Contains a collection of generic curves
- true
- c9aec53c-3f22-480e-b045-ec9e1c2f1461
- true
- Curve
- Curve
- true
- 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba
- 1
- 
                                  1446
                                  1788
                                  47
                                  20
                                
- 
                                  1469.5
                                  1798
                                
- 2
- A wire relay object
- 1b9b32b3-e98d-400a-b04a-b8a3506fe77a
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1408
                                  28
                                  23
                                
- 
                                  1531
                                  1419.765
                                
- 2
- A wire relay object
- 88326248-5e84-49e9-991f-f69c5ce76ffa
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1431
                                  28
                                  24
                                
- 
                                  1531
                                  1443.294
                                
- 2
- A wire relay object
- c974d321-6663-4f14-b910-114ab3f151d2
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1455
                                  28
                                  23
                                
- 
                                  1531
                                  1466.823
                                
- 2
- A wire relay object
- 9e655fb0-3ebd-45f4-821b-a4410c510d1a
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1478
                                  28
                                  24
                                
- 
                                  1531
                                  1490.353
                                
- 2
- A wire relay object
- 79063066-5dc0-4aad-b30f-37377464d8ad
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1502
                                  28
                                  23
                                
- 
                                  1531
                                  1513.882
                                
- 2
- A wire relay object
- 13fa3828-fd39-410e-8b31-5743271817f9
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1525
                                  28
                                  24
                                
- 
                                  1531
                                  1537.412
                                
- 2
- A wire relay object
- fa22da94-54ab-4228-8fec-9daf748619da
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1549
                                  28
                                  23
                                
- 
                                  1531
                                  1560.941
                                
- 2
- A wire relay object
- 881d4b81-c60b-4b8b-8dce-2c40a6a7de3c
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1572
                                  28
                                  24
                                
- 
                                  1531
                                  1584.471
                                
- 2
- A wire relay object
- 8d481224-cbdc-4fa9-90a5-b7c7d290f9ca
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1596
                                  28
                                  23
                                
- 
                                  1531
                                  1608
                                
- 2
- A wire relay object
- 0f8c31d7-f100-4fc9-b99e-8708b1064c87
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1619
                                  28
                                  24
                                
- 
                                  1531
                                  1631.529
                                
- 2
- A wire relay object
- 54161844-030f-441b-ae36-6c8e6fd9361b
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1643
                                  28
                                  23
                                
- 
                                  1531
                                  1655.059
                                
- 2
- A wire relay object
- 7546bc4b-23bd-446d-b103-122a40b7decd
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1666
                                  28
                                  24
                                
- 
                                  1531
                                  1678.588
                                
- 2
- A wire relay object
- bd991454-448e-439e-be40-a2e9bda8dc8e
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1690
                                  28
                                  23
                                
- 
                                  1531
                                  1702.118
                                
- 2
- A wire relay object
- a24fbf38-b1b9-4511-9bc8-bfe921f44089
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1713
                                  28
                                  24
                                
- 
                                  1531
                                  1725.647
                                
- 2
- A wire relay object
- a6730e96-7e8d-4fc3-b6c7-7e677cc49cb1
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1737
                                  28
                                  23
                                
- 
                                  1531
                                  1749.177
                                
- 2
- A wire relay object
- d15cd278-895a-4f56-ab56-168db09bd1eb
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1760
                                  28
                                  24
                                
- 
                                  1531
                                  1772.706
                                
- 2
- A wire relay object
- 9eb3a9f5-048d-48f2-ad5a-3c4fe73de0e4
- true
- Relay
- Relay
- false
- 0
- 
                                  1517
                                  1784
                                  28
                                  24
                                
- 
                                  1531
                                  1796.235
                                
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f6f14880-afdd-423b-afa5-2122f025986b
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.0625000000
- 
                          1035
                          1399
                          250
                          20
                        
- 
                          1035.916
                          1399.719
                        
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
- 
                      7J0JIFTd+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpobKE7LSQ3jYtSrt2ad/1tv3uHXd0587cG6875vb+Xv//26/mzFx3vs85zznnOc/nuXJGno6+HiyOz0/gR4pEIkkD/3Xzcvd1YXMW+bG43mxPDthkDbwMNoM/suBb+J+js5hOLC74FmmoWYHfZGoEviwPvDTu0Yv4VaGHzOO/cBpdjJZ9lrXmsvzYrGVguwLQLmPrClzFqTv0sgXL29UuwIsFNneEfnFXqM3Sk+vBdAdbBgOvpqSk/OR/ypblznL0YTnx29hs9k9lI5Yzm8P2Ab6FNdfTi8X1YbO8+ZcF/+tkxPTh/R454B9H73uEx4TckutsxPJ25LK9fKAvD94iqZMl04PF/9fLjvZ0Ez29B7nbG3aGAX8+iMsA/rwfl3U/Lof3F94/c1LBP2M28v6Mvh8T2/zO6nhL8O9bgsArbAM/8iBpb/Pf72/dcn9rbPPb7scdbL5a09uaLtIQdxR8fftagV/N/yx0S1DrQcHb2/Hr94Yn8N4cifX3hLTmC0J/Qq9gfor3d+gb8X4j7AYONt8bdJ/82/71Hl5r03eEfinvu0Oq8q4A6cP/rLCSTQpDajf9Ir4hILtAVxMwHyQvz7J6eiZ0e3kboIeBQ8GbP0zAn678Vw09fZsGUEf+EAA6mxvQGaH+0wF6WcaOyXVh8d7ZH/jnDi0Saaoa0LPmenp68EeQ0tzz06VnAd1Z4FfJg68I/Rp5G0cvBjPA09cH/l4FE66nr5fQm7uY0KkMtgOXyYWGgBQ0sqQF3gq+Itv0vgDePUMfV6R6e7M8HNwDaL7u7vChQLX2dXZmcZ3Z3q7DyLOaPMbU0Xr64P8NIxv6uvv4cllTOSxfHy7TfRjZ2tfBne1ozgqw81zC4kzlAFfrzr/0rF/+BryyLHQVGaqvj6snl/9yVwu2oyuT5U625gZ4cjuYOvG9TEr9DvVFI2cxMmQ2sX/UKywXGLEKv25TFuX3KP1yFlYOoPmaZZIG/ujc9JqAWODrMk2vgxp1gPTrZDLzl+8budemYl7GQdqBvd3Pnlj9cZvAXUnzbCVv6MnxYbI5TX5UG7qKjIEnF3KtfMPIGHq6e/py+R4O/F9Rvqo/lewCXpfs6Uw24TK9vV09vQDfR/Zs+lYdTI14vQf478eiw8lHpjVYhOxPj1e29TUGmqSgJm6OkkNw3wrzfdpXnDTqPr4CmjpATX2PLkqqm8GiZ0ZmrTnUfYo50NQRapLtqZbnrKhoWXz2qwLHK8gAaOoENU27Vm/ZOz2ZkXr9ekjRzY4NQJM01BRuYBQuH2tC37qzfssqv7CtQJMM/w5der4qZV63Wnc3zu8Uhd4INMlCTXmPl52okKm0DHF4UBnyI7IT0CQHNaV7MPZ/UYqxyK/TfaaQm0YFmuShppeDPpydumqG8Ubja2fZCi5LgSYFqEmLNTBOeXYYLT9isSxJN3MJ0NQZavLrJncmP0aPsfb2rEN0vYZioKkL1LRz48ObXl0vG8faTWQHa0yKBJq6Qk3qEaGdRunestpf93rVjamxN4CmblDTi0CXz4vTUunHZOqMXGVipICm7lAT2+wE2dnyOWXz3nE/nqtQXgNNilBTJ2kVHaWhfozMT49ND4d8mwQ0KUFNx5xHnPKnTaPvmdnNZbW0wgegqQfUFPtj3ktTf6Z59oltDT0m3bMCmnpCTUs14u6eMDjB2LB50Or0mKUdgSZl/gW397t+PWkKNZQ6V8l6h8tkoEkFatqk0PUMKfuw5TF2wuq40oZSoEkVahq2d2B4r2W2xvv871PvX0/8G2jqBTXdyoi5onVaxixzSJcNWRYDpYEmNahp4SBlizrSMpNQywrtUWOcjgBNvaEmurebxpLujwxifko5JPUt0QOa+kBNpPSNjt5zfWmlnyxPzR51SRNo6gs1XU7IXvpi1nLjSGaIjrWhTBnQpM6/+T3dspkpGpT1l+aOzPccFgM09YOabg+06RV+OYR+9J15tt6lMtAo/aGm08fjPxt060bLOzvSZk5m2TqgaQDU9NfLsujvX2VN0+x0nw0Jzu4LNJGhJurz0FOLvDItNlb1sVhYVh8mZ2q0SMCDDAQ9synH24fJcWSZ+LKbnZmSvsqnPUY/zFJGb34Z/epWnQi3IWfJdlwCf5mkQPXx4bIdfH2aPDzkuvkuSgo3FzWgHV1USa/Fh1PmhVoWnv0UaqMTYAtzUbR9umWyr15a5b7oqF3P+lIJc1FH2NXyZjP7mqx7cqf7Kor5B5iLSj/kPf6EuSktuJc0g1Y1URnmooxXlydTQhvNNi5I4hg8z9OFuahL82XVi5buMsydrPpx1BxpDZiLKpvtcXXeR1/T4JG9/WlBmqdgLso/pGLFxqHjKCnDS1PlNGYGw1wUe9/qYtaYy6ap0aSJ0/XKk2AuSu3nSNIFF2mTCKXeR+InUIphLsrayXz/iwB3SvoxrZCI0Z0Pw1yU3RBd9StPSiwS5Dw4IZsv2cBc1OTs9wMnXquxTC5ZqVE9atBhmIvSCHAbGnovyiyuenulXcqg+TAXdSL8ZOzVCK5lxKrjN/etvjEf5qIYO2TV/PuwrA6eYN2o+KQ2BeaiHqaOezvoSX9qCneH/UvZsuUwF2W5/t1A09gi04IYi9kKZ1Q/wVxUYuH3Bwe3pxrkechsTEh7pwdzUaMvsxhTZ8ibBOWlhmqu7LMT5qK4N+IOFPaYaJX64fjXOcMPP4K5qLlrOXnDIhIt4w0cErJ/vpOFuSgjL02bPAVbs9gLtfUbLCdqw1wUtfE7R222jvHOa5FP9Lmqg4TGqxraeB1W/GBW3sL1RhkVdru/T66pxmG8dsBtvGq143gVsW7gj1cR6wb+eBWxbuCPVxHrBv54XXHDvefzHaZG+UFldnvPaF39b0nx35KiBUsK5KwMW1IEGXbMT9fwpKZfMVa/dDxFEbakWDT3S90C6mDjI/aTGIEBe6VgS4phWmPUTluo0ZJZJ+Z7XKUWw5YUV2aNY5PT9xofTIhMPfDl0DjYkmLRUYY0fcNTw7U6umWTlKZeFnI2A9CcDXLZjoOz6Yibs1FtR2cjwqPwnY0Ij8J3NiI8Ct/ZiPAofGcjwqPwnY1cgJrmq4Icy/CzHuk7ax4/gDmb9MZDMQsKvjCiDagfJ65aHQJzNiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZiPBDfGeTdOfgJLf7n2kR2xwHPndb/g3mbJDDS6jzdkfrvMgJAofO2wmt8+o9dRj4jdtovnXO1doRB9KUBX5XFyO2H9uJRTb05fqxBPswaFjQTKJ6pw70MSbZEfwgmc3x8SSzlvoy3cnuLI6LjyvZm+UCxj+9ZehsJycWpznYIlIOZBdGv0UhVQRaEQo1x5wMAKM48V7SAP9dd6yCVJtaQSJ9MiCRAg2krdl+nj78NT1JPw9o3VvR2YvJZXosYnO8fHmBDVlIW1FydOf9djKggRPvbkR+yRvrdhctSOhHSysYX1czO/S6oM1FfzvoZSveb2sK+fJCXDK2gAtxZPFdgId1iPPIruvNt1Zb35z8bUN056ZmoaBWC/WpBvSpAvUhA/okU5H6AK3+qQL6SEH6dEDRp4elr4cD6Lycm/uFSIl2d6F9C54+1HRHvLX77Fs1oxESgV9HhES8l38nEXICxUEibUyJgC7UzRoMsnn7AN/XiOnDbB4DJFEBRxkDLiCHKwk2jIXf1Mma6ePK/+YdV+iv6mTqw/IgkX4dTMhweFLzPwS+D24p8NIyGJbqZevlzvZpthKZ6UNewuYsEW2ukm+vy4b1O8/IKFj2qVhpn76guczBzwmbq+llIXOJsocIp4dlj9C9WPaYIBl7yDp4erqzmM0OkNSlyRqevj4IxyJDdXRkeXvDLy/S14AODwzdkr082WgD6WPQ956vLRdbJmyOYdO9aV8FLCNjzfugkGn4r+Num1zIncwXZZsPOTx3IiCLVOtlGWTH5LgAhiX7AXOhJ5fXc51aoFS9qcKlTp83mwSPNM9cyzlwUkApOeiiwlr9ahGHWtqYagGeRUCtDq1XS8Ma/DzLB/DJfkx3X1aL5Vry5H5j/Y1J9Kw5GWuvat0ejThf4F9VWDB4mzgk4w1+VMmAwQ8tk6RJKMukM4lMxveJvUzW7esv26CxolSwIzCAVRHZ1oghvESSRpHYwJDLYvqASyR38LOQRyU7gecrLCeyQwAZUJfr0yT2MLIP1H2ZHCdoCaW3qkVrJ+QaX/R9C3dgfksLNc7MryDp7wE01jEUsWYKBTTW3y20ZsKaaRR5NwDTQOS3S/vmd6+fZZhJ8vkTx2rKknMEpxhb8NPCU0zTy3j3smRAATKowCtRvewUsGqs3i2RKUbB0BPYZbI50Cn+aBL6D3LRhmUgNZ6B+P1S24nNbTrN1RFpKK9HlfHdWL3paXIvNROe9fhbwFDyRvwPCxkL1iQOgwXuxjKYvmQMJtM0Rwka6810LGP9bt3WmWesJsch0j6bumk+/5z9zqCoLltj5OSlRoIrAgbvg8IrAuh1cVimLgXLMtEpkl498w/9QcsIrdlkSOhzaxcGzN+LtAVyuyZgi07gx4Us0fQq3nbQzoFcWiYVGMFIp159lDdCoImT3/v+NRMnMgImxokzPx1r4sxPExlsaNvE+aTWnbViwHSTTeXmX24aylLaMnEittLIzUUbt9KgMziQjuUM7NP/f+fVSwbZ79+OMzE/etvFx/HQ3D0EmVflMA0G9GjCzKv8n1/zK3JexRpsv51XRxv4JMotybDcTQnMTH71PKRt8ypipKne6XPvZ+AWWmwexS/h9uYpOIw01zQsw6lJyHDtMu1Olro97bGdo0HmlQgpVekSc4lOuzyPhzrtAgMImnb5nVNo2rU8RrtwhnTKMHBu78nsBjMlgW/TzcLX3Yft5c52ZIK3Ljz5ovX3vhaArVgewKccme5kD4GrtGhWRZ4QYd2WkNyI9hbKqXgMEGw/IGck0K31kXLSgW4tt7+ia3P8gd+rQRl4IVJT0BEI2JLnFXgvmzrxx+Icp6qNUmXyRoWvell01e1ZzW+XQmnvbMXrtkKjQa7pdfQLN90P73ZJJOxzh340Ntfbh8wGhhPZ2ZOLsJdI+1T3l9cc16W/RWyXjbFfFsxzEbCPFFXIJMBLyO4vhfBSyCO3NnopEmDOA6A59akivNRVcD2wvwImktRvROpvy3L0BBaHrVFpgN5Hit3Frkbr99yLsrpQKCeokoGwSga/VSk6e398oOomRsw1SuDjoTc34aCSHKZK+fsqoD7Y3Jew/KeaDcsbEAY8o2mBQMiZSXDaa7qU8LQHvY63P63PhXpMIxU8AEBo4Z7LUwryp3Jo/nRb/ccdw2dGMgr+sjpu8jN5kGBk09jfi8vy9hbypVgLPVVjMLbK28pwyKzmC8CuxX+nEs3KxoJqpz1ohf4km1WDhlnptMjXIg/P0W5ZOBj7q62lIVYwlhIDSDwO2MXUIbtbHSCxYowIH8s/lBbhY6VE+Nj474GFKTH2pnn7D1pSHuveag8f2vOXFmQ/JpfNdHAXfX6r9qFY6txwKj35Tc/S+6fWVAiqPQv6KNlK2DlYtbcLLQes5RUDOYdypLW25vOs1RrnoPzLOfzqyCJVmp2ecIF2+4NJ6onem2nDfBNa5BikyLj7hMVHIQnKKSIkoB/lSQD5BHk0n5CQXzcn5FGjaWF+bmHWkvsMwU20NZPDchd0B/wridJQm0r2Aj/Bm4Mcfb19PD3IHE8f8OwFmJ18WP4+0FmMSF2R2TAibkU4Y0SUqo5cT3d3G9Cz8/1X08+b6Yg+ibQkWp+Um+nN4toBt8//tZpGnr7gSHAEZpAlYFIEy4ntA313YCYGdxYPAvch7Mgn55B2pBdUkLQTADvOMiQFhhgqWDC5LmwOg+Us0Ck6N71sw3ZxFaSDml638/SCvyrYGZKNCyo6kRMquvNEFETkZPl3JSppi8tcZspxYjvCUCJ58EVwuwN7ibemBUNZv5y5rRfLkc10N/R0+vVZYO/nw2UxPZr/3Wk2l+n1y2E0dVUFtK5KdtHIC40KM9hy8hBj+5eCFYL9w4blzgwQ7KpyJJEnhmi9tyeVvIzNZZG54JWgLDSRHRWZmyXiRlo0/hG9Edn/2+gh44EF0uJEKF8gEOkeGoH5jJzIdw+dCa85cvrASXNk7isOmstFY2letYmveRc0zVuditmZr3l7oGTC2Yz87aGIbEZ+KqaIbEZ+KibSsEIZhuACS2SXQCY74pBh2BXNJkvL2LpsyzTDY6VW7k8fzXst8Ls6z/AFpwFAOC9X4cmyFTkLg43Y3l7gQGCSvVm8pUjAcH7yAvD/gI2A3yBSC2R2J+r9CSki0Cg0XORtPbk+VvBeJWIQ/cOlXfPVkPMhuLRLBgaRqiH4n+AgqjHKr0jiJFd05XPgwPzE8he4XJMpu6GZsoS1L43z/SwjaljFUX1ujwWC4WYwG5EJsqzCASUZFKtNbt4E+biyeNmivAuA5uMnjzJ9QJOCU6Izm+VE9uJvIvRatAlCcgIodywcIG9uaukuE9hxZ3oAyv8tKmsU3INmLmlV1qhSc9YoC9JI5BccnrV6/I6zl8wOWswwWT5nzBkc80aRtEQbHXwtoFA0qBAdUOgN0sGDYbpkd5F5o2gKaf5KUwJ2Z029xcnTA+h4v1WNZPfde/JXRcbGYapJV1/WqAh2i+brCneLX02/U69zt7jY0lwdsygtlRvrXd/o4KAe0IMw1Ct3q2hVSFyFl9D3SzpgoK3wWSVSrji5CZVHs8cYrl2ot7xjxI2ziO0FeB3hTtb0Mt47t9BcqBdNEXVKcS6ngvTGXThdEEuHXs1DHcoOxFJiaHhHY5quGi1+ze1pu494ZbXen4hFEWt3LEWAfiOUEthCRRzZXEd3zL7h5WF2rMroLbWsTMdgrrHpPIIoorgESxEvN/5SEoQw/lQwAkm6tQMYEeiKBUYEOuMPRnxcXrxeyuYGY/3OmG8751OqiTvBgVnmi12xsszLXcQCRhSmmi/u+lyJHvrY4viKQws34whGIAk8HCQiu2BJBHShfzsYERi63d1B6odl0tvhNpROf12QMBhRx8KyB4X1fwRGrLn23NJnLI2aGr9LUWP8um8SByN47gQ1bx1wJ5ICI2xqh7p9UQ+wzJ/IeZL23O4KIcAInmdBVQvwLBIDI5CbAcKAEbzBjyoZMPihZZIiCWWZtGvFtppX9UsMDxzW+X7h4qgaEdOz6LiOKH2HQO8EAzaOnu7uTSlq4PwHdBoWl+3YtG5q2eoIObvLWjC9vNgcF75S4NfBcTGBxNjbOFOSwcWEdQWYMiN8QnU+P7fCK96KbxwlNOM4aAdrJHQqpeTaD1ZLO3tDVeDrdjcCMx+8fbi+jj5kKtex5Tm4k21YwFdg+TVFbRyY3iyylzuTwxpG5jKd2L5NR1bAQHdv3o+D8RwOmcl1bFnUBlmMAfO+hQyGfEMLFY8GF2hcQPFzopa3gcDyttyrVctbdeB3k4HtpGHTHgpc5v66MZHfOzN52jcfGzYtadb6YRYntwrG1zqK+q68F3/XNZFbtDZ2zUAwVAMKlSwqQY23zvVqXSiir0FzH+J1lSbdmvaeIoWizFc1/lS0wTRlEIs77VzjakF/yruaNXg1YX8Ka8Pbn5LzIF3sRflTOuBtSdxWhiZsmsZTizTZvb7xo6xWR6M9V33254Y/OY44W+ddSUTSTdPr4tBi8VIsLZB95HdBCTIV7lC0gf9AZ8PkeOtA8ogUxe7Jug0xlyqMymaTH+3oW9VD0OHzLins8JteFockZC8sSQI9+R69B5pHH7F5VUC/ST9oMTPHRpAS58QJdnwrYPxY+QGrE3thZ94RRdeehp4egPzAwAMHH/hh/5Y5aWRZHLRbER6Dv9paKJ09uG3cCKbEGojILyIBwmZGtco1d+ZlADUt4kR+uRMm97dxVmuYpmePu6jyplowUVV6Fvg54X7T9PLvvDGyjk8bvTEd0EYR1KZeVDbP1SZtWpcr3ZT6g6GO4VeZm4klfkaH4xuf9WU+WSbR/L7kXEiARlECDM7lCQCNq55o44owh/XIU3WcDuuRFsPjsH4T5mH9Rr7mymia/4E5lciiXmLOqdT3x8qptF72L8+prJQZ2vdYTiezPI9D6575bCnEM6cSZy8M5lQq+mPlVALWEk9Opb7dxR3zmJPMw5ZN1paLfK3aImcsppxKngSoOZWABJBPUEHzCQTKqURW6RN/TiXSkpLJqawFAb4NgB0niiunMuxqfoVZxw3EzqnkJ8OoonVV4iwZEDUjcVoyIPs/DksG+2CsJYNaMN899CK85sjpAyfNkXt4HDSv9sHS3NqHr7kamual+yKnHfieYZZbPsWuqshbcAst03REKSg61pnmCNQQr7O7J+AjOS5NcXRy04GcaNeMLNcm6paE9x/Q67+zwaiabcojjDUZ2802yGXaHS1p68oArFfBhBJ3kNOi3OfcCrXziyV95PlrToqmQN2hN1p3aHXAnz8ExR7wR5a6xTG4j4SDcegT9MMofeLWx9wK2uND/HHZB80Qrc51bvaF7ZDrjLSFUGoy+FtFWhFZNrUlqcnSotJY+F0a0rEvmo4X+z1/9mmzhUXQkW2Dhi/+KJgL3cnCU1SCD9rJyFA7YGh6u4M7UG0P4JM64Ea0SR0y090TcG5M6KS1ZTE25KMdhO9NGEoHX21hP3wDxuoLgX74TRQbDcbVFAtbFVfryguvu7A8gT0pN0DkVyroveTvjb0KDUsy38/fbnp3guDJsQn0UeGT4+aW3+3skF2vjWMVzHrKBDWiiArb8o7pCluX1cPvI7z9L68ziD4Euzp4YFqNnGV89Z4hRxv6Cp4Zy1h4imTk+a//zqHpnffn0Gz0zQOV7aQ7M0i7cBBJEVOk8gLiFf3g/wymtCo+2rN5kDthd3Xtd/r9NFnXreLV7UsGT8+60uaujkeolNeX6aLMVJvD68utOqFq0sIZfOQcrz87AYYV7cnMEpUXaj5mRAXcf2u2uucPwTTR5qsIp4n+ahJL4BhTDaDTQrOHOgll9kjXK5g18NJnw61X3Gvf3GmoRcSomhKK7efMbTkTodVc4QpKR3bmenqQV/gHLF8FrJE8vDw5YAJNy+YP5PN/0O5OOF75q62lp8L5FbyYJYlsKOL4nARoXX1MaC7h8/YiI2DQLazwh31vkd/SlLL0py0tlxHhVJyjovIluocpx4fFBXqKcNy3w3B7Qb7H/te1hfkeeOPvPOqpM9WxW4KPmie8WppZ672/bxs9qhcgJRhUJJ0S1TkPAFMz8A7CbBvelLVmBmy2bMDvLHv4Dikr4FUhJdePbNpz8rREQdvNwbLdnFbYzv5OQICFf6RBOnVAgtTZyW1NkABtR8a0HTAUCGO71mW6Nttu+e9s96F/b1V22UrGrpQnUsqcQeGCtpuLZbu5WLZro9cHjQNmsKAbR59QxmnV0kQRsg52mhFy8Se4smy6hPDKEnod91k4B3J0cqLAJjWglZ7fujVJV0gEjLps6drJmT/ktIwPXPl+t+BQnzeSrXeaw3MIGArYH+OvQ/qRUNYhWYsYT+YHZZmFKS0avUG1ULByk4wtC3ymacv3sX2b1yDevE+CG34oINeyhQfy6YKibkdY4KbXW0FcgtAJ6YOofD1w86qf26qa032a6mU1fU8ySBG6sqDvL/I7KrzrxVWb+cl4R9H23GXhuR8lWH0apAPB/CLRxJM60FqdSxyn9mZ6aypiDrb1YXmRvdnLWbxzPBbT0ZXs7csL57P9WJC5RBro1XDfNT/oziZba9Ypq/oXfBGMnoCXFY6e8F4Vh3kCc7HMo09Y8/DT5NHM0/8XpATlxP9+5Kw3dTVna60yPjrCbjfJ/iLi0Z1tApaQDyjFAbuty8GyXHSOpC3HB5aEVgooh19o86aSLdLXizQecqPz27z637h7sezrm52hUH4ymBAGjDZoPu1PQplPdb73UjtC7mica/DmK6u/i+DzmDozAGuTm5YDLc+07GfBYnqDUC04OiDek1fowB24WsumVeSTeVHvSnhNDWtsoY7+4KOcMgEdT4jKuvQCU8AyRe7oW9Hn5HkBY1AA0X3tS1rS7PndzfN0RwaMWOsjmA3XCfxKooqyev/eTeCMfroCUrmCUsWLSv8B3QQgFSrCJnKf9cutgqUpeV6VIVIjlfqvT2bZmjFi4t567KV49UGORymh8djO61vFPEgcUaddPFgbEAcajwPQxiOBEoOQUwzuiUFCvVUuNGv4gbsrLNMdcvcbRCl3kUxiUD5gR/+jzfFSMSQGheTlVSxcehSPxCCScGIQCd9ia2S0rjqww4Z5Q3KvmUc6PKO6nucIZid0tWB6e5OpToAdhFJbQeE7oXVZYI0BRsHJHuDnmdDnf80fzY6iRfMI8lntGLco1JUFm1txQOSaDdUOEDppBPNU8rPaOpcMgCX1ezfV8oVrpSc6ErB9R9qBqZNMMgw2WsSdqkKcovOuKLwUbXr5d3MM0jHjwM7bgxLWUknCdWydjvEkbFW0qBesqC9cKZFCIX2QRHP+J+RBWoSKWpZrg1NKdpvZ6F4MaFwB1/EBfASZy/syoieFHRvzB78ZkG5UMrzT3DHfX90XRBatoSs0ySG8FBZ6gzgEA7oHhmCuWfw5eCCaY2t1xkkPvuDtkHGCTJWAVddDnoLBqush41Sw6nrItTbsQcfIFQDsQcdIzwp70LHey61h4dvCzLf97PGl++ALi2APOl7xbMbbkZFaRgdIo19JF4YEwx50rNh//5kC8w/UDXVH0qYsvz0G9qDjcdEzKSFKr612yGcsZU4u6Ad70PGljJqwLSXnGYlx6h13OVz+KZR/AxY+FNmR/3pZFv39q6xpmp3usyHB2X1xKA04CK1DEb00IPIx6O1aGvAfEgrNVxNVGjACpTRgb1p+xWl2xO9LA2qgmfJPfc5TSa/Fh1PmhVoWnv0UaqMTYCvG5zx5vcJ6zpPXSzE85+nYxQ3B+xzSzXcPLVRXOFG5py0havE/52nxK6ynzyi++v99ztPlqTejv0zYQd+qeJpBU+n6liDPeSp/iWUwoEcTLuVLTM952kaaMslQwZ6W0sOvoeb0khO4PudJ8YJr5yuGymaHho/cfnC47BYcRhoZ03DVLyQd0hbjc572m06Jzuozw2o3q0vyYrerOyX6nCeex0N9zhMwgKBpdzAJZdr9Axla2j7dMtlXL61yX3TUrmd9qRQzQ0u/icXQ1t74lzO01xKr5saqPrEo6RG77dKNR5/xZGiNV5cnU0IbzTYuSOIYPM/TxYGhnXATi6EFrCUehjbb+kVKx94H6Imrnb5nyIbvkyRDy5MAlaEFJIB8giaaTyBQqPwIu1rebGZfk3VP7nRfRTH/gG+o/PSFDvVIhhZpSck9l6TugTifS7LBqKCiQ+0DYjO0/FC5FlpXJQzPmX7Ie/wJc1NacC9pBq1qorKIG/knPCey/+PAc2o/wuI56x/y3cMQwmuOnD5w0tw/pGLFxqHjKCnDS1PlNGYG48HQ1mJpHl3L11wbTXOiB7ouzZdVL1q6yzB3surHUXOkNdo10PUPlxFogS5rYKGg/Qwl0FVonl+RpPXs94EuHcIPnxPhJ2OvRnAtI1Ydv7lv9Y35xK0UpFaNNXxqL/KHz1A0zQ2u9rrjN/4o5fC8hWoRs0oEVzTK4Ff1AVMBjdjOziwuC9BJRKorWlbOCH79My7/Mk6/LsNb9fw6YAXpphbtccpme1yd99HXNHhkb39akOap39+wkKlEvquFolcdA/Y9NWBNMFGZO9aASWqvtvW0lcqAiQKul8AVCJNXR46sDeWPgRULm6rign9rLjHs7u65jOUkOtJV7aH+14j6RYaBiVpxa3U7pSJy03neTERuetPrv+vbSRTpE1cvTKLvj7r0uZL+7mUb+3Y+IPMEUOZOohJbxhzjydzWwtWaMPOTHVg+y1gsDi+/n+Xoy+sevFN/kVo+D73xeWjaE6vU43IWd27mChYG6fzruk7CXh3eiPcm500uJNt8UbIp5/Jkg1yCLuHdMHK50RI3LGKLg+ipSNPhUXzlGmbxlWt8yYcRXnL2vtXFrDGXTVOjSROn65Un4SM5cj7FQfI3l7Akz7zEl3w4muSEfp4dsufDTtyRFoKduCOnRtiJu7WT+f4XAe6U9GNaIRGjOx9u+fPs1H6OJF1wkTaJUOp9JH4CpRiHQ2s9NJuc7abxfuQ4T4vgd6/N9a6sMRbMnbJhAStwRxbZ0tfdvRXAzXD+5zjg58DZks0Blu5sp6bpdRkbzBX2cQXs0OI1CFJNjPsUzvESaG5pgVtg4V13BejxnQ1F5HiBOSb6V9q66lA15SXDAssN4GZ8eMszUDGRAmian1uypoe+ydrJyRZdrjk3IFK7wAuJSO3ivfw7X4Hs3230FYogOw0qt1vUkcw58Mk6V1BrTLRQub7NynEFuhrYtUTKN35AWY1KtxsGh6+XdV6QX14l+HQhqIN4iHzMg2Ar7vnE+byehKFW3eV2PcDi36icXYAXC66DBsyB6pmzuByWux74Hm89E/oiEFJ3YXERIAf409YloypvaQ4aFrgEmckJaDK1SCsjl8RtGSRttGtVDjQK3lBF2NU6hzcKWkWCqiGT6KGu7yRSijP5m1LT9udZpjlte6A6r1DwLK2VVBIOUuhjSgF0cWiiGkFCmagsj9EunCGdMgyc23syu8FMSeD7dOMFeL3c2Y5M0YnIaKu0vhbAMGCB5T4cme5kD4GrtGheshuiq37lSYlFgpwHJ2TzJRus2xLSG9HeUo8BPrGgAZAzUlT2MR1cqT0TcQ7IDxuIOAfkZQwgzgGRx3n8dimU9vY4J+zXxLSCvb8pI1pAPpH2SX3Zy3vA9LGmOQvlR82uTVMXsI8UVTimRG3vg0ISiN01QAeFQqMDLHlOaaiAiST1G5H624LP5XBqlUp1xeuctaMGWMQ4dJ9/Y+JlwbwxKQNhlQx+q1LWjc1bNYI2GOwdfDL29pqItj5BBlTpzTMslZKfteo4VQ2WLv57gZBZKxLNFwefv8vrMWCNeKHcefdcnlKQP9VH86dELhQ3Ofv9wInXaiyTS1ZqVI8adFj43tpcKE7uA1ahOPv3eBeKOxkXu3PFKD3zhE9Xrb7lWKfjXigOmQmEQw20xvdYNdAOvBdLobi5Cmu27qnLNEyduHrB8HJXbVwLxZ3rahk1/UeUaUSRh/G7k7FncRDJHlMkuffEyxrk/4irUBz5b8f370frmpa4PSmNeTL4eJu7Oh4INa8vo5ZGA/qyeArFxbx5YHCwB4cS+3rO2oW9lh0iSKE4e0w1gE4LzR4jSSizB7ELxWkEuA0NvRdlFle9vdIuZdB8tLvDqVCc4jusQnGKb8VUKK6039aNjfenG0XsdV6/3VIlQyKF4qiN3zlqs3WMd16LfKLPVR2EQ7Ex0juselaZbwmUziumQnE7LRyXGRZlGgf13Vmz9GpKiJgKxZ0/NuaSw1dds4NSPyp2X1//DAfbLX6LZTtFItlOqC4MPoXiejckbhs89apxaWDxQuVT6ioEKhRX/gazAuMb4hhHLIXikIs/iReK4zk61DJpoW9xLxT3c7nqc637dZa7foy09Lz0zF3iheIU32IpEP+Gvw4ZRUJZh/ypoN7Oe8Omd7kVYJznP7psRPitzmIE9bqoVGKAepHKlfiDenIXfWi6p7ebRSbGTSsqoguWRyYcqNcJFAgVH7qtXPl/C+oVrPu+YvjcO2apdskvfz5QFXxAnORAvRxlLINFSsZgkgD1Nter3Nd3vmW2cdDlvY+MI2bgCuop0fI1kzYUUY50cHA70XPGRxxGmhOm4aZIyHDtAuqljup34/PwrgZJBvau55hDBSuwtTeox/N4qKAeMICgaXc0CWXa/QNBPbXFmftf0FmWBW+n9XF3LZJGu2WcQD13+UoMUG+MfOW/G9SrCu/zwCCVa1GalD/j5qbh8niCetVTZCOe5He3Opbb+dmhapMVOIB6TqC1UEE9wFriAfXOp8Y+u0qayEhUzjkeP9DEUJKgHk8CVFAPkADyCWPQfAKBQL20PHXqeuYu42TT4d9XmKQ7i/9hl0hLSg7Uy+xaKUZQz9mkoCL7cNfKPwLUG4vWVQmT+3tvyEybVdJf6OvqtdeX9tO1xol6QfZ/HJJ/rbtVYiT/6nfju4dxhNccOX3gpPmsNbfWW2ssMwgfpiN14uYgDg6aZ8phaR4tx9d8PJrmRAf1jhyU83nCbDDZ88CqQCFv+/d2BfX+4TICDdQDK1LVKlaKBvUSaPkVP64qVv4W1JuAZso/DhrbdfbY4BuDOVbhumULpTmLV0kAGnshU4kBjeXICEW+iAGNFepoj1HqE0zbcdi3y9AjNycg4tRtg8b6bq5zOLKnmrF5GPUvQ8bERBygsUegzKjQGCCzBKGxtINyf81aMMIiS6Eymtbvs+DzNyULjfFkQ4XGANkglzARzSUQZkZFTn34EExI0+EwofrIYk2odrJ8yScRXvLnieeiuEZ65sGyUTFms77PwEfyd5T+nU0TLphl33zqfzt5biYOklOksSQnS/Mln4wm+Z8CKL29POoT+fNI6pH7+pmlgR5bMO4TP0BpAuhDUAGlOum2znCtAZTUpT5r3O6nZFC0fPvrwnR/BLXWJkAJ2dtxAJT0QeVQkRs5wbUBPLNDXIDSk9Uvv6bYcCxSN72PHB5exSUUoFQnjaVWvnS7Bu7/ZEAJufySMKDEGwWoVI4cYun2uwyE1gFKI06HKYx2szQ9NHHh/qOvXydLGFDidXFUKfKbJ6opJJSJiqCAkv/WUQ6dc/IY+x5O3nx/YQitnQClCT0rMQCluh4izj/+PwGlwGdWs7mRhy0O91Xl3mIeNsIBUML5gAREb/R7VmKgN3I9K8UMKDUO6VKYGTzT6sD8u4yC2uogHACljve2Pkgr7GFeMOLZGoOfY17goBLQrTFUyu/RqmOk1gFKyNN6iQNKvB6DCigBSkH+dCqaPyUyoJS0fsjyodu2UQN763jc2PLsphgApfhelRiAEqWXyLQt1NzA3wNKUx6fWG+scJORNfJ69NO5MhtxB5SQGRA4sDfRoEao7I1rL9RFfFsApQNTjLWu+NIYeaUJya96mjnhCiiRJ3zSntflg+lR76FylwaedMdBJAqmSGq9iJctxf8RF6D00c5RjfMmjVZmcfTQuyEf6wkBKPH6MiqSA/Rl8QBK+zLdK0ezCikll4b1TSrc70kQQImCqQbQaaHZYxoJZfYgNqA0RC5j7KcX9xgbTri9OTvqpqOYAaWtqpUYgJKyqsgwUdsBpSEql31XJcy3CHp1X3tMdX6iRACleQohtl3l3tL32Vopvf/61wYcIJdIUE5UjsJJlUBpjGIClD51Ojk2tJ8zdbNdB5M+f630FhOgVF5THGhvp0gtHptWU/NYio6D7aZg2k6ZQLYjUcQDKK2cPMJPReOT1bG4BTT36DUjCAQovVDBMs4pFQIZRxyAEnLxJ3FAiefoUPEca9XWrUlaACjdiJsbrK76kLJLhkoeFesXL3FASRlTgVoV/jpkOgllHdLqmocDmnuv+GseIikkWM1DZLo0rOYhMrsMVvMQmc8Ge8ogMigFe8ogMg0I9pRBZBYJ7CmDyFNn2FMGkedFsKcMIo/pYE8ZREZKgabOUBNyvw80dYGakEs5oKkrSfRxKtDUDWoy/LvajxlAM9s5t2Lrz0If8HGM3aGmjgPCRu/dZmcZqehTdSnb4x3QpAg1PXt0rrSXVJZRoJ4RPSWg4xCgSQlq2rNwPFn99A3GscsDGKOfD1oGNPWAmspedawy+njONLzruDtSlmazgaaeUNObze6sRikuJW7/gA0ptTtigSZlqEnRdqju1B1PjTeVSmcePB0zDGhSgZq6f/M++8ogzipl6KyFitMazIEmVahpSf3LHNm52+hry+wP3OxSNA9o6kUSvRATqoepRkKph7m8exw9YXwcJVSnNH/KvCN7caiHSUEbr4Q54Ud2HpzSFHEuXsV71nEnrCP++E58H0lF0/xPhTi/36hbemP+dIsN80y7rtZonC/6vnGBOCP1sSDOLvpigDhD7eXTQ7lcRkRo736rRilcJjbEGaSPhZbN1///hTijHlalucTXW+yPL+12oT9bEDWWHMQ5BtNgXSRjMElAnPMGzcnY/vaIed7kLqVblWozcIU4A3v92NBjQQVlV7ZfD5XQZ444jLRHI7AMVzyCOJs03CFO9st+3hWn5lJDS4/EFjm/DZQoxMnzeKgQJzCAoGnXgIQy7f6BEKfcDK2YuxtcLPb438yJOeleImaIk6SFBXFWaf7LIc6e3Tazzl+bTdt/Tbf6Wp8ixLMt2wZxzu194cA1p3LKlqW1R+7GTAnBAeJs1MSCOAFriQfiPL3K4ewGL2uTnWMU9js7HHguSYiTJwEqxAlIAPkEQzSfQCCIkxnUbeV6xnrGvu3vdNe9ffZF/BAn0pKSgzh9hooT4txrVFBB9x76Z0CcRmhdlTA79fgC7dAVd5NNE3sEBa8dmvMAp506sv/jsFNX1sXaqX8YyncPxoTXHDl94KT50hPl43rI083CE6ZPlT/v19YiuqDm0ZpYmns1u2QamuZEhzjHeq/zCyncYZap5xy3Q+ps+0Kc/3AZgQZxgk9bTB6OAnHeMM+vGLBr+O8hThM0U/5xECeFOef+/nRTy8OcTuafSG+3/P6GcYc43QdjQZxjBhMU4txrofEl4Yiy4cEXV4vjNvfcjivEuWXY9iG22XsNwuqvZ+suS/fGAeJ0GowFcQIySxDiPHTXKn5xp1m0DRZ+pi5DFgrmKEkW4uTJhgpxArJBLoGO5hIIM6Mipz58iEKk6XCYUL8NxppQbzdLbkp4ycO79Xxue3m0+b4biotcRr29gY/kb8ITs9PcDjB21xZzDqQsLMOjEMUgzEIUg/iSm6FJ/qdAnANDUnw1nYaYFJ1I3vs0a8bEdoE4czSwIM75Gu0JcZpNytXSmOBqmbJgi/XIyDTEqWObIE5kb8cB4jykgYUlBmm0O8RZGH7I1vLBIoPixyo1c5/cFsSyJQ1xzsdUa4zGfxBnCyFO5PJLwhAnbxSgkovAKBAjxDlUNmTq5ktUw0Pj62OTUhc8kTDEOR9TCqCLQxOVOQlloiIoxNl/Z69v/fdGWGQsdu7gqD17ENZt4QhxFuthQZxOev9BnJB9OsRXjZnZ8Nko50TY9cNvt3TDAeLE+YAExBNz9LDwxEg9cUOc7icYa3VtrOlbXow3LBivLVhO+p9BnBaaKoeZ78/Qoq/l3uq7+OFlHFRywlRpip4YIU7kab3EIU5ej0GFOAGlIH/KQPOnRIY4/7bTNC9nOVsVP2ZOfJbw0lj43toMcaqPxoI4T43CG+L0vxRcxXRayAgcVLpPi/VJFXeIE5kBgQOfqDwai098MUosEGe3S/v22ejcNUqIHPKtZ+eniMq7bYQ4d34/duf+ulfGhUvtduhenHQHB5GAroIhUtIo4mVL8X/EBXHOWFH33spnHWXP4pHj/MKp9wkBcfL6Miq2CPRl8UCcmX5Me5rLRvrmPrcC1ZWNBHuz5CBOXqdFVQPotNDsYUFCmT2IDXG+Xl6+JbM+3nDvOnOvqn2M0WKGONVGYUGc8SPFBHF6lt3su+SJg1WaVd2KzUHdciUCcX6Y+eV4SFigxdoez876Py3oiwMIqDgKizWrH0mgNEYxQZy2y+krOUozzYI0G8bpXzstmLeAH8TZgeHVi/nR2KDYRS9j5aU6kY6llbYrH4llu3gC2U5OTBCnqmv6psUhvmaHKyuuPdm7T9AzShbi9MI0Dp1AxhELxIlc/Ekc4uQ5OlSE8epI3CHOPvSgAbYqnqYbR7CWAvsqwSetSALijB+JpcD8kfx1iCUJZR3Saoizf3PvFT/EiaSQYBAnMl0aBnEis8tgECcynw0GcSKDUjCIE5kGBIM4kVkkMIgTeeoMgziR50UwiBN5TAeDOJGRUhjEidzvwyBO5FIOBnEij1NhEGfvbEWt0BeVhqFnpoSW3y3xhkGcM3udyxn8PcA4y2zRvN25d+fAIM7hOkUx0XcGUEoWS+VOH9njEAzi3P6mU+KVvz9YHh3wbqNtrJsyDOK011fNKXB9ZLVD0yHZLtKuBgZxRttnWVWM7mJVwn2wYouHQx8YxDn3tBTn7IxMRvbwQwuXLurvD4M4BztUKSZl1FP2V6nrX6/tFg2DOJGrLSFSE0Q6RQ79CV7L0s52PWMWV7Px1pLgDztwIDWt0AYlYY7xkT0Ep1xEnKv4gef4ZMxzfFLzOb41muZ/Kqn5sKv+dXuWr8nGW7nMR2P+0hAjqRnEwCI1OzHEQGrOzvq2MuzYS6Oy9186lSslvSQ2qbmSgcWP2TH+f0nN+qUe7wYPWkA7rLOhfP2V3hUEITWHYRqsk2QMJglSk6GcHF/Tr8AobN5F/7E6mw7hSmqOnvVwwZa5NwzjLIZHrp2om4XDSLttjmW4HHPi7MRwJzWly+Q+vw1lG5c1KCWoMUMHSpTU5Hk8VFITGEDQtDuDhDLt/oGk5naP+M9SKlbmccd7kM4u3bdHzKSmtgEWqfmG+i8nNS1uHi0ov7jaaPudn+vVn05APNy0baRm3tEhi6UZJ+k5Xb5kqlV9L8eB1CQbYJGagLXEQ2oezNH5UjdtjlX+8EFPKV5WVZIkNXkSoJKagASQT7BB8wkEIjWnm/ncq9/nTs2xCdpYd2TzUPGTmkhLSobUtC6oIB2giZPUjDcvqDi5l/ZnkJq2aF2VMDt1cscIxo+JWZRQr2vbnqs21OO0U0f2fxx26nQTrJ26tgnfPdgRXnPk9IGT5i8dI6fIF7hYlOzYbFXj+ekZDpp7UbE0t252yTPRNCc6qSk3OYTyOU2BmjBSeuqpVR3Gtiup+Q+XEVikZrUpCql53iy/Qvmc6e9JzVlopvzjSM0tnb0f3q9XMjwk6+x3bcAtcwmQmh+mY5GaxdMJSmr22am5REE7gxY1gWPZ555fAq6kpsNnzhHqYjtGyvd5Jg9cStuaxQuSmi+mY5GagMwSJDU1lZNcjlwJpARNlisfsnMEm0CkJk82VFITkA1yCbPRXAJhZlTk1IcPNog0HQ4T6koK1oQ6n8KX3J7wkl9zmra0m7aqZVHfsWOPDSnsgY/kP/KDQxcNnmiY0jkzzjDTZywe68ZpmOvGaXzJ56BJ/qeQmt2ypU/uiv9AS1E4oC/z18NN7UJqUqZjkZr109qT1DTR3/spo2632dFzgaWM6hzB57q1jdRE9nYcSM0J07HYQ8Xp7U5qatcpTWi8FmQeaZjQz/32BTdCkZr107DUKp/2H6nZQlITufySMKnJGwWoeKLidHGSmsGbTeYHN040iKzZOVRl/lZBEqf9SU1eF0eVorx5oppLQpmoCEpqLuLKbWIUbzHbOJOcei11BOZt4UhqfjDDIjWTzP4jNSH7BKyRJS3yqjA7vKt8yJMzWrtwIDVxPiABGcQXZlgM4ikzcZOagVtu6Q9fU2qZcqB6r2kiW/Bh1P+M1HzvtX1H3txcSua7y7N/vh40HAeVkjBV8jETI6mJPK2XOKnJ6zGopCagFORP56H5UyKTmvKlNgX95nsabWrMynrk4vtJDKSmnRUWqfnNEm9S89TKAPdte8IsY6V6ugwMP3gEd1ITmQGBA4TIsMKCEAdbiYXUdBnk1K3ny49mgbUrVT/dC1bEldTsq2l7cWX4ZXrGm6G3XjEsR+AgEtBVMES6akm8bCn+j7hIzfekfMMr118Zh/SlLS89+3Rom7s6Hmwiry+jsolAXxYPqTkhafF3g5QIs+J3pIr9nX5YEoTU5HVaVDWATgvNHvNJKLMHsUnNgs9RSaaLFOjbX9oa0G6f6C5mUtPaEovUrLYQE6n5jv3M0LLPCsqRzes67LkWMFAipKZ6pkNqmNlx6sY78tarYsv74UD70S2xgDKyhDxqe5KaP2STzfXCR9HT6XoJxlsnnBUTqalq0xD6alCBYZlZmfeIvS6bcLBdowWW7YChQBjbKYqJ1Lxi29GS4vnGOCixq9xorU99CERqHsA0TiCBjCMWUhO5+JM4qclzdKicYhdL3ElNE+9Zyk9unqOUhvSNdxk3YoHESc1qCywFtlrw1yELSCjrEEKTmkgKCUZqItOlYaQmMrsMRmoi89lgpCYyKAUjNZFpQDBSE5lFAiM1kafOMFITeV4EIzWRx3QwUhMZKYWRmsj9PozURC7lYKQm8jgVRmouCq5KnNKhn3HERymTB+cCrsBITa27KfXMggkWZXoXo+6+Gr8bRmr6nk2Mmhn41uLQkM5OqamyQTBSM73yvVZZ8DjGvoaUxSk1JvkwUvOO1JNCt+G3qGH+G5dvfT1uJIzUzMhInm5b7G62LkPB5GbRRxqM1LQpHE4dpnjWIqQ8SD3ar98DGKkZ/fN+z2fnGIbh967GnnlSYAwjNZGrrZaTmpkjx2m6f1lOz335gvvojvpZEQOltaTmQrRBSZhjfGQPwSkXEedSfeA5fvlUrHP85Kl8R7gITfM/ldREPhhXTKTmhMIKknYPQOMQUdu0+mxgcaQktE3DWhC2jNR0f2qVEpi7wDyRqnNr5cthp9pCarYVTAIUIIMKzDcUsQDMB/pgoxJRUMzwjGMqpEZSedTlgQpLfv4USffxl0P4oJjDbsnb9x3iSt/6OW1CwffgOQRAMUGDVSthGeyAZAwmMriYOV3wf4VRTCxj/RbF/PDJsbtHYKFBcYdlk08upT+V6MoVtEwgpmXsJWSZdmEtB654PoZVbG+cpnrcLVWm9ozEWMvQbMiliWQt9ZucOjRxLib9yybOQT8nbvuwK4de8vdF+Y1nvz0WY4mDYlesEgdTXMVQ4uDbiESZzuP8DXdsGX3VQmXyN2KXOMhxxQKvI12JMq+i/YhvXvWLVT2dWfDIJJ6qETfn4IPNBJhXQYM5YRpsimQMJokSB5nxpEuDl9KNYg+aqivOOaiLa4mDHX/fVO9XKGe6N9+BM2n4wLbmO4OGU8Y03AuXf/G0O3534+RN9jNoWQVV6Yn9Ho+W2LQLljjgeTzUEgfAAIKmXSYJZdr9A0sc3DfZmml7djwtXv/Rs9QpJ5zEXOJg8EKsEgcvFvzLSxxUbY75NEmuxii4LtrA4tn4IXiWONjR9dZF3z3PTdMeliw7vElLG4cSB+oLsUocANYST4mDxWeGaWrtczOIfqZrF3HLylmSJQ54EqCWOAAkgHyCA5pPIFCJg6o4o8EfFTpQso+eNl7/fK2e+EscIC0puRIHex3EWeKg1LSg4nyKw59R4sARrasSJsSdMXHszUMhW61iCl2lNmqvHoZTiBvZ/3EIcS92xApxUxz57sGJ8Jojpw+cNC98W3ZtyUEuNWOIte+IEI9VOGieswBL863NLpmFpjnRSxxIv1EZqH8qwiCUdHV4cI/gPqj3J44SB/9wGdF8NRElDs6xUEocfKDnVww4w/p9iQNnNFP+cSUOigxG1SpN5Rqk9Y7zPF0lpyWBEgdv5mGVOMifR9ASB+uCZ33o3r+KnvywPvPCo75KiEyXtpU48PwZv1fjirbZZv9KyriUmraCHWCJg/p5WCUOAJklWOJA42Gf0YdW29GT5+g3hp7dOI1AJQ54sqGWOABkg1yCC5pLIMyMipz68OHtkabDYUL1n481odrP50vuSnjJTYt0kgdHjTfcvaXr8VdBzDx8JP+romaW1fK7jFSqtq5X3ewtOEhuNBdL8sFz+ZKz0ST/U0oc+G4fazH5JtU0caFB3MHgNTPbpcTBlHlYJQ4ezW3PEgd11GXyCspxxodTFO39ikcZ4VjiANnbcShxMGYeFrTfZV67lzjolXi3omhUkmHGh8lxOwtm1hCqxMGjuVhqFc/9r8RBC0scIJdfEi5xwBsFqFx/l3niLHFQvHC+CpfZm7GpbnX0+OnTEIWR2r3EAa+Lo0pR3DxRuZFQJiqCljgYtfqcsfWNOnoON8sgurH3hnYqcVDrjFXiIND5vxIHkH0O3DFd96LmJT1ISu1VbHGXzjiUOMD5gASE96udseD9A87iLnEQqTGpFzkyy3RPUd+a7nb1M3AocWC0Zv2zsB9+ximFtU43erGccFApEFMle2cxljhAntZLvMQBr8egljgAlIL86RI0f0rkEgcpuRfNg6p0TQsnbYlWuPhwpRhKHNCXYJU4eOOGd4kDm9Dg5bUrfQ2OFU3spx2ksxD3EgfIDAgc6H3KEix6X22JWEocUEwzSoeZGFltMYmZlFLk54FriYO/jPtqj86cSMsf4pPtyQiPxEEkoKtgiFTlRrxsKf6PuEocTFo3Zxqd5EjL6Nyw3jlKM40QJQ54fRkV6gf6snhKHAwYNrCy/8x02ja7Q/PPPZdRJ0iJA16nRVUD6LTQ7OFOQpk9iF3iIGrnoRVLHluaxOS+Jx88vtFbzCUOGG5YJQ7OscVU4mAsPW24bkmCeYFNbXjCWOUsiZQ4CDDVvmAdtMlqw4VuLpQP8pk4YPJGblgktrqEPGp7ljjwV33TcMPAwTh3zJ0+uvfTU8VU4iAlRXHKR/l+1CMyPS/37b7yOg62+8DGsh0wFAhjO2UxlTiIVXm23Gd2Jm1b7VeV/nSFBgKVONiLaZyVBDKOWEocIBd/Ei9xwHN0qIC/nBvuJQ4WTPS2+HTiDKVM81FArxccfYmXODjHxlIgms1fh3iQUNYhrS5xoN7ce8Vf4gBJIcFKHCDTpWElDpDZZbASB8h8NliJA2RQClbiAJkGBCtxgMwigZU4QJ46w0ocIM+LYCUOkMd0sBIHyEgprMQBcr8PK3GAXMrBShwgj1NhJQ5MXpjrBO2cRN3iq7Ns08Kj52ElDoafte3nsTvLqGiqY//v2warwUocLGAfsbRSmmiVYn8yLXVgZTisxMHJ+6rpDl9CTEpKgsxnOS5cACtxoCFvK6fbP4Keff2qCqsHyRRW4sCatPCR1a65FmmWShfH7XJQhJU4QK6bhIoVgAUPRA5ibm+yf/TrEeZBO2endTyjPACHYgUctOFFmAN5pK1xyirEuVoteCJfPAfrRD5pDt+leaJp/qcylzmnTqhOe/3RJCv5YOMp2xd9xchcGqzDYi47rBMDc3nR1ksnT4NtGWlh0Es17IEDsZnLaeuwSLCh6/5/mcuid/ZJsxZLm6zdv+9yVPxeKYIwl6qYBusgGYNJgrl8s4d1/mL5W9NsasfFV75K++LKXMoabZK90ehjnBi9olL5x2ItHEbaq7VYhru5ljh7KtyZy9MvXYa9dZtncET1m8aMhl7pEmUueR4PlbkEBhA07XqRUKbdP5C53EMe2nihINtqy9dbat8fzAwUM3MZuRyLubRb/i9nLreuPrH2NHMcNbeSkkAuNv6BJ3M5MbmmWH1pB6P45MQhO3couuHAXAYtx2IuAWuJh7mUuf26wep9lsH+ZzIzHizYM1+SzCVPAlTmEpAA8glL0XwCgZhLg3tX2JHZd4zXjZfP1XnTgyviVnBmLpGWlBxzWbxanMxlhWlBxfyi1X8Gc8lF66qE2al3yXs1a0pHa8PYHrbDpm8YFIvTTh3Z//F4IuMazCcyruG7B2/Ca46cPnDSPFfq8pUUzi3q2lGdTWTlZTg4aF4dgKV5ZgBfcx80zYnOXK4fu6hTmGWCVYjfuthLYeqG7cpc/sNlBBZz+S4Qhbn8m55fYfM28PfMpS+aKf845nIle/qENR6FtE0v7rEfdXxm+Psbxp257OKPxVxeXUZQ5tLl0KGR5mdZ5iXJhX6JDzKycWUuf4z1st+V9IOxaUJcffinhzdxYC47+WMxl4DMEmQuc+2tel3doEfZc2tqb4MLDvkEYi55sqEyl4BskEvwQ3MJhJlRkVMfPgAg0nQ4TKhb/bEmVB9/vuTLCC+5xoQR2epVYcalbtMotn3St+Ej+Y0ea20HzthtUvrtdDElaao/HrU6/DBrdfjxJfdHk/xPYS63ZTccP9fV2yD+4MHw/BkPemDcJ37Mpf0yLOaS1OYZrjXMZdWkh42r/DNMEvJlB3/MGog4am0Tc4ns7Tgwl9bLsChC7WXtzlzafQ7f9q3ku1la6ufMfHaGYIFvSTOXJEy1av3+Yy5byFwil18SZi55owAVNNReJk7mknNr3rTcHq8tto0Y+Gltv4YrEmYuSZhS1DZPVAEklImKoMxlYKNXybVOjYYlb2YlPzx4uQfWbeHIXHLXYjGXtLX/MZeQfSYVXDfuF5ditnZdIMO4SMoPB+YS5wMSkCbkrMWiCeeuFTdzeWVmyPWPE3XMouW+6NPHvRMM2v0z5lKm4USOwYhTRolm9uaU5WvwUImGqdKotWJkLpGn9RJnLnk9BpW5BJSC/OlyNH9KaObSfHvsiEXyhkly0VP1R699JnxvbWYu89ZjMZfh6/FmLt2vPh7YLeQVJezrhUyT/FkHcGcukRkQOOCE2euxcMKd68XCXGp57uDGOO0xOrr5oNJX6uNRuDKXm/06T7YatN4oUY9hvMrD6DEOIoVjiuS3nnjZUvwfcTGXatlvCyIcgmkFa59/8v6xt3ObuzoelCGvL6NShkBfFg9zKTu39kb3rsctDyQd2usuU/Q3QZjLcEw1gE4LzR4rSCizB7GZy8Y5mp2ddFzNgkvMWVNnTnVAuzucmMsx67GYyw/CKcD4MJf6AdS3UUvUDNavodE7+VyslQhzaarFtewm35eaGdfVxS3oyQEcuD399ZjMpYQ8ansyl5p/fXWLOvEXNZJUb92wyfOtmJhL1+crx8540tMy/5Tb+ogHygk42E4O03YfJJQ7LMp2amJiLlN0SFWrn36hbN9vRZl5INacQMxl3TpMIJZAxhELc4lc/EmcueQ5OlTisEcr1yQtYC6nFRg2DHpSRts3LrRvwPmCaokzlx/WYSlwrTlTeiUJZR1C6MdKIykkGHOJTJeGMZfI7DIYc4nMZ4Mxl8igFIy5RKYBwZhLZBYJjLlEnjrDmEvkeRGMuUQe08GYS2SkFM5cIvb7MOYSuZSDMZfI41QYc0kburJmQ42N8dYj9kFuC0/PgzGXSt6htW7XJ5mXvVMZua/D9UMw5vK95eaIs0OH0NZ2Tn90Kv7FNRhzWXJ/36oP0evMSidqZsy3UngPYy4PDRp/tLvmd6OssIhc3RAtJRhzadZT8YRV3EzLfWvoR5c923Udxlz6qfWXZx17aRlpEnzt7crOarDHSl86efnA+fGBlCP9dsguf6f2N+yx0sjVVssfK31QevHqjy7+psVqnQ4vi90dhwOpuQptUBLmGB/ZQ3DKRcS56B54jl/ri3WOn+/Ld4Sr0TT/U0lNP0eplMw9uy3SHrnSqGsfVIu+b1xITddoLFJTO1oMpKbZyMap1xo20rdGxb8q7f66ktikplM0Fj9mHf3/S2rqV4xa7NQ1y3zH2iXUg669JxKE1JyCaTBtyRhMEqRmWfqiF9uvahrkHBtXsc9dZ0PbFraIkXZ3y5CacZVWjKw7IZMCFxcMxOPpmJiGI0nIcO1Cal4xVhnhnLzHfG1C6gC1wXerJEpq8jweKqkJDCBo2l1DQpl2/0BSUzPjgcnE6Q1GhaxxW5RUpaaImdTUjsAiNbtE/MtJzYAJOzKcz3c0KrkbUBB6uMcxPElNxV3k514hAdTioTdNZxRVDsOB1BwcgUVqAtYSD6mpZj/8maOvoXnJfWWHd5r35CVJavIkQCU1AQkgnxCI5hMIRGpOmz6hp9zQDPNDo7tldr+bc0zEreBMaiItKTlS0zVKnKRmBL2g4rxL1J9Baq5F66qE2an3t6tJdDkSRM17pbQsbdisBTjt1JH9Hw9qMAprp14exXcP6wivOXL6wEnz8lPKPxLHxZnm5a3QCFuzZDcOmv8VjqV5YThf8/VomhOd1OzwWsvwyv33JkGhJd+ORJ2ntSup+Q+XEWikJh1YKHzbiEJqHjfJr/D7uvH3pGYQmin/OFLz0jlvHdOjTrS9+w/n1f9Q8fv9DeNOaqqFY5Ga38IISmpyfBaN+Dnph2GoXqacXz53DK6kZoDsTdnETxomW69Q+jAuHbPAgdRUDsciNQGZJUhqqt1/qf515BeTrMqCbjNji+kEIjV5sqGSmoBskEvYgOYSCDOjIqc+fLBBpOlwmFDnY06ojOYJNZjwkhe53BzocOQRdXuYfM8t1Znb8ZH8w/W9m6Mf7Kfn7f8eXO32Oh4HyQ3CsCQf1dzLQ9Ak/1NIzcj+Ofdkv983y1vq+mrbpR+J7UJqloZhkZqb2zzDtYbUVDIa+5Q1dKt5cu3x17NvnxIMZrSN1ET2dhxIzcIwLPZwX1i7k5qO1okKN44PM9l9i3z6p9dWwfoMkiY1N2OqtTrsP1KzhaQmcvklYVKTNwpQ8cR9YeIkNeVGnwvdnFxrnDe+hxXr+W1XCZOamzGlWN08UYWSUCYqgpKahhcbtTzPzLXaPvacg5Lmhw7tRGqu24RFas7a9B+pCdmnMlMtMfb+epOkgfdWm+QqCz6V7p+RmjgfkIAM4upNWAyi2yZxk5o6dhpONgbeRnF3vEoXLKUIlrT7Z6TmzV2jjLWNPSgHNOwezq386YODSrMwVTLYJEZSE3laL3FSk9djUElNQCnIn4ah+VMik5o/cialvVp5nJa1dGP3tddKqWIgNatisEjNpBi8SU3zZXbdhmstt8hOKh4+I/68YIICHqQmMgMCBwjxVAwWhJgZIxZSc3fKbNvX56+Y77BaTasOqRZMJGgrqTkoNpb1sSbQNLkXyfHxjaGXcBApCVOk0BjiZUvxf8RFam4YXmTd287NJD3bW6u0+iSnzV0dDzaR15dR2USgL4uH1DyvopJc4HuDuunbNrcxiz4JelnJkZpJmGoAnRaaPcJJKLMHsUnN3OStFn5B+2kp13d2mxG695uYSU1aDBapKSM8l+BDana+F1FxZ9pR85jo8q1q0+4MlQipudx90GE/N23jUoXjV+cs+qKOA+1nEIMFlOlJyKO2J6l5y2gT5fkJPfNt70Y46L2O6iMmUjO2Zlv0M9Jro7KIeysLzXc34GC7Ppi2kyGQ7dTFRGoGdiy6lXFwFyUu7ucz0rhqwRCUZEnNd9FYxrlLoPxgsZCayMWfxElNnqND5RQHt3JN0gJSc1Qoc2eHnbtMw94HzDt/pEO8xElNGUwF6pszpSNIKOsQQpOaSAoJRmoi06VhpCYyuwxGaiLz2WCkJjIoBSM1kWlAMFITmUUCIzWRp84wUhN5XgQjNZHHdDBSExkphZGayP0+jNRELuVgpCbyOBVGat64w/V+HTfB6IDbV2ppacc4GKk52uHsg/y8owbbGoZdHD1j9EEYqXnMKrmLwxmaUebCffuefslTh5GarqmDUqr93Kyi5wbMe7/b8SGM1EwffbdIUZvCiKNq+u9X7JIGIzVHrbjCuXIuhVI2PK4heUmdBozUrN7f1SzNfz1jS/qXLnox56xhpOakbrUTw966msYdMjr9gGoxAkZqIldbLSc1owqjU3cdHWmYZPzwYo3julgRA6W1pGYk2qAkzDE+sofglIuIc6k+8Bz/RyjWOf6rUL4jjELTXN42zm+fr5tRxstG1njywXcCX7U7tLeyAP7gspnuwrsyWRSp+/B3ZRyylReLY8Ige0DXaNlOLG/PMdebvRiUZNecrjILdD0xb0vIFsg3tFBQe2CtE19aAUwiwJ6sWuiABBC0sbgCuSfDWv31a5oZQI/v49qUvufrzSI7ujI5HJbo4/pk4+qulurnTIN6WA5eVfakn8AXlzVquoLQF25uwHuyBdMnQ0FJDoha/jUCPXBCaYUkln/SjoC0zXPu58+ff7aGtyQLGsbbi+Xo687kkl3ZLq7uYAK+SNsM9ZpnXW6VQD34Y2H3jXZHBbN75GyhiwgHqJpbxGGd+hIs68SXEMA6wAzwszWbpgHGHmxvbzCD0FHATHwXIvoo6tKSVz9e7LFIvae6p/rQ+dmCxmm6oogI8K8WcRiHjmkcwJtI3jigfeDG6fgb44yneoC/kmcTMNYIfJTFcQwga+vr6ZOnkj29mEt9WcPII3n/+vUO0SNq0+yrdznnPGh5Dy8d0f1qnSeYXWMHu75wdo1AqziMd6AYy3j2kjGeyG1v3XS4BTv9xoJTf1nQ25XNCeAASyfAfIC5OJ4c0HTA39w9l/EawX/qg00eTP+mF0SXuNP7vLfPPUOr+D4poZYbgooQlQVcRXG00MvisJwcpuXyiyRtOfBDYF5Dq4IVPZpOhdkcF2xHaKNmxNRfsZG+9UtQYRffeYsFHSHqmulXC+7HzjnQGgJcp1YJLatyeI4QWqduJKGsU3t3WmF7ouiDVZlcxmOtcSsE8aBuhk0oojWX5cdmLRPGm9EQiyFUMOPfG4YzspfDjqnIXk0X9O5uynF093VimXJsWBxo+4++eD00PKvCZY4XJWnIkYbiHuf2Yd2rcG6PYHu3WcAfXp5cHxrb3afpF4vaYqFi5ccAdcsA7eNFHVlPAJa09DKhJS1/WyVyD8U/bQNzKCF5WrSin7RG13Ht0W60nCFRk+oG2D1t++keYnel/U6/nybrulW8un3J4OlZV9q4u1IDlKsHlRN5RmsPrq0ElftdGF/FDraEIXv6sbhctpNod/rkLPVz9SeSabR81JDRbt6ktg9hhFZIH4GDVnRMrRrbd5fAJ3FloS0X+CZwsXMn+c5PORa04uO/aKBv8FOaN7chZ1U5/saA/1bwf7vAlz2Cn2gOcWxCc2Otjjs2Q3/tEHdEbrphcUekSxMKIIHfVmRf1nu5NSx8W5j5tp89vnQffGERDgGkaDR1CRrMYOyQVfPvw7I6eIJ1o+KT2pR2C2Y0fsYKZth/EncwY1qXqbIG/ka0vHEFztPlBw0jQDCj/jPmdvkzAXZkb968aYdgxknVj7m3dL0t90d9bXiUSmUSIphBx7RO4ycCWKddghkdxjlX7tpz1rTI6u27ExoLgwkRzDjwCXM/TATjkCQZzLgY8bhkkkWG4Ya6DdZfDuykESqYIYdpvPyPkt4SEyiYsUDGfK7C7AyD1HuvnoZtHhEn4WCG60csy6lJ3HJiDWb4VibmVa4eYbiH4rtnhvL8e4QIZvDWEKjBDMARQuvUGNK/IJjxMHXc20FP+lNTuDvsX8qWLZdwMKP+C1YwY8KX9glmrDfUzZ36KsMyPLk/yX1l9y64BzPIfzu+fz9a17TE7UlpzJPBx3HYoNd+wdqgh34RVzDjy9CGmd5qNYY7PQOZw+YXDMA9mIH0EThoNQFTq/rG/6tgxmY0N0boYAZy0w0LZiBdWsuDGZbr3w00jS0yLYixmK1wRvUTDsGMLWjqEjSY0XFA2Oi92+wsIxV9qi5le2DfFp7BjMDelRjBjEw1oWx5nIMZj1WStvaoG2+87tQd+fc/L40nQDDDH5QEdWlo3VsiibmCO7L6+vp2CGZEr7GjfarvTonwHFQRo9kzmBDBDG1M65CIYJ12CWZUz/M9WzGsI+OA+/JcxuUjdoQIZtSqYRkH8CaSNw5JksGMLUcn96OSKBYH7Toft3HXf0KoYEYopvEWS8Z4xAxmrEqO5OyYfcg4auKqZdfPnvwu4WDGBEzLKUrccmINZmyuuDW81jCNnnb472/5P/RohAhm8NYQqMEMwBFC69StpH9BMOPZo3OlvaSyjAL1jOgpAR2HSDiYsbJPJUYwY3Af1DphuAYzbl7zePFqu4bBfm6fxvefB37EPZjx0c5RjfMmjVZmcfTQuyEf63HYoPv0QaPnwQ06o0+rSgy0IphhrZDxXjZ5ukGBashpCz1bW9yDGUgfgYNWgzG1+ta+61BJBzNi0dwYoYMZyE03LJiBdGktD2bsWTierH76BuPY5QGM0c8HLcMhmLENTV2CBjN6Zytqhb6oNAw9MyW0/G6Jd7sFM7qMxQpmTBkj7mDGVPOqbV0XTGDsGBwfPuze8o8ECGZ0Gou1NLw9hgA7srq6unYIZsz7rPGx5Hw+LebkPd1dciOjCBHMyBmDZZ1IIlinXYIZQwYelpk6Nsc0bK/PiBEdejEIEcxwwjTOFCIYhyTJYMaJQaPYFTUDKPn7vBX7FyV1IVQwQxnTeC9GS3pLTKBgRm3VxJePrtSbhL68adUl4ruahIMZp0ZjWS5J4pYTazDj76Oci5uHcSxSl4ZnUVIijhEimMFbQ6AGMwBHCK1T40j/gmDGzF7ncgZ/DzDOMls0b3fu3TkSDmZ0GYcVzMgZ2z7BDOMshw0+35wMj07cKP/qrUbb6yUiN+gzVtS9t/JZR9mzeOQ4v3DqfRw26J3GYW3Qb48VVzDjajlzy8Gh7yziSga+fvGUcR73YAbSR+CgVc5YLK0ix/5fBTPi0dwYoYMZyE03LJiBdGktD2YM1ymKib4zgFKyWCp3+sgeh3AIZmxHU5egwYxFwVWJUzr0M474KGXy4FzAlXYLZkyYgRXMcLUWdzDjVDeDLmlsdaM9RzrK5XO2mhEgmKE/A2tpKDeDADuyGzdutEMwQy1n94JzH5XMiycFPl+xxSmBEMGMOmss6+RbE8A67RLMKCp3e1G04qFR/gq/OfPsI9IJEcyIxjSOKxGMQ5JkMOOxQXnFNvdvhlunvFjct6OOEqGCGRRM46lJxnjEDGaYBebStZPl6NvDFLvH1Ax5L+FgxhsrLMtVWUnacmINZhhOH3Bcy3gnpUjhskpUWX9iYCa8NQRqMANwhNA6NYH0LwhmaN1NqWcWTLAo07sYdffV+N0SDmbo22AFM2pntE8w4/GlW6teyrkwtsVfYI3u+n4I7sGM96R8wyvXXxmH9KUtLz37dCgOG3RtG6wNOslGXMGMfvPv5ew9uNskaIqfpvL1VfjXzED6CDyQnBlYWmW27y5B0sGMRDQ3RuhgBnLTDQtmIF1ay4MZvmcTo2YGvrU4NKSzU2qqbBAOwYwkNHUJGszIS9K6PTLVxnD9retnlzj1cW23YMYUD6xghru7uIMZdg4POtpu6kjNntLNcXSQ9WICBDPGeGAtDbt4EGBHdunSpXYIZqTFTVyjGNPLKHL7fl/bYukcQgQzHrljWafYnQDWaZdgxgTn2dwFhw0okU/+2iE3KpFLiGDGVkzjuBPBOCRJBjPkhjZMlZtOMo+YPCLCsKfOHUIFM4wwjacuGeMRM5gxqn/0ErdRYyjbpVZWXVV5ESXhYMaHJViWO7dE0pYTazBjxPHXVxZL9TQO3V5Ot8vSO0WIYAZvDYEazAAcIbRO3UH6FwQzwgy+PWUP7GB21MV+i8GImOMSDmaM4WAFM257tE8wY23MrRfraU+tSpOW6BSv9TqNezBj0ro50+gkR1pG54b1zlGaaThs0IdxsDbonTjiCmZMKf57wuN5/la7lS5Mz7CvZeEezED6CBy0uu2BpVVO++4SJB3M2InmxggdzEBuumHBDKRLa3kww+SFuU7QzknULb46yzYtPHoeh2DGLjR1CRrMoA1dWbOhxsZ46xH7ILeFp+e1WzDjSBBWMIMWJO5gRj+T5/M73bRhrL909lBR3J6bBAhmpAVhLQ23BRFgR3bmzJl2CGYwlzqOvtPN2/Solt4D5sYiGiGCGeswrcMhgnXaJZiReYsh62T6zDR7vm3Rrfl5HQgRzJiLaRwaEYxD+l97ZwIPVffG8UEJlVe7SpokKdL6SrsZ22BmyBattgllJ2mnEKUiQmUnhJAtSyFFSqv20r5JG61S6n/vmJG5M/fG25259/V/+7zv51P3mOve3/Oc5zznOd9zBstihm8WRfvEvRD13JBhopuGDSnAVTFjGqLxZLExHj6LGU7bxoj4Su7R3uE4O8t6zE4njIsZEoiW+7wNa8vxtZhhEpAo31wwWO+AUmnwojH35uKimMHMIWCLGUAgZOWp8YQeUMwY4BF4a9XN2frl74dMTRG+mYlxMUPZH6mYQfAXTDFjEGH97dVvzAwyr+yX/9ttoxbqxQzp3ObindYB2sW+rz57/EjuiwaZ4Y80QR/sz69iRgB5RsO8WeU0n9dPpto35m1FvZgBjREoaEVA1Oq1YEdLrIsZCXBhDNfFDOiku1MxAxrSul7M+EDfu7N24nht374ZT09Hvb6BQjEjEU5dnBYzoN+RLLBihmgYUjEjdi+/ixlnTh5kyBsIU8J9a6yT/nrhi4NihnAYUmr4di8OZmSVlZUCKGYYDzx39dncREpI4MUnosMtxXBRzLizF8k61XiwjkCKGdPmjm6Z8/C9VuCJN0LKWy9MxkUxIxfROLF4MA4By2LGRvEFXu+19uiWjBkkeXLv2QO4KmbsQDSeFzbGw2cxo8/fWdcnqjbTw2MozQFkyb8xLmZYI1qOjrnl+FrMmFi4ccFlQ4Jmsrjqz9uaISG4KGYwcwjYYgYQCFl5ahKhBxQzplvXPi4qzCNHNCpfmr5w+mGMixlbw5CKGWZhgilmnPAJVRg1UNog33yURIv1/GjUixn+k0oNh5us0snI9VAou3zKGYUJ+uYwpAn6qjB+FTPUhx+8r+t6VzfwsCpjZ+uLr6gXM6AxAgWtzBC1Iof9XxUzkuHCGK6LGdBJd6diBjSkdb2Yccwgvp/1WW3NnOUpKS++FsqgUMw4BKfu2YNW1LZZw3S2psj2aRy7oYyz31ABTYnGmlTuKkZvmC5LZlcxiI7gZz0Ydk6A9xJtGSuBf9oSrdcRgfd19yS6ujg4eyoTgXe3A9utnG2JjgxnO097lU1dio3bdS0sFwWUae94dM42M21Pf97Pzd3f2S1d7KY5QGoUHwt00wkaBIIPdDAIBAZiy1iuwQAppEkxH6CTBjzfzqZ5q/jE2CNahYe1fma+C54DSQ7BT/NIDpmXf3vos1/boHd0S/qBvaEOFA/tb38Yx+IBgaJBgd7yimOnwW+wisUkd5TQcAG6v4Mz4Izgz00nwP/pThlEmmk/ttsq2jq4A70LaJ/A+8vV629UqZjdMoi/+r5KqsE6m8OO4prsD3PZslMT2qklaDBPRINZYmMwUS/gjdsn2dzGalrAy1jCv+lsfZnGao8rPO2TmGe2xHHEcc3MyQoj8k2yOM9sEKUyP8hlHPb13/U0iwFZ5C375OmRywsjZq12lUChp1ERDaeGkeF4za+bFnRrptaP2mm04GmqBd+V+4bbDNPPd35meMnyCCeu2IvKa7rcfhXtDqSYz4p4OSQCwRU6JFzOY3Yg1rCbQoAZdiMaPsVMMg2mFp8zOKnzM16O420ktLyBaQIz4eKel8H5+lAtLyvHNawFBEbHDTrdi/2TA7QNjGgkE0W5DVNmG22SUzaY0KURV1T4xwq60Q7trAVNw+ONzsTCPTKXGTq1dVHiy4Crr98PSKwKjLoPoa7+EJiCLd9f3d8Q9C8GkL6zPb0XSx4JXTA4cHlyH+ZlXVt2/4xq8ylJCDXXLUw9TFd/pnS3rwHTVbk+J9Z+/dcHLWxrdguVi2uWvB1G66806HL772M+DoEVkWDngr+0IHpZARMPa0fe8xnrb3taPG3itY99TDJ89WMt55czSZixPko04FJbyIDL44UggWnOpsFpGVFaBqk3V45df6xG9Q8DUwVgLS/QWlOADlEBtVZ4EdNaLHE7REIKBoPbyzZg9v3LkXmq1P/LJcb60H4avi0viioWuiznjN/tt+FWiIh6TLDMY0lQoc5DAkoeUwJWTEiFiwkHih5abH/aoltSVFBydPUjziOsextaOTMcuSc6cOFAkUR0BT/RqU5DdHYBXoOZansyvD2JYLxgePA+d4Uid3iGeI1O7qiBp3ZWu57i8SjcMxBeqtq4uzg6GlkB16HDA8QnoZaE80kxUw+Guwnw+OxfO07TZQ3YE2wcgecBKywMWwdP1rvbAGoB48ljnxSIHdmTXa5KaHEVoeQgYEczDYLPdg0JmpW7nYMzlbGSwyn6tl82Ale9Ol8Xb79u4uLa+SqnM0zVKa7yKT5Y/RdTREN3F2Be6enQ/lR92E/Fa5bqbrVW19nWwab9R5ndWhy8CA7PnS7RwHqnI2ti3h7MwbU0BytHDRfbX58FchVPYKLm1PHvXovcrVx/BYx2V02Dc1Wi3djCwF1B5LBTmdT9X4s3cPqHEcPRah2nq7LrY6IkG+ANPNj6wHnvIBJxLZABE93BO7Gm3Twd1fHO5tslssbUsMcDCog31aV4PEiX+j/0TBGI//9hhIwCkjNiNKuc68NVYAfGM6lodng4jHvNocMHSprH3tSRkswPpwSNyO5zLu3iMBQ0H7EfSXOJjpCcDqe5W7mDkgM9XeNYmYHji6dL3nG8at+Fa8CQowN0HHuYChSn8nDjnbymg4crKLoVkAEzh711k9qDM9EK+I9oB/4GnqaIup737NvC05RE210SUp/st8A+H5dBOBq5TCNu7OLuadC5esbDYP8wjei4G49VKHoMYLChGuD/nAaz1S6qmkCLqe5vzHAEDMawBWIhw5vjdu2mzIAzJfnasHteM/PUjyxZLr3T7ATn6DoY9FpPcPkcpEIYYJ2S4cFd9IJbE5ms4eIEJDftfYd5G9tft2GOwGA5zINpWlsgWe1Svm2oISIvk3yIFvPXg0qPzXEKv39gLiPz/Kku9p+aY1UE+yjAHA1kHjm4IfhtXlGwyyBddHwStZMo4NgNjobgFAbIjhXbZ5UeREA9ZqGM+bf2GgHQKcBFKIYt76rL2Pf72y7a2ensaYr9UDvZvzdnVmjG7Fncs3rW9d+FKftTNl/UpRZQCvVWfPl7innTH4apIkBmW1DmXmQemeOMY0yZuabSfbqn87hO5idaMzzXMhjOYHLkwbBZw3QPB2BKzzsT3JgdF3GiJJW298psq93j1qpxRphf97XljjCdG9FOuJsKWLIt5SXb4AKmbKyQkAkXEnAzokKHvq6MqDzSbYinQk2HwoCaGYU0oEZ3SH4E95Jbn5ZhEEyi1f1iyK6zm823oCP51vjLn6SlQ9RjrW5TwkNPvkVB8r2RSJJvjWRLngUnea3k2A9TVV1oAe/f6atc3cKJxPc3YgCZhw2DSF/j6MhjxINb5pnE/pwz+DkwMjs4AymLg217KF/r4GlPdPG0Z7h3fbxbPjuuunGCOT2btOhOdMUNUYTn5LIMZ3MX1SUCCYck6NB9NXgs9CsC6j6O/NMRbihYLPUAhzbgYTyZqQCoGE8BxIUXKpuJZdN9jKTW3KDnl3C6JPNG3Is+7Zd/55dQb/9Dv5QCdz+ByiXyKkWfB3c/RcIu9HdRuZEdyrlzuBroWjzlk9ycSHfZKUdJ/2x6RVehMYUTjGM5CFhe5laRsxXtsQpU63EkkloXIwVauGc/qJjJOldGZx3GdlrsVtFnuDszHFXAn/FQ0aGs0HX2ZNgx3CFMFvjnT9OTocw0EDQscAuilfO6dlPztDI0/fqTTvKHdq3JZ/WCJhIPuxrmM3sBhzbsxUU4IaTpTG3BjJiZkbFd35anFG+ezMyyqhxNjTE4n5q23MiLUwrmW3FL0X6ZH1IwXRxWiosdA1U2AWagoh/TvniWcFrDZ/HwOQ6NepyLcZLMwparo4MNWEx05h6p4DKCkTSgGzCcgE/ZWDkSnTju0qVxqbXO/EvoFCI1rp7gdvOgwmakx+JG0zjbuxoxgLT/MjgVDuaFoFGAiJEcw2P9gz1F5bH+wVwphax/QJcx2O1CMO2CWB8Zpe3gDsQC0PuZgyWnvXjaZ0zyaINvksp6vnWEwWYv7O9y2EeIxF2KIgl6gYQAmPN8DGuBhKt3XAO/2iKmupNIQr8RSdaYAUzebLulUtZ28YjwvO8Gh+6ILX7Xr3Aep0pkbpXIv1Vp2ZTir0RZO/XwVfm0QEsNMRRUSkZUKSSmW8tI0r+WkbogEHS1vktLSezrqPO/BSyPaSGByT9EC8cCplKseJoDF08vjXr18vNeGs0vK0JukuWn1Zwr5jQXL0bX8/2JzK0DjmBtRtEJ+OQEcJW5fXpFtHJ0cbYjWrFqM13brBb7aqW7hoyZRqrcsv0r5jbacT8b92o+eLWr5QHAl6TjAf2+8wqgBHCraBxPbAvOl/qTrTwYHZAz763H9gv2XehnQzqxZuFud8mD/n9M60L7G5SA+MP+9hDQaHA8HIFKBDfbxneL1h3I9hHm4jbTGXgK5Ubd5Vb+TpUc7yVePv25bhpnT6O58BxI2dd/N9OpWrR+hFndWHJSffCisyIzNVEQCXAVBJFuxeGPlmL/kVfvFoQzqKOT2yK7+p0tIWPyH6drFbTetL0dPGH1H7v6H0NtBSxfpvAy0618pi93KxVv1wIYXJ3a/RksY/DeueBfskdL3JQeGGwgY5K0BoL4ddyFG/H71cQPNZhOC6sG4LSs0eMoAWb0yFApNhtz5YtG+FXHW033Gm9BABSm9xHNLRZzjyGiMJIqdKDB7b5LXOnu4kTc4L1u/SaijYuTq4szOP3u2vgRKsX4WS8+nxq761rzaYPGm3BPxw0j/Wrropo+wPQ9AlSTyAsBJoD7QbjHEjECfJwczHqEDd6d3pvnW37PvmfhfrGPfukgRZdz10drDgTn4O6Ap3BDXcKTzDlL8+a/7s1dmu/c+LuIertlzVWxAg26/9hBZsqDb/7pd5G4AnLuBeU8zcs504CheTNGEZUnxljenRGww7LrfmfZaUOO7NoRZaWeImxsMcH9AufZG30tkGxn0Q3bGUopzqCoZWoGUZMGxLWKxqFgu1WItjPDke2I6t3ZQd1hu/W/s93o0yXHV0/z1omSs9TTv+f9ltN2i5FstxjJdn8Y9UHjkBGNo4Ij43RzJ6cUyzrgoqWn+xqYRR1o8gdZ+GXegsfCb/t11EfhfFagEyODdTGIPaSBVs+47uUk/VkiIADtY5bmiMh+mENLWPVQTHn5N7M/A9pRUMAMUQG1jjwklwCTh3R7+5dsh/fyf/sXdBdSp+1fUFwaaBIm8KbLgCYRVhOUZwOaehF4F6WApt6sJigGBDSJspqgFAnQ1IfAG7gCmsQIvNeLgCZxVhN0mQ5okmA1QSulQFNf9u+CzPeBpn6sJmgqBzT1J/BeTgWaJFlN46XIX9YqTtA8nFfU8HbO+ytA01+sppqYxzfylHI0ojQumEUPZbQATVKspgcfrgy5PFBfJ2qoYVLk7S/1QNMAVtPKGKPBQYeHU/bMj/64eHNRPNA0kNWklre59ilhnca2hLqaMbkNh4CmQaymu/fnTsu/d18zc/TNZn2D1eeBpsGsJqur+jYWjCEauyQeyu6XHisNNA1hNe25cG7aM+n7tAPH6ZGF28q+A01DCbyzLa5dg8MIMLsG9e7cOrb4y0iDgNnzcq8++pTIo6N0d9dgHlynxM0yPtRDUGIRpeKIr1y3ryMdn3hHd2FptTIK6/h0xHX8+R3LI/lwmuP02CloRxTYsVNmCUjHTr2N5/exUxMGzHdpCVDRjDL3i16dPpaTV8Dm2CmjBKRDPOYn4ODsnJKSEgEcOzXpJGP3u4FESlyJsXzEQVHOpUSsjp2aiGidoXiwjkCOnSq+HTrf+uh6/cARU168db/PWf/F6tgpYUTjANEEe+MQsDx2Sm1KjeqZhlEGkboLdOnn9TkPWMT62Kk78YgHumFjPHweOzXsvETKk/rRGnm54nOj5YUgWaLAj53KRbRcLOaWAz/Et2OnLt8tXaI+qVjneA7BK3ujHmdGh9WxU8wcAvbYKSAQsvLUAgJMnvpvOnYKOlXE+NipugSkY6dSEgRz7NQkfYKPEGkYPbxR1s1rhsJl1I+dgi4fonCU0sUEpKOUShL4dezUt6mPexttV9cLmvNgw4qbBbdRP3YKGiNQ0CoFUau9gs1DsT52qhAujOH62Cke1S923REa0rp+7BS0OIZCAekYnLpmo4VXhx+VIhcnOL6bs0mMwlk16DjKor0w3fViRrHQr1MwgGHCHZiYWHmCf2W4gzcgrrRiFtDbiSUHTw/2mVOsX8Rq9yDaWDkTrYHZ5hpXV0cH8NgqF6AR+Hz7Ldc4gx8F99E7g3yAI3MkYl5UIWrYg0cDMSdBS+jLiK5sRpO5BcDFzs6R0bEBC/wZz7UuRCdwY3bXii0bXi5snhqsoJlGmP62d8n2AETZuIstkB/oYswwBPI06VNVQFzktQCeBoxM0pVV3YGpBmgwZQT36rMeiPd+iPwfc9+MqdUIADxHbrkq5xFfvZn34ME3My//Lqoqvp8yahzjpkGUjPkJ+QVHr/5hVFUHFBIDFdrNK6rKAzG3iFOh31U95Dj8kZX0gJqxBIODGGVOh7gGJyXoZAlPzdx65Jkapss/oCr2lUiqAH6Dm5lZ04LuFD5m6K4kmriD02ewF3Nay8Gjc1xgzrY3g7Ns3ptVw8XUCqcfHEbPmmNHUJIjc07IJOgdN+ImWTq18cN0NSeRTOd9EhPT9bF2cXFkWHUKk92ZmI0yBDcSg0MCu5bosBIM7wgLqteHTO6tH5OtFRT8+e6tnaOKICehgPfjDkLtl1GfLxewogxPrMsnnxllurWgrGDCOseOBWR1R5jEvChGhH8q/dCr0YNj3WmcJ/v3Yd2Yu/zNbuCHOMxgAyuONEQc4d+IM759lPo1gndHnQFpZ+NDp53QSmg8GyX2tx8nTS7esXODmwr81cQPhZh9GlYhoE+z8rYiAkzepkWaqPRz3jVS2n3Zw3Wx76Zzsi9MPM3VBSRIuXM2MRid//61AOXw6/O2rAHP0x7IO+3siR1HY7SfBdC1dElKNvVssf5Hkv/DrPS56+tnwD4tN6nTqbGL+noXAwpWA/paaYAlLYi+UoC+ilVcaVI3t5MO/vVYIJTargXPV88+6zo/ru0QZZ/o3/lCY1o4v+pczAw8dIjXiRG/Wn6XQkED4x+mUPaAevageqM1eHjna2BiKl3drRSqX3v3tWXYuTN455cGgUktpQVmpJgHU0evpoYkcSZLmswPcidLrOto907w/WuqkN7fuwrrZKnDM7uRKIGP7OBi62DT3p95fxFZNMNv8+pC/YPDje5+8qzR4fRV9g24fbWjhR/GUEQ0xq3TuEh/CN1ZD1LRd3bxBIYvKxuwMq04ZR4wZQX5c2Xi1Hk29i7utsrEafM83Nw9mf/gna3qHlhoVJZVTPJ5c+2O3DV/zs2Q4uAvMPZc58jdbTo18cNYgaeRjKWGjbEgPYdZd+lOtjrk1zKC8xp3aw+EHnT+kUmohWqb5iG/QY+ubpld+ydT5T80R04eK5BLA2nGZS7oL6/KtK2qe1kqK5IjZFsSDS+/XT8zXGeb7pMv18ONEjGd9oICRFWxBLjFQwAwtHQrE2UPZS5OQELF+2upr5JCI1+LayUbbbVU9PIohgxlzA/yGMrar/NDgIrTCAKkG51mJ5rFhH8X7aQaYqq+fcA7gxjxbDerOcWjBEY7TTlXhUA7hdRwZZYo004Og9VqNjn000298zacNvPnABzQTkRQEti148tnMQn6nMjG/fv3BUA7OZR81WlYkkFLlqDMKf3mbIoL2snnLJJ1puDBOgKhnR7J7un1+cB+cuJtt7CWxdPf4oJ2eliDZBwgmmBvHAKWtJPPzbaTWWo3qYF6oXfU6rfMwhXtpI5ovKYzWCe7OKKd3s0RbU6IXWMQfSPDfYHbhkaMaaf4M0iWM8Tccnylnc6m3XprllVPLR1WPlrdeXYDLmgnZg4BSzsBgZCVp5YQegDtpCkjnz1GspdWyWnrsLy3G15hTDsRz1ch0E6utbDFUlRppxSLTaP2zlKh+D4fJ3R8wHND1Gkn6NwcBYJHClQOluCpqOUqlKJEO8k+Ut1uJJSmmWkqp/5++qto1GknaIxAQSvAjxC0ItYKNOZiTTuVwoUxXNNO0El3J9oJGtK6Tjtdyb4eFHbiAvVgpIxInHXdTxRop+Nw6v5HO/0j2ulgSdvjw/sPkQudRHcfSH+vIjDayec7Eu3k840ftJOXWN81r8+M1sovGOm1aMCWOBRpJ2KrzYcP05V0T6x6Xhb6XP4kCrST63ckOIT4XSC0Uy9p4YynblRaysAKlz4id6oxp50uf0NSBfAb3MzMsKKdlj56Nb+tqEU/KyNVNN3GAT+00xRE0z1sxcVyH99pJ6NWTZqfjht9Z9MbyonXhx9gTDsxowwsrgJEGYHRTtfE1o+YrLGafmD0hGJK5Z1QHNBOzGADKw4QbARHOz3dIPLauzhFM9Ts9sMfw5tFcUI7TUFUCOjTrLztBKFH0E7T6xjUeQvFdfwKDwWO2zgilu+0U8VPJNrJ9YfgaCfPV71cVzaPUU+v1MyhOGyJR512ggZGFGinnJ9IzILlT5Rpp5t/HVoouVONnvR4upJpaWIW5rSTFOL7V/zAOlniF+3UN92z9chYAjn0fujmD0Zy+3FBOwGdFcEYRGyMgTntVHGmXut4frV6iZr1+3PXbiXghHa63IZkLJ82PPQcftJOY186qa+s2kwKLz0wdDxBHvrFB4KmnZiBHJZ20vqJNu1kubcxoX65jH5Kv7FL++rPPoo57fTwBxLtBIQWlGmnQC0DxaCxV+hhkXMGWj3Xm4A57SSGJED6gTZ2ollG+HfRTu63I9NKBs4yOPTx5DeLSUeeCox2Oi+EdLbTdwK/z3Zqbp2wx6dtqa5PqZ2iW9nwNzignU4LIZ2UES2EgwNqbty4IQDaybbp+YBcg4PkcEuzO9fmFYnjgnbyRLQOFQ/WEQjttG7Sum1DTJNJvlWm3nNrNlBxQTvJIxoHiCbYG4eAJe20ZxG5VZ9Qq5O4VHLYtAkJl3BFO10jIBkvExvj4ZN2cqzTEJ30MsbgYHSs21MvEaxpJz9Eyy3F3HJ8pZ3sl3waMlk/RKcsdHmTvVLOW1zQTswcApZ2AgIhK08tJ/QA2mmxr3Oh8s6D9Ciy9YHcn+/7YEw7nRZGOtvJUVgwZzt5kD3XtSarUA7PG/rtcf6F46jTTtC5OQoEz3FhpPOKwoX5dbaTwz1jvRnD/EglISJXouslRVCnnaAxAgWtHBG10hT+vzrbqQIujOGadoJOujvRTtCQ1nXaSdN1nFGhhLHevou3GvzpsxRRoJ1Owqn7H+30j2in8rciNZqfzuvu6K96T4iut0hgtNP5kdUItBN1ZLe+KK+LtJNOFXmyTeh7UvGk4nIZ0v4zKNJOn0xspJ2b0rXLaXmZ78d/+lOGFIRDToMKwcIh0SO5RiB+0E7m305dfP7EixwZ+TI/79CwNsxpJ09EVQC/wc3MDCvaye2B+oCT0tr6udOt73vHnUrCDe0kj2i67yMwMZ3AaadCn6GjWupH6m7duP8Sadu0DIxpJ2aUgcVVgCgjMNrJco/Yx4iNClqxoxcHFT1SnIkD2skTURwqRBy+0k73DlaemFnziBronXOr3I6sjBPaSR5RIaBPs/K2SkKPoJ2a9joyWoTc1SNTR/sn3IrZx3fayXFUNQLtdFoGdgKPOu3UdE0lsW6ClHboZ4/cC8NoU1GnnaCBEQXayRZUD5ZZmDuqWynU72mn1au+ziyptVLf90burHLU5kOY006DEd//tQzWyRK/aKc1CusqvN5fJQV8NPYUkfjbGRe0E9BZEYwRjY0xMKedzExnUJXuRmseVshV2khrWYUT2skT0VhUXPQcftJO/cxvbeu1XEH94NnkLT/K+g/BmHZiBnI42ilDZVT3stTf005npg+QEvVIVs81WeHpP+NLFOa003eZagTaCQgtKNNOVUEtqx3bjMi5qW+URCefWos57RSCJICZhQw70TxF+HfRTlLGE5XmxbzQ2lPWO+fwmVBlgdFO5qORaKdAWX7TTsOOUk/UKL6jpZ6R270+6OpnHNBOhqOR1o4VR+MA2bh06ZIAaKc1J2sjkhdZ0DKzLn8Z4b0CH7QTAdE6t2RxYB2B0E7nv15re1s8Sj9N5Msp9+fmdbignXJkkYwTiAfjELCknY4WkJ9e0/TUDF0tMn+D5SIKrmgnS0TjqWFjPHzSTuYBrX2TtmrRj5aSxVscn7RgTDtJIVquYRTWluMr7dTPfuD41fXbNGPGVF7QVVpwABe0EzOHgKWdgEDIylNPE3oA7fTXd4/at+RIg4SJZsul5jfqY0w7GRKRaKeW0YKhncYsFz7hPlRe49iPfoHa19ZWok47QefmKBA8FCISwUMk8ot2opb2XzTSUkQv43Owb3he1CPUaSdojEBBq5bRSFpdFuwsAWvaqQoujOGadoJOujvRTtCQ1nXaaXXDm/w+iyMovuXmaXf6lS5BgXaqhlP3P9rpH9FO+5t6Hbza+pGeN/r9buN9qwYLjHYyn4lEO91S5QftdPiZl2PsZ5pGpv+hl/maz5ejSDst3PDwg4HnVvUky6mqXjtIj1CgnQxnIsEhijMFQjtNrTo1oa/sUI3gwCmWD9dJ/8CcdiIgqgL4DW5mZljRTpP7X/L9+3USKbBmV2LYFwc53NBOOapIpgvExnQCp50kMrOzVGe0GQQ82PYyz7jXUoxpJ2aUgcVVgCgjMNopp85XexzjpdaRvNb+d+5kR+KAdiIgigMEG8HRTs191OyD9d9plc7Wv+wUZX4BJ7QTs0/DKgT0aVbedobQI2gn8ylD84vtnxrEjLOONwk2uc532qlFDYl2MlQTHO00XazOzLXRn5ZxQCj1ad/aBtRpJ2hgRIF2alJDYhZq1FCmnUzvLpI+VCWvF2MYczhnyZbrmNNO8Yjv762GdbLEL9rJuFW/WnFOHSV+NWNGX4fQKlzQToaIxlDExhiY006vLMbdfXIpnL7D2dO/14Qn03FCOxEQjXVrJh56Dj9pJ/2FYvfks8ZQci5NkHzu9E4FY9qJGchhaacSNbRpp1Dv9NyBhkn6pc1T/ioJaHbCnHYKZAvAk3YyVEObdiqp2HBlG11CN2hFVJum8rWhmNNOMkgCmD2byU40awj/LtopxPyoQdX0fgYn3B9vCHOyHiEw2unpbCTaafBsftNOxH1q2qWhm0j50bEGOac3/cAB7VQ/G2ntOH82DpCNM2fOCIB2qt71pGXg0skGOZTnn9T2vqDggnYKRrSOLR6sIxDaKfWKqZKp9hatmN7B1UuV+9fjgnaai2icwXgwDgFL2mnLAa1qj0GRBmESD/IavuZuxhXt9HoWkvFOz8I62cUR7WR//uX4l35hOlsXLvJ6NcbZGGPaKRrRcp6YW46vtFPizScfMxecoBzWz5ooOnjyXVzQTswcApZ2AgIhK089S+gBtNPiM0LOtQtzqLmTMpe7rZD1xph2qp+DRDv5zREM7XSCmtZPvNdDg12Sb4Yef2QxDXXaCTo3R4HguTYHieDJnMMv2mmTqEONb5/JetnxpMkqZxZbok47QWMEClr5IWq1dM7/Fe10Di6M4Zp2gk66O5/tBAlpXaed5K1rpKKzG9RTa2Sm3LwlGYIC7VQLp+5/tNM/op0yqj8olAeoUlMaEywTrusUCYx2cjVGop2ajPhBO5kl/5VxKTWZni3uNrx/H2cSirTTB0KRxtWbb7W2j9ReX1b7YiIKtJO9MRIcom4sENqp7Nsu8Rz/PtqlKX0Wxz7yeIk57SSNqArgN7iZmWFFO7luXL+h2C1Y56Bj6sG/P+cH4YZ2qjFCMl08NqYTOO002Tvyoke0EeXEu5OaESk0eYxpJ2aUgcVVgCgjMNrp3ctBscuXOpMPxDXIThw4SA8HtJM0ojhAsBEc7SR6vHd+bNYE/WM+kYWVj/WO4IR2YvZpWIWAPs3K284TegTtdE/oecmqSXdJQd6714e/U53Kd9pJyhSJdrI3ERztFNRHaYTfjkTNCBXFgO1r5MxQp52ggREF2knMFIlZeGiCMu20xvb9iTk2tZTdlblrs1vk3DGnnYpMkN4/xATrZIlftJPl65fLXSZn62SNnxG8/OgjL1zQTvaIxlDHxhiY005KkweWLE2yJcVEN6xX6e2cihPaSRrRWE3GeOg5/KSdbqTJi5XdrKVky4WdtPrRSMeYdmIGcljaqc4Ebdoprne/vmrnU9QPjW4J3j/6/HHMaad4EyTayd4EbdppYesGQnLdJkqEyr1Fspc/pWJOO81AEsCszZidaF4g/Ltop+zs+AXGxx31tmZL6Nwp/aQtMNrpuxkS7aRsxm/aydl2/9z5U86SUyc+3pibMHE1Dminj2ZIa8fnzXCAbJSXlwuAdpIavSRt0/h6WkTsCjn1owFbcUE7JSNaZyMerCMQ2umH0PMqjept+nt2rusz9btRDC5oJxNE4yjjwTgELGknG0LcKN0RsZS0JepXVx6wkMQV7dQL0Xj1plgnuziindbHFlnF1P7QKaw+F/8lcfJ3jGmnfFMkywVjbjm+0k6E284T67LtyYGvspQGBig54IJ2YuYQsLQTEAhZeepFQg+gnYxKJpGUpWpp2yv8ZEK8Rj3GmHb6uAiJdopeJBjaaWiY6IJ7MpMMwhRq+hBCsk1Rp52gc3MUCJ7Xi5AIntOL+EU7KRqZ7x2Tn0rLc79Qs1h4lCvqtBM0RqCgVTSiVp6L/q9op0twYQzXtBN00t2JdoKGtK7TTiE/Hw16eZ6qsePBtX1nnxdroUA7XUZN3X4CVHejwwK1LU4l2nteP3B4KvJSo5O6BUJ1VxOc75J8p/XV6SMu6gw0CbOaxqpNzpWpCdIqWzVf3XhERgTQJMJqishtPHm+vwc56vDhHUULHw8Emnqxmm4P9DUeszBRp+z7mePq0fO44bTecObaOvG0cqLUI62tG09Jqa5Mf46Cua7Ames/OO0fwWmTao1HOSUe1SydZyPbFiEvLTA4zc8FCU7r5cIPOM3tWX/LeYfc9CLzqR9XbbJ6hSKcNnurxXwKwUY7u2/jtpW7xqWjAKdtdEFieUxcBAKnrRhqLLuhMYpcKBabmfmYWoo5nKaMqArgN7iZSGMFp5Xq5OSVNobTYmeqLVi1u60ZN3BavTOS6fKdcbE6y3c47V5U87orG+brxGbQNlm9f78XYziNGWVg6SIgyggMTrsYIn5XTMSGvM+IpE/WKOJM7rCB05QRxenlIkA4bZar+O68PZXqe3xWXqufrWKBEziN2adhFQL6NCtvqyP0CDhtmUMW3WDALIME81Pph8ZU7+A7nKbshgSn+bkKDk67muNROTgoVCPNx+L4Aal8zmQeDTgNGhhRgNPk3ZAQk++uKMNptZr9ZOQWh+jn5+/K9vZ6NQxzOO2aK9L7Z7pinSzxC047MNVi3bOjOvrBNikFSRXLOb97GSs4zQ/RGEuxMQbmcFqBweXUDN8Enez4aXPPxPdVwwmcNgPRWP1w0XP4CafVp/xYlnqgTT1+etrE7CX5qX8yVUYBTWIGclg47a0r2nDa64KyyyI5byjR+ZNrk3yLUjCH0467IsFpfq5ow2lTN0mdn7iljBQguSCJXKMGmfdjAKcZIglgNtyVnWheJfy74LRTj4ZmWH/drnPihJ++mc3yZQKD06Q9kOA0iju/4bTNCsuyg7/fIe1wulj4uWjBRhzAaVIeSEv9De44IGyKiooEAKdtvfHGMu3VWVpYn8+ZryTjOb9eCys4rcIdyTpReLCOQOA0XRXjsPUiKpqBqhXyanSNU7iA01wRjUPBg3EIWMJpX66tLPe+1qARNGP/p97Lv3zAFZxGRDReixvWyS6O4LR7oqtJNy7GGiQ8oacTJYo5z44RPJx22Q3JcmmYW46vcNqLpRPE0qxEyVEPx6Sqiu5O+XOyBQU4jZlDwMJpQCBk5anXCD0AThsrbiymJLuTknvz2hDGQIIuxnCalCcSnFbkIRg4jfzE7dEitUz90pKPMfZLrXNRh9Ogc3MUgCsxTyTg6qEHv+C0vhP7kXQO3tIqEMmptFePu486nAaNEShoVeSBpFWIx/8VnHYdLozhGk6DTro74VPQkNZ1OM2QsPypQdxiWjp9wCXVOGspFGinG3Dq/kc7/SPa6cSjlE0fQ7bqlc0al73UQOKDwGina/5ItFO4Pz9op6oRLzaLi5jSEtbemb9WXGEiirSTdG5z8U7rAO1i31efPX4k90WBdrrsjwSHHPcXCO1UOVTS9XBZL2rgx2k/hkv6D8GcdkpDVAXwG9zMzLCinSYKX/yxrLWYXPhkbpnisXV1uKGdfBBN54iN6QROO+W4uXvFXBej5n6I7Hv/gx4NY9qJGWVgcRUgygiMdvpRHvls4bK7BoWl/o0bT/SJxQHtlIYoTri/AGmnN4xV3ptNC8iB3l9JaX2+bsAJ7eSDqBDQp1l5201Cj6CdMuVm5v01rk3zaNDOAqXtCgP4TjulBSDRTiYBgqOdErWnWAe98aPEkcMO1d7UVkKddoIGRhRop+QAxKOoAlCmnba81t9y+4QaJe3VkuLDztOxP4prI+L72wdgnSzxi3bS/fh6puixZXrHFqs7a6aL38MF7WSCaAx1bIyBOe202WmQZe2FJp2MDHPVkcv++oIT2kkZ0VjSuOg5/KSd7k9v2DqzOEGvUJdeWxwzzA9j2okZyOFoJ9OgALRpJ8ZVpZtZwmupSb17HxLxyBXGnHZyZQvAk3YyCUCbdrpmsXRBxapzOscMBxtZiz1Vwpx2mo0kQLpsADvRvEX4d9FOeoOkKg0iTekpWyh5a1/G3RQY7RS7HYl2Ut3Ob9ppsZHkKY2Y4eSQ3O0KjPd5CTignQ5sR1o7DtiOA2QjJydHALSTjJ/sLVkfM2qcl3lsW2VUFS5oJ3dE6yzHg3UEQjvFOV3v88HGST9JdoLtUSedclzQTnqIxlHFg3EIWNJOu+Y370ieZa0duLO67kzbyGhc0U5yiMaTxMZ4+KSdxjYlNXtWG5H3zVGurRA//h5j2qk1AMlyz3ExTeEb7eS4xNnggZmJVurDKRPr149rxAXtxMwhYGknIBCy8tTbhB5AO3lJy4ozjr2hB+sE3Gje2FcaY9ppRCAS7fSWO6XlC+3kUH72x/ZXa2hluwf6vkqXeYo67QSdm6NA8AwNRCJ4hAP5RTudJyqXHznzWmNv2JsEyhtFedRpJ2iMQEGrt9uRtLoj2NESa9rpDlwYwzXtBJ10d6KdoCGt67TTlVN1aRdm+qhnjYrps/69dCsKtNNdOHX/o53+Ee1kf0gu4bLXKoOQxeuWfEi0eSIw2kkhHIl2eh7GD9qp/6m7+14HF9FjDRIzQg5tDEGRdvKfVGo43GSVTkauh0LZ5VPOKNBOcuFIcIhkuEBop7hzvbd5vV5Ij4nu1XzUWc4Lc9qpNQxJFcBvcDMzw4p2GjFcf0HMXhOdg8veXjIKOumIG9qpDtF0ZdiYTuC002Lh8Jq/DgjTD7wL2Bym00zFmHZiRhlYXAWIMgKjnXYFDehHWa+gFxgVrUdPPPcFB7QTM9jAigMEG8HRTuf+ev1ZoqqYVFiS7jd9/JZsnNBOdYgKAX2albfVE3oE7ZQx/X6plKI6NZI0zjtVql8632mn1nAk2iklXHC0E2n/zgfFUXtJ+/q2MqZOmlCJOu0EDYwo0E6fw5GYhcfdS6F+Tzs9oV537Zt2nhae8HmL2NJ3szGnnS4ivn9JONbJEr9opxMnSQTpnY80dix+PDzuZO45XNBOKYjG2IuNMTCnnRzUqAn7/n6jE1Q1+8vbWYmrcEI7bUY01ipc9Bx+0k7W4rTNSxXvUUOmVdwt11rgizHtxAzksLTT3W5mqb+nnU6WHhKamiqhf9R3DOmHWLkO5rRTJVsAnrRTSjjatJPpqwVngu7b6pbvW7NIfUx5Cea0UzCSAOmu4exE8x7h30U7Tdtw1fnq+QT18kmRjfGrH44VGO3UtA+Jdgrcx2/aSfmJzZjE+F66CUe3tv5cpaOJA9rp9T6kteNb+3CAbKSlpQmAdtq/W7lJe6aR+h6F3V6k+WEncEE7nUa0Tg4erCMQ2qnPQdoY5dgZun4ucl9tdi9ZjwvaKRrROIF4MA4BS9qpvnJJ2s/tdvTEDSEvNp+Rf4Ur2skT0XiW2BgPn7TT49i4I5Zqb9Tjj12PkIzUcceYdqIiWk4Nc8vxlXb63lrhMFYzRCtWsv8kk0ElZ3BBOzFzCFjaCQiErDz1PqEH0E6XU/vrpXtvo4ZlfO2nEnreEGPayTECiXZSjxAM7eQ+Tu6YaYqPXmJI2SzxCb7PUKedoHNzFAge+wgkgsckgl+005w55zdt6dWoHXZkvFub0H031GknaIxAQSt1RK2UI/6vaKcHcGEM17QTdNLdiXaChrSu006zJW/NCmq2143M1DzzmESbjALt9BBO3f9op39EO62MMRocdHg4Zc/86I+LNxfFC4x2Wp+IRDvNTuQH7aQW8fCzAWkybUfQ0aKlYkeNUaSd7mwJGZP/OF2roPWm7e3gCatRoJ28EpHgEOtEgdBOTQGrxPz2fdHIcyzfeKnCYRzmtBMdURXAb3AzM8OKdtKccPlW9qYZlHyX5F3uW9euxg3tpIBouoHYmE7gtNO82cuJVrILdMPWrFiYNJ2xD2PaiRllYHEVIMoIjHaaOO76yKUDhXTKyNKFlaPJX3FAO9ERxZmdKEDayepg5sWSMfOpR/z0xn1pqCPihHZSQFQI6NOsvO0RoUfQTmp5m2ufEtZpbEuoqxmT23CI77QTPQmJdmrlTpP4RjvV7c7wX7LambYvvLVo6V5dKdRpJ2hgRIF20ktCYhZUk1CmnQIt9pAGqKymHcwNH/Uo7KsQ5rSTHOL7SyZhnSzxi3b6PLmSuElGk5rUYNL87MEzP1zQTq2JSMZ4jo/0R+C0k8GP5U8pu/7SyjCg+B6zOLQBJ7RTHaKxyjCfZvCbdjq9O9dYbpg6LVF0qLHH62EOGNNOzEAOSztNTkKbdlqkaBIrElSqdbSh8rG3+xJ/zGmnoWwBeNJOrd3MRH9PO8W8qO9jZpFOifiQ7zyJdGM85rTTw0Qk2ul0R6L5mPDvop3u3p87Lf/efc3M0Teb9Q1WnxcY7aSZjEQ71Sfxm3bKX31R9njFQY3I78VTFkc0r8cB7aSejLR2rJyMA2QjISFBALQTVUHs1ifNpfohcoN6vTkQWYoL2kka0Tq98GAdgdBOlXWS77QuaepEr1z+IKnkiScuaKemJCTj1GMz08AR7eTdQI+59/i65i61/BXLwgdQcUU71SAaLx/zaSKOaCf/G3nVdNl63dR5AbqGvmaJGNNO8YiWC8bccnylncil6yrOqDzT2W0T5tUUNTcbF7QTM4eApZ2AQMjKU58QegDtZHVV38aCMURjl8RD2f3SY7E+26kiGYl2Ck8WDO208kd2ybIF10jbHo9+mnl861TUaSfo3BwFgud4MhLBk5bML9pJ4/wnHc2mBNo286b6YyPH90addoLGCBS0CkfUykeweSjWtNNTuDCGa9oJOunuRDtBQ1rXaac9F85NeyZ9n3bgOD2ycFvZdxRop2dw6hLtxhYG7goih53KpO7/WsxZNe1txHC0WsepLsyyEFwXHkQirnVwZxDdwTuxBOS9B76lzVl60QSt2BvBz6e4D5Xj8SDcL/37CHf28r6wgDz9A2/dcm55pI78w14bBX6Rxbuq9nHZhytTAsYGxXdVLMmf417yJRLbjfuLNVNSjA0GfPh2zh+3klOHVCNIrjyEnQq9wL3kH02/ntwe5EPzHfiy1vtF8UjcSn5+CpLkmVPYkjfgXnKZHOtDQXonSbvviRtu2lcxCreSi9GQJG+gsiV/iXvJ1+kqXjT022Pgf1HSTv2jeA5uJf9ujyR5vT1b8kbcS66r4E6XFB9Jyonsb7fK73kabiUP3ook+catbMlf4V7y9Y5yR7xWKWqVSZy8ZrHiqwxuJU8OQZI8PIQt+WvcS367Zc1VsQINuv/YQWbKg29OxK3kTbFIkj+MZUv+Bk7y6fl08mwlC0pZtg9tR1P2TUhBBBDb3cWRyKQ5PbjXGHvDCK2q5Q1MxWzaaUHWyj3rVu3AFnPrwGpnF+BvwNyHtVGha+uPruoLC3btrdBMLZO/cLSiqRnpiXmUcDjau6i0DzCJzjEH0vHTZB74PxHcum5WxQf833pe/uKZcq+0Ip4bJ9isYKSgiP+/9rH7Ypl+iHJM9KGmvWio0B/6oiugUAioUBMJ+AdUoZZ2hbhqqmyJuoj+jdHg9CHW2hMd9K9JIMajwlPF1TpRhS5SQ7VO1EiSbl8s1+IkA2AchX0d7YprRQFLKCKvegwRaG1aVMXFhnRTqBGLGOBKKVMhzn7HW6Gl71c0Gy8x1U5+5L4uMy6gjHNlm3Uz7pVtdgM/NDJchKQR1JmE/4FGTBSMRX0DOv3Oi1qvPi7Rv9pKjtrwfHJZbfVPzr4I3oxbIdZlfugjZYakj6spuzrwFi7wT2gbJp1FFNEqIDd9Y8jacQb+vlQHD0/YrWdwJftRNIaVxxr39q1f7axSe3R3BO7WteCuMmD4u6TysdQCZdLsMtul52CfihtX7tTYVVwZ3Am6BNCxEtDxIVRHV/DchMVcYb2buLI42cqDwRSA5/se05/wcf/pUzo7GfNl7g0X5fxKvl7gK3G9aPvV38V3aND7UzYZkIoIShUFxPcKqFQyx5hSwcZ3nhw3nbnmBjqIgyfDyQPcW0jlqZFb5dpnU6sUyGFxvRmqYhZ+A5kEOPDuWt6u7oyOejGz0mw+iXP1QtDkm1QhSydwhwGXToEFTJ1YXfMdqytxdc1eUz+SJM9cpiSpqt4Ryh57SoTqYM1uS2iIkVkx1YyaLbrH4UeDBCeExKLk2vnsrvdbog6jPVNrJ8WJYErC6HZe5qchUpQx1oWUcVVL5srJBCn4J+MGBjq3diPjiDcGlD7Oq/OCdqgw6lZORuzIyex4y8H7pIBrbqQ2sofW/hgXwxvUOX90yB5/UzRLQDAfY1aKxuWaDe2CdWvZe7gmxF9A0eAJ3WkXVz6qoAXpRkqbpBkXqjhjutkgp4ClhhSvjgqOoYAarI7aRIAZQyMaPsVMMg2mFp8zOKnzM55zLUHiV3jiXvWGm6EO/bV525nI6LiBBHeo602aRFaa2qWeqawwQ/oMTVo7nlG51Oka6TjcY3Lvr/zV1kVZ08BxYgUg6y1ei9oU0MmWVfXv2OHFXm1kRycJXbCncq1e9WFe1rVl94yoNp+ShFBz3cLUw3T1Z0p32e1CMO19DZj+zNVzxNqv/7qxhW3NbqFycc2St8No/ZUGXW5/Hubj/i58DPqlFdAh3B2srB15d4PW5vs79YyqdGNqVLNmPfDgjOASZqyPEklc1hAicfUCIUjIgA6Vf1phAKxJAK05hcQj0XQER/3lVZ00EkJLo2Fqb/3H90vQ3y2yo5fI56QcGI3I3BqRf6sRNAyhoBHg0wgaEZdVsRyww5GQourgdpgIjKe/AgDvgHo9YvBkrXHU/Xr+YjkmeZxH/Im234Y7oLKuox1QDQtYvtJCAicmEB2u5TNVYgXUZriAOvTxLs2Bsy9pJPz9pDy7Zi3ngZJCZN7r7wPasRweUhIk2ps4ynQsioerfMdzgd6YAcyfbZkZKpNEcgIxL1dHBxv4AwhCclOjfIbuoYbeUPd5NvHOHsg7dMVlu2qLDn4NYgtiSRVBOrUKrMSAgxtL9ff/SPX2ZEXgyo9n/UIPMAl1cXQEnh+MGkCnsGMAT8HeTMd75+dVM1UHYkay1uEDwYfSvmaqCmAvEJwpKkDChgY1xYd/ZIq+FoAUTq4uzgxnT4EbZLBZe6lkw7pNv56Cp/rm99ato3kHkzNIow8I1c5ZAvsO3HP4zo1oW0KstIowpQiwRFlnS3zsyaHo6O294WP9/MnJ8qf21W/ZqYpRKCI0Qv3/U0/2/wvHZlyx/qakd1joR1XizW0vceT/rs1Q///ck/1f5EH44/SSgfrFk19uIf+c8Roj/28YWA3x/y892f8rrh/3MTeRIh3/O/369WdCFBz5v+bQaoj/t/Rk/6eNG3LE6sNZ7ZAbBXdHWj6pw8j/HVWg/v+1J/u/MNV1mNUnLfJxO5XsjVceEnDk/zVTof7f2pP9/4Pr/pjCxQXqOe/rFv18JzcJI/9P1oP6/7ee7P9DjRoD38oVa5TrlXtMTrbbgyP/J9Ch/v+9J/u/5pZtL4N+eGkllNyyvT2MYYuR/weuhPp/W0/2/4QEqbmfxEeRskQH1Y38a+NNHPn/dweo///oyf4v2liZT558WvOgnrm++votqzDyfz1fqP//7Mn+b/9q498Lnw+iF51etW3n48EHcOT//bZB/R+Urcf6/524aVqKWk7qaWNNniyu/umJkf8v3gP1f6F/pPq/xP/3XY8IeUl4p1m+88HGEv3ERhz5v2wo1P+Fe7L/L5tS/JUoa6ceviqfFmipIYaR/6fFQP1fpCf7v6GU4gyKWqZmEDVpQFyraByO/N85Dur/vf6RJdo3PAvcBgN/MXMeDDsnBtzJpyvyqL0p/i80fCcolc8eMK+Ox7PzWP9iXkZbdZArirfpqP//Dw==
                    
- true
- 
                      iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC
                    
- 3640aa4f-62eb-4d63-8052-a0e09732f02d
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- false
- 20
- 106c5295-4ab4-4aa6-aa77-17b1cabe660e
- 17ab48d2-bcb8-4439-9ae7-4711deb61155
- 1d618bec-21b8-4413-b9d0-b0ca022e064d
- 26784ca3-df66-4613-b760-ac9c1e2d63e1
- 3a66ce4a-5df0-4133-b5cb-55a024af3eb7
- 40b9031e-c91b-4327-8c44-ba17ee3528fc
- 63c4f63f-3b9c-4c9e-839e-410d31706448
- 6536ba36-0f3e-4855-9e12-fd57d967ea8a
- 6ecb5ad5-e259-4659-a211-088cf8e4b477
- 74ca0538-baa6-4806-a992-faf5fad6d48e
- 78cc69e8-a743-4023-b94a-9a8aa828d39c
- 82d3c096-76ee-44d4-8798-24f756494b5e
- 8548dc1b-91e3-4cc0-b43b-091e2316c9d3
- 8cd4f22b-f743-4148-bcb0-88afd63f304c
- 8e61e44e-6641-409a-9e86-3d6a5f8855d8
- 94ec5cf6-ef20-4c96-b553-c34d022171bb
- 9c9f7ec6-458c-4c08-989a-a545ac4b25c5
- abbd5fd2-67ff-46d9-a817-2364a4a2ccb6
- c5391385-d15b-49a5-ac81-81d3ed1c0180
- ee3af77c-4fd8-4c52-a97e-5a973605dc48
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 45329fda-4528-406d-a823-54e35ac6ff74
- f9b9305d-1e20-4067-946a-b44d88604308
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 34281050-3848-44ac-894c-a3119ffa069f
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
- e9837f44-fe89-4576-a1ba-d864d9176564
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- 
                          1581
                          1459
                          110
                          404
                        
- 
                          1677
                          1661
                        
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 3a66ce4a-5df0-4133-b5cb-55a024af3eb7
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1461
                                  82
                                  20
                                
- 
                                  1624
                                  1471
                                
- 1
- 1
- {0}
- 8
- Second item for multiplication
- 1d618bec-21b8-4413-b9d0-b0ca022e064d
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1481
                                  82
                                  20
                                
- 
                                  1624
                                  1491
                                
- Vector {y} component
- 40b9031e-c91b-4327-8c44-ba17ee3528fc
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1501
                                  82
                                  20
                                
- 
                                  1624
                                  1511
                                
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 17ab48d2-bcb8-4439-9ae7-4711deb61155
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1521
                                  82
                                  20
                                
- 
                                  1624
                                  1531
                                
- Vector {y} component
- 26784ca3-df66-4613-b760-ac9c1e2d63e1
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1541
                                  82
                                  20
                                
- 
                                  1624
                                  1551
                                
- 1
- 1
- {0}
- 6
- Second item for multiplication
- 6536ba36-0f3e-4855-9e12-fd57d967ea8a
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1561
                                  82
                                  20
                                
- 
                                  1624
                                  1571
                                
- Vector {y} component
- 8548dc1b-91e3-4cc0-b43b-091e2316c9d3
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1581
                                  82
                                  20
                                
- 
                                  1624
                                  1591
                                
- 1
- 1
- {0}
- 5
- Second item for multiplication
- 78cc69e8-a743-4023-b94a-9a8aa828d39c
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1601
                                  82
                                  20
                                
- 
                                  1624
                                  1611
                                
- Vector {y} component
- 82d3c096-76ee-44d4-8798-24f756494b5e
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1621
                                  82
                                  20
                                
- 
                                  1624
                                  1631
                                
- 1
- 1
- {0}
- 4
- Second item for multiplication
- 63c4f63f-3b9c-4c9e-839e-410d31706448
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1641
                                  82
                                  20
                                
- 
                                  1624
                                  1651
                                
- Vector {y} component
- ee3af77c-4fd8-4c52-a97e-5a973605dc48
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1661
                                  82
                                  20
                                
- 
                                  1624
                                  1671
                                
- 1
- 1
- {0}
- 3
- Second item for multiplication
- 74ca0538-baa6-4806-a992-faf5fad6d48e
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1681
                                  82
                                  20
                                
- 
                                  1624
                                  1691
                                
- Vector {y} component
- abbd5fd2-67ff-46d9-a817-2364a4a2ccb6
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1701
                                  82
                                  20
                                
- 
                                  1624
                                  1711
                                
- 1
- 1
- {0}
- 2
- Second item for multiplication
- 106c5295-4ab4-4aa6-aa77-17b1cabe660e
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1721
                                  82
                                  20
                                
- 
                                  1624
                                  1731
                                
- Vector {y} component
- 8e61e44e-6641-409a-9e86-3d6a5f8855d8
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1741
                                  82
                                  20
                                
- 
                                  1624
                                  1751
                                
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 8cd4f22b-f743-4148-bcb0-88afd63f304c
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1761
                                  82
                                  20
                                
- 
                                  1624
                                  1771
                                
- Vector {y} component
- 6ecb5ad5-e259-4659-a211-088cf8e4b477
- true
- Y component
- Y component
- true
- 0
- 
                                  1583
                                  1781
                                  82
                                  20
                                
- 
                                  1624
                                  1791
                                
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 94ec5cf6-ef20-4c96-b553-c34d022171bb
- true
- B
- B
- true
- 0
- 
                                  1583
                                  1801
                                  82
                                  20
                                
- 
                                  1624
                                  1811
                                
- Number of segments
- c5391385-d15b-49a5-ac81-81d3ed1c0180
- true
- Count
- Count
- true
- 88cf909b-1dfc-4acd-9ac8-315b06ce095d
- 1
- 
                                  1583
                                  1821
                                  82
                                  20
                                
- 
                                  1624
                                  1831
                                
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- 9c9f7ec6-458c-4c08-989a-a545ac4b25c5
- true
- Curve
- Curve
- true
- 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba
- 1
- 
                                  1583
                                  1841
                                  82
                                  20
                                
- 
                                  1624
                                  1851
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba
- Relay
- false
- ffc7114c-425e-4e46-9780-4f5439b2a045
- 1
- 
                          1354
                          1843
                          40
                          16
                        
- 
                          1374
                          1851
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e2df2e1d-44d3-46a6-865e-cf271d98e1ba
- Relay
- false
- ce7a6538-1307-4799-aa09-c6d0b388aa6b
- 1
- 
                          1343
                          1787
                          40
                          16
                        
- 
                          1363
                          1795
                        
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 256fa74d-8451-4366-b97f-fb31ceb7790f
- Panel
- false
- 0
- 0
- 0.0003959052400654102
- 
                          -312
                          1638
                          160
                          84
                        
- 0
- 0
- 0
- 
                          -311.7244
                          1638.12
                        
- 2
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b8db01a5-a165-45a8-b68c-2fc89acd8cfd
- Relay
- false
- 9f667c48-eb1e-47a4-8db2-61666d1ea383
- 1
- 
                          -351
                          1399
                          40
                          16
                        
- 
                          -331
                          1407
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2d69de74-3ac4-4786-bdb1-2f69d7dda67c
- Relay
- false
- 3e1b6d63-9b79-46a8-8d27-80596e7d8b16
- 1
- 
                          -353
                          1501
                          40
                          16
                        
- 
                          -333
                          1509
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 46d30a93-1bfb-4b58-b472-667a267525d3
- Relay
- false
- 79b1faa2-503e-498d-9a62-75f1113025b9
- 1
- 
                          -355
                          1551
                          40
                          16
                        
- 
                          -335
                          1559
                        
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- cb493613-0e2e-4e2b-81d7-7ea202151906
- Format
- Format
- 
                          -297
                          1363
                          130
                          64
                        
- 
                          -205
                          1395
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 2eb68e74-837d-4e46-8c99-02a982f20cf7
- Format
- Format
- false
- 0
- 
                                  -295
                                  1365
                                  78
                                  20
                                
- 
                                  -256
                                  1375
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 5252966c-5c4f-4a9b-b762-3c659429c056
- Culture
- Culture
- false
- 0
- 
                                  -295
                                  1385
                                  78
                                  20
                                
- 
                                  -256
                                  1395
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 52f1eacc-39cf-4144-9ece-79646d8595e5
- false
- Data 0
- 0
- true
- b8db01a5-a165-45a8-b68c-2fc89acd8cfd
- 1
- 
                                  -295
                                  1405
                                  78
                                  20
                                
- 
                                  -256
                                  1415
                                
- Formatted text
- b0ca4533-8708-49c9-abb0-994600403593
- Text
- Text
- false
- 0
- 
                                  -193
                                  1365
                                  24
                                  60
                                
- 
                                  -181
                                  1395
                                
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- d43e0888-6c1f-49e3-be0f-bb7d829fb494
- Format
- Format
- 
                          -297
                          1447
                          130
                          64
                        
- 
                          -205
                          1479
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- a864facc-351f-4484-977c-3999f7848a52
- Format
- Format
- false
- 0
- 
                                  -295
                                  1449
                                  78
                                  20
                                
- 
                                  -256
                                  1459
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c8912e3a-4df0-4d47-a0f1-a88a53ededd0
- Culture
- Culture
- false
- 0
- 
                                  -295
                                  1469
                                  78
                                  20
                                
- 
                                  -256
                                  1479
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 497bd5e0-b27c-4940-9b99-25379961ed41
- false
- Data 0
- 0
- true
- 2d69de74-3ac4-4786-bdb1-2f69d7dda67c
- 1
- 
                                  -295
                                  1489
                                  78
                                  20
                                
- 
                                  -256
                                  1499
                                
- Formatted text
- 413475f9-4f88-4628-8645-62eae4dd9722
- Text
- Text
- false
- 0
- 
                                  -193
                                  1449
                                  24
                                  60
                                
- 
                                  -181
                                  1479
                                
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- fffead86-943d-46b8-8937-a2232dae7463
- Format
- Format
- 
                          -296
                          1530
                          130
                          64
                        
- 
                          -204
                          1562
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- ffb10974-89f5-42f1-8068-026964edf4b7
- Format
- Format
- false
- 0
- 
                                  -294
                                  1532
                                  78
                                  20
                                
- 
                                  -255
                                  1542
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 47e6c6fb-dd94-42a0-aadb-40c2cb7a1ef5
- Culture
- Culture
- false
- 0
- 
                                  -294
                                  1552
                                  78
                                  20
                                
- 
                                  -255
                                  1562
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- d4ed8801-7d28-4eb4-88d3-57878affb737
- false
- Data 0
- 0
- true
- 46d30a93-1bfb-4b58-b472-667a267525d3
- 1
- 
                                  -294
                                  1572
                                  78
                                  20
                                
- 
                                  -255
                                  1582
                                
- Formatted text
- a6d6d315-6584-4d1c-9c7a-258d37fd4a9a
- Text
- Text
- false
- 0
- 
                                  -192
                                  1532
                                  24
                                  60
                                
- 
                                  -180
                                  1562
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 375085a7-85bd-47e7-800b-36aa5972104d
- Relay
- false
- db90c791-fd03-47f7-9d9f-fce64245413a
- 1
- 
                          91
                          1571
                          40
                          16
                        
- 
                          111
                          1579
                        
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- 8fda1e13-53c9-4af2-94b7-c8a6b46ddc04
- Scale NU
- Scale NU
- 
                          291
                          1328
                          226
                          121
                        
- 
                          453
                          1389
                        
- Base geometry
- 67f67125-e32e-46ec-968c-e49e99f471e9
- Geometry
- Geometry
- true
- 4be4d01e-f1cd-4466-afb7-4c701c8415b6
- 1
- 
                              293
                              1330
                              148
                              20
                            
- 
                              375
                              1340
                            
- Base plane
- c052d3d4-ce54-4870-82d8-00e7ad59458d
- Plane
- Plane
- false
- 0
- 
                              293
                              1350
                              148
                              37
                            
- 
                              375
                              1368.5
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                      1
                                      0
                                      0
                                      0
                                      1
                                      0
                                    
- Scaling factor in {x} direction
- da1a007e-69ac-4e7f-aac5-a78ca7c560ae
- 1/X
- Scale X
- Scale X
- false
- 9f667c48-eb1e-47a4-8db2-61666d1ea383
- 1
- 
                              293
                              1387
                              148
                              20
                            
- 
                              375
                              1397
                            
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- a5a32c25-5253-47ff-b408-cb47a62cd982
- 1/X
- Scale Y
- Scale Y
- false
- 79b1faa2-503e-498d-9a62-75f1113025b9
- 1
- 
                              293
                              1407
                              148
                              20
                            
- 
                              375
                              1417
                            
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- f4001ed1-1bec-47f1-b6cf-ad32e8932b74
- Scale Z
- Scale Z
- false
- 0
- 
                              293
                              1427
                              148
                              20
                            
- 
                              375
                              1437
                            
- 1
- 1
- {0}
- 1
- Scaled geometry
- a35486f2-4dac-4ca8-ba16-9b13976474ec
- Geometry
- Geometry
- false
- 0
- 
                              465
                              1330
                              50
                              58
                            
- 
                              490
                              1359.25
                            
- Transformation data
- 32b7bf48-2611-46ca-9a94-15871f5f8af5
- Transform
- Transform
- false
- 0
- 
                              465
                              1388
                              50
                              59
                            
- 
                              490
                              1417.75
                            
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- be4e0dac-54d0-43df-a9f9-d245692a9442
- GraphMapper+
- GraphMapper+
- true
- 
                          781
                          1162
                          114
                          104
                        
- 
                          842
                          1214
                        
- External curve as a graph
- 32131412-40a4-4796-8cb5-0049955e4cd6
- Curve
- Curve
- false
- 7f6b440a-d60d-4007-bfa5-8cdf447f299c
- 1
- 
                              783
                              1164
                              47
                              20
                            
- 
                              806.5
                              1174
                            
- Optional Rectangle boundary. If omitted the curve's would be landed
- 10504c35-4cb1-4ccf-ab0d-97db809c54d2
- Boundary
- Boundary
- true
- 5c358a28-dd5e-43a3-b441-5bc768492329
- 1
- 
                              783
                              1184
                              47
                              20
                            
- 
                              806.5
                              1194
                            
- 1
- List of input numbers
- 71789790-5c60-4473-a7f4-dc3bc01f717d
- Numbers
- Numbers
- false
- 3120c589-9577-4cd1-8824-fe288c8306d2
- 1
- 
                              783
                              1204
                              47
                              20
                            
- 
                              806.5
                              1214
                            
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain 
if omitted, it would be 0-1 in "Normalize" mode  by default
 or be the interval of the input list in case of selecting "AutoDomain"  mode
- b335bfa0-fb3b-468a-b09b-708cf5b1776f
- Input
- Input
- true
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- 1
- 
                              783
                              1224
                              47
                              20
                            
- 
                              806.5
                              1234
                            
- (Optional) Output Domain 
 if omitted, it would be 0-1 in "Normalize" mode by default
 or be the interval of the input list in case of selecting "AutoDomain"  mode
- d8d4e7df-a90c-4325-9726-4dfc7089cb9f
- Output
- Output
- true
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- 1
- 
                              783
                              1244
                              47
                              20
                            
- 
                              806.5
                              1254
                            
- 1
- Output Numbers
- d0fd8b08-647a-44b7-8722-3f9265acdd47
- Number
- Number
- false
- 0
- 
                              854
                              1164
                              39
                              100
                            
- 
                              873.5
                              1214
                            
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- cb1ce8fd-0f41-450f-9d53-79f7515bfb72
- End Points
- End Points
- 
                          180
                          953
                          84
                          44
                        
- 
                          224
                          975
                        
- Curve to evaluate
- 94e0bad3-b417-489a-8c29-b38c0b7f7de1
- Curve
- Curve
- false
- 7f6b440a-d60d-4007-bfa5-8cdf447f299c
- 1
- 
                              182
                              955
                              30
                              40
                            
- 
                              197
                              975
                            
- Curve start point
- b22df60e-f09e-49d7-a1e0-8f2b44f65ead
- Start
- Start
- false
- 0
- 
                              236
                              955
                              26
                              20
                            
- 
                              249
                              965
                            
- Curve end point
- aea14296-171a-4771-9a84-390715b4afe5
- End
- End
- false
- 0
- 
                              236
                              975
                              26
                              20
                            
- 
                              249
                              985
                            
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 7609d6ff-b013-41c3-b0e6-1f1ea2ecfa4d
- Rectangle 2Pt
- Rectangle 2Pt
- 
                          374
                          1011
                          198
                          101
                        
- 
                          510
                          1062
                        
- Rectangle base plane
- 04b12ec4-09ce-4bce-9c5e-563bb5c6f518
- Plane
- Plane
- false
- 0
- 
                              376
                              1013
                              122
                              37
                            
- 
                              437
                              1031.5
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                      1
                                      0
                                      0
                                      0
                                      1
                                      0
                                    
- First corner point.
- e4032d1f-5563-407f-8d59-63c24b553fdf
- Point A
- Point A
- false
- b22df60e-f09e-49d7-a1e0-8f2b44f65ead
- 1
- 
                              376
                              1050
                              122
                              20
                            
- 
                              437
                              1060
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Second corner point.
- 1598ee77-7a85-4dc4-b49d-da6593b2f937
- Point B
- Point B
- false
- aea14296-171a-4771-9a84-390715b4afe5
- 1
- 
                              376
                              1070
                              122
                              20
                            
- 
                              437
                              1080
                            
- 1
- 1
- {0}
- 
                                      10
                                      5
                                      0
                                    
- Rectangle corner fillet radius
- c86be701-5245-4b5e-b8c7-736354a2aa02
- Radius
- Radius
- false
- 0
- 
                              376
                              1090
                              122
                              20
                            
- 
                              437
                              1100
                            
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 5c358a28-dd5e-43a3-b441-5bc768492329
- Rectangle
- Rectangle
- false
- 0
- 
                              522
                              1013
                              48
                              48
                            
- 
                              546
                              1037.25
                            
- Length of rectangle curve
- fa4073c9-fd23-420d-853c-3a12ebaa1776
- Length
- Length
- false
- 0
- 
                              522
                              1061
                              48
                              49
                            
- 
                              546
                              1085.75
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 45977af4-69a0-4e08-8746-e247c5098c77
- Relay
- false
- 8646f974-91ff-408b-aa4d-7fb4f8df1cf2
- 1
- 
                          573
                          1573
                          40
                          16
                        
- 
                          593
                          1581
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3e0631e2-acee-4952-b380-ca85b2802769
- Relay
- false
- e6883f83-7321-4869-ba03-b28db7c15488
- 1
- 
                          871
                          1633
                          40
                          16
                        
- 
                          891
                          1641
                        
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 334df1fa-36cc-47a9-837d-60ac1be4a50d
- Bounds
- Bounds
- 
                          620
                          1261
                          110
                          28
                        
- 
                          678
                          1275
                        
- 1
- Numbers to include in Bounds
- 37c1ef27-099c-4ee3-95bb-58ae35c8919d
- Numbers
- Numbers
- false
- 3120c589-9577-4cd1-8824-fe288c8306d2
- 1
- 
                              622
                              1263
                              44
                              24
                            
- 
                              644
                              1275
                            
- Numeric Domain between the lowest and highest numbers in {N}
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- Domain
- Domain
- false
- 0
- 
                              690
                              1263
                              38
                              24
                            
- 
                              709
                              1275
                            
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- b8dc634e-a51c-4f2c-81bc-3d5445f2b76d
- Multiplication
- Multiplication
- 
                          452
                          1146
                          65
                          44
                        
- 
                          472
                          1168
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- e5ee8871-037b-4ec7-bea4-30847970cc8b
- A
- true
- 45977af4-69a0-4e08-8746-e247c5098c77
- 1
- 
                                  454
                                  1148
                                  6
                                  20
                                
- 
                                  457
                                  1158
                                
- Second item for multiplication
- 2d435093-1ce4-49b9-ba6e-e3467082b029
- B
- true
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                                  454
                                  1168
                                  6
                                  20
                                
- 
                                  457
                                  1178
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- Result of multiplication
- b716b10c-3aa5-40ed-997d-6e57c2ed9dd8
- Result
- Result
- false
- 0
- 
                                  484
                                  1148
                                  31
                                  40
                                
- 
                                  499.5
                                  1168
                                
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 749a1d6b-ce44-4374-b73f-e79001f96855
- Division
- Division
- 
                          939
                          1227
                          40
                          44
                        
- 
                          959
                          1249
                        
- Item to divide (dividend)
- dd92453a-f264-451b-82c3-8fcf92690c14
- A
- false
- d0fd8b08-647a-44b7-8722-3f9265acdd47
- 1
- 
                              941
                              1229
                              6
                              20
                            
- 
                              944
                              1239
                            
- Item to divide with (divisor)
- 034550cc-e2fc-4b88-bf69-428042f4b309
- B
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                              941
                              1249
                              6
                              20
                            
- 
                              944
                              1259
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- The result of the Division
- 2e337179-3366-41e1-91ce-b34ea88fe906
- Result
- false
- 0
- 
                              971
                              1229
                              6
                              40
                            
- 
                              974
                              1249
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3120c589-9577-4cd1-8824-fe288c8306d2
- Relay
- false
- b716b10c-3aa5-40ed-997d-6e57c2ed9dd8
- 1
- 
                          540
                          1176
                          40
                          16
                        
- 
                          560
                          1184
                        
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- b1b3cfd0-fdbe-4d56-bd37-08900a0112c6
- true
- Curve Graph Mapper
- Curve Graph Mapper
- 
                          745
                          819
                          181
                          224
                        
- 
                          840
                          931
                        
- 1
- One or multiple graph curves to graph map values with
- ac290670-5842-4a15-aa53-834d345d7f27
- true
- Curves
- Curves
- false
- 7f6b440a-d60d-4007-bfa5-8cdf447f299c
- 1
- 
                              747
                              821
                              81
                              27
                            
- 
                              787.5
                              834.75
                            
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 83b94a39-1f18-4e8d-99e0-2385db6d3c47
- true
- Rectangle
- Rectangle
- false
- 5c358a28-dd5e-43a3-b441-5bc768492329
- 1
- 
                              747
                              848
                              81
                              28
                            
- 
                              787.5
                              862.25
                            
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- 909ffa9a-b5d6-46dd-a885-b7464e5e7d73
- true
- Values
- Values
- false
- 3120c589-9577-4cd1-8824-fe288c8306d2
- 1
- 
                              747
                              876
                              81
                              27
                            
- 
                              787.5
                              889.75
                            
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- 776f816b-cff2-40a1-aa86-2920a323ac4e
- true
- X Axis
- X Axis
- true
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- 1
- 
                              747
                              903
                              81
                              28
                            
- 
                              787.5
                              917.25
                            
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- 385402d6-4b0c-476f-bd64-6dd764131ae5
- true
- Y Axis
- Y Axis
- true
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- 1
- 
                              747
                              931
                              81
                              27
                            
- 
                              787.5
                              944.75
                            
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- 86ecd77a-d369-44ad-971d-fabd4c06ee62
- true
- Flip
- Flip
- false
- 0
- 
                              747
                              958
                              81
                              28
                            
- 
                              787.5
                              972.25
                            
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- 98212030-c666-417d-a30f-04baeb41e9f2
- true
- Snap
- Snap
- false
- 0
- 
                              747
                              986
                              81
                              27
                            
- 
                              787.5
                              999.75
                            
- 1
- 1
- {0}
- false
- Size of the graph labels
- 48463b98-be10-4297-b07d-3846425e8839
- true
- Text Size
- Text Size
- false
- 0
- 
                              747
                              1013
                              81
                              28
                            
- 
                              787.5
                              1027.25
                            
- 1
- 1
- {0}
- 0.0625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- e6565b4b-cef3-477d-8812-bc8b999f9b4d
- true
- Mapped
- Mapped
- false
- 0
- 
                              852
                              821
                              72
                              20
                            
- 
                              888
                              831
                            
- 1
- The graph curves inside the boundary of the graph
- 43464001-9d23-4753-82d1-602f8071c817
- true
- Graph Curves
- Graph Curves
- false
- 0
- 
                              852
                              841
                              72
                              20
                            
- 
                              888
                              851
                            
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- d9ac758b-cc34-4638-94d5-5cf5361b3e1f
- true
- Graph Points
- Graph Points
- false
- 0
- 
                              852
                              861
                              72
                              20
                            
- 
                              888
                              871
                            
- 1
- The lines from the X Axis input values to the graph curves
- true
- 445f9076-c008-41b1-97ef-60af947fc621
- true
- Value Lines
- Value Lines
- false
- 0
- 
                              852
                              881
                              72
                              20
                            
- 
                              888
                              891
                            
- 1
- The points plotted on the X Axis which represent the input values
- true
- aa497984-6e75-4d21-b4bb-b5ae576c4479
- true
- Value Points
- Value Points
- false
- 0
- 
                              852
                              901
                              72
                              20
                            
- 
                              888
                              911
                            
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- 1b6aa626-e209-48f0-a15f-ab7dc9645ef4
- true
- Mapped Lines
- Mapped Lines
- false
- 0
- 
                              852
                              921
                              72
                              20
                            
- 
                              888
                              931
                            
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- 5067a63b-73bd-4f7f-963b-3a7b4c4dfd4a
- true
- Mapped Points
- Mapped Points
- false
- 0
- 
                              852
                              941
                              72
                              20
                            
- 
                              888
                              951
                            
- The graph boundary background as a surface
- 5b3dfa57-e204-4444-9e92-0611bf00405a
- true
- Boundary
- Boundary
- false
- 0
- 
                              852
                              961
                              72
                              20
                            
- 
                              888
                              971
                            
- 1
- The graph labels as curve outlines
- 59e9cbda-c078-408f-b017-57e4f5e3ce1f
- true
- Labels
- Labels
- false
- 0
- 
                              852
                              981
                              72
                              20
                            
- 
                              888
                              991
                            
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 82eee386-327f-4901-8478-a464457293ac
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
- 
                              852
                              1001
                              72
                              20
                            
- 
                              888
                              1011
                            
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- 72a6c943-24f0-4165-aee6-1e12264947eb
- true
- Intersected
- Intersected
- false
- 0
- 
                              852
                              1021
                              72
                              20
                            
- 
                              888
                              1031
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7f6b440a-d60d-4007-bfa5-8cdf447f299c
- Relay
- false
- 2a58a381-2731-4ecb-9622-86d5b7e6f397
- 1
- 
                          278
                          884
                          40
                          16
                        
- 
                          298
                          892
                        
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 3bc19fd1-a14f-4afe-8c79-98d06f72efe6
- Scale
- Scale
- 
                          24
                          837
                          201
                          64
                        
- 
                          161
                          869
                        
- Base geometry
- 91fac79f-9c37-49f8-9da4-3c31c7380fd6
- Geometry
- Geometry
- true
- 6ed1c523-bb4c-4547-8b1e-fef80e576ef5
- 1
- 
                              26
                              839
                              123
                              20
                            
- 
                              87.5
                              849
                            
- Center of scaling
- bb906599-6948-4240-be61-b8f2db1129f8
- Center
- Center
- false
- 0
- 
                              26
                              859
                              123
                              20
                            
- 
                              87.5
                              869
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Scaling factor
- 69b2eb88-56be-4742-85ab-abc16a75d511
- Factor
- Factor
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                              26
                              879
                              123
                              20
                            
- 
                              87.5
                              889
                            
- 1
- 1
- {0}
- 65536
- Scaled geometry
- 2a58a381-2731-4ecb-9622-86d5b7e6f397
- Geometry
- Geometry
- false
- 0
- 
                              173
                              839
                              50
                              30
                            
- 
                              198
                              854
                            
- Transformation data
- 2d174878-52b5-45af-9e48-245182783d6b
- Transform
- Transform
- false
- 0
- 
                              173
                              869
                              50
                              30
                            
- 
                              198
                              884
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6ed1c523-bb4c-4547-8b1e-fef80e576ef5
- Relay
- false
- fe2c7fd3-a20d-49fe-8b1d-09361e90e45d
- 1
- 
                          -65
                          851
                          40
                          16
                        
- 
                          -45
                          859
                        
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- eea9ee61-f5d5-4cd8-9392-512823c0542f
- DotNET VB Script (LEGACY)
- Turtle
- 0
-     Dim i As Integer
    Dim dir As New On3dVector(1, 0, 0)
    Dim pos As New On3dVector(0, 0, 0)
    Dim axis As New On3dVector(0, 0, 1)
    Dim pnts As New List(Of On3dVector)
    pnts.Add(pos)
    For i = 0 To Forward.Count() - 1
      Dim P As New On3dVector
      dir.Rotate(Left(i), axis)
      P = dir * Forward(i) + pnts(i)
      pnts.Add(P)
    Next
    Points = pnts
- 
                          1124
                          3341
                          104
                          44
                        
- 
                          1179
                          3363
                        
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 67372680-60ae-44bc-846c-4865450df977
- Forward
- Forward
- true
- 1
- true
- c3ae31b2-8e2f-4176-a84e-b43814396e6c
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              1126
                              3343
                              41
                              20
                            
- 
                              1146.5
                              3353
                            
- 1
- false
- Script Variable Left
- 78e99550-605c-4e97-9f4b-9c8279389f48
- Left
- Left
- true
- 1
- true
- 9d55f829-b54c-4866-9ced-6f44b43868eb
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              1126
                              3363
                              41
                              20
                            
- 
                              1146.5
                              3373
                            
- Print, Reflect and Error streams
- 6db48831-5b42-4e0d-961a-891b10ec40c3
- Output
- Output
- false
- 0
- 
                              1191
                              3343
                              35
                              20
                            
- 
                              1208.5
                              3353
                            
- Output parameter Points
- 9b42fff0-cfd4-4077-bd34-da7089713006
- Points
- Points
- false
- 0
- 
                              1191
                              3363
                              35
                              20
                            
- 
                              1208.5
                              3373
                            
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 2c82a4ea-3f85-4c1a-b5b5-2017900737e6
- Series
- Series
- 
                          505
                          3500
                          89
                          64
                        
- 
                          549
                          3532
                        
- First number in the series
- 7d70527c-3b5e-4035-9c97-3a4e66a71ebb
- Start
- Start
- false
- 8e6ac10d-2238-4545-8ff2-442c876cd85c
- 1
- 
                              507
                              3502
                              30
                              20
                            
- 
                              522
                              3512
                            
- 1
- 1
- {0}
- 0
- Step size for each successive number
- ea1865d1-db8f-4aab-9811-0b5402206762
- Step
- Step
- false
- 8e6ac10d-2238-4545-8ff2-442c876cd85c
- 1
- 
                              507
                              3522
                              30
                              20
                            
- 
                              522
                              3532
                            
- 1
- 1
- {0}
- 1
- Number of values in the series
- d8a497e7-23e5-4d55-a9ef-4b474147df58
- Count
- Count
- false
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
- 
                              507
                              3542
                              30
                              20
                            
- 
                              522
                              3552
                            
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- e552844e-beed-45c9-8a78-a5fe409f581c
- Series
- Series
- false
- 0
- 
                              561
                              3502
                              31
                              60
                            
- 
                              576.5
                              3532
                            
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 5f38726a-35c0-4b76-901e-23bf35d464c4
- Duplicate Data
- Duplicate Data
- 
                          496
                          3343
                          102
                          64
                        
- 
                          559
                          3375
                        
- 1
- Data to duplicate
- 47caabbf-b255-4c5a-a4a5-150c750eda62
- Data
- Data
- false
- 9ea38a50-4760-46d2-8f7b-283ff9e5b2d3
- 1
- 
                              498
                              3345
                              49
                              20
                            
- 
                              522.5
                              3355
                            
- Number of duplicates
- 531ac858-39f2-4fd7-9685-bece6d955799
- Number
- Number
- false
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
- 
                              498
                              3365
                              49
                              20
                            
- 
                              522.5
                              3375
                            
- 1
- 1
- {0}
- 500
- Retain list order
- d7a02fc3-4ca1-4ecc-a967-35c15da0554c
- Order
- Order
- false
- 0
- 
                              498
                              3385
                              49
                              20
                            
- 
                              522.5
                              3395
                            
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 64514e59-9473-4a0c-b0b8-55f5423b430c
- Data
- Data
- false
- 0
- 
                              571
                              3345
                              25
                              60
                            
- 
                              583.5
                              3375
                            
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7e1bc525-0327-427c-afd4-d8b6c2743acb
- Digit Scroller
- .
- false
- 0
- 12
- .
- 11
- 1024.0
- 
                          -29
                          3493
                          250
                          20
                        
- 
                          -28.90819
                          3493.851
                        
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c923a52e-eef5-4213-b91c-a99d00b79828
- Digit Scroller
-  ЯR
- false
- 0
- 12
-  ЯR
- 1
- 0.12220574352
- 
                          -25
                          3395
                          250
                          20
                        
- 
                          -24.20879
                          3395.534
                        
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1db31240-f2f8-4f56-bfd1-c8e86a7d0108
- Digit Scroller
- °
- false
- 0
- 12
- °
- 2
- 0.0003860762
- 
                          -27
                          3438
                          250
                          20
                        
- 
                          -26.29068
                          3438.793
                        
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- cbe7bd82-cc9b-4870-9ac3-7aa5aa5a6971
- Radians
- Radians
- 
                          350
                          3401
                          108
                          28
                        
- 
                          405
                          3415
                        
- Angle in degrees
- ee7f3a8f-51dd-4ce6-864b-7f1c762117af
- Degrees
- Degrees
- false
- 9698bc3a-1ed1-4414-86f0-6444e8ead760
- 1
- 
                              352
                              3403
                              41
                              24
                            
- 
                              372.5
                              3415
                            
- Angle in radians
- 8e6ac10d-2238-4545-8ff2-442c876cd85c
- Radians
- Radians
- false
- 0
- 
                              417
                              3403
                              39
                              24
                            
- 
                              436.5
                              3415
                            
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7
- Point
- Point
- false
- 9b42fff0-cfd4-4077-bd34-da7089713006
- 1
- 
                          1001
                          3489
                          50
                          24
                        
- 
                          1026.471
                          3501.968
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- dc0b9699-7043-422e-b460-d535b9da419e
- Relay
- false
- 6c7782b5-3c6b-4ea4-b368-9f8596fbb31c
- 1
- 
                          361
                          3463
                          40
                          16
                        
- 
                          381
                          3471
                        
- be52336f-a2e1-43b1-b5f5-178ba489508a
- Circle Fit
- Fit a circle to a collection of points.
- true
- c73e22cb-aead-46dc-b16c-0dcc22b7dd4e
- Circle Fit
- Circle Fit
- 
                          478
                          3761
                          104
                          64
                        
- 
                          523
                          3793
                        
- 1
- Points to fit
- 81f3a1ec-91eb-4bf4-8fbc-1c370465acd8
- Points
- Points
- false
- 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7
- 1
- 
                              480
                              3763
                              31
                              60
                            
- 
                              495.5
                              3793
                            
- Resulting circle
- d68e2f69-3f6f-44fd-a42e-8171647fc776
- Circle
- Circle
- false
- 0
- 
                              535
                              3763
                              45
                              20
                            
- 
                              557.5
                              3773
                            
- Circle radius
- b567df3e-11d3-4b09-9333-ce91f4c3ae0e
- Radius
- Radius
- false
- 0
- 
                              535
                              3783
                              45
                              20
                            
- 
                              557.5
                              3793
                            
- Maximum distance between circle and points
- fcc5255c-a398-4ece-83e3-96e14b9c2ac5
- Deviation
- Deviation
- false
- 0
- 
                              535
                              3803
                              45
                              20
                            
- 
                              557.5
                              3813
                            
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- cos((4*atan(1))/N)
- true
- 2ddf6b0f-02b5-436b-b276-241adb75be4c
- Expression
- Expression
- 
                          629
                          3723
                          215
                          28
                        
- 
                          727
                          3737
                        
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- e51b1d7a-a1af-48c3-b8da-e133a59540cd
- Variable N
- N
- true
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
- 
                                  631
                                  3725
                                  11
                                  24
                                
- 
                                  636.5
                                  3737
                                
- Result of expression
- 77e75b08-4e4d-4be7-8856-42f71b66f28c
- Result
- Result
- false
- 0
- 
                                  811
                                  3725
                                  31
                                  24
                                
- 
                                  826.5
                                  3737
                                
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 054f5a8d-f78d-4a7e-bf5d-2645ef426ad8
- Scale
- Scale
- 
                          652
                          3868
                          126
                          64
                        
- 
                          714
                          3900
                        
- Base geometry
- 510ed7b4-b3c9-4474-a386-993821af754c
- Geometry
- Geometry
- true
- d68e2f69-3f6f-44fd-a42e-8171647fc776
- 1
- 
                              654
                              3870
                              48
                              20
                            
- 
                              678
                              3880
                            
- Center of scaling
- a003e2da-4e0b-4f3c-a084-b732e78b89c7
- Center
- Center
- false
- 51a42e21-ee34-499b-9dd4-f81a4b690590
- 1
- 
                              654
                              3890
                              48
                              20
                            
- 
                              678
                              3900
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Scaling factor
- c760a2a1-3ff7-4898-bb85-58cdae47edae
- Factor
- Factor
- false
- 77e75b08-4e4d-4be7-8856-42f71b66f28c
- 1
- 
                              654
                              3910
                              48
                              20
                            
- 
                              678
                              3920
                            
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- b6b1bef2-1523-4956-aa25-2dac5bdbc61f
- Geometry
- Geometry
- false
- 0
- 
                              726
                              3870
                              50
                              30
                            
- 
                              751
                              3885
                            
- Transformation data
- 0a98dc6e-bb85-421b-b00c-7339b7acc660
- Transform
- Transform
- false
- 0
- 
                              726
                              3900
                              50
                              30
                            
- 
                              751
                              3915
                            
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- 973ba117-2844-42fc-a837-d3bfa8e69ed9
- Area
- Area
- 
                          466
                          3878
                          118
                          44
                        
- 
                          528
                          3900
                        
- Brep, mesh or planar closed curve for area computation
- 7e8b3833-ef63-446a-81e2-35e1cf71bbc8
- Geometry
- Geometry
- false
- d68e2f69-3f6f-44fd-a42e-8171647fc776
- 1
- 
                              468
                              3880
                              48
                              40
                            
- 
                              492
                              3900
                            
- Area of geometry
- 264a3238-71d4-4fb9-8de9-6d5e8107f02a
- Area
- Area
- false
- 0
- 
                              540
                              3880
                              42
                              20
                            
- 
                              561
                              3890
                            
- Area centroid of geometry
- 51a42e21-ee34-499b-9dd4-f81a4b690590
- Centroid
- Centroid
- false
- 0
- 
                              540
                              3900
                              42
                              20
                            
- 
                              561
                              3910
                            
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 526de354-79e7-4025-9017-d96eec6fcc44
- Multiplication
- Multiplication
- 
                          777
                          3780
                          70
                          44
                        
- 
                          802
                          3802
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- ef3e20b7-31e9-4b59-8b5b-7d48b7a00581
- A
- A
- true
- 77e75b08-4e4d-4be7-8856-42f71b66f28c
- 1
- 
                                  779
                                  3782
                                  11
                                  20
                                
- 
                                  784.5
                                  3792
                                
- Second item for multiplication
- 5603b472-3d82-4ad9-acb6-fece068c3098
- B
- B
- true
- b567df3e-11d3-4b09-9333-ce91f4c3ae0e
- 1
- 
                                  779
                                  3802
                                  11
                                  20
                                
- 
                                  784.5
                                  3812
                                
- Result of multiplication
- 7d8353fa-9341-4524-9a9a-18e418cd2bfe
- Result
- Result
- false
- 0
- 
                                  814
                                  3782
                                  31
                                  40
                                
- 
                                  829.5
                                  3802
                                
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- .5*L*(1/SIN(π/N))
- true
- b941c138-f5e5-41ec-98ba-14636530b46f
- Expression
- Expression
- 
                          717
                          3622
                          207
                          44
                        
- 
                          811
                          3644
                        
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 23a00873-cd15-4b34-a2b3-f668298f3f20
- Variable L
- L
- true
- c923a52e-eef5-4213-b91c-a99d00b79828
- 1
- 
                                  719
                                  3624
                                  11
                                  20
                                
- 
                                  724.5
                                  3634
                                
- Expression variable
- 16aedcd7-2496-4d7f-b685-3ba86767c62a
- Variable N
- N
- true
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
- 
                                  719
                                  3644
                                  11
                                  20
                                
- 
                                  724.5
                                  3654
                                
- Result of expression
- d4f062e1-e870-4204-80e2-9d78907879ab
- Result
- Result
- false
- 0
- 
                                  891
                                  3624
                                  31
                                  40
                                
- 
                                  906.5
                                  3644
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 5b56d761-0e39-48f1-8db0-ceb1b6b1aeda
- Panel
- false
- 0
- d4f062e1-e870-4204-80e2-9d78907879ab
- 1
- Double click to edit panel content…
- 
                          1004
                          3625
                          160
                          100
                        
- 0
- 0
- 0
- 
                          1004.444
                          3625.77
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- R/(.5*(1/SIN(π/N)))
- true
- a4424e3c-d856-4aa7-8832-ff6f7d317feb
- Expression
- Expression
- 
                          396
                          3263
                          224
                          44
                        
- 
                          498
                          3285
                        
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 553f3aa9-172c-4f13-bac7-0b9e210f60e2
- Variable R
- R
- true
- 63179a12-0556-4bc1-9bf4-ef312b611dad
- 1
- 
                                  398
                                  3265
                                  11
                                  20
                                
- 
                                  403.5
                                  3275
                                
- Expression variable
- 7e057535-e619-4c03-b33d-f4bf1bce78b1
- Variable N
- N
- true
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
- 
                                  398
                                  3285
                                  11
                                  20
                                
- 
                                  403.5
                                  3295
                                
- Result of expression
- 9ea38a50-4760-46d2-8f7b-283ff9e5b2d3
- Result
- Result
- false
- 0
- 
                                  587
                                  3265
                                  31
                                  40
                                
- 
                                  602.5
                                  3285
                                
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 0359459d-9d9a-47a0-a6e5-8671853cc66b
- Division
- Division
- 
                          167
                          3560
                          90
                          44
                        
- 
                          212
                          3582
                        
- Item to divide (dividend)
- d54c5aed-abbf-4257-a6d5-64ab24a130c9
- A
- A
- false
- 0
- 
                              169
                              3562
                              31
                              20
                            
- 
                              184.5
                              3572
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 360
- Item to divide with (divisor)
- 15406d66-d0dd-43ec-ac83-8190d55c283f
- B
- B
- false
- 7e1bc525-0327-427c-afd4-d8b6c2743acb
- 1
- 
                              169
                              3582
                              31
                              20
                            
- 
                              184.5
                              3592
                            
- The result of the Division
- 6f7bf996-752f-4e29-aa85-34d7d23fb47b
- Result
- Result
- false
- 0
- 
                              224
                              3562
                              31
                              40
                            
- 
                              239.5
                              3582
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- d8700d74-83cb-4bb5-a874-5836156b8585
- Panel
- false
- 0
- b567df3e-11d3-4b09-9333-ce91f4c3ae0e
- 1
- Double click to edit panel content…
- 
                          662
                          3218
                          160
                          20
                        
- 0
- 0
- 0
- 
                          662.4798
                          3218.279
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 448f2eea-d58f-4b03-a15c-131db29d4d6f
- Reverse List
- Reverse List
- 
                          633
                          3458
                          66
                          28
                        
- 
                          666
                          3472
                        
- 1
- Base list
- d2a92c6b-d29e-4752-8ae9-4c89e9f387c2
- List
- List
- false
- e552844e-beed-45c9-8a78-a5fe409f581c
- 1
- 
                              635
                              3460
                              19
                              24
                            
- 
                              644.5
                              3472
                            
- 1
- Reversed list
- f8f66c7a-48a1-42fb-8fb5-b9e101750e10
- List
- List
- false
- 0
- 
                              678
                              3460
                              19
                              24
                            
- 
                              687.5
                              3472
                            
- a3371040-e552-4bc8-b0ff-10a840258e88
- Negative
- Compute the negative of a value.
- true
- 3374828d-ef30-480b-8c7e-4d3363908193
- Negative
- Negative
- 
                          679
                          3406
                          88
                          28
                        
- 
                          722
                          3420
                        
- Input value
- 8842f592-ebd1-425b-9235-1eed26cbab14
- Value
- Value
- false
- 68234acb-2189-4140-ae0c-7c1dcad9f4b8
- 1
- 
                              681
                              3408
                              29
                              24
                            
- 
                              695.5
                              3420
                            
- Output value
- a06377cb-f650-4240-8f06-3e0aa8cea794
- Result
- Result
- false
- 0
- 
                              734
                              3408
                              31
                              24
                            
- 
                              749.5
                              3420
                            
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 11841893-58e5-4d69-81f8-6ef5876ad579
- Merge
- Merge
- 
                          798
                          3368
                          122
                          84
                        
- 
                          859
                          3410
                        
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- ff8d9a28-a359-43d7-9813-26784092c0d5
- 1
- false
- Data 1
- D1
- true
- 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3
- 1
- 
                                  800
                                  3370
                                  47
                                  20
                                
- 
                                  831.5
                                  3380
                                
- 2
- Data stream 2
- f5037f9c-4fd3-4870-b046-58bf9cbf663b
- 1
- false
- Data 2
- D2
- true
- 0
- 
                                  800
                                  3390
                                  47
                                  20
                                
- 
                                  831.5
                                  3400
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 2
- Data stream 3
- 34ffa90f-4d0d-41d7-9e2a-9e6914e1d97e
- 1
- false
- Data 3
- D3
- true
- a06377cb-f650-4240-8f06-3e0aa8cea794
- 1
- 
                                  800
                                  3410
                                  47
                                  20
                                
- 
                                  831.5
                                  3420
                                
- 2
- Data stream 4
- 7be9445a-1cc8-42fd-9a91-44e035932117
- false
- Data 4
- D4
- true
- 0
- 
                                  800
                                  3430
                                  47
                                  20
                                
- 
                                  831.5
                                  3440
                                
- 2
- Result of merge
- 7abea44d-07c7-4298-8d09-060192324a84
- 1
- Result
- Result
- false
- 0
- 
                                  871
                                  3370
                                  47
                                  80
                                
- 
                                  886.5
                                  3410
                                
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- fefb94c4-e829-4cb6-954e-9fa966bb6e09
- Reverse List
- Reverse List
- 
                          657
                          3265
                          66
                          28
                        
- 
                          690
                          3279
                        
- 1
- Base list
- 3083f7cb-d6f6-4012-9c1d-6b21de28228f
- List
- List
- false
- 64514e59-9473-4a0c-b0b8-55f5423b430c
- 1
- 
                              659
                              3267
                              19
                              24
                            
- 
                              668.5
                              3279
                            
- 1
- Reversed list
- 293dcebf-c8ef-4af0-bea0-78ac8cc2435f
- List
- List
- false
- 0
- 
                              702
                              3267
                              19
                              24
                            
- 
                              711.5
                              3279
                            
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- ec279539-9319-45ff-a5ca-90e3b3f745f6
- Merge
- Merge
- 
                          877
                          3251
                          122
                          84
                        
- 
                          938
                          3293
                        
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 50bb2f13-a19d-42f5-a248-813f6021a844
- 1
- false
- Data 1
- D1
- true
- 293dcebf-c8ef-4af0-bea0-78ac8cc2435f
- 1
- 
                                  879
                                  3253
                                  47
                                  20
                                
- 
                                  910.5
                                  3263
                                
- 2
- Data stream 2
- f6e7d53a-62d8-430d-aa79-f90e2662521e
- 1
- false
- Data 2
- D2
- true
- 0
- 
                                  879
                                  3273
                                  47
                                  20
                                
- 
                                  910.5
                                  3283
                                
- 2
- Data stream 3
- c45addba-d44c-468f-916c-7c0e75d7548d
- 1
- false
- Data 3
- D3
- true
- 64514e59-9473-4a0c-b0b8-55f5423b430c
- 1
- 
                                  879
                                  3293
                                  47
                                  20
                                
- 
                                  910.5
                                  3303
                                
- 2
- Data stream 4
- 121717d7-f0b5-4ab5-8c2a-e6daf79e2ce3
- false
- Data 4
- D4
- true
- 0
- 
                                  879
                                  3313
                                  47
                                  20
                                
- 
                                  910.5
                                  3323
                                
- 2
- Result of merge
- c3ae31b2-8e2f-4176-a84e-b43814396e6c
- 1
- Result
- Result
- false
- 0
- 
                                  950
                                  3253
                                  47
                                  80
                                
- 
                                  965.5
                                  3293
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 032109e0-083d-4876-a194-d48d70db4a82
- Panel
- false
- 0
- 7abea44d-07c7-4298-8d09-060192324a84
- 1
- Double click to edit panel content…
- 
                          1272
                          3232
                          160
                          479
                        
- 0
- 0
- 0
- 
                          1272.424
                          3232.003
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- fcba47ce-cf17-4a9f-b444-fdfd3b58f104
- List Item
- List Item
- 
                          898
                          3779
                          77
                          64
                        
- 
                          955
                          3811
                        
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 904b0e7d-06c2-4fb7-ace6-0d5e3e73309a
- List
- List
- false
- 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7
- 1
- 
                                  900
                                  3781
                                  43
                                  20
                                
- 
                                  921.5
                                  3791
                                
- Item index
- 4b4c9ab4-7ff7-493c-804f-f2ee6521d579
- Index
- Index
- false
- 0
- 
                                  900
                                  3801
                                  43
                                  20
                                
- 
                                  921.5
                                  3811
                                
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 401ceedd-2460-47a7-adfe-3fe8bfdcab75
- Wrap
- Wrap
- false
- 0
- 
                                  900
                                  3821
                                  43
                                  20
                                
- 
                                  921.5
                                  3831
                                
- 1
- 1
- {0}
- true
- Item at {i'}
- 76288414-d3b9-4565-bf15-03a6b907c596
- false
- Item
- i
- false
- 0
- 
                                  967
                                  3781
                                  6
                                  60
                                
- 
                                  970
                                  3811
                                
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- f6189714-2503-4c33-b10d-828b9753dd63
- Deconstruct
- Deconstruct
- 
                          1011
                          3785
                          120
                          64
                        
- 
                          1052
                          3817
                        
- Input point
- 1734f987-ef44-4c85-93f8-de26f37b00dd
- Point
- Point
- false
- 76288414-d3b9-4565-bf15-03a6b907c596
- 1
- 
                              1013
                              3787
                              27
                              60
                            
- 
                              1026.5
                              3817
                            
- Point {x} component
- 7876afcf-7775-45c8-8a25-88d8b7e1f9c2
- X component
- X component
- false
- 0
- 
                              1064
                              3787
                              65
                              20
                            
- 
                              1096.5
                              3797
                            
- Point {y} component
- 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8
- Y component
- Y component
- false
- 0
- 
                              1064
                              3807
                              65
                              20
                            
- 
                              1096.5
                              3817
                            
- Point {z} component
- fce43a6b-020c-45af-be79-091fc7373c5b
- Z component
- Z component
- false
- 0
- 
                              1064
                              3827
                              65
                              20
                            
- 
                              1096.5
                              3837
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 04e8baad-2bd4-4512-8434-d1b3544659d7
- Panel
- false
- 0
- ba156c5f-31a5-4478-a04c-85f4b5333b7c
- 1
- Double click to edit panel content…
- 
                          38
                          3207
                          116
                          20
                        
- 0
- 0
- 0
- 
                          38.51038
                          3207.453
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f650f2dc-1a4e-481b-af1a-49af3711d7cf
- Panel
- false
- 0
- dd0736c2-159a-42d1-af5f-93e121faa9f7
- 1
- Double click to edit panel content…
- 
                          39
                          3289
                          118
                          20
                        
- 0
- 0
- 0
- 
                          39.33979
                          3289.087
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 32a6c3f8-891b-465c-a59b-971de8e4b598
- Division
- Division
- 
                          1263
                          3785
                          70
                          44
                        
- 
                          1288
                          3807
                        
- Item to divide (dividend)
- 5b959b6e-3da7-428d-97ea-89b9c83a5673
- A
- A
- false
- 7876afcf-7775-45c8-8a25-88d8b7e1f9c2
- 1
- 
                              1265
                              3787
                              11
                              20
                            
- 
                              1270.5
                              3797
                            
- Item to divide with (divisor)
- 3b155943-e856-4f6a-861e-2a442c5af7de
- B
- B
- false
- 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8
- 1
- 
                              1265
                              3807
                              11
                              20
                            
- 
                              1270.5
                              3817
                            
- The result of the Division
- b887e715-85b8-4d63-bcef-54f50d862634
- Result
- Result
- false
- 0
- 
                              1300
                              3787
                              31
                              40
                            
- 
                              1315.5
                              3807
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 4cbbc23a-5f94-4439-9417-57501beec295
- Panel
- false
- 0
- 35a11262-770e-4498-9d6e-28b546897ca0
- 1
- Double click to edit panel content…
- 
                          38
                          3249
                          116
                          20
                        
- 0
- 0
- 0
- 
                          38.30339
                          3249.228
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
- 
                      255;255;255;255
                    
- A group of Grasshopper objects
- 04e8baad-2bd4-4512-8434-d1b3544659d7
- f650f2dc-1a4e-481b-af1a-49af3711d7cf
- 4cbbc23a-5f94-4439-9417-57501beec295
- 3
- eccb3198-eb6b-4c8a-a3d9-fbc052dd7486
- Group
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- dd203f61-0028-42eb-bd28-7f6f48340bc8
- Division
- Division
- 
                          280
                          3506
                          49
                          44
                        
- 
                          309
                          3528
                        
- Item to divide (dividend)
- 64037327-91f1-4a5c-a020-c21cdc1c56aa
- A
- false
- 7e1bc525-0327-427c-afd4-d8b6c2743acb
- 1
- 
                              282
                              3508
                              15
                              20
                            
- 
                              289.5
                              3518
                            
- Item to divide with (divisor)
- 1b254420-5fe8-4023-9282-f9415e798a17
- B
- false
- 0
- 
                              282
                              3528
                              15
                              20
                            
- 
                              289.5
                              3538
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 6c7782b5-3c6b-4ea4-b368-9f8596fbb31c
- Result
- false
- 0
- 
                              321
                              3508
                              6
                              40
                            
- 
                              324
                              3528
                            
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 4c63dec2-1390-4291-b6d5-8371589a05f4
- Interpolate
- Interpolate
- 
                          895
                          3102
                          225
                          84
                        
- 
                          1068
                          3144
                        
- 1
- Interpolation points
- 204c7f61-dafe-4ead-8116-4d615c72795d
- Vertices
- Vertices
- false
- 9868f335-6dc4-451f-8094-d3711f42121a
- 1
- 
                              897
                              3104
                              159
                              20
                            
- 
                              976.5
                              3114
                            
- Curve degree
- a70ef5d1-c3cb-46d6-9d33-77e1a52d1292
- Degree
- Degree
- false
- 0
- 
                              897
                              3124
                              159
                              20
                            
- 
                              976.5
                              3134
                            
- 1
- 1
- {0}
- 3
- Periodic curve
- 4d30c792-d92a-4102-8b00-2557c4b3ae9a
- Periodic
- Periodic
- false
- 0
- 
                              897
                              3144
                              159
                              20
                            
- 
                              976.5
                              3154
                            
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 31ad9203-8d68-486d-b831-33a8a2d37811
- KnotStyle
- KnotStyle
- false
- 0
- 
                              897
                              3164
                              159
                              20
                            
- 
                              976.5
                              3174
                            
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 650d961c-ef6f-4573-ade0-97f698f6a536
- Curve
- Curve
- false
- 0
- 
                              1080
                              3104
                              38
                              26
                            
- 
                              1099
                              3117.333
                            
- Curve length
- ccb103da-accf-4a47-99e7-b07e82093feb
- Length
- Length
- false
- 0
- 
                              1080
                              3130
                              38
                              27
                            
- 
                              1099
                              3144
                            
- Curve domain
- a1b7ba6e-684d-4c4f-b4dd-917607d871fa
- Domain
- Domain
- false
- 0
- 
                              1080
                              3157
                              38
                              27
                            
- 
                              1099
                              3170.667
                            
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
- 
                      7H0HXBNZ13dQpEpRUVAUgxXp2FFZCSEUCUVBxU4gAaIhiUlQsC0q9oaKitiwd8GOvWFby9p7X1exrdjLqnz3TmZCZjIzJA8B8nzv4/50YU7mZuZ/zj3l3nPPMQuUJKSmCMSKUvDHiMFg1AJ/raWi1CSheMgIgUwulIghKQpchmT4xxR+BLsvRMDjC2TwI7VQsgVGCg2El83Bpb7B959FD1oROeWuInKzLHWVaZRMMEIoGAnpFoBuEp0MRuHboJfDBfLkmHSpAJJrol9shdIiJLIUnghSWoCrK1euLMXuihaIBAkKAR+jCYXCUrtAQaJQLFSAt4iSSaQCmUIokGPDwr/GgTwF8j1m4Jedj1Omz51y18wyUCBPkAmlCvTl4SMyjCN4KQLstzc1Y0OCPT2f7F78cvk08O+TRfng38eLtj9etAv5Afl111r479zZyL9Zj+cuUH3yUk4E/Hl+JhxhIbzlydI1qp8fZ89/nL1A9bHHizaqRlN+TDnIy0U74fXF43Ffjd2LPhJK3Yh/vGVl3zs9F/nwTLqfczepBkT/Ra/Q3oX8jL4R8o1qD7BR9Wzoc2KPXfYZhKp8R/RLkXdHUUVGQPHB7tVEUokwirbyizBGoHxBR8OxD4UX4aynZ3BIrHkvIGFwKsixaQL/WGFX2ZJU5QSqiU0BIGxDgTCi8lMDvWwSw5MlCZBPOsGp9rW0dEAdIFn9JZIUbAZNaBzXvVYfIM64rzKHVzS+xrxXgpTLS5ekKtQ/axEsk6RKNT5cOziExRXGy3gydAoYoTOrFu6j8Iqp8nPpyDOjt9uy5HJBSrwoPShVJFKfCqyo1MREgSxRKE92Z/ZRagy/dp7e8D93JjtVpEiVCfzEglSFjCdyZ0alxouECWGC9BjJMIHYTwxGs8GG7lOmb+DIpugoJqxURbJEhl22ChcmJPMEImaULF0iqxHKx7TMyuJljYf49OHmm8wR/iq2GIWbsRZlj2lK8T11ypRFZDxknwqmPoCDlsprOLDgdRPldYhRDRQ/4+DeZbrPZ02vkwPyNwZtWGNz7vi4TwtxT1UL4ZU5WyJW8IRipR51QUcxCZDIUNWKMcaELRFJUmWYhoP/J9NVTixmEhyXKUlkBst4cnmyRAp0H1OifKsaoYGI9IC/83u9HNPvY1LEdK9Xnt9fpC4EJCOUVBp35/rD+y3CsntuH5Jz/g8LQKqBkmSjf7kXe1sG5v+R/9qxIKw+INVESU+cu/COes7gbl612eeNwMYFkIxR0vbTrBHfHR1Cjjx7NKezrfMDQKqFkj5cf1K4ql4xN+/Z80GZsZtfAJIJSlpxsJ3d9Z+1gw8Z1Sgc55TzHZBMUZI0n7t8s00XTkaD2azQluNGApIZSprw+SDD+rBxZMHBzkaX9wavASRzlDT1xMneR/6y4m7JfDK384uvboBkgZLEezxennqxjbPp0eY4X5d93wDJEiXVPDDsei3fX/55b+Y92uHV7zog1UZJ08e1/PHmRnzQAquoNx+jHPsDkhVKSvvUwNlNmhO2etwM0yVfp/UFJGuU9ONJiy4X3nTosdc32mP4yriPgGSDkn7uZy3rv2B1YK556eXVtzPNAMkWJTVtuuzcrPaPQ+YuP1O0I/j7fECqg5IWh73iHt3cmTtvj1vj5f17ugNSXZT0ZnXtxgUPbCN3xPXk33dsVgRI9VCSs/kxN++wd6zCmB9H59Zq0BmQ7FBSo4HSZXU7vQ1dYLzPcrh16CJAqo+SHrz8uH5WZoOQbceGPbXdsmQjIDVAScWtOaf+zerOPrCE5ZUw9vNjQLJHSb/PyjE78/Zn0FT3q/l/rB2fDEgOKCmxfvQ3o8ljgqYY7ZWJncOmAlJDlBSZUzghrWYEa9WQpLqvzDL/BaRGKOl0arv278dlhB98sPb2dbP08YDkiJIudpw/ct7xSz0K6q4/wDw13hWQGqOknEnX9n5flsLa+s7Zmi/OhRLVBJsORcLJde1zOFnvOW2Pc/1eAZITSup2pem1+cuPsNaO2TIhZdjoTYDUFHuvBxv6rZ/UIXJ84vN7DEZ2PCAxUdJyYUr2rtWenLW1cm8d/NVnj1lo4BCcBnGGmjlULFfwxAmC4FShSplNlP1Z6/aRGiFH9oTPenSUZ0yiNswihAnD1C8zLFgKhUwYn6pQanhUdWMqykhvKuq3KlRR7WIKF/0Ivcne0P1FJ9beKwo1FSXd1STfxDSFk3/TvcO0CS8HqqmozfkXt0148zBsR7xt3Bur7rZqKmp874hPZ9alBW2UTAuZGpB+XE1FPX29b8W74NCAaW5t5jBCmE/VVNTO/GO/Qnb3485ymlFybtFRGzUV1Tum8WmnvqWsxSfa55nH/PyopqJiujVMmdziVeSMCKOPE63CvqupqLHBCsnQtT7BB2pczXxY+8gHNRW1xC3CKejfwRHb5UuWrHcdv11NRX3PSQvcFMoI3tFght/zib3fq6mo+VM57S85jg5a1WU151nRzuZqKqrk9zp1/pwcHrIkpOmuGI82n9VUlEV4x8+XlzULye9xq/vgFtcuqKmoS1HvCzyeh3M2Nl/lZOUj91RTUdPdVqc7RnGDs9JzHXdc6bVfTUXtXVxk6mgq467re8PJ9HpRPzUV1WbXnTPvPr0Km7nynVd0X/tsNRVVw2/HvFH7xkUu/NLVr+3U0mtqKur466j3jWxcwxa7L1tmsT5oq5qK+pTfJ8gi3z9sX3OvOkm9um9VU1F3hzCF+6/3ClnqfLXXjSEHVqipqOlDWV9nnl8Ruj39Q728p+FpaiqK8VdSp6jdJQFZLd69HTSz2001FcWI7vf86LXVPXZcbbiv1ow7ddVUVK+Ofjn1ot1YuwZO6+Ey502mmoqa0nCkY+7O82EzRvPsi14PZaqpqD6pQ9jtitLDdpr6Fdh9lDVXU1Hciw6nlhXWCVp+9PfE+jvblqqpqI8+8zm+70pCdrLz9l8b1CJFTUXV+mdaKqvf9JCpPVkDLkhC/NVU1JYPkes6fW0RuNti+/tj4+fL1FRU889/vPZ3Pha81GQLc1KscT1AckZJvq4HuV7sTkHbT4d2ZA3bMQeQmqGkYUE+vU12rggYbzVp5rj7Z6EL0Bx7+JjMgZuXGgctjv+8zv7AqO6A1AIlHXJ+uzBuigNr8unsW37bDh0BpJYoKcMla1Nzp7kBB9rsj1nU/7EDILVCSeO4u/ufTtkQtDel05LZfZvaA1JrlORxl7mY/9WPM6PTMvsufeXwu1ywJ+x7xXrJiDY9ctfbtnpR1H06ILVBSQvqlEZ05I8JX/aq2Ye78vCegOSKklZ7FMy/5TnNfxYzZnJU0Zw7gOSGkpxW+/1xLiU5aNfqbbeXMTqwAckdJW006tniDDeaPflK7hDTbpZnAckDJZ2aZ2vy27uH4evWLHsUceHQIUDyxKbe5FWnalu97bGup6dtbI9mjoDkhZL+bdhhzeC2sf6HVn75i3vWXQJI3ijpy9en6y80LgmZ/Jv4clazK6MByQcl/eF+osG5mrPDj0z75PzKrO4SQGqLktZO6uS+fMDtgB1OCts/nK5BA9sOJT0btXfC/QvyHlu49qFn+KMCAKk9SlraRfqo4530oF0is71znu3wAqQOmGa71qrZ4BMDg2fX2XEu7PO8IEDqiJLkNVLtI5rY9pi3/eP2oR/2dtMwep0YFEZv0vrnsaxWZ0PGvzg908JmrLUejB40CKRG7/C6mb9t+JnfY/fRbjFnDsjr4r7LJCI1JV4gw1s9U3QoMnvmhX5SzuQxEyQikTL4g9YtUSThKYTiJKZUIhQrmGJkYDnp6xNNHdkjabw/dj0SeR7l0ggSCppEAzucIGCgXFn/eHHDsbc7R+z7c1xyuNulSZZKskbwR4BTFbsGgA/ykUtwojMyXDmMqHYnGYyQAAbjKKtWlHCEBBkHqhyGrTtn9PS2J62jYKQlVwjEikCegkcfdZoEyAAgyQw1hml+yDiKp0jGXr3maO+xxqEKQQqDUbY6ZaJEGH4Gi10ZjCx/VBxqUonDIcG6TeKf57iz3E/u9JbVHYTD3pydKhvBg4EsXiKgc2BCIRFdOSN4olSeQsBUJAuYCdgAUCR4yK8CJk8BfpRLBQnCRKGAz5TyZOA7FQKZp0mIkM8XiFV4kUoL0fuheGINgSkjaclqpgsHAAhY/R2wOiOAwGqmO6D+dtISefohQrE0FYmFTVGQyaCpw0ZeXyFhClCMSF9wzNsXrq+zV4XOHGDZtveqj+Px2gAZQ+Pl0MvlTQaiD1jByeAPEJL6o5OhhDgZLrXhMDK64xAyKgehllGYLDCBFlFKC1+SAgSvXNTmpTXP9wvrFrb1+o399jlNZHixUI2rKRZlpPLQ+9V3rqi4dm7QlJoZnt36TNmlB/SABNGgl+d3srYSPUmqAhUwExr46kchulYFHZhooxVjSeFyHDD/3kKfKP/dNo8bBV3vF40XMmQcTSFTXtaAiQwHhvY4PHJHpagbwCGPiEOsJ4dxqTseB6NycLBXTXXmCKD8JDI6JPhPzEy47BnclaG/dV7z7tIr3fVJpSDi3Z0OESA3OERqaI9IglCWIKKVjXN9b5aGrDsWvokn+qfI7om/gSBS4keHSJTfSdTWwaiW1NZ5Po93/iH7Gpbd79otrw2b7HDvVTtQOELIFzARRapp7kwpgG2D3obZNjBBgKIansoTMUUCcZIimSkXJMFdIblWxo0Yv1M/ogb6OKqWsHoDFeTdFcD6mczEZbkBqq9OJs5GZeL4yNOQvmT3ZalTbj+rHZI55fCm2aFFvwzXwEUBfGwhPkwyscsCKlrahdTAUfnLdZVeK/SGMLkghehSWp24Vg0VEcssnl3oMmrKegJE8HVIIEIulwcRMcbSA0SXfOkgAiJUzQ4xvIkJOaLGKUxjUnHKPloqEipUXIL6cphQPIwigvmjnfHy0U1DD8z6/rzB8On98OwKg/dpskt5Wd+aEvIjqzMdP0o6VQs/TOMlEpGAp1KADA3XBlMsJqyEBIFcrj48qa6BCg9uaClDTHLOLLvHM9lw8wFrVbtaf3P4PQ7jY0vEodFkDXZd77xxR9XJQDLemHki6kTD09ERlmYxPHESYCzq+iCSy9cCqd2NBRuWh81gTQy/OXXB/h6PcUiZoYNqYlVGqQy0EM1CiRbQLBpekI5oNS+LOGB0IdAaLmIwQNh1xUbVBEydVhmQIZOfEjIw+VE3qRaDwk1aMXrh9X+Kh7E3bG3z8+Kfba+TmGe8f2ROg29rygUiIDQCmTBB6Tdp5x0RrbtpOE8qFYqTMKTg6+jRmXjSzrie+f0D4bNXZA91iQzpWEFLCSM6pjlgznSSpaP+ue6cDv3NMOaYUDEn3mVy81zjw/67Y1s4bDp3uwHudW0CBQkSgJssNUHBZMkSNN3YWhRs6tpLAF5BMEK5ahPPkwuYUhFPLHBnynh8YSrgnpgP/iaJVPE4XM8RM3myBO1WbYhbTLTPrcEw4ge0jRqALTzKAYifJ3NvGcC9PcrWyb1tDL6bCcJJtjKGgm5u2YORvveDPRkvHd/1D9o3tG0WJ7LoHu69a5K9K3KxPNEkhmgVFE0GXGyAQOWxGAwpEai8NghQOi1FOAaoZAgRFSVuytiTFKjVfxptuOudFrS/aff6reVLmuD1KTJaFBxNU5+q0fStT4+6objEkulTqQeHweDouDTRSzmftMIkcPfB44dn3A+cnn2j7biRll/wzotyJE3nBb1eGVjEBdJhQZSR8hYlmCx1heIC/kJlwxPL26DwkIJiVniqnvHHfPa2t8sUL0s+P8IrfGRITYWvvFwZkDDZdJBkBGAaHYsKNTS617yx6U26/Aqa27vDDMaSfovwgh8J5k/kCOCdxGoq85oUuNZjS1IA/GDiwckHb07TTkkTN/upHkVzDpbRtPVUgE7JGgqgKwDQPSJCxwB+TIFQJ9VsGQo/pXTiSF9uyfM6v05u6x25yf5025vRPMKKZx94n6bcKC+Xp42JO9AV1MZSuK4AsSlmkewxxboi2OikjWtHIh+jQecVf1jD2v3rR+72H3Gn3dVHuQRVI5CnijRXHLDrep9X7igAX8kAKPRAAEDnlRnVvBp+ROgmjNjE3ns4UvT86YC3uDey7JkK3gWm4EiTyZ1ZLeOHFoFCObBy6XBHS6CAeivdAwskoM+bBL+BFHFi+gzl82nAjiNqYG8eLZEpItXzk0gklpj+oqXEqkYjMCyuNVB1IwDDGrDhX4JrO7Q1J2XsiJNWWKZ6qJgvSMOGg/9HWWlOxcpXfSK4xl7f2AtWnw9aGRnaHweVMRewTlM5GlMwzJktE8DdSR5TBD7OjBcoRgoEYqZipASN9rRTlcQMJ81H0mAbclUHzzUrEfVcvTU8VzADvAU6qUdb+OVM8B4yhfI9Sd+qTcOlT4xeruTMGjhh8y+rnQ54mYxG7ibfG8IRy9OXxM0nPXivUghWFJkZzgP68pJAp21IawQsAQh5qKF6uvu39rs8ngZsvNyH16vAdyZ+k4QD7iUHSo1UHkxEl1gPMAGpoYEpi6+jWVEKlXKJlBSl5JT0kF73d7O3HnGvMWn4lObaThP9mxQPVEYKWHBplOiqeSLQoHrIgkoPnV3C4/70tQ+esM7J9GXz0fjFRDMEjOhArvZRdwBeF6FAgpgyEfzKZ8anq09Yd6YCXdiDsbhyc8lzrFbKiphzSf7cmkt7GEVLjPOA0jJbBTC+RxZu+wMOmK2sBKUV0+DC1pjuQziTkizHeN20CMI7dohe0nTslJerWFEdBQB9XXkShtgkM5AJookNK3XaTnJAAMLkwoUvlCnX19qQAvV7sj1vA/c9Z8bikHq72kRZ4lVWIHazpsoqI5UHWNyRQx8cDwwMynyyoZ91Sad1egAslhYwIFHVsrmkXFyHn2nHoPpT0p244YQ5q6QBDMJL5bwmT42/wjt9NL2Qs9805NtU5922dUPFCoEMMIOTJpUBV1VtrBoesXgHnosMq+nAo9fLYysx01cPbC3Mo2Nrcl517xmWJdGVdNezUYzdP/75+xbFETPvf+3UcGGfhdVmFBmeqD4qIFv2K/BEphdqFC0ZFEaxT9Maw7K32wbsWyl623WsWQh+ZVeVDaiUNO0TK/YZqW7F5Q0mCGRwAGYiT5nYI5KIk5hChRyziOgXoXQ5M4EnBk4+U54qlYpgtmG8BBCFWIZUqhjeCg2qGDlgKxwFPoJc9GSyk6FeRRbEB0QMKktThMu+CkkSXLpSRQ/gMzCCSJHwBVoGEMTDDrSwaS6IEz6gJcNhnCbdBBhen01ioQtg2L2xMlIaHQ9+SE31suFOeLF9c/qB68v0uElDnEwVze8FCMVBhGaTqaZC4ELbbtIw0XR5BM1w8shMhCu+CGYoYOCjpJBZm0TN7rt3F2eucdAfR6ZPiKuYPq+gooCoHN1IhwqQGwNS2LokerQPTWTGyFIF7sgsxnNLKFfXCy7ent7McUwfT29y/8p0syBv45JWoZlbD9mtdGn/Fb98GqEaSHP5VI1WGaxj0rLu0gaDyAcx0snKNlGmugKTALlWlkxO4z/Nuz++Zpbj4R5bsi8e7sV7hd86rdqUV7g1gGiZEDKmMLwQLaPTvlIrfNaHTsB4+17rYNfalr38lnnRrRWX8Mv+pujAGtCoCJUBDqJsKMEBykanjabWSitVZsF1QYeftii7Zof93A0Fx+8Ht8mYrY/Ecj0gxKRFCMxp1G+rzaDw2zgsV7dSv2usDQ+cNl5Z/rYdfq0PiS2kEhGw6Jo+mxkFzh2w9QwxzIPF7uejBk+RLJOkJiWXrZTrst5KPABK+bSaK5NqRG394pYcRt5WgC8PuEkbiG7SJYBv1BYNN8kMU4/abRzYlT1WOZlGce8uN4zZlBY02zj1ROiemzPwqzd9YHEX8IWaqzcqSnkuFFExVtCFYgL0siB6Tdkk0ungymH4b9XJhaqtnL58QZJMQO5fXsizbmU2cj5nxunl2X//+uCKd5YCkRs1nSX0ur5nJ3z/ki1075+3pbqdJZVk6uAowUcWSvhYyhYpI7bM2+55qEshZ8/QvzL2x734Gy+r2ACasqqiVAYzomiZwageZmikw6qzomY5rPAME0sUwHzxEuAJSxdvPxCygsgixZ3p45eQLJHx3Zlt/eTDZQrkF3JvdaqTxdQxy/sHTj7n8zg5q/QU3q7BL4hWpJPkUqiRKoNZBZvpmBW32RBmDhxKt4NZyo1yyCxxqixeTjODsr7YZXb7raTHxCeO4hcTne5UJFSuIDuyvFFF7gDcjEtEdhz14fRuuVU3LxXV5DTeVuf8jt6Hh1wMn9PrbLi9965e1Rr2QgCObkEBuEUCAFQtOnmimClDUp5IARi53TK1Y0QrztrFdfp9tXxYQjBlyI0kpkx5vTIAKN5MA8CmUZsxR9OKQeFo/mcnzqkQ1MuJc2LNEL2eOCceZ9fHifMCihPn/Ru5c9Jf52M8sKbigc453WY0LNBrTjexRoselwaJqlQPjHi0jY4RY7ZhjLChYgQzqfmeqbOmBcw/sYW7+Nu+0fjX7SUQ8dLJGUEIK6g8g3os5kihTMCUwZHQskKkuBMzgEgeRAN3I2a5mBPzyCqaMw8wPzoMPc2UQVJugeE/DMPclgpz8+hFI9alDg3Mf/NV0Im5ER872qAxazj4RybkibTfoWhUFu1GSgXiYC4zBR1Du5CWWGeI9rE0dwAIH9A277I1CE7WQo0OXKxLGnkQHkDXrNEIbelc0SbKwldw9sMlFb4wMTFVLmAmJPPEYoGI9MVve3R4cuJejv/BDYMvjmoVdBa/3hSoHEFzvQkj6H01BUDyCEKygWw1xRbmxaytFq+zFlCuElVJsS9fvpTqEjUz8YyBa12pIp6MmSxMShaBv+Rq4dyQn39OPT4+fP2Pnwscp/w6gQ/gotFBNAM4FaUyuONPy52SNQbAndJSRqkuwXRTTopQLhcCXzABxyZMhZAyR7Jmy/IbW1aG7ao9/pVT5rODeOYoRyTJ3yijVAZz8tbQMSfKEJgD+aNLeN2JlQK/EuEJeBwQZ8sE4oR05QaQH1Mi5Q2H+0U+yG9lnyCfUT1z78qauDhy50z7/ad0e9dk/JH+GLXxNY/046iVwTwGLfMKVld3tF22qfcIt6lnXA4H/co4KE8WitPFwHUC7APsEkvgqTYf8JNIMhIhwl+9ISmFl6a8QL60FX5z6c3nXwJmbXX+slhWmkRIM0smS9tAL1cG5+JW03HOtto5B2/iM3RcJ6lbtk5CqwiXczk9g5xNAgt37Xl3dfiaWnhFSOkzlVH0zRFvT9SHgH7qGQ23ygtRhKifWodB4ac2NB4dffzAx8gjZvl/t+o42h33VtbsVLlCksJEq77j3VSIKdVpoNYsEZB0OZp5AMdANrOTBJIUgUKWzpQqB5TbhIoTRKl8Qai4l0CMnh6gdl6JlTDpnlWDDwS6NazyLZXIFEFCkUKgKnitLfYFcA97PcA+hyxXPgvula2n3K0hjaGCMWwUEgwerTx6sxq/559+0Sp4cr5oc9167ebhxRIbVVMsVZQqTnaBJ5KPQuT8yfRIlBuHIV2vUz5q/Rg1FwY5eiajKgLTxDe386MG70L3rQ0Y1LY5Ifr5j6YwASuijtDH6W1arC6tq1Kdi/WdMEVDLvgh6Ozcz7tfaiZAPT7sYoB3QGktxLYRraoZFhhgH4X/r63u9uDvYGAVJutSqTEDDbeJBXqrLNz2bk4Xbpc0rexwe/X6RvJHM+qGLJ618m+Ll4cWG0C4bducznmRNjOAmKGgoKAKwu3ipZwj9+KaBi34+3GhQOH20iDC7UvOdNzxdjYA7lRJuH3jyypb3tM37AlmK5b9PvZ+lEGE21lM2rWQpgbAHEZ1htvF05/brGY+Y2//fubliKFtpxtUuB3VlDbcdqruoM2Awu2cUN9TN5t1CNje2ybS++jgYdUcbts60VqsJtXNuUoNt2deaPm6ww1z9up3bWub2VgXGES4jfgQlOE2UISon1qP8f9BuE1sIVHN4XZeG7pw29+lasLtfnxLr26D/EInNrnbr2XD7Tv1Hm7ruZooUhC7DV0I+cilssLtvZd8J4ouPw3eKGon4br+M1jv4TZRR+gBKyBHNFjltf4/FW7bUakxAw23iZ1tqizcTt5NF26f2VnZ4bbF1PXXsvr1ZWdHzv/VbIzRSgMIt2N30zkvZrsNIGZ48OBBFYTbbXNc1nbu2TpyTlLbmmc7vN5vEOF24S467iTvMgDuVEm4fTOH67g9f0Vo9qu76U9inC0NItx2oGUO0CbVzxxGdYbbFqE7ml3ra8HKzmj2oODmrx4GFW6n7aRjnkv1MM8ww+27nVfb/jrQij3ee9aOFjZNNldzuH1rBx3npu6obs5Varht49bc2bdFbNiM6QfmdkuXbzSIcBvxISjDbaAIUT+1PuP/g3Cb2HuxmsPtuL104XbBnqoJtwPc2IuG9krvMXtJ3NUjDxu+0Xu4TUwF10MIGbWXLoRk7K2scPv5vPv1FIqYHjtvTv3XZs9v9/UebhN1hB6wAnJEg1Xcnv9T4XYDKjXG+jVC/loxLnRnUtNfUbK4GYS4VtVmiaS0KPwaqrKUTQJlPKDGeoGXkDAJo2h5RJrYFdaEK0kYJuCrbqJ9UpIIHP8BbU8MwSKDPrCSeABZhRlYuNJLQ13RNRBwVp6Ygvq97ImQqqogGkdKr2oFzi+vhnOHFwjZef1dItIZ7drTgmNQPYigAbD1oSrbiCTpeOukxppE81KkIuiFANTkQkU6Fp0FU9aqLfzt7V/FHWoHzq8r+9XwZfYftOiZBiqHJVnjQAn69k+QDDAvOoiA0BmAx4jIuA4l4ayjE3gipH4+dRnhlnaTE5udmxO2sce0kL5FLW3pBRsZkMSRRy6XJ9jE3tJ6EOwsTzqulXgYAteEDJVVsGdQWIXUbwfb7ciLCVv8M3bgtK7Lp+IdxkBhklDBjE6QwcNyOnTXbR6RmoKcp5OjtyJqUC5EyubTnW8kcopWKAiPp9WpL6oJa4aNAi9iNtwE+QLV0TVYkcQEOMeJwrSyr6gFuxaoikJbIsKXmqj2EbQWOwZZIvaNDCXntO252YLDOOoGZG4UW1Pm+vdowemw3w2LZByomM1ufd7Ld+JDbl7QyncK34b4VhVWvQQpPClTeVZUrn3f3NbK+1CuKvsI8phiwUh4CREC5aFhrawdsdU7zRNqsBtP1qGwXMEcqsJyUTBKma1TYTlrhNswRJHBxyFvlrhPlhLc/3zwxnGPVk/LOfFAjxX9iV3v9VBVLg/Cs4pM1ZnBczJzdLLhVsrnoTtIbtGsg/hMsDR4x+ewu3yWlxn+jLPyfs0zzuj18vCJOnD1pe35C9w1I1ZE9fx2uJ4e8GHQ4gPEpzpMgRlSpWeEEohuDOIf3SrNWcXwZEkCBR3TPg/quW1fL7uwfX05g2bP+YAvpmmivF+Taej1yigdFzebjiu2BsoVnZblbBCFJxXwUeVLypiwniU9zn26w80WhfXe5roQf/rHJBy5X5Mx6HV9M8bWE1UncD1Oo3N0lBeH4TJHt8IcjioMYC3UBJGwPDy+jzWyjDh7kjvr56ckTpcr7/ARAFs5gGYEgBEqA5GC2XSIdJ6N2fWGDAq7XjAv7OOArl1CJ3/8qTA7cQdfJh39Ru278HRTFXfHG3DmyGRhQjJTIE6QpEh5cjnsFMIUgRkE/XzU/GsX8DP+SuoUtbskIKvFu7eDZna7Sfa8mjKpvK5DSXfmLLSku0abHn/YpmdmRSuhNUZdDWjshcpVWligV/kkpC8uernHwrl3TOQKxciCSNcRh/DCR+XYqAhVbPxhtWtbiKF3AEk3G6YrgqFOGqsbFhcoy77gyhCLJCMFcmWPALgXDn8u8ymZoyPIW34T7Xm1Vp2B7U0QwBzIAIObEQAwdDI3oprMBlNogyhNeiq08R928KFcAAZiuGEGXaGN5BkY5o4GjzmxXr2eMLcy/r5sT0Qwa9HnFb/bj0z/q4KYl8DM4eVUmHsDzL2XY5g3psI8Ym/QxbOMInZG/4ZdhS971MGH9uFwv1EqEiYgVSY1jRcV0o7hwAcDLoEC3ClipuBG0co2TWk40jF35/mwGaN59kWvhzLpHktzBw1P11ZtwEodywCcM0l3ymB65dKTVqqqrJi3itlwC6SBHI6X8JtMkcuhfEwG+vHPzDY6Yh64/x/7cCu3epcwuhEF3VLZek1DRsyU16kHVj4P8rjwI3TBcpMgoQzoeSFwk5EVIjy/SPnjaZopGLdnQVDuvPp/txkxCN9g3oilOTtYGrPDiDA7mrw9dm9Rq3mhS4clD9s2fOOqipYRBezMgOz0ZpFEH2nwJNKyk2ogGZUDklM0bNXK1wmllCUuY+Y9fBG5ftbr6W+PiPHFqYwCNFEKKBelP9xPNDhXc3b4kWmfnF+Z1V2iB5SAWNOglLX0JCqDKlmi8y0clEkK0BnVAiCiRqzWtoGw+zUiMbBtoEaPpxAPBClUnzah0qe5hY/6TXn6NXR/4e7924c95hKqhPPEApFmw0AqNerCYkrhHWrpCUyxRCFQtpxQCNLQlozkbi73osOpZYV1gpYf/T2x/s62pSSPooEtgwxVZE22F+QivKheKJ8gnKztya0sHBpzJw5JWRd7nU+5wm/WWy6QxYDHx762ZaAkNV4kgJFjwjCkHQRfqEDfHcw6uDrwJGMdgY+q9WHiIm0rDqMkDvDRl83ImMK2COfJkoRiriARJxSWysu9YLKn+nVz5fUYiVT9KnGltxUn5U3cSRsExCiZRAprJSufyhR7KmWGKbyEbRxbwk3aUDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUm0QoQJKaofjfuK+NJyzSHUlSdqETVYNytjz7zOb7vSkJ2svP2XxvUIkVP7hZR/vXg4l6Kp3Nxo+Ix9dDU4DEn9pzVE+bEltN6wDwrmA5z22AMcyYV5j5rep0ckL8xaMMam3PHx33C90uqFSyTpErxmNfGMA+QqPdBNaKa1STOAouZBMeFZjBYxpPLkyVSoCNQhshrhAZigPVJHcJuV5QettPUr8Duo6w5IGGuIFF+AakGSiLOGECqySBvJgxIxiiptGvru++u27M2130+ucbTC3ZmoYFDcJyBGpW8eNGHyHWdvrYI3G2x/f2x8fNlJBBqmhICjxkYj5XscqZilwFZUF/Xg1wvdqeg7adDO7KG7ZijdwuqMX+Kut4btIi3LqBAOuxR73/+9KgeC3qpJYdROBWWKq00C3qnJWfijqn/HRa0GZWoGow2Hxbk09tk54qA8VaTZo67f7a+nrQ5Uf71oM39p9Npc8Z0TJs3N3jMuTGZAzcvNQ5aHP95nf2BUd0Nd2EuKo0O80sjMcxbUGH+PX7A6XYW68PXHqr5k5H8cz5ZVXXtdzacwgU8OUzDQ9ablQ2zgJ1E2/Rpt3dxyPntwrgpDqzJp7Nv+W07dESXOu/aZq3DtmSOALlCsr2LEjfgmTTSrR2tqtldihIA0jc7MXkBJ3bknsjp7f4OHpbPJzjDhpRZGAUTpCFAJSySdXZ/VwQg3Xpfllvfv4NRw3ez2NLAPZ/8kwuuzare+v6w4SECgBnZRgNsGQ0AQOdWS6q5ZaALsBkuWZuaO80NONBmf8yi/o8dqmABFkpM51yqBdhLYMJNXfy/BViUP9uGtdgwb8R4zoYBgQde7k3tpYcF2AV1SiM68seEL3vV7MNdeXjPCqqHOHhGLpdqabEQUG8truwF2BmODyN9f9vB2bxuQv2UgXIHPSzAEjM59IASEGsalDovrsQFWOKie7UuwGa5oxJDugA71QNBCtWnraj0qcH4h+O4u/ufTtkQtDel05LZfZvaa+MfkgSPle8eTt1O5x6GbMcgb23wkA/re8V6yYg2PXLX27Z6UdR9un4gT05JD+l1fzd76xH3GpOGT2mujzWtJNo1rSQMcheDh5xoNPQDOdHNqyDkUngYYBEV5NCNK1iEQd6GCvL6ifvyc0+e5Szd8mTUucZj8vBZQ5w0qUjCJ2l2WYsC4VboHVjco0zZlqfwkER9tP+7lplc83u9HNPvY1LEdK9Xnt9fpC4kfTTNhCaUoCWIj2Cfi0Mn4boMiXsGN8+8D/2H8ZBA+SCk7/aXXZB95K7LQXum9Pv8vRNniR7jIT0fGGW4gGAaAsQny3c9A6s3HdKpcWWHXgIgGkgdDL4ApvtJ5EJIZ4LnE4qYQFJUcsLkyWCDe0mKMIEUxT9N3tWwWRUWlDtt0sl6HZPwEmKu+h7Nbn1lJL2nabkgEkMD16ODBtFaUbOzNCbVWmYoeqATjV/GLkUyT8FM4Q0TMFOlyDpIPA/WBaJs67eh5pCWyzfLwxbbrk+aMWOLLaHyDDosSeUZjKL3jFkPVNgDybiX44kIu0YOsY7AOWM9aLEjhgIikKRgLXE/mJA5q1dY7nNZrNO2mfjdiv+o460ewPKmBQuIOmp/XBkU9qdP0xrDsrfbBuxbKXrbdawZPrffhgO3MWC+MNVqHFWhrn1GqlsxSwREE/wIwIDJoWgre55IIk4CsZccXZ3xxLe6lzMTeDCRlClPlYKIA3AoXgKI4H7lkKlieCvccxGretUrL3oy2cmwEzjC3wERg9TabAPLoJAkwcNq6hmqipESZgpcxNfONpbG3bn+8H6LsOye24fknP/DghY2zWPMhA/ocJ4p7SjVeSbocKQd0clW1imzlegDkb7s0LYcm6AbS0O2ch1H3txWVEePxpKogfRwZCcZIjSbbEoUAu3vcFQnY9kMJ4/ofh/EDAWMKgL2U/z4PGzslfDt1yP3x3bzi6nWFUWIypkjdKgAuTHQqkPlHV9qH5rIjJHB0lBwFuO5JZSr6wWkktQ4WEGKvPVwn3kzR00p7M3dt6Hzj9WfL13FscwiQjWQBtvUaZXBOhda1t06bKDuDN1yUpMopBsqMAlYnTxhIlTvNGv0qWcv+5gs/xA6/p54X/zRqYSNMWQ8TSWkvKz3WlAeqJYJIWMKwwvRMjqddGoVA40VQGSEQGkXdQCmYWnNS56uf3A2Zo9jZM94RYgg0YE1wzSMUBngIMqGEhygbHRqT9xaaaXKLLgu6PSYszP/hE1K6KwaD2amtbNdgA9RVMv+miFKGakyEHKhRQjMadRvc2NQ+G1nl/C4P33tgyesczJ92Xz0Ybw3ygU+GjM6kKv9wkGA6mAYzG/APGEQISaCX4Hflc4E2MoUyjbGQNmi8gp9L9R1G6uV4yQb/cu92NsyMP+P/NeOBWH1yZ9b04vGKDocEfP+jB4R03CV/KHn/Em3ZQXkAdQwIK92s6Obb5d6gSGb5v/Tm3do8kVCnQt4N0mdC+RyeZ4SUf/p4fwXEwIkJRNCJuwc9Emnw98OCECYXLjwhTJlB2ZyY3tz09KnM63GB2XU4/UvLHmyCz8tA7GbNadlGak8wHy8P7pG/r2kx/KlRluNfp1L1ANgGZ/oAAMSVS1OlNJmwM+0Y1D90TwTTlfixRLhJY1WlWXuV7SKfxc8rb64waiJJyzqImefATM4aVKZQFUGC3FqWQHRLrFtKuYAE1ibUjDtSNpJx6BM62FLLJorxuuBtY8+0rE266Ph+MdZuh0kr81V0+ekzLQzN3VvndsqcEHDKdt6tz6Ib2phzCUrsqm8qve1O09UJxWwIC+I8a0nMsVQw+jOoDCMAdfs74/otNN/64DBDjP6HMInetrBrQMFXPqEla0FsNaaQIfT015sSQqAXLmBgQzDLxsGCQ7LDk3zgZBoZRGfOHfhHfWcwd28arPPG4GNS/kPrMEO0k9p641AS3kOgF5MlpAUB4T/6B8VPUzN4qqBApcbYGIm9DYkYqYLdhAYoIcYVuQnpU6Tw9VoyUgBn9yIXEudZnfDmxe+d1HX1vtyfVzxOgapqUJy1By9Xp6OyQ5ydQ2L/i1kwfNIn3MDfdtVUMdkQXsLYTYmy+rJaYPAXNEl4ZZq7FetbiVIxHJBQioiHjDLgXx1c+R9F8bPHm4Byw9Fhw7MWNQNh6Vl2bia4S+OqG+VwHRHYRtIBtstDwQ2VCV4UKmEc9bNP/h0lIRPfv82zPPq7xxi4SGpiJcgYEakikQkuoDKYfbA7hPD+6DMCsUjeCIhXynkI4Uw/xCEKTLtNcH206wR3x0dQo48ezSns63zA5rnJCuQpEbWNtWsNYchPQvQtSTbfMuD6J6p6NxvAI0aUkZBAY/9QyUJESNPrLl44s8tV3oELZh5fE2/j89D8e4zMpCm+6y8XN50nvD5IMP6sHFkwcHORpf3Bq+p6HY7rEJzlqoKTSysQnOW0n3WEjlHFXIynKhB0SLPrjv1eEo6gxu087Rpm2vdZ3zHlz1HBYR8SwdP1fcshmgBSaJBS3qmSh0s7EHNYtKlAnUcmqudq/EMAy6tQOQJPyP3DA4ZAp3cJIGMUIkP/qmo4m6AGEjIWDAECKrTlawm5TLRMFVkklSQr3Ge6CwoIUszgwVuwCzQaSHMQVkOBfoKiK3CRJ9PXiAkPKzV1S1ZPbaljl95I/EroaIC8lYkGxPI5cqAAhFxSiiAiKOGypNh6Pk3RG2pn/wbYu6aHlKe0k7TpTx1Po1B7mXwkE89cbL3kb+suFsyn8zt/OKrm34gH/2jVYTPvTHhB/saHYzaZF+sB8hvXaGDPOcKBrk3FeQ6n5y0wSCvgpOTxGhM7eQk0T1TOzn54fqTwlX1irl5z54Pyozd/ELt5OSKg+3srv+sHXzIqEbhOKec72onJ6X53OWbbbpwMhrMZoW2HDcSkGoxyN0VQDJBSURBASRTlJTTROz9YGJyyBSHLR5GT6890DiKCYWXVPrEezxennqxjbPp0eY4X5d93/RwFNOHiv/Nwoo87m+3CFpvzI+/8cIWz/96ysV+tkgih+4isoGjfb3SZkFCeAAzGZ5YVA6AhJQwztTpIFDNA8Ou1/L95Z/3Zt6jHV79rpf7iBrgkH1IW68chIqdT4BJdots7RpmHXY+rtPataNytw3prCBBDjVLYFYgdV6Q69Q/Tz0WiiMLFlvVNm9U7/eK7LVV7jL2JYCVywnU7GqU2DsKGwgcJ/XDqbCqr0qJUMeKvPoiv4tNSdvWofMX9R3sm1jrnuGeqYIoAZmhQenoMd3OVLlHYfMKmWwIZtiUg6EelntGvVWSMtKspCFzX+SeIVl9E/s0tq/G/VxY1AoRItINOXji6tZx3dxYV9XuIYRICQ9aaBFYIJxuIq9gMzS2wb/yf0NX2SluXrgSmmIAu5YQpKnH6UDqfFy3fd2WgULlm6uWqspERlnxk1JBbTrBvPF9iWP4fpsF9X3HLmyB30XExtXcRVRRKgOd4mN06OQcwxyjtgwKw/iqTwTX2Osbe8Hq80ErI0P7ay7Ea1pCqtYdzvj9XFWq20gJusqqnSGcPq7ljzc34oMWWEW9+RjlSPJI5HsD2mZ/A8VUcBLAdp7scB4sucg4WQnbtBtNRVcapcwK2LBpaYtzD4ZOwC92IvuxFGYdRyx3m4qg4iqaCQ57HJ+kak2QB49kn9TJ1lkjYAnATKOGKrdm2Lpdvr2DFs77VOdDzDExXhNxwL3kQKmRqtglgDAxaGEqKNLxAHG5W2jEveZq20KDmgaREbiFpnHYTeqJQIPqoXZUesjwWwmkfWrg7CbNCVs9bobpkq/T+lZ6KwF/uIL5+iTsQEzik2fAlfJXem8l8PbTY8tmv1303/F1Q12bwDqN9dhK4Od+1rL+C1YH5pqXXl59O9OsoudNYacFCM8WsjkHuyPGvdZ3K4Emko5MWS1ej/H1bvfuEn9ni15bCdxo3vozl9Weta1J+6J9L2T39ICPLS0+QHwMsmi9nlsJtPKYNrp0xrrAOfuNjJ3rTWpZra0EIFekr+i4wjQorpQcwbii/1YCMQeO3Q8wfcyaaeYrSOns8rhaWwn4e6LqhLRwfgYsnP+6klsJdPRjn9rQczxnztrJc+VbGxIOP1Z5KwGIyNFXdIiEvMLsensGhV3/b2sl8ONJiy4X3nTosdc32mP4yriPldRKwPslXSuBoy+qvpXA+YH+lyXhfTgH2m3ayD929oueWwno2fgjqaQv6VoJAAyruZUA0Z5XeysBBDDKVgIAMHQyd6CazAazcUWUJj1VLCNuc+hh56qwmG7nKq0Yw7wjFeYGWlWpadNl52a1fxwyd/mZoh3B3+fTPZaeqio9AkH21/dUVZXgHkXI+/9VVUL5cym9qPOd/ZeCJ/m1tTYReT/XQ1WlG0vOzH7k3CJy6Y8a9/LjbCq8ZgJmR/F7qnpBMEEn531lV1WaL1p5ZfWFdRHbRmzxdG2fGKiHqkpTOlxiTt33hD0v/IYghrW2orvfEKUQWpS+vqvEqkrErPdqraqELHi/p6qq5OKBIIXq007/Zfp0cdgr7tHNnbnz9rg1Xt6/p3sV6dO8t3T6tOSf/+lTlD+PS9t+/vPe9KD1i3wytj/ev1EP+vTN6tqNCx7YRu6I68m/79isSA+aIustnabwf1vZ+rTP8DmhIwJSA6d3cKqxqovHaD3oU+IigR5QAmJNg1LeP5WoT4k2tNr1KSIxlPoUIIXq085U+tRgYgLidDLI+l0wJMh5QxcSxL7BIPelglznZDZrDPIqSGYjbpOoJbMR11bUktmIAZ1aMhsx0lBLZiMaTbVkNqI0qCWzET00jYw1qBVJRczZ/Jibd9g7VmHMj6NzazXorIeMtS56Y7JlFTKZWKZNjcnEKjVqTCZmuKkxmbjnr8ETYyqeNBooXVa309vQBcb7LIdbhy7SA0+6UvHEgBo6FLfmnPo3qzv7wBKWV8LYz49JHkXPLZFWOadM5t+Zzlrg/zSj88r0bdXXEinq8clKbol0kPv4v6OhQzcqUTUYs/z7rByzM29/Bk11v5r/x9rxyXpaqiPKvz6aCzyhLWX6BLPLfgaPeWL96G9Gk8cETTHaKxM7h0013OXR4qt0mG+4imH+GxXmOptJK0bVmckHLz+un5XZIGTbsWFPbbcs2ahmJonyq2YmiTNGzUwSGavmC2Xsdn94pvk5zqZTiy529Wxmp+YL7dwYMD0/4gF3W/KXNkvWtZ+hYVyh1icVpMicwglpNSNYq4Yk1X1llvmvHoxrdypOmkcvGrEudWhg/puvgk7Mje/x5e3Qjb9w8I8MqErtqwI2wrYMxcxIqUAczGWmoGNotyF4OrVd+/fjMsIPPlh7+7pZ+njax9Ksukf4gLYNKVpzGMzvcLeGDeaJxtIMiMwyvmpsEdKlSTRRijZWfRKWEEiFZTqTeWJg5EhfXC4cEt2/Ez9g5vDAwSmKFk/wG4KByhE0NwQxgt4rGMF0FgjJBsp0lm/VkjhRKwFAq1IaJSUlpboU+2PiGQPrS6WKeDJkn1EE3RdS3uSc2JYzcnnX8CM59f/t8H7zTkIRVXQQkiKqGKUyuCP9RscdpiFwB2ijUl2yi5pyUoRypGxxAo5NmAohZc6u3tK9JQNmRI4/4R3oeGLzGDxzlCOSLOKWUSqDOZe+0jEHaJPqZw7kjzpzMMtExZxOrBT4lQhPwOPIwa0CcUK6suiiH1Mi5Q2HNRp9kN/KPkE+o96dW9NvZ9qPgLWd/mn9aGcHfB2E2jFq42ueY8dRK4N53rTMe/TFcAoF4QtpGpfDQb8yDsqTheJ0MXCCAfsAu8QSMWQd+EkkGYkQ4a/ekJTCS1NeIOWjcEHTLj3X/hUx48S9FZI+QZcI1dCSydKi0cuVwbmsL3Sc8692zsGb4I6KTqkydZXr0UJxEr0i9LybcHip0DN0avLoFi/Oun3CK0JKn6mMovcFb0/Uh4ARxxkNt8oLUYSon+rPoPBTGxqPjj5+4GPkEbP8v1t1HE3YqWMrF3KiZIIRQsFIvJsKMaXKbGvNglWH5GqLQUgB2SSBJEWgkKUzpcoB5TahymyuUHEvgRiNX6id14sd54+cd/xSj4K66w8wT413pXtWzV1FPN26D/hHKpEpgoQihfKLydx9yhOmbTiM2B8A+xyy3cYs4NJu+Jcy6400Gg7GsEEOTiLPqJVH776pzrK9GY0jM69fnv77y2n4c8dm2KiaYqmilBcnE4ubVTROBsiFQOT8yfRIlBuH8fVfnRLd68eouTBMyQiBTCak6Flhbxk2uLbzTc7a2rXOTDyxrV7FpzABK6KO0ANWQI5osIr9t0p1LraOaYqGXPBD0Nm5n3e/1EyAenzYxQDvgNJaiG0jWlUzLDDAPgr/X1vd7cHfoQq3WVRq7H9F+P+jIvw5k67t/b4shbX1nbM1X5z7nRY2fRbhdyilK8Lv8KsyivDvZ+cMnXD/eI/9NSPbrGA0earH0+Z61pGwZrlZKV3N8sJfVVKEv0mdHXsO3F3CnjjUfvv0fSlh1V6EP/kXbWuCX9XtgarvOFVPEf7xyd3rrZ5VJ2Sz9zLWix5bBhlMEf4zP2n7J/z8v1GEv9aziRvPHLYLXFxyrvGfx950I+x0VnURfkTLUFZRB1qmyorwTx585se9xhnBWwP2+y6dNQ2fjVA9RfgRZUPdoeBXFRbhP3Td+/jhTacCNtRaGr750/XbBlDOAmlT8JO2TcFPLPwMYFD4bRyWq1up3zXWhgdOG68sf4svxWeJHOKTSkTAomv6bGYUOHco2yIRlt2P1sIAiMskqUnJwIeTC5ClGl1qOcwvEk6ua5/DyXrPaXuc6/eK8mk1qx6oEbXN7WvJYXgbnWIweGy46EJsuwzwnco4VcGDVXZljwWuoliQvrqpq+v6x+OiQxfIQyeuPeVVXPHeXQQXiqgYK+hCMQF6LhC9pmwS6XRw5YDRTuniQqE90PmCJJmA3L+0mmw5Pzf2Y4/MizdqW+6/1pRwQgq5keSElPK63sv+gve/xaB7/wLGKQNYrkMkUwdHCT6yUMIXJtDUtokZE2/p8WNP2HiH8dmPO/rWwssqNoCmrKoolcGMqbTMiKseZhDdH4YuOxaeYWKJApgvXgJcO3Xx9gMhK4gsUtyZPn4JyRIZ353Z1k8+XKZAfiH3Vi93em5dMPNxwOyz0ssZrJCJeLsGvyBakS4i6X9ZRqoMZnWmZZatQcwcOJRO3mr9soVucaosXk4zg9zOdixk9vFmzy1auG945s0vFQmVK9p83BtV5PCo5yWNulA+nM3vGad08lJRTU7jbYXH1uWaNJsduX3gw91/SK/tqNawFwJwlIECcIsEAKhadPJEMVNGXWQi/YdxcNxnT+7GP7v+69ig+8xqPewLAYhh0EhAnyaMU6ijyWb8d+XjdLvS9Nr85UdYa8dsmZAybPSmKsvHca95iiYfZ2ANDc9Sz/k4I5/Vqf9n/Db/XZ/fz106MivMAPJxWkBIKHc3f9SoFqWPTyq4ceNGFeTj/L7mDcvq1tbwFU/C+e1Kh3UxiHycazXouLPFELhTJfk4t4qMWp+xkHOzx5W27Nv66QGDyMfJpGXOQENgDqM683G2m3YymvdXHGunowPrL8fuzQ0qH6c9LfNqVw/zDDMfR5K1o8+HxK6RhbOiEgffGuBYzfk4T43oOHfQqLo5V6n5OItSwnPZL3xC5wjHXQnwPltsEPk4iA9BmY8DFCHqpwYy/j/Ix/n9wYZ+6yd1iByf+Pweg5EdX835OO2NT9Hk49yrSblYqtd8nMQm4fMV9gP8M9/l3AyYG5+l93wcYmyuhxwTd4gcZY6JsbHGQqme8nG4v+dwR9ik+u9bHB7eslntmnrPxyHqCD1gda8mHVa7alapzq3ufBwOlRobfkToJozYxN57OFL0/OmAt/idkp6p8OxksIwnTdY8YarD9kWLQKFcCk+PqXZz0j2Up0yZPFgzLwl+A6nkLRemZO9a7clZWyv31sFfffZQPp/mTo46UUP+zKOBCotUP4pFIpXEc09aSqVqNLLSsc9PMhgN2PAv4fzn0Nacg1uen7SKFogAwwT8UKDX07DhELYqWRlExUqdz6S5qGS78s+k2cxM75LZoU7A4SKbvZ0jasxQO5M288OHxhm3bwdnJj8b0KS5aaTambQ5Pu94AZuCIzZ7/tva1th5kdqZtHOx+8PuuC8M2H0pcZbLBa8ZamfS5tiGt1kUnBW0qsXtIbltD5WqnUm7OCjuHqfF58hN38ZNqxt4x0vtfH6XiCunF7YqCsnq21O2qMmUfLVmM3Me807F3JFy8kUNuuyP3ugDSGYoaXGTx46JU7oFbEqX3F+W5wLP2pmjpLZ/rv61PjGMs95uxoCV5ncmA5IFSjoiv/og1eJa+LTll8b5nK63A5AsUdI839S/549+GDqXN69zvVbyIECqjZLq1m3Wsr0Rs0f+pOdXQxMHTwMkK5Q02SJmWPcwfvCmB0WN5IG+lwHJGiUNGcJc/3d0u6C5s/PGvRzx5zxAskFJvufDDk4Ji4qY6ia1HzT62HBAskVJbbYmJt5ud6FHfg2THitif4UDUh2U5Hny0aEWPif8Z46Kib+6dMkFQKqLki41cZ26Z9i9oIm/fW10ZabFGECqh5JC9oekLS5JCsl/nNokp8adfYBkh5KkTdtaRVzexco5UnJlYL8GSYBUHyX9HX2k9O5Vc9YBJ6HPtx6HBwNSA5SUcOGGeZtVuZxDTd+0mfSP70RAssce/urTxNDJP7nTf+vECBx0sg8gOWDCFms3/fBiU9be7RefneqZ+DcgNURJ7XtHWg475B+x8/dfq5aNz+UBUiOUZJWw2u78uPjgwxO2nZtn3GYSIDmipJftSr7FvXoUsXL8g72no2Z3BqTGKClA0v7r8lfJgeOzmu96+21HPCA1wbh8R/Dt8pyjActNx70ad/TMdEByQkk+V6wbpL3dH7n6lMfYRrWf/wNITVHSlrb2r05crxWQ1ay92P7TOfheTJRUzC6yKz65MGBLl6HPatQ/JNM4bOnMoDhsubhuhybFDs/ZU/ztGr3tf2GwHg5bBlOpqPqJ+/JzT57lLN3yZNS5xmPy8IuJnDSpSMInySCgakzaCr1DlfOJlFqXp/BEIqCE0Cr2WqYMEBUU6aNprnOiBG1rXwELEGJ+CupXEu83yp3DKDHT8H5pm0CUZVQqH4T03drWqr3H3bGYO+PD+QSLnsN/6TGhUs9OLsOFw/CHAPHJHLczMHXQXKdsgA69gMMkQ9bu+AJYplciFyIpFOD5hCLYdFklJ0zgQTF5MORKIEXx74TGF3/rt4g90dmqzS3f35vht0BV36O5BVpG0nt5VRdEYmjgOmNmEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+V/nrqJCm8sTYs+9OXx87dT6YRVsvRYUlWyzGKvrln64EKeyAZ93I8EWHX2DHVEThnLLEHW7QWEIEkBatX/d17PuVeCZjZ5OiolaO/Jlc8jUgPYCGiTgkWEHXU/oQw/nf6QJ+nD4geepWdPsi2OEVz+sDOQidbqeXpg4eZaevSrk8N2VOrlVPTlg7j9GgsiRpID6cPZkKEKJO1+RY6Gcv/9PTByjlC1xWrhRG7J/vEPqnfdkW1nz7oRosKkBsD3SmputMHk+7ku+99mt5jzups6xUXopcZzOmD1+Z0rCsyN1B3Rs+nD543OCVetLkVe3ro8VoLVh+/XM2nDxAtQ5k+DrRMlZ0+OD0xd3P4D7PA+Xc+tvB+HtvKAE4fdKMFx85Ct5yvCp0+GNpnXZu+6d8DlqeZPKjd9TW+Bkj1nT5A5jQlQmBOo35bKIPCbzu7hMf96WsfPGGdk+nL5qMP471RpGdddCBX+4WDAHzLSNQTBhFiIvgV+F3p6n0VgbJF5RX6XqjrNlYrx4m4fkn+3JpeNEbRobWLouUpZWsXDVfJH3DgYwvdlhW06i0pmTSllaOfJGBt4V9N1zDXtyZsssO7STbZkcvleUpE/aeHvi0iCJCUTAiZbhxGYEud9s4cEIAwuXDhC2VAfAGd3Nie6795vMUYT07WgKL4ey2P4WsEmwdiN2tOyzJSeYD902f2yX39soLGX20qutE6rKIH2iFgjWkBAxJVLU6U0mbAz7RjUP3RPNJpRsNLS4SXNFo1YMb211kd0jgHnJOObdyV+KUuchgHMIOTJpUJVFt3iFPLCoh2iW1TMQeYwFqZzZxZzxpOC5/d7tmgKz0LDuiBtedb0LF2TTWxlsw/ztKtAVz5/UuDva1u1nrmHjDVplbI17Z9M6qtfynDE9VJsH+pVCO+9USmGGoYezAoDGPANfv7Izrt9N86YLDDjD6H8KWB7WDJTQVc+oTZuAK4PyzQoeuZF1uSAiBXFv5EhuGXDYMEh2XNzvhASLSyiMRtu/IfWIMdpJ/S1huBC6Y2APTiAJImaHFA+AttKnpWj8VVAwUuN8BSvtDbkIiZLlgDL4Ce8hAf/Emp0+RwNVoyUkBxAudqkItju9gFQbOb5k8X7Q63wesYpBcqSYs49Hq5+RfWfew7mHVjb+/i/nONrH3bCuqYLABzMYTZOICk7VdOGwTmii4Jt1Rjv2p1K0EilgsSUhHxgC0kyFc3a25KSes1+ERw/nV277m8Cwn4rIKycTXDXxxR7yea3FHYBpLBdssDgQ1VCWFUKuGcdfMPPh0l4ZPfvw3zvPo7h9gwWCriJQiYEakiEYkuoHKYPbD7xPA+KLNC8QieSMhXCvlIoSKZKQFhikx7TUDcpad5TrLGxmpkbVPPYClPiK4l2eZbHkTXuqJzvwE0akj7QwVs1weVJESMFIAdx9eMSCq+GjHvzajgM09MjuLdZ2QgTfdZebm86UzMSqhoOhUscwKRW0XmMsDuJY+sKd1nLZFzVCEnw4kaFC1S+BYErUx9dOFi6EE7T+7IY29e4lO1UQEh39LBU/U9iyFaQJJo0MqyrlIHC3tQs5h0qUAdh+ZqOTueYcClFYg84WfknsEhQ6CTmySQEbKE4Z+KKu4GiIGEjAVDgKA6Xclq8uRhgmGqyCSpaA9lT3QWlLDIkgq9kFmg00KYg7KNKfQVEFuFiT6fFIoJgW0t7lkEsQsP7pIlLRprTNiYgG9FsjGBXK4MKBARp4QCiDhqqLgMCkNlMHXridpSPy18KqFsvZ01mrROWrb+oxUGebjBQ07MjdMP5A4HPFpfK00MW3Frml3bb+ef6gHyonp0kK+ph0EeQQW5zlmZNhjkVZCVSZJEiWVlkiRRYlmZJEmUWFYmSRKlKitTM4kSy8okSaLEsjJJkiixrMzBIc1e1j/wzH8dn8vrazd7ikbKGxReUukjpl/qIeUtkor/zcKKPO5vtwhab8yPv/HCFs//esrFfrZIIofuIrKBo+mUm1DMtmZBQtiyJxn2uFEOgISUMM5E0xC0294nppyW+4ga4JB9SFuvHISKHy3BJLtFtnYN20EqLHVau3ZU7rYhp0EkkDUAD/ALdV7Qw4DfrzhnT/OfspAXd/r4+XUV2Wur3GXsSwCr15ao2S3ROGAPwuoCS1I/nAqr+qqUCHWsSFG6bZ4/6eG9ZpxJ3NF/p7zbztBjWsT43hGfzqxLC9oomRYyNSD9uB5QUtCi1NlSc/GBzk9zj8LmFTLZEMywKQdDPSz3jHqrZPKP/V15goecJc4pp22XK25X434ubL+ICBHphtxREAYXWermxrqqdg8hRAlqNSugBcLpJvLEStbLk38u3RIyiXfsis3YkrkGsGsJQVpKC5LCUrd93ZaBQuWbq5aqykQG2VikVlCWv04fuj7iz9DFi4L/uspcja+4Z4aNq7mLqKJUBjpcWnRaWGKOURSDwjC+6hPBNfb6xl6w+nzQysjQ/poL8ZqW0JgCXGf8fq4q1W2kRKeyccQDFtruDWib/Q0Uk7cVgO082dlHBoDtVu1K2KZNb9u3nkn6zoADM413XXWdcxy/2Insx1KYdRyxPC1OVHEVzQQHetoFghVFJmN5sC6clU62zhoBSwBmGjVUPxueu5ZtX+C/8Fm98CXdRfjG7OYccC85UGqkKnYJIExAamhgKqitm7ErfwuNuNdcbVtoUNMgMgK30DQ6CUs9EWhQPdSTSg+xW5/38p34kJsXtPKdwrdhE+I6dApPylSu05Csl1O55q2V92G7Pci5FB5TLBgJLwlkwgTUQGqlloiHu2iekGylXI2sJa7+rTmMg8xTsGoSiU+eAXOemDopKmtkG0q5uAseh/QtR7nln75yamto3trW5xat7+SNd5GQATRdJOXl8uYc8ZxbBecczEzeBeHZQlXRYSZTp2wSK+Xz0BX6Grtk8vbL5xawDmRwTl2MrdkPv/unvF9z9w+9Xh4+1zacHSdYNC3oUJMXHac+FYv0gA+fFh8gPtWRYWCGJG6MUALRjUH8o1slcKsYnixJoKBjWodlDXO791wdvte+zqqRnAOEtBDl/ZpMQ6/rfc0WcMWOliuvmxoSV0qOYFzRyXzZIApPKuCjypeUMa4X/e7u/rY0ZJZD1HLHzB5L8YwJR+7XZAx6Xd+M8fdE1QlcZtSIVzNgfWambgGZowoDJLAQCcvD48yJpv0j340OnOBgLpU+qzkCn1XLVg6gmVWLESoDkW60iDCYmF3vxaCw6wXzwj4O6NoldPLHnwqzE3c+4Hms/Ebtk2G6qSIMvAFnjkwWJiQDtxKeLeTJ5bCigSorBjX/2gUfxHPaZM+rKZPK67rkiTZF80Q1sl/8QVTXrWlFd8Abo64GNPZCZZEaeIRJ+STk3V6XBVlO+qc0MK+f1/lDm6bjDb8plWOjIlSx8UdSSSGG3mQ5GkxXBEOdNFa3CFSilGU5cQe1YD6QXLk+AEsBwp/LfErm6IixpIgS7Xm1VgWFcS0CmAMZYLAWEwAMnczRVJPZYDauiNKkpx7XxG0OPexcFTrR7VzlOGGYx1BhHrE36OJZRhE7o3/DrsKXPergq0Yh/eSlImECcixMU5FSIe0YDvwBYJ4U4E4RMwU3ilZ6kliZgu6xNItZ4enaLtzAILs5gHMm2cIN3KPIaH7KSrUaiXlOmD2xCIW6FMdL+E2myOVQPiYD/fhnZhsdMQ/c/499uJVbvUsY3YiCbhmJqBcNGTFTXqceWPk8yOPCj9AFbk2ChDKgc2B2ApLMhOcXKX+e5gy6Gv3paOik5aHxw579jm/+Z8TSnB0sjdlhRJgdnWvHdjvh3SV0Y5eh85KetVJUdM0EzI5LkJ3eZNkLMEFnQ/NTaiCVt7LkFC1IkAANrQtK/VymH/7+OTVwU8j3D3mbF1/BoxSgiVJAuSi9KCne/9F1mX92/42NzH4W9dcDShm0KMU2P4XKoEqWaLNdlPUCoWOkBUDErHe8DVMOpWnD0OuVseCNSMxXsoUmFw8EKVSf9v4v06fEcj5VpE/dm9Hp02vO/9OnKH/qmh3fN73JtIhVn3t2W3YjqVgP+pRYpkkPmqJFMzpN8cO5svXpSu66iQ2vvWKt+DtnYeGRfkv1oE+JiwR6QAmINQ1KW5wrUZ8SbWi161NEYij1KUAK1ad9qPSpwcQExOmkn2S2DkYN381iSwP3fPJPLrg2q5ceQgIXZ7qQwEwFeV8qyHVOZrPGIK+CZDaSGniYqiepgYcls5HUwMOS2Uhq4GHJbCQ18LBkNpIaeFgyG9FD08hYg1qRVMSI1fP0kLEWqzcmW1Yhk/+zOpIkRRUxJhP3/DV4YkzFE2LZQj3wpB8VT3ILH/Wb8vRr6P7C3fu3D3uMP+dXK4onFog0C7RSKTYXFlMK71CrMs0USxQCZXEhhSBNwVQWZyV9bWLdRZJH0UbbWUYnyCQiUS9oseBF9YasBE245+6EG7x+QwOO/HHSt/ePGt+pNKFZb7lAFgMeH/valoGS1HgRzNWClWBh4R++UIG+O/Aw4C7Hk4x1BJZgpXo1FqVbcRgljYAC9WUzMqawLcJ5siShmCtIxBlAS+XlXrBnh/p1c+X1GIlU/SqhBGyPVpzMfxqdskFAjJLBc4MKofKpTLGnIptQMt7IUDEflt3C4DUyhxfh1ovaJcRXF6FlhZUBAewEIuSJ2LAWlJohUsgEvBTV78Z9ZTyp6h5UVPtTiarBmGViFVA9LdUR5V8PdjnTkc4u8x0xuzzA4DEnllc13OXRODs6zP3tMMwHUmGus5m0YlSdmSSpm4uZSZK6uZiZJKmbi5lJkrq5mC/0qnad3PjflofMbsiLbdpn+DU1X4i7MDunWUyzkNVfBvRmL3Lx1TCuUOuTChKxGK8ejOsgKk4aaMsxYtHhKms5JmpN13JsaavKbjkW7XZy6vGnbuG5I+q33r03E19otXpajvFb0zVw6dbaAPomFRcXV0HLsRdvdsbPzW8UvKjz3CGHS3ZsN4iWY3a03HndygC4UyUtx6RXYn5r+sOdlWuSy/Ny+nneIFqOFbWiY85SQ2AOozpbju37MPtFpvwVu3DocIfP2efxOcfV3XJMQcs8bvUwzzBbjh3r3a7Vg3OL2dsabjuYFDoDv6NX9S3HWtBy7kfL6uYcvKnSWo5139PweaPTo9gH1x+1a9FhK74yXXW1HEN8CMqWY0ARon7qYAaFn/rf1HKM2BajmluOTXWhaznm7VJFLcc+Lejmdftb6GpOhsUps6mf9d5yjFjcTA9ttDJc6NpoxbpUVsuxMe/2BsxrODw8c1nq3biFTZ/rveUYUUfoAStvWqzMXP5PtRwbQqXG/leE/z8qwk/sJlRlRfiL29AV4U9uUxlF+PfUkTfusmlK2PSkls2uTaoboMfT5nrWkbBm+aM2dDXLC9tUSRF+8/kzA1dseNBjE2PCtTsjkjyrvQh/Fi0qQG4MJnbQ7eCP/orw//OjyaGGTn+Fz7jq57HA8uxpgynC70/LOofqYV2VF+G3vyesKz+0K3h2/C+nJle736zmIvyIlqGsog60TJUV4Q92tM69e6xn8BbRuH3XrL/htXP1FOHPogUnuU0VFuE3sr5faicJDZvZLD/tvNOA3QZQzgIi5E+LEJjTqN8Wx6Dw2zgsV7dSv2usDQ+cNl5Z/rYdvo4AcohPKhEBi67ps5lR4NyhbItEWHY/WgsDIC6TpCYlM1VNY3Wp5UDssEj5tJpVD9SI2ub2teQwZroBfHlsuOhCwPcSwPepa0UPVtmVPRa4imJB+uq1L18IGxp4KKhg0ErehaUL7Cveu4vgQhEVYwVdKCZALxOi15RNIp0OrhzGQDedXKjayunLFyTJBOT+5a1//1z06bsoPH/Otp1Tl3YVE05IITeSnJBSXtd72V/w/u1p37+2W3U7SyrJ1MFRgo8slPCFCTS1bUbvWDzR5blV+KLMD9eH7i8W4GUVG0BTVlWUymAGmKw0zDjoahDuD0OXHQvPMLFEAcwXLwGunbp4+4GQFUQWKe5MH7+EZImM785s6ycfLlMgv5B7q7n5my4t93oRub5d0b6WSW6b8XYNfkG0Il1E0v+yjFQZzMqmZZaoephFmDlwKJ281fplC93iVFm8nGYG3WEsNrF+ZhRx+M0R9z1fXaZXJFSuIDuyvFFFDo96XtKoC+XD2RzhppuXimpyGm/rDPeAqEHXVcHr1tUafVscPbpaw14IQGMMgFskAEDVopMnipky6iIT2+52tb9yxys4++eg8NwxitYEU1a1h30hAAWuNAD0SXfFHE0e478rH4fYmLvK8nGmetDl4xS6V3Y+zpdn8YP/Le4esddmhBH38OyeBpCPk+FBt7sZ62EASQV//vlnFeTjZN3ctXhAUELouqh+HezOn480iHwcb1rumBkCd6okH6fFlwV9xUuN/OfneZ0OskrcbhD5OI/c6ZgDtEn1M4dRnfk4dSS7eyaZW4dsPBuSbHz+t0EGlY+TRcu85OphnmHm4zxc0MvN6cjBoDlbd/y2YNS1TtWcj+NPyzmHaudcpebjTOvEP5DW7Ql3g6VX0uTJ0zYaRD4O4kNQ5uMARYj6qfGM/w/ycba0tX914nqtgKxm7cX2n871qeZ8nCxPunyczp5Vk49Tb7PZ9dgH4WFL/F7bb3jYYq7e83GIsbkeckymetLlmMR5VlY+jvfiSTdj5+QErtiRu2zADof3es/HIeoIPWDVmRYrW8//U/k4CVRqbPgRoZswYhN77+FI0fOnA97id0p6psKzk8EynjRZ84SpDtsXLQKFcik8PabazUn3UJ4yZfJgzbwk+A2kklfMLrIrPrkwYEuXoc9q1D8ko3w+zZ0cdaKG/JlHAxUWqX4Ui0QqieeetJRK1Wgk+TTGsDBXAzb8Szj/ObQ1Z1INp1NW0QIRYJiAHwr0eho2HMJWJSv5VKzU+Uyai0q2K/9MWoMsp8stP/3NnXCnVZT71wnv1c6kNZ0TMaSNl1WPjfXa27zZ0PKX2pm0G6U/3/m33cFZLzNKWBKddVjtTJq8D+9iHdOisAM9I+OXF48cpXYmbeeNEEn//e3Dlw+9ncTuHMFTO5P2cN2s4K/ubyInPgxmpq94/FrtfP4IhmTvZ+v+3F0zajjU+mPlTrVmM10WnG3594bJ/lv/NtlYPy07DJDMUFJ25G+3k6++CFqw71JhQuTxWYBkjpKu1VvEWTEwkLN032CrnsMvvwQkC5QUfnD++6EPIiPWfZbdX3MuyhmQLFFSiEWpjOfN48xaLXPzHfZ+JSDVRkkWdQdl/1sQF7breOCEopTb6wHJCiVljr07bljP7ICNOxoUjc58Ao/hWWNPmDDLJLbO3sDVojq1337PsAIkG5TkOrXfwKTmO8LWpJ2cHbKi7WhAssUUcj/F/TD5vMgZfzv1sj7jCTGsg5LuLukyPHFT/7C19gM9piyxyAGkuijp+JmhB1oV9gtdJ09j+opuQy7XQ0l9R3Zo/oPbOCSjfrDx7GDb5oBkh92153H0yp99glbejxmw4YoCIl8fJd33jDO9sZgROH911+n/tlyQCUgNUNKcOYse+HxpGLbN2nuaqHjYSECyR0l7v06b/uRMt+CV+2PCJwzYPAWQHFDSZbdpTWWNjrP3P3nJjTh3JguQGqKk0X4Z9icFnQMORrY5u0Z+vzsgNUJJk19GuXQc+iFwep5X1632/9wDJEeUdCFQ0uvOr/1BC20d1+XtC2oJSI1RUn6fVUuvTH/tv3Scc0zxwgtQ2JpgEmUimvPkntw/s0HPH51/uaYBkhNKWlW8zK9DZvPQrXW/BIwelykFpKYo6dnK28lpnG8Re10T/OaumgCrSzBRkpXvxjHu965z9qc3SDo8+MVbjcOWzgyKw5abpi95c885LWLCoMVzHj7OfqiHw5YCKhVVP3Fffu7Js5ylW56MOtd4TB5+MZGTJhVJ+CQZBFSNSVuhd6hyPpFS6/IUnkgElBBaxV7LlAGigiJ9NM11TpSgbe0reKrG5xTUryTeb5Q7h9HYR7cmEGUZlcoHIX03E78X+z2Xu7NXX9za1tnpgD4TKvXs5DJggVUIEJ/McTsD3LpAH52yATr0Ag6TDFm74wtgmV6JXIikUIDnE4pg02WVnDCBB8XkwZArgRRFl74F/R+ceBhQuDC5yehWNT/it0BV36O5BVpG0nt5VRdEYmjg+uhtEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+VjmlwoXjSh27hBZNb1Hs2INCOsFqODkuyWo5R9M09Ww9U2APJuJfjiQi7xo6pjsA5Y4k92KK1gAgkKVgbf33tvy32D+6MHec5ZwubF1Q8jUgPYDWmBQuIOmp/EhkU9ud/pw/+o9MHRA+9yk4fHG1Ld/rAv21lnD7wSK//NEAxN7Tweuu6Lh+DQvVoLIkaSA+nDwrb0iVrZ7WtktMHDvOCuhxsnOm/b0LsP6HZP6Oq/fRBMi0qQG4MdKfk/7F3HVBNZF8/uqgogg0QxBI7IsXeCyGEGoqAvUYSIBoIhiioqIgNBRU7Iir2hl0RUcG1YFd2bdh7XxXbrq7te28yEzKVZBmS7PdfzvEcmctMJr/73n33vfu79+ov+2DqA4evO1sfcMtWNGixsEH/3kaTfWDDqLritkbqzrCcfSD2zWpTLeGy9yzF012tXoqnGjj7ALEytPRxYGX0ln1weeAEn/S/G/pkFux/dqJD0yNGkH0QwQiOazs9Zh84D6jWXnxprueWuYP2fHUqxvc2Nlz2gQ0jQmBOo35bOIfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PA9AW7uQXCVXOEYDyqG35Ka1M05+S33uPz2hy415uRffEoLs8G6KIDtyuTRPiWj/WOjbch8CFE01CLmtgYUL0Cl2ZoMAhI0Le7FUAYYvkFMvtiHDehcfaN/BZ379v5r+Nb5+On5aumM3k6dliag0wHZf/DwhflFTj6S7L5M+5jewZQGwVEbAwIgyiBOlWjPg37Tn0P2QUzpNGXRphuiSwaoKC+NHvXO4FbD8TeHZKZmPXtRGknGAMgRx0QqJOnSHOLU8t2D7Aa3K5gATVLvuVv7slccO+yX+kWU96WfIbhZU68qoWhsDqZbKP07VrQFc6f1LX6RW9Nxu9cHj4LaB3V+9UFgYrH8pxxm1SbB/aTRpf+uMTDF0YYzg0CyMblfq3hnXea/r9sHDbJL7HcGXBraEJTeV8OgTsnElMD4s0aHrmQtfHgkgVxX+RB4jLnkMsjksaXYmBoNEqxWRGLYr/YVJ6qD8K229EXhg2gWA/tyNognaCDD4H3cua64eT6gBCjxugKV8obchj+LaYw28AHqqJD74P5VNi4Gn0fJYCU0GzoPJM9aN7pQjyE2oPursbylFeBuD9EKlaBGHXi/NxjSr8an18G+d3dbfmNvw8IF1NmW0MakAZksIs4kbRduvtFYIzGU9Em6uoX716VaoPCpGEjoWGR6whQT16ebWPotrHX1Uw3O2Sea8vi84+IrqZiXPJW9/cULWM5ocUdiGUMFW5ITAhpoEKZ1JOGfR9EPbTnK/me/f+jpfniIgNgyOlolCJVz/sTIZhS2gc5idsPui4H1wzEqjxolkUrFqkMdKlRFcOdimKLS3BMQoPcN7UjU21hBrSz1rKeD06AzQNaMKvmVCdDuVde5bw0UNaX+ohO36oJGEiNH0fLwQ2PF2Vd6MRv4jO6/yf413n5EHkd1n1eXSpjORlVBWOhVArgNEbi2VywC7l1TvTOs+a4mcnRo5BW6owaFFCV/idadqSUG/+2+9Y9s/tm77RXiqNjpAqEM6eCnbsxiiBUYSA1qHO+nVwcJe1DRkfLREE4emGpwdZ1/g0kpkzvBvYpw9vYZDJzdcoiCwhOFPWQ23NbJAQsWCR4BN9XiVqqmzKAgLU1kmSVl7KDujs6CYR0UqdEFmgU4HYTaqNqbQV0DWKmzoiymhMDVfGvPD/4XwkGRv4C3LFw8IgQn4rSgCE8jl8oACGeK0UIAhji5Uozg0C5XR1K0nWkt2WviUQ9l6105MZeu5ashHGz3kRG4cO5A3Oz/lS1TtH/yp96ZmPngY34gFyIu7M0Fe2B2DXEYHuc6szBoY5HpgZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKDFW5qxfZnmKtl51z9tRWMvq8cWhJMobHLyUo49Iv2SB8hZJp/8mviec7uyu5rHJRDzy2ouaeP3XUR3282XyGOguIgEcslNemWa2NfGQwpY9EbDHjeoByJYS7jNRGoJ24X0i5bTUVySBQ/VH2nrlYKvI7QAmWRHV2TVsB5nZXqezaztVtA3JBpFD1QA8wC/0vCBbRb+tyUNiXPc8PzHZerBLj7LE2sr3GLsQYGXTAV12i0kJ9mBbfbs9pR9Oh5WVmhKhiRUlSmaXvgaa9BvAX5Rde/6qSun1WaRFTO3r/+n0xjiPLfLZXklu44+xgBIYMwwoidvr1qTdMRCbV8hkQzDDphzc6mHcM4ZQybcO434k5nlnu7dPnMWVnjBgPBe2X0QGEWVA7ijYBhe3182NdVBHDyFEoRo1K+AKhLNNlODMn9ytefqr9byFUssmXLs6w40gaglBOt2eCaTM9rrFdZu7S1XfXH1UVTJkkMAivYGKrfe03wqz28Kk0AG/zft1+UV8FBF7LjmKqJaUBzpxjOgEtsccoygOzcL4qp+/0MTlC3/JuvMeawK8B5EP4skroQkNuI3x8Vw11S1WrlPZOGKChbaxAW3Z38AwDekIYDtPlfvIAbCZdCyHMO3FrjMC8pz7+y+7+qR2d5PmhNJ9SDyWZlnHCUuz4kQTV1YmOLDTIRCsQKoxlglcc8eOOq11FghYEjDT6KFyrbokcpDXKeF64aVxuc5r++ItkQDcSw2UhkjPLgGEyYQRptsddFvsSg+hEWPNBguhQUuDjBEYQiN1Eo52RqBB7ZCczg7xW5536TrtnjDTY807ZVfbBsRz6EhRNFd1TkNxXk7nmrdU3YdFe5C8FBE3ShILL0kU0lB0gdTKLBGTuxjekOqkXEOsJa6usIyLbwGsmkThkycA1Hf56GSoLJAwlOpwF7wOdZmAnlaLTb5348+qFb7Pq9dg/LeshDyA7CKpLpc254h5bmWcc5CZbA/hyaKr6MDx1YlNYq56H6ZCXw79fmY9e9GQt7hwdN/mfdeuxEf/VPeTo3/o9dLwqVOvrmnPxxeEG3K/Da4xq1cbFvAp8mHCBwwfQzAMTBHixjgVED04xB/dKoGbh4gU4RIlk9Jkrie3dyv66Zpj8uH75sqtCNXZVPeTlYZeZ/3MFhYTY9TKCKPSSnE+phWdlq8aiMGLlohR40upGOUSq/wJlnO8j3x7sOZa5kg7vGL8kPvJikGvs60YV2fUnMBjRtJ+NcFFwPnDR7cNmZ0aA2RjIZOWhodFRNjFMUvP87I4opOvBfPH41m1fNUDyKxaTFAeiOzyYUJE6YOt69EcmnV910Lfj4O7d/Oe+fG70vT4zQ94Has+UXsyTA/1DgO/gHNjI6ShEcCthLmFopgYWNFAzYpBl3/tNh/EPG2q9yWPSdV1XXii3ihPlMR+cQW7ul3eZY2A10ddDbjYS1VFamAKk+pNKL/4ZM9JCT7e3p6bbB/cHHzLBh/IrULn2KgFel78ESopxLANFUeD64BgqJPF6uGPjihVWU5cohbkA8WozgdgKUD4/xKfkjvRfxJ1aRvCem7QqqBwX4sAZkMFGKzFBABDJ/MYuslsNIEr4mhiqcc1MczBQuTK0ZspclVdjbmCDnP/Ax4Xz3BO8BMG2XaXvvSpha8ahfSTj5ZJQ5G0MLIhpUPazg/4A2B5UoI7ZdxI3FO0spPEyhRMr0UuZoWXa3twAzbZQn8AZwrVwQ2MUXz0KzBXn0ZinhO2nlTzhrYUp0v4SVWQy95ibAwMFJ+eVyG/qnvum7p+5q3rFGLyCjRyswDEvJDGiKnqOv2DVe+DvC78E6aNWwMPqQLYHMhOQMhMeH1R6ufIySYXjn8I8tioWLjaxmYinpJagUeeHTzS7KhAmB2dsq37pPp09ZtTv8lMr6Od4st6ZgJmhztUZxsq9gIk6NT3L9AAqbSTpYbBklA5sNC6oNRm+/pMs27Wbll5M3y7X9raC4+SGxklt1JRetVXsXF9mJPbjkJf8YXFv0ezgBIY1gwonfcrQMegeiwxsl1U9QKhY6QFQETWO34NUz2KvIah18vjwBsZMZ+pDprsnRCkUHsa8y+zp8RyPvqyp0JGe+r7nz1F9dP2QNUXue0u8LamD1w7u6h+YxbsKbFMExv2VMhoT4XlbU/T6jyevm3PQq8DCtvKozZXaMWCPSUeErBhT30Z7alvOdpT4hpqeHsqZLSnvpg9VdLZU6PZExCnEztkto4VbN/N5Ue7Z39yjdh1ZW4QC1uCDF+mLUG8GvKxdJDrTGazwCDXA5mNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKyNY03JZnpU8j+rI0lRVBFTMjHmT9KJCZ1OiGULWdBJLJ1O0nPuD5z1+LN3bs7+3N2jH+A3VZUCRVESGblAK51hs+dxo+EdGlWmuVFypURVXEgpiVNyVcVZqdk6hLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJltDxasME+9tdPJOS3k7z7b+aNrfZtG+MRBECXh/72Obu8rEjZZCrBSvBwsI/YqkS/e7Aw4BRjocJGwkqwUr1kg6lWwg4AwTAgHblcxJm8av5iRTh0iihJAy3AJqpLgfBnh2a16uqrofIozWvEkrA+rQQePUXFNRAQAxUwLxBpVT1VlWwt6KaUApRrHeUGJbdwuCtUBVehKEXjUuIry5DywqrNgSwE4hUJOPDWlAaC5FSIRFFqn836a8QRavvQYdqHN1QNZplmVgFlKWjOuL4Z2Fd/ixgWpeLBNi6PN7oMSeWVzXe49GUHkyYy3pgmE+gw1znZdKco79lkqJuLrZMUtTNxZZJirq52DJJUTcX84WKMpf3/Dhrr9uOlDomkaIqXTR8oQ7FilpmZlvcDxXvHJ1jd70iaXGFVp+6NSShGC8Li+tEOk0aacsxYtFhvbUcu9+HqeVYzT7l3XLsw0qLj53P7AtI6TDk69bEQWuNoOVYUR+mBi67+hhB36T79+/roeXYisV+Q0/MT+NleL4am/sk7qtRtBxLYtTOCGPQjl5ajh38u07C27Adfvuqv7zWp1crPH3VUC3HujAqp6YxKIdjyJZjV3sJju47UJGXPmPuz53hXvuMquXY80Am5R0NNJ5CQQZvOfYtL/JSkysz/TbtCWybeTEs0cAtx9IYNRdtcM3Bm8qt5djOoU2W/3rhT++9Ixo82/9hl4lRtBxDfAjalmPAEKJ+ajyHxk/9N7UcI7bFMHDLsW9BTC3H1gfpp+VY2yVng+TVAwS503O6zbsSdZP1lmPE4mYstNH6GMTURut8UHm1HBu0Itu8z8Y6AbNMHYdZbVi7kfWWY0QbwQJW6xmxig/6n2o5NonOjP1XhP8fFeEndhPSWxH+ISFMRfhvB5dHEf6CBa3uuVWO9Djwx+jPa0Lm49utly3bnGUbCWuWh4Qw1Sx3DNFLEf5+sx3OWG+o7TW7j7ha7eQeNQxehN+EERUwboxm76Bb4g97Rfhrm83d3MfbR5AVudV29PoI/LG9IYvw7wtmUl2KYVSn9yL87UPqC8IHB/olVl31sfaRkXwDF+FHrAxtFXVgZfRWhH9ButAu/nG6V+6gyl+W1rqCL5hlmCL8JozgAGOjvyL8ljObfKnZd4X/3MDfPrVXPMeX0zFcEX5kTtMiBOY06rdN5tD4bQKeQ+ufPa/wNt9tuOX3VW8JdQSQJL5ouQys6GSfzZQG544lIRJpyf1oLQyAuEI+NjyCq24aq0stB2KHRdq3JVc90BBqy+1rLgALMMBXxIeHLgR8CwG+A/qWNbHKsuS1wFUUC8qv/mXd6jo1pN29l7yIOHSlsC+e0fuPencRXCiiYSyjC8UF6H3uC9BrxKcYnTYOAk5hX51cqOqq6SuWhCsk1P7lmcRux94VPeGvTbLKu7mu2JOQIYXcSJEhpbrOetlf8P03M37/hL6GdpbUI1MHRwm+slQuloYy1Lbptdl72mz/YJ/Flkq/hG2Lk/FjFXsAeayqJeWhjAGMymhjGGUQ3R+OLhELZ98ouRIsX6JQeHZq36Yn2LKCnUWkI7dtz9AIuULsyG3XM2aMQon8Qu2tBk+7WlRwpqlgwcBnL4pvnJHj1zX4AcHK8TKK/pclovJQlimjsu6HGMPMgY/SyVu1KjnojhqrGBnDMIMS75hZuYwM4E8/lLko8H2n5mXZKpdRHaltUEMOUz0LSXWh2gq2Heurm5eKWnIGb+uY9WyxadWHvAMpM7K7e32eYdBtLwQgFQOgiAIAaFp08kSxpYy+yIR7/uOaMw8FuCfvvTFoT4M+9Qya7AsBaMYEQL/XIZijOYXz7+LjEBtz642P860/Ex/HsX9583G422In7s8vclv35Nc/3hZNOm4EfJyP/Zmim+f7GwGp4NSpU3rg49wcXiGnU99h7ttvKfdWD38TZxR8nPWM2ok3Bu3ohY+TH8AZ0SLA3Cu5UcKuxsuHDjIKPk4Io3IcjUE5HEPycfr8lvrk6Cm+b0Jm++SDu3aYGhUfx4RRebf7GdrZNSI+jkt1u6c1sgqE0x49aTzncNduBubj7OvHpLkUg2uuXPk4jhvF1/jXV3ku2TpvZerQvRlGwcdBfAhaPg4whKifmsD5f8DHebrmRkSc4Iv/AYfQngvWJsYbmI9jMpCJj5M1QD98nIRLGZMXn8r0TIlbPFB2oN0W1vk4xL05CxyTbwOYOCZXBpQXH2feCd8VD8cO8cheH97yxy9HN7POxyHaCBawymLEavqA/yk+zlQ6MzYmX9pa6r+VfyAvQPbs8WB8G1+zPmNh7qSnQhQdQc4w1SF80cxdGhMNs8fU0ZzxTqosU64I1swLh59AOfLMu26Jd7x9VZA73jo8b9gL+vcjR3I0haTxVzUYmLAAzVQsilFJzHvSclSqn0bBp4nwAqPSmg//EfI/R7UUeIV7FZgHS2RAYRKxN7DrcdjjELWqVJlIp0qdc9Ls1WO7/HPSFo35O/aXBv38V6Ss6jV1yqneGjlppzsuPHyviidveyert527b3mjkZNWI2y2henZ87zZ3VxSX7RvlqCRk+bR7eevf/y93W9l7QPz7kztHaORk3a/7rkRkfsceFt/bWb/efniPRo5ac3l3d9VnDaFl7kgRxqa/+ilRn5+s51PTS7/edZz7qy8b4VXuq3TaDZjlX45YOrV4T6zDvn+2Jr3pR0QmaKiQ9XHFef0PCPY1/uRvTB2fAcgqoqKXk2xdFnUoJNr0qy/pvI+bVsPRNVQ0ddpn795dVrMX3TQ6enBv7xCgcgMFdU+2bB4avYmYbLJVc/efW/sAKLqqOhs+qIqX9uLveZJqhx5ndnhFyAyR0VffG779J+y1Wd3ld1bzp7adw6ILFBRaubzopOKq15rk8T3/zDffg+IaqCiqtL1qxLzvgWs3rf3yd7Ld+Br1ERFb+p5bJx3NNEnc9jtyo+WO8LPqoWKWj4zzaqRt9VnUfvpkmWpdyOAqDYqOhlscb24w1nXLbVkzwcVLo8EojqoaHjKhjmcnk5uh/Pfzr0bZH8diCxRkcLz/N3t/jPcdvvWWBr0pU5NILJCRWfOH8tQnm3unfowv/Wr1ZkjgcgaFVWK7J5fnLrLc7NNw9xxed3DgKguKhpiP3vFsKUrAtYsuxlV9+TH00Bkg4o+LVvX5/P7TwGrsrycggbXfw5EtqjI837/Y75XN3vPvNf51Keu+7oDUT1UtKnYZeru2es9p678sbxNq1B4lx0qmp9jZtou65L/tCejugwbctoCiOqjonfSg29fdT8rSJzTvt2G77M9gagBKnpkZ9Hw5tVit5mtG+/t/ar2USBqiH2vttO6fTqRyNvnMt3KYUD4UiBqhIo6t7nT3y7Wxn/BxO6vbt65uQyIuKjI7UlkgmLF+YAZU7Y5HLrV6AIp2bIxhybZMqO43T2rufd5C0IbtXu+5IMjhdnQNdlyGp2Jsgo7uDP95BlBRtbDCefqx2fiDxMFcdEyuZiCQUDXmLQFeoea84mUWo+JFMlkwAihVey1pAwQDRTlq5HPOVGBtrWvwAoQN6wA2lcK7zcQ9nEbplsTiBJGpepFqPn4qUuqbcjt6r/j0qXI9LUvs1kkVLLs5HLsBZxoCJCYynE7Ddw6r2E6sQE6BgGHSYGc3YklsEyvPEaKUCjA+0llsOmyepxwgQfFFcEtVyglitt4XTestFP453aokpt2I/4WPgSq/hxyCLRExHp5VXtkxDDA9XmoUcSryXQ9HduGOqETTVyiLmWESAn2L6MlXOCAqNsw0cdKC2YIz/xqv5a386lb5js392WE03L0sRSn5ZiEbe3VdEIHuzuV9tKckcFOipjqCFxjjNiDHVpLiEBSglVxQU3HW5Uq+y0P4ORcuyCqVHYaEQtgcRnBAkMdXX+mc2jWn/+yD/5R9gHRQ9db9sGJ4UzZB+7DyyP74MKTYptbVZv4rfq7R+cG1c9ZsLhYEi0QC9kHh4czkbUXD9dL9kFR/Yvjn3eQea5wkPU/9jrymMGzD2SMqIBxY6SREv1lHyzdsODPj58GeSx+lH5U/jUWf65iyOyD+oyq+zjMSN0ZlrMPBqVbx8g8KwlnNx1ULTnrWRcDZx8gVoaWPg6sjN6yD5o3FNZKiRG6Hhl362f1fqYyI8g+kDGC4z5cj9kH1rEubSfdvu25oMP+82YLTI4YSfZBfUaEwJxG/bYZHBq/7cwKkfB717qeiRsbVnnZdGIe3htFetYFuwu1Pzhww7eMRD1hsEMMA78Cv2u8Zl9FYGzR8Qp9L9R1m6SV40Q8v6R+b7IXjUl0aO2SNhFt7UJylVyBBmwmlkNvyYduU2RXx2zzn1Hp9Iphue9tCEF2eDdFkB25XJqnRLR/LPRtSYUARVMNQm5rASdiok6xMxsEIGxc2IulCjB8gZx6sd16SpA9ddIk/oxffX9bd+vmJPy0dMduJk/LElFpgB25FHz7ayW+78quDfcMb+NgyQJgroyAgRFlECdKtWbAv2nPofshp3SaMujSDNElg1WNsVIOT3rq7LZzjV3Rt9+evq2NJOMAZQjiohUSdegOcWp5bsH2A1qVzQEmqDbYawtnaI9c373XPByiZvq5sqDa4glMqj09wXj841TdGsCV3r/0Q5XgxRlm7p7TXV2aLK9+IMBg/Us5zqhNgv1Lo0n7W2dkiqEL40wOzcLodqXunXGd97puHzzMJrnfEXxpYEtYclMJjz4hG1cC48MSHbqeufDlkQByVeFP5DHikscgm8OSZmdiMEi0WhGJYbvSX5ikDsq/0tYbgQemEgD6czeKJmgjwOB/Li5rrh5PqAEKPG6ApXyhtyGP4tpjDbwAeqokPvg/lU2LgafR8lgJTQbO2eMb4rlnUnxW/CZZ3dp3+BO8jUF6oVK0iEOvl2Zjqnz7YSL5e5D7fN67Hg8fCMrKv0gFMNtAmE3cKNp+pbVCYC7rkXBzDfWrT7dC5VExktCxyPCALSSoTzd967w4bsVf77O6pljgnDSkDp5VUPJc8vYXJ2Q9o8kRhW0IFWxFTghsqEmYRWcSzlk0/dC2k9xv5vu3vs6XpwiIDYOjZaJQCdd/rExGYQvoHGYn7L4oeB8cs9KocSKZVKwa5LFSZQRXDrYpCu0tATFKz/CeVI2NNcTaUs9aAp9GDNA1owq+ZUJ0Q8s6963hooa0P1TCdn3QSELEqElVAStd/1g3kLe0ws+jXxtKn+LdZ+RBZPdZdbm06UxkJZSVTgUrOULk1lK5DLB7SU0xrfusJXJ2auQUuKEGhxZ1n8Npjx4+uTrNc+Ht4E+8n7l/46na6AChDungpWzPYogWGEkMaB0N1auDhb2oacj4aIkmDk01ODvOvsCllcic4d/EOHt6DYdObrhEQWAJw5+yGm5rZIGEigWPAJvq8SpVU2qZuDCVZZKUtYeyMzoLinlUpEIXZBbodBBmo2pjCn0FZK3Chr6YEopWmSaRG+QzvJdn5wRPiVu9kxCYgN+KIjCBXC4PKJAhTgsFGOLoQpXEoVmojKZuPdFastPCpxzK1ruHMpWtb6aGfLbRQ07kxrED+VvZ4lVVTQfy9z38e0RLl8EfWYD8YwQT5FciMMjn0EGuMyuzBga5HliZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGiVHdNIpMoMVam8/3ePeeOKfLYNXhmgm0fPx6J8gYHL+XoI9IvWaC8JdPpv4nvCac7u6t5bDIRj7z2oiZe/3VUh/18mTwGuotIAIfslFemmW1NPKSwZU8E7HGjegCypYT7TJSGoF14n0g5LfUVSeBQ/ZG2XjnYKjYTgUlWRHV2DdtBrh+h09m1nSrahmSDyKFqAB7gF3pe0JR9Dc4OP2Hhn+i1s9Hew9sWlyXWVr7H2IUAq/oidNktJiXYg231/RGUfjgdVlZqSoQmVtQckLW7s1v7bvKYc3rCO+9uVaewSIuY2tf/0+mNcR5b5LO9ktzGH2MBJTBmGFCKGKFbk3bHQGxeIZMNwQybcnCrh3HP6EMl/VLPrrrQcr7n9rtjvO1ePHhrwHgubL+IDCLKgNxR2H5xhG5urIM6egghCtWoWQFXIJxtogRnZWfh9ffdj/qnXU2YK1jdZZYRRC0hSOdHMIG0foRucd3m7lLVN1cfVZUMGSSwSG+gji6XPshpE+md8+dhy5SLFyfjo4jYc8lRRLWkPNCJZ0QnZATmGKVwaBbGV/38hSYuX/hL1p33WBPgPYh8EE9eCU1owG2Mj+eqqW6xcp3KxhETLLSNDWjL/gaGacRIANt5qtxHDoDNdGQ5hGmTO/lsPD9aLFxzKfBKV3fuKvxhJxKPpVnWccLSrDjRxJWVCQ7s9AAIViDVGMuEpbhG6rTWWSBgScBMo4dqQHrjHnMD+rkn3h+xP7VpZzzrtaoA3EsNlIZIzy4BhMmUEab7It0Wu9JDaMRYs8FCaNDSIGMEhtBInYSjnRFoUDs0l84O8Vued+k67Z4w02PNO2VX2wbEc+hIUTRXdU5DcV5O55q3VN2HRXuQvBQRN0oSCy9JFNJQdIHUyiwRk7sY3pDqpFxDrCWurrAP2LgCWDWJwidPAKiPGKeTobJAwlCqw13wOtSFhj5POh++/E+3dRbnZEvW96yNd5GQB5BdJNXl0uYcMc+tjHMOMpOLIDxZdBUddo3TiU1irnofpkJfzg8+ztzU6oH7phX7TEZn1b6Ej/6p7idH/9DrpeGzd/g77+Iuv3klCMcPm7VI8hcL+CQx4gOGjyEYBqYIcWOcCogeHOKPbpXAzUNEinCJkklpnlWlMX4TrvHy70W7dLywoBCvNNX9ZKWh11k/s4VBHEat1DQqrRTnY1rRafmqgRi8aIkYNb7U27HG+RWbja7KWz3i2u2Fyyrj47+V/ZD7yYpBr7OtGFdn1JzAY0bSfjXBRcDJGKfbhsxOjQGysZBJS8PjacEI+cE/agmTLF5VbdG5Cz61rQpf9QAyqxYTlAciIxgRaTYOW9fncWjW9V0LfT8O7t7Ne+bH70rT4zc/4HWs+kTtyTA91DsM/ALOjY2QhkYAtxLmFopiYmBFAzUrBl3+tdt8EPO0qd6XPCZV13XhiY5FeaIk9osr2NWNGFvWCHh91NWAi71UVaQGpjCp3oTyi9vNvtHswIY1wqSf0Z+zq6/Dc92r0Dk2aoGeF3+ESgoxbEPF0eA6IBjqZLF6+KMjSlWWE5eoBflAMarzAVgKEP6/xKfkTvSfRIkocT03aFVQuK9FALOhAgzWYgKAoZN5Pt1kNprAFXE0sdTjmhjmYCFydVvJFLk6rMQwT6XD3P+Ax8UznBP8hEG23aUvfWrhq0Yh/eSjZdJQJC2MbEjpkLbzA/4AWJ6U4E4ZNxL3FK3sJLEyBdNrkYtZ4eXaHtzA0kvjAZwpVAc3SIxifIG5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj8bRdU2VVv11GP/psKqU51lnXD6qcAjzw4eaXZUIMyOk95/Pak+z8Qtb+8c092tClLKemYC47pQnW2o2AuQoHN+fIEGSKWdLDUMloTKgYXWBaW2G1wTZ05Z5r191K4lGaIZI/EouZFRcisVpT8tujflf77mvvzbqktVJtnFsYDSekaU4scXoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD1d8C+zp8RyPnqyp4FxTPb0c+x/9hTVz5yj3quLL/b13rXazsPq09XmbNhTQpkmFiyFVxyTpeDGlbc9nS5d97pH2ymeSx7ZWll5te3Kgj0lHhKwgBIY1gwoFcaWoz0lrqEGt6fIiKG1pwAp1J4upLOnRrMnIE4ndshsHSvYvpvLj3bP/uQasevK3CAWtgTCWKYtgaMa8kV0kOtMZrPAINcDmY2iBh5m6ilq4GFkNooaeBiZjaIGHkZmo6iBh5HZKGrgYWQ2oodGYqxBq0g5xIjV81hgrC1mTclmelTyP6sjSVFUEVMyMeZP0okJnU6IZQtZ0MkSOp2k59wfOOvxZ+/cnP25u0c/wOf5VQoURUlk5AKtdIbNnseNhndoVJnmRsmVElVxIaUkTslVFWel/NrEuosUr6KNtTMLDlXIZbIguGLBi5oNWQmW8M2ZOueb3fd1X7zg929tzjrSMqlN+8ZIFCHg9bGPbe4uHztSBrlasBIsLPwjlirR7w48DBjleJiwkaASrFQvqRlLCwHHZAwwoF35nIRZ/Gp+IkW4NEooCcMtgGaqy0GwZ4fm9aqq6yHyaM2reCtsEtRCsKPimIIaCIiBCpg3qJSq3qoK9lZUE0ohivWOEsOyWxi8FarCizD0onEJ8dVlaFlh1YYAdgKRimR8WAtKYyFSKiSiSPXvJv0Vomj1PehQXUo3VI1mWSZWAWXpqI44/llYlzePYVqXk8Zg6/Iyo8ecWF7VeI9HM6RMmMdLMczT6DDXeZk05+hvmaSom4stkxR1c7FlkqJuLrZMUtTNxXwh04X5L9OX7HWb8+7TxfaPb9TT8IUcRiVn/1rwxifncVCfqMK3zUiLK7T61KFzQjFeFhbX5XSaNNKWY8Siw3prOZY6ianl2NH48m45ltbiqumgTTO89nQKHj3vcaOVRtByLGkSUwOXEZOMoG/SjRs39NByLCA26Hpj2fuA6b+unD1BPtPMKFqOdWHUTk1j0I5eWo4tqZgz4LfJF33zvnW8FBF8c7RRtBx7Hs+kHGBNDK8cjiFbjkVWKM4IFuf65b9YOCFi0cFpRtVyLI1RedGGUZ5xthy7fOeh17evXgHZspt/Xlo3cbWBW455MWqOa3DNwZvKreUYLzTTLKS10jPpZ7fWlrb9+EbRcgzxIWhbjgFDiPqp6RwaP/Xf1HKM2BbDwC3HsiYztRwLmayflmPcWkFj/oo7KNj5N8cjSDh8Oestx4jFzVhoo7V+MlMbrfjJ5dVyLP/HvWaeL5t7LC/eNKTQq+8K1luOEW0EC1iFMGLlOPl/quXYCjoz9l8R/n9UhJ/YTUhvRfgrJzAV4U+ZUh5F+MfY/zz4zSrEb07r6ydfhG3Bk8jKlm3Oso2ENcsrJjDVLL89RS9F+B9+bxWW7Wjpt9d82lS/GhtbGrwI/74pTKiAcWM0ewfdEn/YK8I/+NFqW06vCJ/sQXv2NKnk2NpoivCLGVXXwzCq03sR/qi0mHpV5lZ3XTD41sFVHQ6lGbgIP2JlaKuoAyujtyL8LgWrW97/fYDbwsVTNiwcl13ZCIrwI8aGFpyUKXoswv+mmuWQBdIi17zYnnmbJl3ebgTlLCBCYkaEwJxG/bYMDo3fJuA5tP7Z8wpv892GW35f9bY9vo4AksQXLZeBFZ3ss5nS4NyxJEQiLbkfrYUBEFfIx4ZHcNVNY3Wp5UDssEj7tuSqBxpCbbl9zQWcIjg9RXx46ELAtxDgOz2hrIlVliWvBa6iWFB+9V/bf67c+tQj/sJRF/3aVtmG77L4j3p3EVwoomEsowvFBehdgeg14lOMTht4SpygkwtVXTV9xZJwhYTav7Ryunn/qSDTbZbZxl9znyWvJWRIITdSZEiprrNe9hd8/yzG75+WYGhnST0ydXCU4CtL5WJpKENtm2VbnwhzEz77ZUh8HzZ6368xfqxiDyCPVbWkPJQxnVEZ0YZRBtH94egSsXD2jZIrwfIlCoVnp/ZteoItK9hZRDpy2/YMjZArxI7cdj1jxiiUyC/U3mrV7dk3fMbNcZ0+vPUskwneffDrGvyAYOV4GUX/yxJReShrCKOyvIxi5sBH6eStWpUcdEeNVYyMYZhBY380aj1s5hr/QxWqvvz1etf7Zdkql1EdqW1QQw5TPQtJdaHaCvoeTNDNS0UtOYO3dURqMmFDi43eR6xuNGqckdDPoNteCEAmBkARBQDQtOjkiWJLGX2RiSZRy6eEW1dyTW5T+4RY6PDYoMm+EIBRTABs9U/AHM2VnH8XH4fYmFtvfJxrU5n4OFFTy5uPc+NVwcjtN4O8Ml832G+9a0JtI+Dj/D6VKbqZN9UISAX5+fl64OOMbnIkfcnEUGHuSw6n9avMAqPg42xl1M5SY9COXvg4ifWT6twIOO2+10O6eq/woKlR8HESGZUTZQzK4RiSj8N5/FfE9c/D/Fa9ul1BWmPIfKPi4wxiVJ6HYZRnnHycfm26JM44pPTMzjeP+97d+aWB+TjtGDXX0OCaK1c+jlVkhx5jCnJdVw8Y1+uSpIfIKPg4iA9By8cBhhD1U1dx/h/wcTq3udPfLtbGf8HE7q9u3rm5zMB8nEGJTHwc50T98HEuWe+4675ht3dSfm7K7P6K86zzcYh7cxY4Jv0SmTgmbonlxccZdPhaXceNc7xX1b9xvfP9T2dY5+MQbQQLWDkzYlUv8X+Kj7OazoyNyZe2lvpv5R/IC5A9ezwYX5verM9YmDvpqRBFR5AzTHUIXzRzl8ZEw+wxdTRnvJMqy5QrgjXzwuEnUI48tyeRCYoV5wNmTNnmcOhWowu070eO5GgKSeOvajAwYQGaqVgUo5KY96TlqFQ/jYJP4woLc1nz4T/8qBw0qqXAsoeywDxYIgMKk4i9gV2Pwx6HqFWlykw6Veqck2avHtvln5M2JLRWj2dhJwUL7n84t67dOpFGThr36+XAux9re662bbvV++u8Axo5aeZmU2Ov/VDyVg8Z1cliej2lRk7ajuNWt39kFHktWrur4eRjA4I0ctJshx/qMqZHhuesbvGHpLIm+Ro5abwB0c/vrBH4zH3ovH9y55Phmvn5jtGbEsbGuy9u2LnSqIXjBBrNZvpbvHqd1e6lz/L+A3JuLJx4DYhMUZHpzm/n91WQ+ubaJjTYlDfgKxBVRUWVB/b9i78mT7Dv6amkUSE7o4CoGipqdcd/1ZPZsQEbMn98G/ym9SkgMkNFDVr9/eH9u5Ee01e6Dje3ePsaiKqjorsP32+I+StUsCzYbNjuu+1gcQFzVCR88mzIlvXT/bPObVha8XzELSCyQEWzAiza3PIs4OUuMYla8bHSZSCqgYomVD65NLHDUY+MBRe4+wfvdQCimqio84uC8aOCQ/037nn+d6uuLj5AVAsVVaghyLpTb7vnVM+6RVcebikAotqoqLnXwIc1PeYEpEe19PHPrXUDiOqgoludxue37xfLnzkiKNmx6cqzQGSJip4cTJ9xcr6599TXjY+/W1VpPxBZoaLdl/bPrJfUQbB86avEHpWfw69sjYr6nNn6fLqysc/+uPWvTsYLnYCoLip61Glcd9frfoI9drMsq7baPwWIbFDRq0shXiN/6eOWu7rlD9fzcjjYbFFR9fj3L9L6TPGbc9Rh1PnsmRuAqB4q2rW09piYS5t8pw83WfMh0RqK7FBRo4jb3XqZt/Nf03bpjGNXT8LPqo+KPKcfbLH3ppffPDurvVUrrTUBogaoyGZn+Jttx9b5bt31+Uw9q+5pQNQQFfEfzY7bMD2Lv8HGqeeBWr13A1EjVLRRaV3r07J5PqnK5U3qVNwMX4OLirbseXn7h2CAcO3cZPtea7udICVbNubQJFuKLW3M21y657dwxNAtF/q5RFCYDV2TLdfQmSirsIM700+eEWRkPZxwrn48PjhdRRAXLZOLKRgEdI1JW6B3qDmfSKn1mEiRTAaMEFrFXkvKANFAUb4a+ZwTFWhb+wqsAN2mF0D7SuH9BjoKOBbTdWsCUcKoVL0I5Xcb5iYMqiuuyFt/z61Oy57NX7FIqGTZyeXYCzidIEBiKsftNHDrmkzXiQ3QMQg4TArk7E4sgWV65TFShEIB3k8qg02X1eOECzworghuuUIpUQx99Ml110lT/7SCoc9db38LxIdA1Z9DDoGWiFgvr2qPjBgGuP6eZhTxajJdT8e2oU7oRBOXqEsZIVKC/ctoCRc4IOo2TPSx0uBW6459syrw3VF4dcCih8d6EU7L0cdSnJZjEra1V9MJHezuVNpLc0YGOyliqiNwjTFiD3ZoLSECSV1zqGb8wsob/+JlX0znDOj3NLXsNCIWwLJgBAsMdXT9Wcv5L/uAzewDooeut+yD+9OZsg8ydVsrtcw+KL6rHLXi53uvQ3aba1eJGRzB4mJJtEAsZB/cns5E1j6t22L5T7MPvB++X9Bn5XX3fXMnNj8+QbzMoDQMJPuAERUwbow0UqK/7IOZ0x9v7WOzxy+h78feeyLfHzOa7IMURtXFGUZ1es8+aBnw5cOkDFuP3PYr7Arfrh5q4OwDxMrQ0sdPU3gp5ZV9sO57ZJOPm3bw5zawyKh/Nx5/Hmig7ANGcDKn6zH7oF29L3PPdF7veWiqjWVl/9E/jCT7IIURITCnUb9tHYfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PF6ItnYhuUqusEL5wnLoLfki1P7njo5Lvab5/NFxfrW/zxKC7PBuiiA7crk0T4lo/1jo23IfAhRNNQi5rQWc8wt1ip3ZIABh48JeLFWA4Qvk1Ivtfbcb1/Z9vC7cLBRNqzw94g1+WrpjN5OnZYmoNMAOHL+W1v5yst+MCgfbvDlaT8YCYDmMgIERZRAnSrVmwL9pz6H7Iad0mjLo0gzRJYNVPb3y1GTh9OMBe6ddWTS7ujy/NpKMA5QhiItWSNShO8Sp5bkF2w9oVTYHmKDa/tPv1Kkf9kyQ4X6s97Snzz+z0cOIUbXxBlItlX+cqlsDuNL7l76c0iKtZYeb3rOHKoN2zo1MMFj/Uo4zapNg/9Jo0v7WGZli6MK4nkOzMLpdqXtnXOe9rtsHD7NJ7ncEXxrYEpbcVMKjT8jGlcD4sESHrmcufHkkgFxV+BN5jLjkMcjmsKTZmRgMEq1WRGLYrvQXJqmD8q+09UbA4J83C4D+3I2iCdoIMPgVs8qaq8cTaoACjxtgKV/obcijuPZYAy+AniqJD/5PZdNi4Gm0PFZCk4FjF+NydHfbw26Lq+V/H2HST4q3MUgvVIoWcej10mxMsvDGx2/j2vHWPnp3Z9m2XoPLaGNSAcxzIMwmbhRtv9JaITCX9Ui4uYb61adbofKoGEnoWGR4wBYS1Kebmcd/MX9TONtjy6FDcwunD++IZxWUPJe8/cUJWc9ockRhG0IFW5ETAhtqEjbQmYRzFk0/tO0k95v5/q2v8+UpAmLD4GiZKFTC9R8rk1HYAjqH2Qm7LwreB8esNGqcSCYVqwZ5rFQZwZWDbYpCe0tAjNIzvCdVY2MNsbbUs5YCTkOIrhlV8C0ToPt+ZlnnvjVc1JD2h0rYrg8aSYgYNdfY7fT6tB8dhEvufD51v00vHt59Rh5Edp9Vl0ubzkRWQlnpVAC5ehC5tVQuA+xeUnkWrfusJXJ2auQUuKEGhxYlfAOn2bWp92BPQPLIlDXxM1vE4qna6AChDungpWzPYogWGEkMaN2dqVcHC3tR05Dx0RJNHJpqcHacfYFLK5E5w7+Jcfb0Gg6d3HCJgsAShj9lNdzWyAIJFQseATbV41WqptQycWEqyyQpaw9lZ3QWFPOoSIUuyCzQ6SDMRtXGFPoKyFqFDX0x9aL1JPt9wvZrHqlmGxqeuP8kmRCYgN+KIjCBXC4PKJAhTgsFGOLoQrWRQ7NQGU3deqK1ZKeFTzmUrc+cyVS2PlUN+Sajh5zIjWMHcknFYfvq/F3smWhSWNAmu+IeFiCPm80EecRsDPLNdJDrzMqsgUGuB1YmBYkSY2VSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2Uuyjh3NU041HPHhM9+suAxtUiUNzh4KUcfkX7JAuVtC53+m/iecLqzu5rHJhPxyGsvauL1X0d12M+XyWOgu4gEcMhOeWWa2dbEQwpb9kTAHjeqByBbSrjPRGkI2oX3iZTTUl+RBA7VH2nrlcPjqBlgkhVRnV3DdpCBM3Q6u7ZTRduQbBA5VA3AA/xCzwvqX6t4cpCbm9+2WwejAjL/LCpLrK18j7ELAVYpM9Blt5iUYA+21VEzKP1wOqys1JQITawoUTphIpt6z3lhwNbv22qGtXtYn0VaxNS+/p9Ob4zz2CKf7ZXkNv4YCygFMqLUboZuTdodA7F5hUw2BDNsysGtHsY9ow+VJEcecVjiwxcm3h4riY+a7mzAeC5sv4gMIsqA3FGwDY6boZsb66COHkKIQjVqVsAVCGebKMGpMf1Mt14JP/kbM+/WXVHXx8wIopYQJDEjSIEzdIvrNneXqr65+qiqZMgggUV6A+UYvqZnYFFvz/W1+q/c5SAwwUcRseeSo4hqSXmg04MRHfsZmGO0lUOzML7q5y80cfnCX7LuvMeaAO9B5IN48kpoQgNuY3w8V011i5XrVDaOmGChbWxAW/Y3MEzO0IU/T5X7yIFVHskHUGUP094RnehTwUPmsTfuD+Xw7KQ6+MNOJB5Ls6zjhKUeIRNMXFmZ4MBOO0CwAqnGWCZwza1n6rTWWSBgScBMo4cqzreiV/zz1YL8lpta1Ww1cTjeEgnAvdRAaYj07BJAmCoywvRGx8Wu9BAaMdZssBAatDTIGIEhNFIn4WhnBBrUDm2js0P8ludduk67J8z0WPNO2dW2AfEcOlIUzVWd01Ccl9O55i1V92HRHiQvRcSNksTCSxKFNBRdILUyS8TkLoY3pDop1xBriasrbHqVWgCrJlH45AkAda9UnQyVBRKGUh3ugteh/JZ/v+iatMk2xnPpAue293b/IHRsRB5AdpFUl0ubc8Q8tzLOOchMng7hyaKr6BCdqhObxFz1PkyFvkZnjJm6OXm9z+JLUaZ5ya3H4KN/qvvJ0T/0emn4zPrp/GzD5h/ui248Xup/s99GFvAZwogPGD6GYBiYIsSNcSogenCIP7pVAjcPESnCJUompd2q/2akw4MMv8WbXA7wXzfdjFea6n6y0tDrrJ/ZAq10YNQK16i0UpyPaUWn5asGYvCiJWLU+FIqZsHU+9ebhQ8XbluybOjmefXG4hXjh9xPVgx6nW3FuDqj5gQeM5L2qwkuAk5Yqm4bMjs1BsjGQiYtDY/nYY87e7zOd5tR4FbkMvZ3Vzyrlq96AJlViwnKAxEvRkQcUrF1PYtDs67vWuj7cXD3bt4zP35Xmh6/+QGvY9Unak+G6aHeYeAXcG5shDQ0AriVMLdQFBMDKxqoWTHo8q/d5oOYp031vuQxqbquC090PsoTJbFfXMGu7vT8skbA66OuBlzspaoiNTCFSfUm1N2iHjS3HfvD3CN9yuNFG3ZZHsEPPjrHRi3Q8+KPUEkhhm2oOBpcBwRDnSxWD390RKnKcuIStSAfKEZ1PgBLAcL/l/iU3In+k6iHEmE9N2hVULivRQCzoQIM1mICgKGTeTvdZDaawBVxNLHU45oY5mAhcjVzPlPkapwa8x10mPsf8Lh4hnOCnzDItrv0pU8tfNUopJ98tEwaiqSFkQ0pHdJ2fsAfAMuTEtwp40binqKVnSRWpmB6LXIxK7xc24MbsMm2hlTNFKqDGxijeLmgwFx9Gol5Tth6Us0b2lKcLuEnVUEue4uxMTBQfHpehfyq7rlv6vqZt65TiMkr0MjNAhDzQhojpqrr9A9WvQ/yuvBPmDZuDTykCmBzIDsBITPh9UWpn5CF7puXVljhO/3AidMTw+zww6YCjzw7eKTZUYEwO1bNe2J7+KxDQO7gKw0Hmowoa9cmDpgdtaE621CxFyBB58eCAg2QSjtZahgsCZUDC60LSg9bjvqUZ7fdfd6KRdkvC1+a41FyI6PkVipKn8133SmWBHqsOzX7ZOSm4tEsoASGNQNK1xYUoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD3d+S+zp8RyPnqyp64LmOyp5X/2FNNP/Ib+O7w/7PFdcnv4xG8O8Y9ZsKfEMk0sWIoejJbCvtztaeSYphlN83q5Lb0WHVXU02kHC/aUeEjAAkqWjChxytOeEtdQg9tTZMTQ2lNLtT3dRWdPjWZPQJxO7JDZOlawfTeXH+2e/ck1YteVuUEsbAnyUpm2BDvUZyq76SDXmcxmgUGuBzIbRQ08zNRT1MDDyGwUNfAwMhtFDTyMzEZRAw8js1HUwMPIbEQPjcRYg1aR+iSZUD2PBcbaHtaUbKZHJf+zOpIURRUxJRNj/iSdmNDphFi2kAWd7KXTydLnn1Y69U0RHjwb8Kvnz8wm+HIdJXmoeMUwxZysS0oWRcGaUOgDqpFzWmt5BAT58ULsm0xs0y1oUhPHgFZa+ZXE0o2VhfLQ0RKx+ia6r0CuOFIi0zbU0ULASUwGtq4Tn+acMyyZwr80QeGi8C8Rl4XgX6Z9T8hds2CAd/amLf6uT1rfYst/ZKx2XYIFd5xIIRWNlFFzhvpEdzy7bGGua/YqvlnHZ2dymdHvhz6KG0B2lAJKdZSINTXLWtYIaG9yMuookbPgWiDaIzpKTP6kZYmjVDLQKVG7Otq2yYexHPc9k1rcvrb7z/eMqNE5TVTHfWUNiLRFITnqSgFJdFsEEtSG7KOzIek59wfOevzZOzdnf+7u0Q/wucKVAkVREhm5yDOd+bDncaPhHRqV6rlRcqVEVaBMKYlTclUFnqlHJ6F2K8WraOMxmQWHKuQyWRD0euHFkrTx4t6EMervYvWb7d5Q110L1rp1nbhvL90YNe0bI1GEgNfHPra5u3wsnBmhMlhNGhYPE0uV6HcHuxQYKX2YsJGgR6zcN0mPYPCmzgV67MrnJMziV/MTKcKlUUJJGG5QmKkuB8G+P5rXq6quh8ijNa8Sykj7tBBcnz+3oAYCYqAC5h4rpaq3qoK9FdWirBDFekeJYek+9WivCi/C8K3GJWS/L0NLk6uMP+wmJBXJ+LCenFo1lYOVCokoUv27SX+FKLrEgKiG6n66oWo0rj2xkjBLx/3E8c+Cb//HXCbf/vZczDxkGz3mxOXEeEMs5xmTgw6rk4MO0GGus6ttztGfq01RextztSlqb2OuNkXtbczVpqi9je2nrBNGt+vYx94rO31t/boN61XW2E9N+PJy68N104SH7nf47cwm7y0kBx1afcqBRCzozYKDnkOnSSNtW0gsXK63toX3FzG1LYxbVN5tC8XNbTpMO/U2IKtdlZDbHX+RGEHbwtuLmJpAnV5kBL3XfvvtNz20LWw5aEW2eHodvwzLAe/r26TPMoq2hfsYtZNpDNrRS9vC6h+f9Pzl3nHBjN+T7x1cboJv9GyotoUpjMqJMwblcAzZtjDxbOMO34dy/PNOOq+tlbEBXx/R0G0LxYzKCzSM8oyzbaH88oU1xYU1+Hl1JZ8Cm9m0NHDbwh6MmrM3uObgTeXWtvDx9eRzH+Y/8NvvkzJ18rhRV4yibSHiQ9C2LQSGEPVTD3Jo/NR/U9tCYmsdA7ctjFrM1LbQbbF+2ha2thLyW/t8FWxODrXpmMnF9+Nmo20hsUAiC634Ri1masXXb3F5tS08sH/t/dAbC90Pn+pSbNpQblL2KUzAimgjWMDKjREr58X/U20Lc+nM2H+NPP5RIw9iRzK9NfJouISpkcddsu1koZHHqwdHz7z/u4tvdljvlLPvVj1ksWIFyzYS9j2ot4Sp70HlJXpp5CHweRPw9x/zXY+8zrqRV7sZvn68IRp5vF/MhMpd/VpDxr2DbsmD7DXyyPiccnbuuQr+KVPjvxyqN3iC0TTyOMuoumzDqE7vjTwmnqrd1vzrJWFig2HRZrPiLQzcyAOxMrSdGICV0Vsjj6mpNS7vPDDVe6PJc4dqF3i3jaCRB2JsaMEBxkZ/jTw4o/q8+TJ7i/vqXtleqRPrZhtBSRyI0FlGhMCcRv22Qxwav03Ac2j9s+cV3ua7Dbf8vupte3wtEiQROFouAys62WczpcG5Y0mIRFpyP1pPByCukI8Nj+CqG0/rUg+G2KWV9m3JlVM0hNryg5sLOMVweor48NCFgG8hwDdjSVmTMy1LXgsyiFRYUH717kfCnFYm3uPnrY0taif/FV9s9B/1/yO4UETDWEYXigvQ+wOi14hPMTptHAScIt1cqOqq6SuWhCsk1P5l4LO2SQ//+EWQ8bV4UA/nNycJWZbIjRRZlqrrrJcOB9//BOP337XE0M6SemTq4CjBV5bKxdJQhvpYh50ubMtrkxQwzWvd+/Hjh9rixyr2APJYVUvKQxkZjMpIMowyiO4PR5eIhbNvlFwJli9RKDw7tW/TE2xZwc4i0pHbtmdohFwhduS26xkzRqFEfqH2Vu+k9Ap/PHK/YPvA5LE+26sfwq9r8AOCleNlFD10S0TloSwlo7JGGMXMgY/SyVu1KjnojhqrGBnDMINeZL97NjR+oc/U3ut2vkzec6QsW+UyqiO1DWrIYbp4Iam2XFtB39909FJRS87gbRVzfT2P2WcFzDk7SbDpQfAMg257IQA5GABFFABA06KTJ4otZfSFarJ2flt7qfFuQXr9iDeFLd7UISxl+i0YAAFIZAJga9gSzNE8zPl38XH4j2bHbZiexd9g49TzQK3eu/XGx3mzlImPM3NpefNxNv3we+llUcl3oY9zu3c1P4QaAR/n5VKm6Oa1pUZAKsjJydEDH+dhvy+KQcuL/FfG9X2W8cWvhlHwcY4xameHMWhHL3yc9sX8lMA3h303LDlWFPnn3vFGwcdJZ1TOTGNQDseQfJz1wRe37fCP917QYG2aa+TaB0bFx1EwKm+YYZRnnHyc1zmH5JWGtXJNfHjsdVann5kG5uP4MGquk8E1V658HG6KPPHJaKHbylqN84f52KYZBR8H8SFo+TjAEKJ+6hHO/wM+zkalda1Py+b5pCqXN6lTcfMGA/NxFMuY+Dgey/TDx+lzt9qvi3vfEWweU9C7X09hf9b5OMS9OQsck6hlTByTQcvKi4/ziddwinX/s35zl7xdHPotYyvrfByijWABKw9GrNot+5/i4+TRmbEx+dLWUv+t/AN5AbJnjwe/xUdK+oyFuZOeClF0BDnDVIfwRTN3aUw0zB5TR3PGO6myTLkiWHczHH4C5cjbsufl7R+CAcK1c5Pte63tdoL2/ciRHE0hafxVDQYmLEAzFYtiVP7D/Gj10yj4NDawuJ81H/4j5H+Oaim4Xnd+gXmwRAYUJhF7A7sehz0OUatKlfl0qtQ5J81ePbbLPydtk6CDnaXzFf6S6EmhByq4Z2jkpF1Ly94d/7tCsG+/W9xDcdJDjZy0qzXnyubYvnY//E6i6JVxoqdGTppf20fBmQ6LBcsPTN8+6GFOA42ctKTxq6YMnMb1SzntPLz9xx5fNXLSGrw4uVRaYCfIP1T11tSXWYUaNT46LVnCETbd673lyIC5he893TQaVs3NGzSBe9bTf/vEZeETDt38CESm2APD1nVpumWt5676jd8nVvvlHhBVxUTyFbn1G05zXZB+tTbvSCMZEFXDXt52WGHkkyi/TW1Ctihn3aoJRGaoaEfwHx6ffh3vn7Rh+Ndefw9OBqLqqKj/MPm8z9mxvLUiYZcN8n2wGIY5KlqzstntKev6uU9b2rqlX73aEUBkgYpu+6XGHuh5RDhjxLW7NTvO7wVENVBR3b2nryQE3vBKHpx1t93RzXWAqCYqkldPP3K8Zxfe+lbhTT/trm8NRLVQ0buonjVXjh3ksW7vG5/aNW9sA6LaqIiTZu9XFFLZY8PxE8kB/WcOBaI6qGhbhcUTo6t8DNht18JrZ/aTZkBkiYq6ra51cr5Div/c22EX/57k9wiIrLDXeNCbG/u6ofu+pCqht3oe2gVE1qjoZ5j92+ajNvNmzoz3eT1M5gVEdVHRERFn2dpzHb3mBDV66t814TMQ2aCi0VPiR+88ONZ31q6UofefXO0GRLaoqOOT1zsTfPL95gya2W7NsecvgKgeKkoeo/QfMq2WcMagsVkLE9MCgMgOFf1a+eWlKgmWwj0dvppWyxlTBET1UZHlCJ8m7btu9Tj8/b6isdR9MRA1QEWT8yfnLE2V+Sw6fsL27P2zEPmGmL6k9dc3XX/d+/Avp37y7vvCAdAIFV3wCjwu+/iXf1KTMbbykKRlQMRFRY+mvYib/LIqb+Xp83lNkm96kJItG3Noki0zLq4wc0qc6rPt5tchl36av6cwG7omWx6lM1FWYQd3pp88I8jIejjhXP14/LasiiAuWiYXUzAI6Jobt0DvUHM+kXYNMZEimQwYIbQThpaUAaKBonw18jknKtC2fh5YAb6lFUD7SuH9BjoKOIVpujWSKWFUql6E2v93WDTsu6i234w07nDugeu9WCRUsuzkcuwFnM8QIDGV43YauHWP03RiA3QMAg6TAjm7E0tgqW95jBShUID3k8pg43b1OOECD4orgluuUEoURRkvjgm2fOKnye7KK92svxwfAlV/DjkEWiJivUSzPTJiGOA6nGYU8WoyXU/H1sNO6EQTl6hLGSFSgv3LaAkXOCDqVm4M3bgOWgb1/3rL/UiHvq07P74tIJyWo4+lOC3HJGxrr6YTOtjdqbSX5owMdlLEVEfgGmPEHuzQWkIEkrpncb+GnKxOq/xT7tW4163xS17ZaUQsgFXICBYY6uj68yvnv+wDNrMPiB663rIPNi5nyj4IW14e2Qcf/hwR9+HKVf8FVy97Hmpa+zmLiyXRArGQfbB2ORNZe95yvWQfKPjVvZOf+gvm36oStihwdlODZx9MYEQFjBsjjZToL/vgx5qxC0f1tuBnW9zZ/2DF/GZGk30QxKi6XoZRnd6zDy73rT/QNGac1+FUF4dt5+ZNN3D2AWJlaOnjwMroLftg3jK+ycqBs9zyuINlHZeuwhdMMEz2wQRGcMKW6zH7oEfDcf7JV/d4zDEZWOVNv7ghRpJ9EMSIEJjTqN92jEPjt51ZIRJ+71rXM3Fjwyovm07Ea90U6XsZ7C7U/uDADd92FvWEwQ4xDPwK/K7xmr1ZgbFFxyv0vVDXbZJWjhPx/JL6vcleNCbRoT3U7U1oeyiSq+QKNJCxqRz609au4nhOGrXLbd3p1UtyKwXWIgTZ4d0UQXbkcmmeEtH+sdD7qQgCFE01CLmtBZwTm3SKndkgAGHjwl4sVYDhC+TUi633ySO9XqzfxVvZ/nn+WfeMY/hp6Y7dTJ6WJaLSANv7a4u6kSHdAxaY7jpr3im/rDXvIWC7GAEDI8ogTpRqzYB/055D90NO6TRl0KUZoksGq8p7eitgSL8Tnmnejgsbxj/8WBtJxgHKIJdcrsxzC7Yf0KpsDjBBtfu+/Vj95inPIz2vV8LVCc0usKDaJEbVKg2kWir/OFW3JpKl90BWNnk0alATW8/VpkEbm7jm5husBzLHGbVJsAdyNGl/64xMMXRhPM6hWRjdrtS9M67zXtftg4fZJPc7gi8NbAlLbirh0Sdk40pgfFiiQ+dEF748EkCuKvyJPEZc8hhkc1jSMFEMBolWKyIxbFf6C5PUQflX2nojYPCHZADQn7tRFBgfAQZ/l4yy5urxhBqgwOMGWMoXehvyKK491gQQoKdK4oP/U9m0GHgaLY+V0GTgePtcF7SOjOMttY1Tfmj/Ft9muTLST5mizSR6vTQb8+f4Ixciv83kL+7ZZmTLb8s/lNHGpAKYAyHMJm4UZa/TWiEwl/VIuLmG+tWnW6HyqBhJ6FhkeMA2NNSnm2E9unZuZPl3wMrVKyaZFeThW9GZlTyXvP3FCVnPaHJEYRtCBVuREwIbahJO0JmEcxZNP7TtJPeb+f6tr/PlKfhjbvMgSbRMFCrh+o+VyShsAZ3D7ITdFwXvg2NWGjVOJJOKVYM8VqqM4MrBNkWhvSUgRukZ3pOqObqGWFvqWUsB5/EKgK4ZVfAtE6Cbs6Ksc98aLmpIC1UlbPkJjSREjDqlxMzm7OOPFYUHP98ImykZ1w7vPiMPIrvPqsulTWciK6GsdCpYFxYit5bKZYAdkM6voHWftUTOTo2cAjfU4NCihG9pbc9M69RKvsu2HgzpOWjrUDxVGx0g1CEdvJTtWQzRymFEa/0KvTpY2IuahoyPlmji0FSDs+PsC1xaicwZ/k2Ms6fXcOjkhksUBJYw/Cmr4bZGFkioWPAIsKker1I1pZaJC1NZJklZ+7A7o7OgmEdFKnRBZoFOB2E2qlbI0FdA1ips6IspoXibN3NJlN8brwPv7r+oX/O3RoTABPxWFIEJ5HJ5QJHDCAUY4uhCdZJDs1AZTd16orVkpw1YOZStD1vBVLa+nxryAuOHnMCNYwfyDu9GZkw8WNtn5ereH8/WkJT11AhC3msVE+TOqzDIT9FBrjMrswYGuR5YmRQkSoyVSUGixFiZFCRKjJVJQaLEWJkUJEo1K5NMosRYmRQkSoyVKQs8XVi1Wj3+Gp+omfU+Cz+SKG9w8FJvQgn0SxYob6fp9N/E94TTnd3VPDaZiEdee1ETr/86qsN+vkweA91FJIBDdsor08y2Jh5S2LInAva4UT0A2VLCfSZKQ9AuvE+knJb6iiRwqP5IW68cbBX7pYNJVkR1dg1bylqn63R2baeKtiHZIHKoGoAH+IWeF/R3WOXjq+XN3HMOj+xyLKp4UFlibeV7jF0IsApKR5fdYlKCPdhWd0in9MPpsLJSUyI0saJEafDHCfmXKih4uY8yWgQcOFSRRVrE1L7+n05vjPPYIp/tleQ2/hgLKFkzovR5OfnwgclPcwzE5hUy2RDMsCkHt3oY94w+VBL+vWXvvIyWgsRLHVeY+TarYcB4LmzhigwiyoDcUbAN7pWumxvroI4eQohCNWpWwBUIZ5uokzX9XTp//X2PT06LbasrCMfNN4KoJQTJgREk63Td4rrN3aWqb64+qioZMkhgkd5AjavTZ/TA3xf5bWt3IPmbwAnfzM4Uey45iqiWlAc6FRnReaOO6Z7h0CyMr/r5C01cvvCXrDvvsSbAexD5IJ68EprQgNsYH89VU91i5TqVjSMmWGgbG9CW/Q0M00cI23mq3EcOgO20bkuddmHavOTBl6/deOqx17lvjM1ix+r4w04kHkuzrOOEpVlxookrKxMc2OliCFYg1RjLBK75bd3WOgsELAmYafRQ3Ru1b0QVywLvVSeHP9rxZ0Eq3hIJwL3UQGmI9OwSQJhOM8K0L123xa70EBox1mywEBq0NMgYgSE0UjfyaGcEGtQOnaWzQ/yW5126TrsnzPRY807Z1bYB8Rw6UhTNVZ3TUJyX07nmLVX3YdEeJC9FxI2SxMJLEoU0FF0gtTJLxOQuhjekOinXEGvbtbSlgJOwoQBWTaLwyRMA6q4bdDJUFkgYSnW4C16H8ltOuORi7VG0znXumAorc7fvHIN3kZAHkF0k1eXS5hwxz62Mcw4yk+MhPFl0FR0iNujEJjFXvQ9ToS/BpEBR4aI1wrzQcRKPJkm/4KN/qvvJ0T/0emn4dPUb8/B7xie/gz1vn0s79uodC/iEMOIDho8hGAamCHFjnAqIHhzij26VwM1DRIpwiZJJaX+PXxSwM8fDb0HQZ/OMtOd4Knll1f1kpaHXWT+zBVpxZNSKjVFppTgf04pOy1cNxOBFS8So8aUuSZI2fkCnSB+3aWsrDzDvwDmMV4wfcj9ZMeh11ntEO6PmBB4zkvarCS4CzrANum3I7NQYIBsLmbQ0PL586mQ+gGfhm/Tjk1NDlw6N8axavuoBZFYtJigPRFwZEWmyAVvXz3Fo1vVdC30/Du7ezXvmx+9K0+M38ZEj9BO1J8P0UO8w8As4NzZCGhoB3EqYWyiKiYEVDdSsGHT5127zQczTpnpf8phUXdeFJ7oe5YmS2C+uYFd3dH1ZI+D1UVcDLvZSVZEamMKkehPq7e2TL5Wc31T33BrM+3x7+Xr8aWwVOsdGLdDz4o9QSSGGbag4GlwHBEOdLFYPf3REqcpy4hK1IB8oRnU+AEsBwv+X+JTcif6TKBElrucGrQoK97UIYDZUgMFaTAAwdDKfp5vMRhO4Io4mlnpcE8McLESuJq9nilxFqTG/QIe5/wGPi2c4J/gJg2y7S1/64OndFkg/+WiZNBRJCyMbUjqk7fyAPwCWJyW4U8aNxD1FKztJrEzB9FrkYlZ4ubYHN2CTbQGpmilUBzcwRvFwY4G5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj+jO9UtqPTbU2Fq31u2T/dnTMXppwKPPDt4pNlRgTA7WlZb85bTaIzfqju9Q/MvFR8v65kJmB3VoDrbULEXIEHnz40FGiCVdrLUMFgSKgcWWheUQtY5WnYK+NN//uJrme1jfnPHo+RGRsmtVJRmv3N8d3Vlsm+ik9PmwVkTyppdClECw5oBpYsbC9AxqB5LjGwXVb1A6BhpARCR9Y5fw1SPIq9h6PXyOPBGRsxnqoMmeycEKdSeXvyX2VNiOR892dMuG5nsafX/7Cmmn74eJ0bNaNjF44DHuJqXhg9UsGBPiWWaWLAUHRgtBbfc7Wk3s5VOqdcn+aZHDN7cfZVJFAv2lHhIwAJK1RlR+ryhHO0pcQ01uD1FRgytPa2utqeX6Oyp0ewJiNOJHTJbxwq27+byo92zP7lG7LoyN4iFLUH2BqYtwUb1mUohHeQ6k9ksMMj1QGajqIGHmXqKGngYmY2iBh5GZqOogYeR2Shq4GFkNooaeBiZjeihkRhr0CpSDjFi9TwWGGu/saZkMz0q+Z/VkaQoqogpmRjzJ+nEhE4nxLKFLOjkdzqdpOfcHzjr8Wfv3Jz9ubtHP8Dn+VUKFEVJZOQCrXSGzZ7HjYZ3aFSZ5kbJlRJVcSGlJE7JVRVnpfzaxLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJlnB6q6X+D5od909ZOHfhkfvvntFZQtO+MRJFCHh97GObu8vHjpRBrhasBAsL/4ilSvS7Aw8DRjkeJmwkqAQr1Us6lG4BdjxrgQHtyuckzOJX8xMpwqVRQkkYbgE0U10Ogj07NK9XVV0PkUdrXsVb4cq+LQTjzq8tqIGAGKiAeYNKqeqtqmBvRTWhFKJY7ygxLLuFwVuhKrwIQy8alxBfXYaWFVZtCGAnEKlIxoe1oDQWIqVCIopU/27SXyGKVt+DDtXLdEPVaJZlYhVQlo7qiOOfhXX58VqmdfnKWmxdvmL0mBPLqxrv8ehCRmJ/oprYf5UOc52XSXOO/pZJirq52DJJUTcXWyYp6uZiyyRF3VzMF1rq8aVe93gef98h3uBFQ/bxNHyh3p6u3sWDkj1yrzysm746fB1pcYVWn3IgEYvxsrC4XqPTpJG2HCMWHdZby7GizUwtx6I3l3fLsf0tU48Uxvt7LQo6rZT3T+EaQcuxK5uZGrgc3WwEfZPOnDmjh5ZjL/7gV6ux/g+f3DN90g5MamdvFC3Hshi1k2YM2tFLy7FvT/Z6u5yw8Nhdo7i3JC0XT2U0VMux6YzKiTYG5XAM2XJs7bmr8UGr+/gtr3h5acRfSW2NquXYEEbleRlGecbZcmzKi+SUygPvCab9GPis6coCjoFbjnVg1BzX4JqDN5Vby7GjJz2b2dlV8M7PHLOikfCPrkbRcgzxIWhbjgFDiPqp1zk0fuq/qeUYsS2GgVuOhW1hajnWbYt+Wo6ZuFg/nrPpOC/ResuBdVlP8XxgNlqOEYubsdBGa+QWpjZa/lvKq+XYy5r9kms8kvtsumnxcMGWPbNYbzlGtBEsYNWNEasWW/6nWo4V0Zmx/4rw/6Mi/MRuQnorwm+9lakI/zWy7WShCH90L+/WZ1te8s0+0Fq+K997D4vZ5izbSFizvPZWpprlP8g2sjyK8B/5XD+vGq+579YanRyWH8zGF5k1RBH+l1uYULmmX2vIuHfQLfGHvSL8Y+9NeD1U5ihc/du0wW2b9scX3jBkEf5jjKrbYRjV6b0If/sVb+r0rzbbY1G+KDwsqZuNgYvwI1aGtoo6sDJ6K8KfvKnKTesKNYSrr6Xer5rT08oIivAjxoYWnGtb9FiEf6p8/YPFFRt4Jhzcub53zZhTRlDOAiJ0jBEhMKdRv+0Gh8ZvE/AcWv/seYW3+W7DLb+vetseX0cASeKLlsvAik722UxpcO5YEiKRltyP1sIAiCvkY8MjuOqmsbrUciB2WKR9W3LVAw2htty+5gLOczg9RXx46ELAtxDgu3hrWROrLEteC1xFsaD86oXvwjqE+2wO2H/qTLPY07/hG9X9o95dBBeKaBjL6EJxAXqPIXqN+BSj08ZBwCncqpMLVV01fcWScIWE2r+MqdexW+Wwe6655+4dHL2xCv4opbI7ciNFhpTqOutlf8H3P8z4/TdvNbSzpB6ZOjhK8JWlcrE0lKG2jemxYbGOUZ/911n+9sfZic3u4Mcq9gDyWFVLykMZixmVkWAYZRDdH44uEQtn3yi5EixfolB4dmrfpifYsoKdRaQjt23P0Ai5QuzIbdczZoxCifxC7a1WfJVbs/K4TV47lb/cVDw5wseva/ADgpXjZRT9L0tE5aEsGaOyBhjFzIGP0slbtSo56I4aqxgZwzCDks02/8j5UNH3QMeajivdjjcpy1a5jOpIbYMacpjqWUiqC9VW0PfMVt28VNSSM3hbF5xfPaud4xuQEjoo+phlo6oG3fZCAHZhABRRAABNi06eKLaU0ReZuJB/qH3jm2d8cqZV/trkU95ywlKm32RfCMAEJgC2DtuKOZo3Of8uPg6xMbfe+DhPtzHxcSZvK28+zl2TCxfrze/qsWnz241t9o0LMwI+zsNtTNHNi9uMgFSwa9cuPfBxavzZ7MbbGt38Nn1J8ggNG/XUKPg4uYza2WgM2tELHydm4luX9SfWBGRs7Di4x1+mDkbBx1nIqJzJxqAcjiH5OLm3VuWMcH7jOquOWc3i57sSjYqPM4pRef0Mozzj5OP8YRLwNcGstvuMDOtv5zZU/WhgPo4bo+acDa65cuXjvPYZHHEy7qxPsuXBh2kfe7Y3Cj4O4kPQ8nGAIUT91Fuc/wd8nAtegcdlH//yT2oyxlYekrTMwHycUVlMfJxeWfrh47RYXhDsOGW4YOm11o9P7Pklm3U+DnFvzgLHJCyLiWMSlFVefJw+Zi1eD3zTzSfPNqnrgaq8j6zzcYg2ggWsejFi5ZD1P8XHuU1nxsbkS1tL/bfyD+QFyJ49HvwWHynpMxbmTnoqRNER5AxTHcIXzdylMdEwe0wdzRnvpMoy5Ypgzbxw+AmUI+/RtBdxk19W5a08fT6vSfJND9r3I0dyNIWk8Vc1GJiwAM1ULIpRScx70nJUqp9GwaepDgtzWfPhP/yoHDSqpWBGtfUF5sESGVCYROwN7Hoc9jhErSpV3qFTpc45afbqsV3+OWnZl+0bf7862WON89Lzn94uGa2Rk7a61wnHuqm/uB0SNcl6VN/XRiMnbfK4RG7nyt28Z7u125ErDJFp5KS9fGZ20GHxV8+9r8Q+Ez+2KNbISRuyukVNru0W3znff3nof+EPqUZOmuePU8ulE4oDUopqb/WzfDRKIz//RueligUvqwiTBwVlZfDHpms0m9n6aPYa/117eDv7x7VpERNwBIhMUVHPyM3TJr9/6bk2/veTzWuapAFRVVS0ZFzmyZDGFm75igzHb0MCNgJRNVTkUXfTFpfMrx5pM5N/y7q7JACIzFBRA6VNh3fXFbykO79Y7fPtBBPZq6OiLnUvV6jzu0K4p06vaKunqZZAZI6K+sz1KB4WfUKQ03/Z35t+9kkCIgvsezX8fbmX913/LWcrNrN8ad0eiGqgori79hsEk+vych4s/vp0wf4TQFQTFf2+YtJP8wNJHknmopA6A9vMBKJaqKhmUY+JktSKAfn7w8Yqq594BES1UdHbt08tnq835S/oWGz9blWj70BUBxX5+0RkTtkW47/mauTz+ZcPXwQiS1Tk2kIQ8LTtMt7OoUM7mYSF3AAiK1T0qtaT+e1rz/fe/Ndlvyt/1v0JRNaoqHbh1JcpL34NWNj/znTpYd9fgKguKlq8qdvJg10dhGustlccZl5hNRDZoCLn6SnrRh7/6TXnbY5bl++/bwAiW1Q0sPfrdsom7T2WpNz+PveIFdRyPVQ0LciiXe09ll5bBy+zv1xN+QWI7FCR1yLF6dNPV3vOfG0663b9s2eAqD4qCmlWw0L+wYd34PrBw9YcG4hhA1S0zKKgV5eZHTxzPs0/JAuvFw5EDVGRd2a3P5bldQhYUJwXNG7YjgVA1AgVPaxcY7JlhDcvXVlxcMvDkROAiIuKLvw+fEmfSo/9tvEOee5dtkVMSrZszKFJtmwmufZsm/MF/4ShRy4PzH89h4Vky7t0Jsoq7ODO9JNnBBlZDyecqx+fiT9MFMRFy+RiCgYBXWPSFugdas4nUmo9JlIkkwEjhFax15IyQDRQlK9GPudEBdrWvoLFw7cXQPtK4f0Gwg6w23VrAlHCqFS9COV3Wzn+zTBFhVGuSyMXxbeYaFOzLFGi8nVyOfYCThwESEzluJ0Gbp14u05sgI5BwGFSIGd3Ygks0yuPkSIUCvB+UhlsuqweJ1zgQXFFcMsVSp3jsyH66HnhG7eVk38VNe0x+iY+BKr+HHIItETEenlVe2TEMMDVY7tRxKvJdD0d24Y6oRNNXKIuZYRICfYvoyVc4ICo2zDRx0rPVr4xdoywtfeeV82s6/V14RJOy9HHUpyWYxK2tVfTCR3s7lTaS3NGBjspYqojcI0xYg92aC0hAkndevX+vrp1phxwPzLg/9i7DrgmkrcdFBXFgmCvsYIKiL0rSQi9KYi9RAgQDQkmYC9YDrti7wp20BO7goqcCtZTzt4r9oaKZ9dvZrMb2N3ZJZElyef//P28kx12s3nemfd5Z+ad5126yXxr33WFTyPiACx/VrBAV8f55y6PgX/+O33wS6cPqBG6wU4f1N/OdvrggX5cqePpA7Ppk66M25Mg2LPaO7WX3cadHJIl1QNxcPqgzna2ZO0y2w1y+iB9qU2jAe+qiKcEbe7S88fsUUY/ffDvn2yoPDAOJ+qwU2K40wdZ+8TDL4XP9Dp069vKF/Ou7zCZ0wfnWE2XaqrhDMenDzb3Cs1NmTRanDzh0cLpS+Mo9ZAMfvoA8zKM6ePAyxjs9EEnnmzIvskdvCfl7Ilp1eAMeVfdOKcPMGfDCM6DPw14+mBhhTf8UGGY156KFcae961kbiKnD86xIpSqjdvu8RjitlMrJd7fO1R1m7ypTqnnDcamkaNRrGZdgIu37gsHQnLJSDwSBjPEUPAjiLtG56+rCJwt3l9h7IWHbuN1O4dAWb9Evzc9iiZa9CjtUuYQXtqFFio5AwucPlgEtSVPPe1e16bZDeeZZiUuNJZUbUfZZId3IzbZscsFRUpU/8dB3ZaSEKBIVCfkNxPz3h3Ua++sGgYQ0S/sQmQq0H1BO5psnURdz1Z6H+15aEHdF/5de8wlD0sX4mb6sMxrKggw/zHXpJMHZwiTytdcXl34biEHgN05yAYY6FFGCaI0nAF/pxWP6Q/9SKcFiy0tMVuyeNVLfhfqZP1s6DJftS76Y906T6yxwzjAGOJRkSqpdusOC2oFwgC73k0KFwBTTCsYbtVqeN/a4riPa2dHDXnky4Fp97Gadp2RTIuKj+P0KwBXcP3S9wNOjowdlSPe1rLpvBL+Di2NVr+U54j7JFi/NJI2v3XEhhhOjPd5DMQovFT19oh2u53/7Dew2qygw2Rp4EpQcjMKLn3CbFwp3B+W6lH1rLlIGQEg1wh/Yo8JyXsMNjnMK3YWAjqJToxI3bYr+IVp5kD+lq7RCOj8WTsA6E+FiCJog0Hn37OjsGf1BN75QIHLDVDKF0YbSgXfjijgBdDTHOKD/9L4NDVcjVaOlDKcwOn7pdHCz9UTBfOLfcvode7GLbKPwWqhIkrE4dcL9DFX/nj0aste560HbpWdVGdUUiF9TByA+SyE2VyIKPu1rAkGc2GXhBvlM792dStYqVBLg6Ox7gFLSDBUnWt8JaBYu/Y+WzKldx/cHdqGnFWQ91z69JfUyPmJJnsctv4o2K45YLDhLuEBk0s4U77B+xZtlT6x7954OV6cKKYWDI6US4KlfN9ouRzhC5gCZgfiPgW8D/ZZmWKERC4L0XTykbKocL4STFNUunsC6i49y3uiChvna9Y19cxWzBsM0bVEbb7FA3RbF3rsV4GkhpU/jILl+qCThIghAWh/3a1X6a4LBEkVrfb6lq/TgBw+Yw+ih8+aywUNZ2pWQmHTqaAYIERuHSpkgNVL3Hcwhs86IldTi5yK1NVg10LvWye9HXZ/Nd83ttiooY65/hPJqdp4B0Fv6ZBbuR7FEK3WrGjxdxg0wCJe1CJwdKQ0Pw4N8uXsOHqBkFYqd4S/o3Z0cx8Eg9wwqYqSJQz/FNZxV8EIEhoWPAJMqkdrTI20MpWYCjNICltD2REfBTkCVFJhc2wU6LUQVk1TxhTGChhXEV0/BAnF+Wrly0+8qRIsmHbNpefJEj8oGxPwWyE2JrDLRQFFa1Yo+FqieshjICqT0a2nektuSvgUgWz9g2Q22foLyQTk2SYPOTU3jhvIJfV++tQdNtFtq3vJajVbOF/mAPLUXWyQJ+0iIH/EBLneWZkVCMgNkJWJSKIksjIRSZREViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiazMByvrfm25q6nPhn5hZ2bu9XGkpbzBzovsfdT0Sw5S3h4z2b++13GH2zvLuG42Dxly5ZkV2f42msV+kVyphuEitoFDD8pLMoy2+q4yWLInHNa40TwAm1LCeSaehqDb9j415bTAV6SBg/olXaNyMFW8ALeXrqHWrmE5yAXb9Vq7rqnZbcNOgyihaQAe4AfmvKAvp9SevbdUc990z2nsI8+MAYXZayvaZewsgNW57Tjt5tAO2INp9Q76hj8bVpW1KRH5sUKiFHHQ/fmrbX+KDti42bTvnliPw7SIST19P5zcNMo1UTnDfbpw9FEOUFrAilLUdv2KtNv7E+MKG2wYZsSQg1M9IveMeask8OLx5S5vh7ovGxga2/vlrbFG3M+F5RfPMe7npoNpcKqe+7lNtbuHEKLgfJoVkIFIvgm9a+kV4HLnj9Lek5q4zDvXKfGHCexaQpA2sYK0YLt++7qNXGSab65dqsrrMtjGIrODetT9S9Nhj5r6JNu4//NtzZoY8i4i8Vz6LqK2pSjQmcCKztDtRGD0hMdAjC+CfL3Nm38WLV5/1jXBz6MvfSGezoTmDODWI+/nalPdRir1ko2jHrDQdW9A1+xv4JgiYQh/FnX2kQdgc0kugm3aJcdzomLbTnFbs6Jvde+LV+6QFzux/VgGWic1FuTFqS6usJngwE/LIVj+qD4WD9WdkvXiuvIYWFIw0pih6pmxvOKhNb1dD0dtc+efsiOTXGkxuBcNVL4mA4cEECYXVpickvUju4K30Kh7zUbbQoOeBusjcAuNVkk40hGDBvdDT5n8kMj2bPMOU+56x7smvI3qUL02dR06QhLJ16zTINbLmUJzW819xG4Pdi5FwldIR8JLUpUsGCdIndwS9XAXyxuiVsrzNeuIq7OtmLc9JROqJiFi8hiAuiJFL0dVHtuG0izugtdBfss6ddf2X+jw0SM24Kjy6uCbq8ghEvYAeoikuVzQmKOecyvkmIOZyUkQnm1Mig5LUvTKJimneR82oa/ZxWcErXs2wWt3j+ctXO+PMSPv/mnup+/+4dcLwiey25h/1rTe7zLLxnPl3nr3IzjAZzIrPqD7GCPDwAJL3BihAaIzj/pHPyXwcoESVZg0is1oHY+Osr15rKRP4oVo1eqeE1+Rjaa5n240/Drna7bAKn1ZreJqUlbJOUJYRS/6qoA5vEhpCO58kYZpO3PrI3HxBcL9lqmb76UPlZAN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW82Sn6TchqajHAJhZyWUF4nDp498sSl+euhz9nDLdu8qM5OatWpHkAPauWaCgKRBSsiPinELz+jMfA6zsWeOX269TRIzb3e5TFsRvvyTbWfKLuyTCdtTMMMoHzR4bLgsNBWAnPFkrUaqhooM2Kwelft8kH9Zw26n3pfVJzXZ880RQ8T5SW/eIMZnWvDxR2B7wWHmpAspdpRGrgESbNmyC/uPjWw1tDQ146x72ucbVE1RRyKfVSTIGNtsHA5I+lkkIMnVA5GvymGIZ6eazOvniP0shykg5qwXwgtWZ9AEoBwn/nxZT8sb7j0QVUKHxuVFVQOK/FAKuGAgxqMQHA8MH8nGkwm8zGFbU3cVTjmrrNwcHO1bYDbDtXq7SYv2DC3He/67lTvOOimL7VO8mee1Ykq0Zh9eQj5bJg7FgY3ZEyIV3TB8QDgJ6iwJ1yfgTpKTr5SaoyBdtr0cWsyO26LtzAg9QwZXY2auEG7lFYHcwsp12NJCIngk/KeEBfSrIl/KRS2GWPEKIP9Ak5OdfsSGmX1NdVfco1s8ki2s0Y2i39MPdC6yMWmuvMD9a8D/a68FfYJm61XWUq4HNgdgKWzES2F9I+wV+c42tWaueT4N39Yab/jhkk+5gJ6KNDQBsdZpTR0WdqsVbb51p47a8UHeQxYOarwq6ZgNHRHprTCZW9ABN0Gh7MzAdSQStLdQKkwUrgofVB6dDCNbvqvfvpHDel4bjzonhyBqKZkI6SsECU6t9/ebBcmc+iw3X2PR76xOUuByhZsaL0LTUT74PavsSa7aLRC4SBkQ4AUbPeyRymeRSdw/DrRbHgjfWYT6iFJjsHDCncn778f+ZPqXI+BvKnoals/rRj6n/+FLfPxhEN57ey43vPPNO5kVL2cigH/pQq08SBpxiSyuYpfFOL2p8+WyGWzR0/3XtByykjq2ckzeDAn1IXCThAqSMrSo2L0p9SOdTo/hTrMYz+FCCF+9NXTP7UZOYE1OHETTJbG7Pqb+eIIl32fXAO33FpTg8OpgTZKWxTgkvaNZXXTJDrncxWnoDcAMlsCA08wtUjNPCIZDaEBh6RzIbQwCOS2RAaeEQyG0IDj0hmo0ZotIw16BWRXYyqnsdBxtobzoxsaUAj/5qOJEJUkTAydc+fZhNzJptQZQs5sEkOk01WHLjXZ1r2J4/UA3tTdw67Tz7nV8JfopDK6QKtTI7NTsCPhHfkU5nmK5RRUo24UJR0VBRfI86K/NpU3UXEq+ji7SwDglVKubwHZCx4MX9BVoon9Lrm7GBRarJw3rbRD446dbdh8oQWPdVSVSB4feJjG7koo4fIYa4WVIKFwj8hsij8u4MIA+5yPIjZRDEJIdVLW5RuDFzkPuBAO4h4MdNEZXwkqjCZwlsaSiJAS83lHrBmR/7rpTXXA5WR+a9SJGA9G4uPXdiXWQED0V8Fzw1GyTRvVYp4K9SAUklGeihCoOwWAa9ZaXgRbr3ku4TF6nJcVlgzIYCVQGQSuQhqQeUjoiiVVBKh/dm8l0oSqb0H76pvmbqqydAyVQWUo6U6av/ngJet97PxcrH9BC+/M3nMqfKqprs8+oM1sf+1NrH/PRPmetNkOZ7haBKhm0vQJEI3l6BJhG4uQZMI3VwiFjroePrGmca57tP/sJ0g4ldYkC8W2rCkbnP1aqFrSnBZf4v54Tk0coVeHz1doYjxckCuuUyWNNGSY1TRYYOVHCt5mK3k2JpDRV1yzPPHM5v7WUGCNatnO9ZzWBttAiXHih1mK+Dy+pAJ1E06evSoAUqOuW2tfnTZJ2vhthNJmV2Hu1GKuRip5NiNQ2zWyTQF6xik5NiESMcde3OvuG5zGpec8SMlxCRKju1iNc4aUzAOz5glxyrPXX7i21/7XNM2HDp9seW3QSZVcmwmq/FGGMd4pllyrMO0jCsWL90E87Ku2ueqL6cbueTYEFbL+RrdcvCmIis5NqZV55k513r5bpg37kndR2GlTKLkGBZDMJYcA44Qj1M/8Bji1P9PJceoZTGMXHJs0WG2kmPhhw1TcqxN689rhcdCfBfPW7p1/esL5D1tLkqOUcXNOCijFXeYrYzWuMNFVXIso0oj74a5sa4bIoqV+Kv4to2FH8IUrKg+ggOswlmxCjz8P1Vy7F8mN/afCP8vifBTqwkZTITfJY1NhN88rShE+HcdPTl6WmA750l/u92bODljMYenzTn2kVCz3DmNTbPcPs0gIvw37R0CJ43ycE6pPXTNj5njyMqKxhDhr8aKCug3JjN30O/gD3ci/LWjD6/p77beZ4ZqWROvyRdHmowIf85hNtPdMiyREaYzuAj/owrZ9SeN7SucfbTk6nW7enQ1sgg/5mUYVdSBlzGYCP+Pl+r+4wI+uy1+YF/9aNbVIyYgwl+NFRzzNAOK8Bd3rbfs1UBXv4QF3eIrzlekmICcBUQIG9OMCIExjcdtH3kMcZtY0LTZzy6XBFvu1Em8sOYNeenXEjvEF6mUA0anx2wWDDi3ydsikeXdj2thAMRVyuiwcL62aKw+Wg7UCouMb0tXPcjXqGtuXyMxr8oRgK9EBBddKPhmAXyP0sMkPQ9WVcp7LXAVxwL51WfsqvZ3hb9fC2PPWiSbPS/9uvC1uyghFNUxFjKE4gP0rCF6dUWI3lkNbtbqF0KV1QzfEGmYSoqOL39szjDzshN4re+ojl/50ekM5YQUdiPihJTmOueyv+D7P09j+/5XjB4saXumHoESfGWZMkQWzKJtcy2Af3RjppnPYc9px+0ONO9P7qvEA+h9VdtSFMY4ymqM7cYxBjX84emzY+HopVBGAfqSBMO1UzunLmDKCmYWEfb8Fl2Cw5WqEHt+yy7q4aoo7Ad0tCpZunTQ2/ZlfJdN9HtY9+S1ADKvwQ8IiBotR9S/zGsqCmOtYDVWrEmMHPgovaLVynkL3Ypo1RA1ywjanzHducSb827JL9fVOnb/3/KFmSoX0hxxTrgjh0c9s2i6UC3EPT/qGaXinpwl2losrfrmtFOC8EjKIf/u7bvcNOq0FwJwJw0H4BoCAOha9IpECSpjFpnwvnwx+cLYZb57k0pkn3x0Icioh30hAFvYAEianUYEmp94/7/ycaiFuQ2Wj1MpnS0fZ9uRos7HWXT+SsYZawePPU5uw/w8htU1gXwcq3S23c1vR0wgqWDLli0GyMdZu9RqZUD3Hu4HL6/y2XS/yzGTyMd5eoTNOpdMwToGycfxGzu6ZfKo2x67+3+cmf6u016TyMdJZzXONlMwDs+Y+Tg3jqbUXc5LdZ+Rmf4g2i8xyKTycZaxGm+qcYxnmvk4Lv/O+5i2Ksh5/5Derpm3Zi42cj5OJKvl+hvdckWajxMw7dUDWa/lzksa1Tg40KrvD5PIx8FiCMZ8HOAI8Tj1M+83yMd5ULLChErhHoIVUcX62R6KGGPkfJxl6Wz5OPJ0w+TjNOuXE9RxUrL3qv6pNuOqFxvNeT4OdW7OQY7JonS2HJOY9KLKx5mRkHXrwPXFgrgLGwYc/jj/KOf5OFQfwQFWclaseqf/T+XjfGFyY8OPyJrJfJNE+9P85E+y+70h75R0j4ZnJ91Ukshw+glTPbYvGrrI1JHw9Jh2N2e0g+aUKV8CNfPC4Ccge97fFwYt7l4i22er4KDb7qWJIYzvR9/Jyd9I63+lA4AL88t/FAvRK6nnnnTsldqnIfJp2kNhrioi+Jdy/nOordin7YHMcgFSOTCYNMQD+PVRxOMws2pM+ZXJlK32+Ao7NuvjnpYc4zMzJ/kqxcsD86mUco1QtR7F/9qKR4H+FazZAsWXI/FH4TUsYT7UMIUSVrMM5etVe2S9w46F1xxnOM/hB8b6H593g+2NEbxEatdDMjumYgaPd1yIyGlKh160QkYR5DQFXt5U5+E6uehg0g/FEF6PMA5zmjiuoMEHCA2GCMEKGrTStDBeBQgVtgpcPRG5D+ETal/Yvxzg3oQjEsVa48Z+qmr7Wrjnxf47TxdXJhcdL8nQUYjrnOfK2ONA8VEkA+XJ060yaAveegJVo5cULv9gCJHHHRqhH1U3HM5scc9jvvhInLjk9Gvk5Tr8YfTlOqKhKDDiW7FhRO1MxX4BI2x/C09lATgV2Ismd1ucvOqmS+Ly1xPK+mz5Rh6L8GGIsoKay0WBz73ybPg4l8/AHf83Jsff5HvVatv5xcV7hTlfpXXCyI7fEqu3yJRPyzQPqe0jlaijVZp8Vs0GjMa7Q3Vb3Zx7nfVdTp+JCHfds3779dW8NiLGt6Izd75Gfdx6JYDjUSFC3NYKuPV4G5pb1zMHo7QQ1myBACC/76x6gUemLzzju1F92GOdupkLtTCCmp4UpblakH+nOj0u/DuEapkAIckKU/wAVIz+HZmcQq1kKVPwvZEYHZ40Jf7rOBfPGSlPdy1pGL7LGktrAd9dPApM3bRBMBY+93ZoYdTtvKxmOE4wbYqG0z17DCd8aH7HhxJtaJq3yBWUP5Hlvr5t2xtmyQ2OFfeWDSHaEp6urjWoRZB3csl5sh9Py5Bn5fjWnybpRPdxy3eTaiI1TfqLRspF77gs0ax7w5PeAaLYCysGlepseYr5zeiroPlb9eiRzmUB0odQg/cetIOlXjEZXxuThaHhQOugt7sz5thYB/HGvbm17HJ4NqYbojkDwPhl8RCNrqrcFANMr7W86i6U/qKtdYYumlr6740nvW8Lksa49z+76K8wyrazYTOo4u1xNKxQAxVyKEADH6g/eAwcuuTph9UOPWd7p5z2+8vtZ3x9cjZ2nnuiL+UxLa9UyTuRouBLtQ8oQ3d1JQQOwmYtdBqZZWLXZZYt98ZzU3dHq96e9WsyvSY9aTyvTY/ajDHVMjS1GZE6nfyqGYXW6Vz2PSY1YX5vj32bE32dHzW7SdXppLYbQqfTJg8rMCBUMskQOXoYXHoy2ffbGLHP3PmO5xuWerWNbI0g/Fb+L8l0UqmSg7qIg6E1kQKUdsChpFfN0EOmU2eMeM1LLh/wwd0zdkrSP4ruwvYMGP2SSCfVDXGAEejTLBjFVMnQR6SzUp5IZ54DQKK0+f7y6uOvt/dNOT8h3KdZ1h9GFegc7ID3FaRAZ29HDCXcof5kcqhVHsxxse54XpTQ5uGR5JMjXRBsil5SrKjZb0DAySujaSLJ/uDbEzQ5IHRmv+YD4ZJjsFIO19lg/wXmCZMqsCoMGOWhE6sftDK3KX37oM/ctYuG2vm5tzVAqp12p466gQUYfkeJDLg8AxkPNwVET39TmAkNboZfkfg9bX+sypnic32OzPhQ74WF9cpfkPgtLOqDAerOK6mom/3OqE9rk8WfnvJAtMDnijRQsPGpEVCHff1TDhX1Yr8z6s9ynqbmNl3tvKhvYg2L78f7Ggn1e/UzKagX/51Rf9FTtWlDqINwe5ZXyN+LLkQaCfXOPlTUzX9n1P8t36mB6NMVl+Xf1pwvNb7mKCOhzh9NRb3E74z6p3I7budI/V3Xn5iREbE5Z5iRUI+fT0W95O+M+oy39m8vr57lNdnBYUu/bWPERkI9bhMV9VK/M+pU3XUjoX4glYq6xS+hrsk6MTjy1nlr/Hh1aPQs6Wv1NhsGtuztfDjh40PvU/ZKxLsjZknY5SLx622pkWNpJtR//LFrg42juXBf/2orNkX6oNSLyaiXKXrUdZZe/vgpe/PftXLcY7sq/omrfwGlAf0r0stlfNr++8/q+u7Jnte6DWx46W8dF1jYLOIfQbVImd/SIjF77e+ebHBGnJS59Fwnx/qVOLJIaOWAz2ax41ynme1XKep5TefAIjGXqRax/C0t8qJsxRVDuq5xn1td0rtu0PBLHFlkdu9KM9OWlxLs33nucWb30EccWIRfmcoVZX9Li1yLX94ld9pu4fbZNuYRklLtObLIP81m1FXVOCpKffDc2/fMyTgOLNK7C9Ui5X5Li1gsOPJ8xeLdwplvP5xrlX29BkcW+bB0ffdP7z74rdnm7tCjX62nHFgkfCjVIuV/S4tUiRnWsk13O/d9K9bVqlqnRkmOLPLifKD7kOLdhalrbX84n1Xu58AibWdSLVLht7TIEtfPNTqNE4j2HBT0W9h/j4AjiwybOG5Yckq017Qdswfce3S5IwcWyV1DtYjVb2kRahEKjizyi+nfbBbpu5tqkYpMFun+8K5fKfk5t7UpacUm7qtHlnwsExAuC43iw/wxslngWTumVO6afqGhMP1eIpfnJWrhKX1IXJfVVjjdmRLuPq3aNgez7Et3mF4BAa6uW40Ak5PnQfwZiErHjrQHrecKm7dXDksnjFLC44Kh6A5kc2ly920zInz2nP/LouvBGuTEM3Tung79Z+RtO953z2bCNYcDPPrHLO1cWLFJuIpwHk/co+udNAOceD5DL6UkjQWVWK9A4rItuvyCjsODRZuqJFs2fzn2Cu0YZahuwBQ2SxZ882qs3xz0EhM4Qon1QD3OlVvC2lps5daafuz0cbNVV/d1kw90sG1+jrwngVXmMhT8o86xwW9nHPhpqkiFPZagGRFQ4Y8py3fst8a+LW6N8znUy+yQf1LVp7/oKQp7gtUBdwXpzogzGjB/AwwInGCsTZhgBrrXf1754GPnTSHekl6V5k4rGoJpaJ3JQjAbKhZWnE8HgimxeolNjZ+eonltLv456p8a9bghmOJJEaN6DDzmlnxZ1HO+5O9gDgimFsSKcZznVtRPiq9AgpnRL8xzWJDKM7lEz0VpTxYcMCLBnK3I9s1BL/kdCcbt1fUSq+5U9Zk9SKQ8vrBUU+MRzDhW+AONA78RCKbaQQfbSz9DvdZem1Gp5eez2cYjGMwVMBIMGBA4wdiYMMFMKz7NTZJ02SVte1bFytnnBhQNwczuyEYwZTsagGD2Nq5d7sHeNs5zWo52Kr4+4io3BJPUfVHF9IcV3GaYx8/t+YyXwgHBTO3INs77d+SYYF7/7NZpWt+vgp2e5058TAl9bUSCac36zUEv+R0Jpowk1v6+63TfFCfFkAqtEo1IMNkd2OA/1OF/hWAanp34WWH9QzTp7qT4+w/G1TUewWCugJFgwIDACaYSE8HEz58T/dLzk9uS4VXUK2bak717SVdYJiFK9wM77TQ38NXKCCk/BPQAfrQaihtFyiXB0nClPAR0D0zsIBT7PUz4KEoSptbp4M7PTrY3316uKthq/SS2WPbflUp6K4OHSUO0N6FenZ7wr7mu65lYOzHPyQdMEouJUFIHAGInL8QBHggR5GDEAR74l3qAx/ePO10DTrxwnnpmT4zFW79L1AM8U3olTLwR2d99WXr88sfLZncl2ovx0Od0dD7gQ/1gxAEfRq8F68TjZkRvFR8oF+HdvItL2r+LG75qtnZ4YazFve4xsKsVtOsq1JnxOODqIr0NuhxDvKilIlouH6QG30ERpv2yJfN+xih3rFPHHuMRB42YbGXtmjfagqPlUdEq9DmjQ347c87tnusWGzPz4mK/SwmsJisl0jyJLoRANBSF0bK82IwGBqMxGMjcW6RxqPCWidpxj9mGGKNMZFMfviWMS2UKtVSF1VcBH0FymEhbjesd8IJ3Nk28+M9BXpcqVGtJtVUpn+goeCpMCz7lfCn8VCc6SzkVeGCsxOsZ0YI+M92ndxf0+1vp7lzYo/TAqHGebEbN8aAdGGM7VVce7+yAv6OAi0KCJ9gZ3rhMtVreUwZFbOp9OWQta0c3h56OrjuAXeU8yHLE/VK6AEHpzs2xLo5TeuXfgNI3/tHOfk2/68JddaKsTte5NN1AlM6fwEbp/HH/UTr6hGWNjWPm75/sEls33S2j676uJkfpvAlsjmTw+P89So8RZC+eMobvve5EsbijG297myClp49jMxoYjP8rlF7yZVRd5/b2okkOY2Yu27f2ksEo3Ttwav+tq8xdlw/5d1PVg2O6cUDpMWPZjHpvDOeUfrzTrQFLJZuEOyKH3ev5+ryDSVE65pcYKR10cZzSq/wGlL47UTgz2feO9/bwj01Wbmo9y0CUbnGNjdItrv5H6eiaHF9+ikV9pH4bJRfTTi7ZM9/kKP3TVTZHsuXq/x6l9x+1aWLFWuNdt14okT6nv3dFE6T03qxGszCs0YxJ6WNn9F2TmtHCa/oLvxdNeZb9DUbpv3jGhc2oB66wGTX8CueUvq5eRGzIjZmCxc7ZMe0TRm83KUrH/BIjpYMujlN61d+A0r2XLFpWP7C++/qP/XqKltp1MBClO1fJZKH09MqZ/1E6ylqx6nIPr02x8V3f7UncxchB3UyO0ttDuzI6EqsqBt1FNAlKv9EyYeg5m8nCdZ/Np/mIrzcyQUp/WpnNaGAw/q9QevDIDwr7ksW8py6+1uxaRNxlg1H6Lx6SZDPqMlajRlbO5JrS992cfEXSZ6jwyOmMDj2/FftiUpSO+SVGSgddHKf0ar8BpbfOUVW0tEx0OZiTPOxAzavFDETp37qyUfq4rv9ROtJaOVsOHx5674TXsh5e4zLGt7U2OUrP7crmSM52/d+j9Cuz1S7i9JKu8894qpbfOfPBBCl9A6vRxhnWaMak9KqNjiUnH7juHisZ0utf+arrBqP0Xzxlz2bUQFaj2nflnNLtL9eJsbvV3m369DdTvHqtrW5SlI75JUZKB10cp/TqvwGlNx06a99fma89D2T36K7IetPQQJReVs5G6bOH/UfpSGtVaKTcMTrH1nteiwOVQ6tcWGlylG4uZ3Mkt4b971G61aSWnS32NRJOk94ZXq6bfwMTpPQ9w9iMNtuwRjMmpbdLXzyp3jOl3847sk87/+hXw2CU/osyLWxGDWE1audhnFP661M2Zxve83JZNP/CN6fT9s9NitIxv8RI6aCL45Re4zeg9DGfnyc9WD/F++C91v+c2uyRaCBKfz2TjdK3z/yP0tEB2PLBt77M3yhcaFPFpfgJFTs/GIPSn89kcyRXZv7vUbrjNf/6P75Mdd/Qz37gV5fn3U2Q0o+yGm27YY1mTEoffitxwg/eA5/YdorNBxZ3rW8wSv9FnS82o65gNWrsTM4p3bd55X+q7w523jF/nbDD2D27TYrSMb/ESOmgi+OUXvM3oPRubs4eOX1nuaZeelB1xdqw9Qai9Dtr2Sh9zdr/KB1prf0Hj7/L7tjW+Y+hdv07jb55yOQo/cZaNkeSufZ/j9IlLc49nyxxEc4aN26+4Ghj9lOixqH0XaxGW2NYoxmT0le2HHN7w7utvqmegjqXglNnGIzSf1Eoks2oM1mNOmIt55Q+tckS3/sNj/nOXjBnweF7b5+YFKVjfomR0kEXxym91m9A6RuW1G2uXi10TQku628xPzzHQJTedA8bpT/f/R+lI60lldcJ3Jy1zz3N7a8Wb2qnzDE5Sm+8h82RWO/536P0KHn3Nna9/nLZPdOx5HeH/v1MkNJ/7GYzGhiM/yuU/k/aC5vDT+I9Zh2++vp074flDEbpv6g0zGbUK6xGPbqbc0r3uubsYFFqsnDettEPjjp1tzEpSsf8EiOlgy6OU3ptJkpvsaFHRr/kRNctGyqcOTrhwxKyjpSbShkdSWZ0O+1wUKpCyAJLJUVKOfhG8FJD8CP8P7LYkYAfBp8La+64qSRqdbgyMhKW4MHeVF3Mw4XoPrYpE7cPy+jjMmV+FfODTW4NBE0Eze1qNSFmyYWD3vtayz1qZv5wB03E6Nmt6Jjt/aiRaN3CMhOXJHxpBpqK401PT31+b/E+zH3qwSz7tn/nykGTOd60ruGATuLYty4JL98PG/v1RF3QVAJvejzWb/rBlk084zo+tNnQsV48aCqJN82vPrlT4t7iXjvVnqUCux07AppK4U39/6rZ4sZdB8/49WlVHskGNAdNFnjTsaE3hu/Z+1V4+JPVk7POw/4BTaXxpkk1Ol/ofPSLaGezYor78eL+oKkM3pRyofmi8Rl9XafdU8bUWjsDomGJNx2o/Hz+E8l+5zjrCmfnNbpuAZrK4k0ds1S7BIdUoqVBnyxThpw6BZrK4U13hx5/d8t9lPOGEovu/LG20RjQVB5vEp24bV/8T0vf9QmbZ7U/Zl0VNFXAmzbP3fr5cfVvfgmnFpyXxC/fD5qs8CbXFcUyGx/y8En5tmvjnwkj4VeuiDed3DL7zWr5Sec98jZ/t1/T8yVossabzvzlu+TZsEt+0/o12vxI1LwnaLLBmzzm1Kye6trPbVFum7t3/n18ATRVwpv+Fk9LvlrM1nvmW/nBOrZHbEFTZbzpRcVH81pZz/PY8vGiz6V/q/4ETVXwJrc/Du+e9NRNsKh1ibq773yCpqyKNy2oJbv3sccY8ay+QQfkjfzPg6ZqeNPaeY9GpNbc47xzWo0fpZMsA0BTdbyp7oWbI2LKevnO6d/l9uj+5yeDphp40+JOj4d0rPKv964BszolVb90GjTVxJsuPFzrPPBIkufcMNHrU9nb4QNr4U2vkuJrfB9VwiV13pEOFZ1OTQFNtfGmTfe7j9zzp69w36USk/kuXWDvrYM3jT8zWLrybm/hFGGTKstkW9+Bprp40/vHPzdV75wo2FK249mXSzMSQBMfb3p2Zkn3i3vFgsWXkg72SQuysPBwGUTyRvXAX6RTrNXy3G5pG3ev2UsqeYclH6yAcBs0L0j1azzCr2lcVB0mF1U5NCV5RcYp8aptD8acqTUunhxZiEdFypUhlJrLcOQyaS02xu/gSzRVkQGZQgXCCIlcDpwQUQTMUadZBtVBIV+NHvTgDTr6+Xu2Yp7T0UzoXxEF6/3txTzzozQlRjbWs8KqN8M4Qqp5EeR3O2KzOKjK4K4+S7wOf82oerVQdaEpYcH+jOnOJd6cd0t+ua7Wsfv/li9kWAAnXvYQoBBUWHCyiZhX7ahe8ottekhB11DLAEgh0mBlRKRSLYPtfPB+Mjmm0kn0E75EBXpSlDJCFoxEcVjW2mfyvkd8t9neOe88aDBZCLi09nNoSOZr4jpugHCZs8KV85dJiAaaFVY00AEfaCF55ooKB0FzhGSYlA8CkKhwKX+IRC3VOAKk/VI25lrUiL0hXrWx3Pxbwr86kexnEYA/lma+vBaurWflgHd2F5T1ljlinZ0EnJn+wNULAtMLGfhNGKNBlKRUIJFgvV/7Mndjn+2i2e0Xx06U/tWQDBbxTDpY2paiAMucFSzQ1XH+qcvEP0F1iw1btNNKmJIgf9NpvIU76VtVEEORUEmUlO8tVYRFhdN5qBQDxilm2lsJJgJdE/wTgAEewA+VBEcpVcDZKMFMXAa6rhz7AEf8g/B2NT9YouAPkfLV0ZGRchmw0BAlaAT3ax4ZrYC3wlU0BZzqyGVjwK9gFx35onCJIkyK2bef7wB+JLEyBZkhShkWJgejQxo1UipVYL8TNVLJjwCdQEdupEborLDR+gT1F3RVLQZceQUavDJqDW4H4Mol+nFlxTyuxF8IXTvpeOaqiFpTXA+vS1hj1rx4AodkSfVAhdUqBghdgAjNRQ2JA8D7p+lHlvVJ/RGrXqvpejhgMob6tcJNxYQua5MEMZ8Ot0w1W8QnrzkwdAviOudzaYBKEisqoN8YWce4JI/4c6+bPlrGrT1C+YGqaKk9NorJ1pKp8/sFOydHJ/4EfgtHpyZIk2WG17i9/ly4x6qt84ZPGNigMVl13Ff7IJrZ8rcVhekms5pOYRzTFRzOlGRxPLX9lWBiAikBWk0dKQ2WhUL3rmEBpHlGNV4VerPFCrfDf5awXjv+aBmyE8KeR3dCmstcGyXSAfcy7iij8JpjXoYWpbDh0TgQkhVAZIRUw4t6AHN8SsnXRxfd9EtpNfL70hk3VpGnafiD6dM0oqEowEliBWcJBZxiBYBjq2GpPAbXB52G1mVyd8lOuse0/Ox7s/PPueQpina/ij5FyWsqCoQmsyIExjQet/GZ4rZTKyXe3ztUdZu8qU6p5w3GppGjUW8Qo/EDXLx1XzgQilRSTbQmh/fikTCYIYaCH0HcNZoPsFVF8SPhiALOFu+vMPbCQ7fxuol1UdYv0e9Nj6KJFh0xjgfTwLQsgPEtISJUcgYWmJCl37IC9gL5MEB+u3mt/5lzLbm/e0xgn6XzTtwkl0YqEQDvpjspzeWCIiWq/ytkpJQOAErNwusa0johv5mYtymLFimxba1VwwAi+oVdiEwFui9oR5Nt+F7V0ucRk303z27bdGPY5VDysHQhbqYPy7ymAussVTtwadfR98LVudWLB7VcV1j1AgjYAlbAQI8yShCl4Qz4O614TH9yaEGVBYstLTFbsnjVS2V3W34/6OCR2vPNuPN/BF629lAATwmMIR4VqQJT8HzPKikQBtj1blK4AJhi2s0Z40YvXPlWuDfVOnBUreaPOTDtUFbTBhnJtKj4OK6bXqFWWe98/hxpzFczcybGpbn7xKSvdzsnuZ5FrS2hoM/uNFc5X7tzxH3SDtSe3w5HbIjhxFiPiRiFl6reHtFut/Of/QZWmxV02Jv0bSrBsrJRcOnTRRYaKlVJARRqOkkWZ8CyuUgZASDXFLfFHhOS9xhscqgpawQXlmDOj06MSN22K/iFaeZA/pau0Qjo/FMzAOhPQee/R+38g2GB0ozClkISeOcDBS43KCOlKhhtKBV8O00fV/MBehixYv/S+DQ1XI1WjpSGoElk++IBVYMtcnwPhdZOSJy4vgHZxwRh9W3oPga/XpCPafriTfEKh767T3VtOPj1X7MvF9LHxEGJWgizuRDuaVMX65pgMBd2SbhRPvNrV7eClQq1NDga6x5Y+S0klgujtyY7HfVzXXh8eM0DT9xukbC0zHsuffpLauQ808Ueh60/CrZrDhhsuEuoz+QSzpRv8L5FW6VP7Ls3Xo4XJ4pJ361cDymWYsL3jZbLEb6AKWB2IO6DeUpYn5UpRkjkshBNJx8piwrnK8E0RaW7J6Du0rO8J80K5GYd0d1hK+ZVguhaojbf4gG6T48XduxX8cBKvsFVV6kay5PDEEMCsHP3t+9jNu7xjInwuxv4WkHOPimBPYgePmsuFzScqVkJhRzOWQA5K4jcOlTI0LupmPftOGP4rCNyNbXIqUhdDXYtJHzmf5vv6XXtkfhgzWIlUpQb00nwlcU7CHpLh9zK9SiGaIGexILWpeNGSTK0CBwdKc2PQ4N8OTuOXiCklcod4e+oHd3cB8EgN0yqolRfg38K67irYAQJDQseASbVozWmRh/6pBBTYQZJIe062BEfBTkChF39m2OjQK+FsGq+GLYwVtCUisS7fgi6PESFfkuOrdztsaXBhM11HRsOoWxMwG+F2JjALhcFFFgXZ4QCdHGcqBowERU/rMG+6XNmCBce2+a9/HPKWPL3gUHeaDJBMfhipnmdjQD0MZUmfB2Np6QhgaV6S8SL0DNgCvTBi0fEZwTWKy88olpl/62/36bC+mDgN5ZAyPlwjYcKuRWIHGK1kDc0ecipuXHcQO5hvvFH1/HxgnVHgz4sLbX4LgeQK06wQT7wBAF5I86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZnXS9VyTN0hcZlyvcvD7SUONKOlvMHOi84EoaRfcpDy1pjJ/vW9jjvc3lnGdbN5yJArz6zI9rfRLPaL5Eo1DBexDRx6UF6SYbTVd5UpQrDNgWD8AdiUEs4z8TQE3bb3qSmnBb4iDRzUL+kalYOpYuwxMMiuodauI8GM3PWYXmvXNTW7bSCQjFQpsV0FJcwKZM4LaretXr/wR6UEaQ1f368hid1RmL22ol3GzgJYTT6G024O1SGlg2l1yDFkHM6EVWVtSkR+rJAoZb8tU6zVEz+/1TOuewSfOJvIYVrEpJ6+H05uGuWaqJzhPl04+igHKLmyomR3jL74wBan2fsT4wobbBhmxJCDUz0i94x5q6Tbm5Z2H4q/dF6ctXX8eatjdkbcz3WyxzsRckMOnm1THNMvjG2q3T2EEGngCVFGwMwnwEAk34QOBl7v/+dqheGea0+fqLjx3bhvJrBrCUHqywqS6zH99nUbucg031y7VJXXZbCNRWYHJTjZcvvgT9vddh1bsstV8JW8u2BBPJe+i6htKQp0WrKiU+cYERjZMhHjiyBfb/Pmn0WL1591TfDz6EtfiKczoTkDuPXI+7naVLeRSnyVVTcipB6w0HVvQNfsb+CYGsIQ/qwQsQDFA7B90o/qdNumfbUs1ubUxZ4ei/sMvOm/7OxM8mInth/LQOukxoK8ONXFFTYTHPhpPgTLH9XH4kFoXha95sQEVnkMLCkYacxQnY//5jvnwCv3DeOXjuzXL5o8EywtBveigcrXZOCQAML06RgbTNl6kl3BW2jUvWajbaFh1USP41tofFrs6IhBg/shOyY/JLI927zDlLve8a4Jb6M6VK9NXYeOkETyNes0iPVyptDcVnMfsduDnUuR8BXSkfCSVCULxglSJ7dEPdzF8oaolfJ8zTri6mwr5g05B3CtgUq9jQGo1z+nl6Mqj21DaRZ3wesgv2W5XerviyXdffck9a7t+TXSnBwiYQ+gh0iaywXuoFPOuRVyzMHM5IEQnm2oMWcFxpznOb2yScpp3gfvE0h0/rBsOGBaWiO/FMm721NHxm0h7/5p7qfv/uHXC8LnSuUGrfeku/mlVdvf6sK90ML6JIhPW1Z8QPcxRoaBBZa4MUIDRGce9Q89bYQtF7dcoEQVJo1iM5q1Inl/qeWDfOI6l2l14X0C+dxVSc39dKPh1zlfswVWKc9qlS9/m5JVco4QVtGLvipgDi9SGoI7X6RhBp+yvTOqfnWfPTPfn+l7oF8K2TA+2P10w+DXuTaMsyPuTuAyI22+GtNczHM+p9+ErKYWA2xiIZcVhEfCibjlrXvbeG/cUulHn04ralIUHzQPQCg+4A1FgUh9VkTMzxG83oSJ13cs8Mrt16mjR2zu9yiLYzfek22s+UTdk2E6a2cYZALnjwyXBYeDsBKeLZSowUw3X1YMTv+6TT6o57RR70vvk5rr+uSJ/o3nidKyX5zBrG7d34XdAa+FhxoabYtgeXQIPJbL17wJ8ot/HGk/wdbjtPPU6efvbrvxLpPc+ZgCG22DgckfSyWFGDqhcjT4TTEM9fJYnX3xHuWi6VH5D2rBfCC1Zn0gXBYWDv+dF1Pyx/qORxdHofA5RQME+xh6V8Kvc57n5oADVg0FmJMjBhg+mJua/MYVtTfpsnFlxi94CZSyzcHBztXgv9l2rvy1mDdjwtx3v+u5U7zjopi+1TvJnntWJH3V8j7R8ihZpFwWjB0LoztSJqRr+oB4ANBTFLhTzo8gPUUnP0lVpmB7LZopKO26LtzAg9TnAZyzUQs3cI/i+HmEHBjBJwg5MPhJVDkwqpwXVQ7sl+W+qDci5L6YfFNtV5kK+ByYnYAlM5HthbTPqsZ/nvxxfKzHjg4pzTa1tx5Mso+ZgD46BAVqD60LPXBk8ZuqwtQbtVOHdvzbrbBrJmB0vITmdEJlL8AEnWvnMxE6W0wg1QmQBiuBh9YHpStVWpUPbjFZuCjyeeTISgPJYgJmQjpKwgJRGj8ore3CLoN9V/Z2jLcOP/aTA5SOs6K04zxNoYk126WHVA2AgYGRDgBRs97JHKZ5FJ3D8OtFseCN9ZhPqIUmOwcMKdyf2v8/86dUOR8D+dMarP709bn//Clun6eHvPcErdrvOm1wB8m1h3XncuBPqTJNHHiKKqyeoliR+9NWNYqVa7iyn9vyzYlLD306X4YDf0pdJOAApdfn2FC6ca4I/SmVQ43uT6uw+tPX2gm+g8nPCajDiZtktjZm1d/OEUW67PvgHL7j0pweHEwJlp1jmxJM10LuyFkyW3kCcgMksyE08AhXj9DAI5LZEBp4RDIbQgOPSGZDaOARyWwIDTwimY0aodEy1qBXRHYxqnoeBxlrzTkzsqUBjfxrOpIIUUXCyNQ9f5pNzJlsQpUt5MAmTkw2WXHgXp9p2Z88Ug/sTd057D75nF8Jf4lCKifbpDSLY7MT8CPhHbjAizpKGcFXKKOkGnEhqJ7KH4EdG0N+baruIuJVdPF2lgHBKqVc3gMyFryYd+QzpxvFEyZ+cDmauGSb+5Kk4G9JXS9nM3lCi55qqQrqsxIf28hFGT1EDnO1wPtgwj8hsij8u4MIA+5yPIjZRDFJCQYH6t9YzIs5AxxoBxEvZpqojI9EFSZTeEtDSQRoqbncQxYWTrpeWnM9UBmZ/yrZC5/o3licOPFMZgUMRH8VPDcYJdO8VSnirVADSiUZ6aEIgbJbBLxmpeFFuPWS7xIWq8MEGe2lsgFQVUIiF0EtqHxEFKWSSiK0P5v3UkkitffgXbWFydMyVQWUo6U6av/ngJczz7Dx8r4zBC+3NHnMqfKqprs8uos1sX+dNrG/FWc0WY5nOJpE6OYSNInQzSVoEqGbS9AkQjeXiIWWLbw5PfY0X/jH7n/aR7qaVcgXC32fGPRhko296xaraZbZgyMu0sgVen1kR6KK8XJArq2ZLFk6YOmITdFDXZJffZK24ye+I8vb4Rt/PuA/KuAqdVcFrEFsGSr4fpFShZs3PwJ/hm4bglTRYdbXoqvuUX5Bx6Hhbyvmpf4Dd2tEYJzQlmbAzKzHP7QtQrY0idqark2oT0IJgWgo0xkuUQCSQ37xuV2ONCnWb4Rwcb8rT5a1mj6cvCHoonkCfUOQaOBcwQhAsg9CsoUpcWLdP0ZJnCgRDKDVOo3U1NSf+oj98cmGgfpS0XKJCttnlMPwBZ05Ydu2jdewwe6rey0Z0PPAU/IygkUA/hCEiCrRUhTWmctqnTGmYB3gjX7qk11UVxwhU2OyxcEkMxEuBGmcStNX9JZ3bOqVutPjxb7pL13IxtE8EbGIm9dSFMYJZTVOD1MwDrRPfuMQzMRknHaCCPiRmE3A66jBrVJF8GiN6GIXvjJSMhxqNLbAfsr7DfSIamf/ZWtihauClDaP5uyedXUn+Rx7YL7n08+xk1qLwnhdWY3X1DjG00FI07wAC3bJs6A6XKYYrQBBMDAfMJdCqYCmA/+SK0dijfBHJ9gUIRmluYC04/NztVSRvsWF+08GnVk57Z+rFDW0cFRaNH65KCxXhdVyxYxuOXgT3FHRK1XGWrMeDQsasTrC8cECu13P1nmsf3YqZGVa0h6yI2SMmfJaOF/wdsRjCDjjOEkLq5pjjhCPU9swxanVzccGHD2Y63fEIvlR47Zj7ck7dSLNQo6/SjpCJh1Jr93GlNlmK4CqQ+p8i0GYgGyYVBkhjVKN5kdqHqiu4KHJ5vJQ9JAq8PkLc/BKLYvB9q70XUVye/kg8J9IpSrKVSaP0nwwKtxnPGHaRMxzvwCwX4babYwDIW2tC4xZb8jZsBuBDXZwEntHnSL6pCXPLljta+0RF1XZ7uAw61xytySeSu+W2paC5slUcbPCzpMBci4QOWeUH/FvJuY5XdAr0b1yYL4Qhq8cIVWpZAw1Ky67VVvZxPe+MDF78tmPM5xuFH4IU9MlKD6CA6xqsWJlccGgPpdYxyyFT7ngL8Fg53b87Z8WUjziIy4KnYQ/S2DcRmVVC2JiQPwq/H/Z/GEP+Q7tdLstkxv7T4T/l0T4qdWEDCbC/+kCmwj/Abrv5ECE/22V7OVHvg91/tOjwp6xzyeSj7sU7rQ5xz4SapbnXmDTLL9H95FFIcJv1/XdWYcEO58Vz6s2MMuWOBtdhP8sKyoHDOsNWecO+h384U6EPz3WukOpld3cDp2YO6tJqfXkHQpjivBvYDVdnHFMZ3AR/nqSyzv/npMljnt4dtZIxyvzjCzCj3kZRhV14GUMJsJ/4q3HFdHLUn4z4qZatHuWu9IERPjPsoJz4IIBRfi9x/b/UzncXHiglGV5UfJmsp6M8UT4N7AiBMY0Hre1Y4rbxIKmzX52uSTYcqdO4oU1b1qRdQSwQ3yRSjlgdHrMZsGAc5u8LRJZ3v24FgZAXKWMDgsHMZxaii3V6KPlQK2wyPi2dNWDfI265vY1EvNOXwT4SkRw0YWCbxbAd8TFwh6sqpT3WuAqjgXyq5eIm/7+Up/HbnODmg45ZhWuLnztLkoIRXWMha0FDNDLhOjVFSF6ZzW4WXtRrxCqrGb4hkjDVFJ0fGk7N65nw8m1xVOzT9woXS/Tg3JCCrsRcUJKc51z2V/w/dewfv+ZF40dLGl7ph6BEnxlmTJEFsyibfMo522FF/GbxLHlnGd12rKenH1uQTyA3le1LUVhjBGsxhhiHGNQwx+ePjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerozo7vPnrdar3yrbX3o7ceXoDmdfgBwREjZYj6l/mNRWFsXxZjdXRJEYOfJRe0WrlvIVuRbRqiJplBNW8HTBHcnebx5Qzizyen7jRtDBT5UKaI84Jd+TwqGcWTReqhbjn1ov6Ram4J2eJtkJtWvWs+Km+cEvq+F7B38fXNOq0FwKwgADgGgIA6Fr0ikQJKmMWmVi1YLxiW6kXbn9uftr5mjTFhUJlhj3sCwHozwZAkvNFItBs//8sH4damNtg+TgnL7Hl4wy+VNT5OJVXuB3cW9XRb1HPOo5relwrbwL5OMcvse1u7rhkAkkFCQkJBsjHab9ylcfswefEexZaqdun8v1NIh9nFat1ppuCdQySj5PVqUST4sceuy8sN6Z4wrw1rUwiHyeK1TiDTcE4PGPm4xy/lLDZLsTVc1+WJChxwY6DJpWP481qvPbGMZ5p5uPcjdwaVvxlB989kz/739zaZZGR83EaslrOyuiWK9J8nH/iHTzOvm/iPPdioOIBL7OPSeTjYDEEYz4OcIR4nNrhd8jHef/456bqnRMFW8p2PPtyaUaCkfNxvC+z5ePwLxsmH4dfYvSyx172wj+ffSsbkfFKzXk+DnVuzkGOiftlthyT1peLKh/nYYiA92xOVZ+5nSpfXWP+6AHn+ThUH8EBVnxWrMpe/p/Kx+nI5MaGH5E1k/kmifan+cmfZPd7Q94p6R4Nz066qSSR4fQTpnpsXzR0kakj4ekx7W7OaAfNKVO+BGrmhcFPQPa8Z2eWdL+4VyxYfCnpYJ+0IAvG96Pv5ORvpPW/0gHAhfnlP4qF6JXUc0869krt0xD5NNlnQa+sIoJ/Kec/JbbiVg/PZpYLkMqBwaQhHsCvjyIeh5lVY8pOTKas8mCOi3XH86KENg+PJJ8cSV4LMhOiDVhR490RNuOV0TSRDlnhZEA7fMWVkgf1kPwvKHnoGh2YMVjJCURkcihPAUvkpgtw1Dszof7jj10bbBzNhfv6V1uxKdJnY4GnL8sUPfI6n9iknt7j6MTmL44bNouUP0m1SBcmi8TPnxP90vOT25LhVdQrZtoPIK+JusLkmSh6RMY4vdTcwFcD1tfUu4xWw5AXq9UWrpSHQDlGmBIYiv0eFg5HScLUOsUg1COSJb2VwcOkIdqbUK9OX87VXNd1t9pOzLsDwSyGSuqDouprTiLklyBEcB6HkF+Cf6nyS75/3OkacOKF89Qze2Is3vpdosovTemVMPFGZH/3Zenxyx8vm92VaCcOo/6yPBP1gxHyTEyWtoTqAbgZkdaatftYh+FbQ71jfMdmlckMdCiMtbjfDQN2vQHtugoV8sTBg+YnjVJ40hLWdxykBt9BEZbnMPJ+xlzNWKeOPcYjVKKYbGXtmjfaQEAUFa1iCFwfjGrUaNQI39SyWwXNBmStYTVZKZHmSQitY7yhKIy2i9VoawxrNMIFm3uLNA4V3jJRO+4x2xBjlCnYq++Cl76WKdRSFZZ1Bz6C5DCRtlrRveWrAbYXPRfmWDx7/jJkFtVWpXyioyRD5FoBCx5lswt+qhOdrpwK1Pr6RbpiM+pMVqOOOEnT+mItoIB3dqlGnwUJHlUmhbWjm0NPRy/TgV3lPKPUEfdL6QJEpXvn5lgXxym9KxOld39416+U/Jzb2pS0YhP31Ysl58oGhMtCo/iwriyZ1iFfMdW0rukXGgqnIhK5HC+/KoOF86B4tyMSYMd73brMGX7NdUe/2Jjq3X0ETK+AiJd0TbcHPaN/GEAqUIgqhmcv5t0KLWweWTms+i4Ym2r4wmjxhameB3oUb+obc6H60utfq9WjFnhBfsUCQ0Ivm2fHKos2eK61ChE7Tu9vU9jEe4BVIMRqmQCV+wEm+PZh+mWNaSyoxHoFEhcvdatGPuXu+eyUbT+6ObPhXdqScqhuwBR2PIFvbs76zUEvMYHlZKwH6rHHZgl1htikp446ShxFH4U+s1b37/Oz2J0X5H4J7zYU/HtC2eCfbRz4aRlihS3UrRkRMNsZfBOkRd7IF60pbdFHtOfBl8G2zfvl/qKnKOxqvgPuCtKdEQQz2AEbEDjBdDNhglm46szlZd4D3LaP+eQjDxhesWgIZsV0NoLpO90ABHP+uDrE/OQj9ylTSz6ase+rIzcEE3+seLnXWTNcEw8enJM1dVAbDghmyXS2cT55OscEM2dFlbU/vwa5zfDxOjNu0CAvIxKMgvWbg17yOxJMjRUfSvz770236U6dbnc9cX+g8QjGlRX+lsaB3wgEIy02cI/Nlxy3yeZZmU77iu0yHsFgroCRYMCAwAnG2YQJRu5/Mqt0mRqiBE9FbI1P3rlFQzCxq9kIxnW1AQjGek/rI3Z19ngmnQ8c9s3BO4Ebggnt3KFd3Upf/FavXTneMjPNkwOCmbyabZwrVnNMMDMqtRbdu7jdbenavltL+l5YYUSC6cv6zUEv+R0JZrGk6pA16a88tnTf3Wh+TunnxiOYlqzw1zEO/EYgmNZvh6wam2LtuXptt9zTFaRTjUcwmCtgJBgwIHCCEZgwwTxYWfdry11NfTb0Czszc6+PY9EQTO5ONoLZs9MABJPqkxFQZ4y9x+KRxec03fl0DzcEM6LxlYBi7dr7bMmU3n1wdygXM5icnawLRTs5Jpiuw4KOd+5w1ndFiTGv1/r1zzUiwZxk/eagl/yOBNN9U5PZq65Zio+06NZxa6VZ/Y1HMPGs8M82DvxGIBhJvZ8+dYdNdNvqXrJazRbOl41HMJgrYCQYMCBwghGaMMFcL1XLMXWHxGXK9S4Pt5c40KxoCGZTJhvBhGYagGC2jrcPPDlhqteCNa93fnmx7DY3BLMwemuy01E/14XHh9c88MTtFgcEsy6TbZzPzeSYYAZHfuz1r9cfzttq5d63vrPAxYgEM4b1m4Ne8jsSzJh3DRuZfTojXn979ZPrP1e5GY9gerDC39U48BuBYDzMN/7oOj5esO5o0IelpRbfNR7BYK6AkWDAgMAJRsREMHrXVLDTWq/oayrUvFPn7V+jJnkv+fbu49LotLR8NRUcjyU/FFep5z1L4FBnbkvBzHw1FaZN2F3rijrIc0nQ9p7Vk2/OzldT4U54i2cDVt7zSuUVj8+sGLIgX02FJm73Q17wrF3mPl4fXUkW9ClfTYXHY/2mH2zZxDOu40ObDR3rxeerLzW/+uROiXuLe+1Ue5YK7HbsCGgqhTf1/6tmixt3HTzj16dVeSQbAGtZWeBNLn3sFvZrPsRj/YHUyOBba2EFrNJ4U6snSZPir/k4p2ap5jvluvmCpjJ406fZRw8OGNBC+OekATWDts2CtSIs8SZ+n58NxU0veyzdPXHilWdTt4GmsniTvTwx5c6CEx5JWx/uWXjYJxM0lcObpi5fszFjQXFR3JaKLdztXbNBU3m8KWteywXFnq72m755i4N/7a5tQVMFvOn2xua+38xOue39ZN7n6/nNPNBkhTcFdXk798b7Vj4xfq2syn3p+hdoqog3LbL+N+mu5J3bevuKzT5nFR8CmqwJeIOKLau4X+23ZGbinS1OrSDyNsQD40onj5m/3DPxisfzbweTG4CmSnjTgiZVZ329X1G8rFf2rMYn65UGTZV5jKU4qhAPnDAx8riPnTD50vc6JRrnTARNVfEmpffnlesW3fRc8c/PR40sSkwCTdUIo9h96j5o8XW/Jb2fm/XZfbkDaKqON4VWW1im1TR795mu8ZtGzAosA5pq4E2v6r8pF1F9neuO9hueJD1aMQI01cSbqqrvpbdvs8krZogkef23kpVBUy28Kcki6+sFv2Euu32/5Nr2CQsCTbXxph7lzCKjLTeL1/5r38L8mmg0aKqDN23/GpjQxOmM8/YOZ/a9LP73LNBUF29aM97RN/d2qPfGf1+cCvvYdBRo4uNNG+qeTTv9b7xgZfmFkiXJK9/SioXU4zEUCzkszZxd4dxa0QbztFU1e1zfiXAb+hYLcWFyUZVDU5JXZJwSr9r2YMyZWuPI5a9KiUdFypUhCAUspgC4MX4Hn9AslSlgWBgBAmLghNTSsAipzpJXVAeFfDV6ZiPeoGvtVlsx7861TOhfEae3/EF4vOuaXoqgVnmKoJoXQX63mFOZ30bwu/tN2msmeCJ4u5BDQVCOD2nB7OobEKAQVO7fySZiXuY1vWLiNj2koGtgZ89DpMHKiEilWoZJgIH3k8mxqRPRT/gSFVS9VUbIgtE95MGqn522+Hrt/Tnvr9Hy8YFkCR/t59AlfPKauI4bIFy7WOFac80kIjm63KSekZwDPtBC8swVFS6J4kdIhkn5IACBcgJDJFCLg1Hrp9mTazd6Hn0n3NzVYuTpFZ3+oag94I9FqD0QLVxbz8oB7+wuKOstc8Q6O03xR0/g6hHCdITogpQKJLokcKkKx+52sBbtfDo4qH6viU8LL4PHAVi7WMECXR3nHzET//ynnv1L6tnUCN1g6tlTr7OpZ7tcLwr17BOfm52TO1sJd1UMvbutV3owh2RJ9UAcqGfHXGcTG5ZfN4h6dsq1ex992wW47ZuygNc716uv0dWze7OiAvqNiSp9FLTAxJ169oLrztZD+XddD14aeuT6znX7TEY924nVdLWMYzqDq2c3kiUdE1z44jYnPe1R9O15fCOrZ2NehlH+GHgZg6lnf1xnV0Ua6yVYO0We3vFvc/IWhnHUs3uzguNy3YDq2eVzvy1tE//KL3HeuR4uq32Gmoh6thMrQmBM43GbK1PcdmqlxPt7h6pukzfVKfW8wVjy5NzCG8Ro/AAXb90XDoSEmiEfVnQmImEwQwwFP4K4azQfYKuK0uhEA2eL91cYe+Gh23idAifq+iX6velRNNGiI8bxYBoofwIwvoXadXMGFrB/ot+yAvYC+TBAR0otKz4o3k/gsj95ZaBs4OxWlN0keDdCJAq7XFCkRPV/hYyU0gFA4U/wE/C0TshvJuYFPtFL+6UaBhDRL+xCZCrQfUE7mmwjFJXrBa1s7rk4/cm3iDsnZeRh6ULcTB+WeU0FFmS6csP7lfVSt8Wv4p/MP3ntPQeAObMCBnqUUYIoDWfA32nFY/pDL0liwWJLS8yWLF71eYJ7z5gHSo9dfabX3+CWWccaE5MHxhCPilRJtdIzWFArEAbY9W5SuACYYtryS2dsnOB2Wrh86KW0jpejfDgwbTVW05obybSo+Dium16hVlnvfP4cacyKHvNvh14t6bXKbfrpEVMahVA3/BDCdpqrnK/dOeI+aYcAsee3wxEbYjgxujERo/BS1dsj2u12/rPfwGqzgg57k75NJShAEgWXPqGarBTqG0nVdJIszoBlc5EyAkCukUHBHhOS9xhscqjJNYELS1DYQydGpG7bFfzCNHMgf0vXaAR0/pa3AOhPQee/R+38g0Hnr3KrsPkpAu98oMDlBmWkVAWjDaWCb6fp42o+QE9ThAL+S+PT1HA1WjlSyqAgX3ZlhoPAra9rXFDpnqIhPS3JPiYISzqg+xj8ekE+5kaldP8FLx95bYzxEyzz3RBVSB8TB2B2hDCbC+HBdepiXRMM5sIuCTfKZ37t6lawUqGWBkdj3QPLiULPIj51Ge57Y5Z46oChgsRRdmR5S8u859Knv6RGzuUs7HHY+qNgu+aAwYa7BHcml3CmfIP3LdoqfWLfvfFyvDhRTPpu5XpIMR0Jvm+0XI7wBUwBswNxHxQjwfqsTDFCIpeFaDr5SFlUOF8Jpikq3T0BdZee5T1pViA36yqdaCvmHb0J0LVEbb7Fw1NKNws79qt4YHl4cNVVqsbEcDDEkAD4lqhv5lOymefcL0Ne/Zw7pQs5fMYeRA+fNZcLGs7UrITCygEC5NIgcutQIUPvpmJe0k3G8FlH5GpqkVORuhrsWkj4rnZe4FkiONvtjwoPdr76+IZS+hvvIOgtHXIr16MYorWEFa3JN42iJGQRODpSmh+HBvlydhy9QEgrlTvC31E7urkPgkFumFRFSYmDfwrruKtgBAkNCx4BJtWjNaZGWplKTIUZJIW062BHfBTkoNLm/Jtjo0CvhbBqvhi2MFbQ5O/iXT8ECUXtid9KXG/0Rbg/MEVxwb5XW8rGBPxWiI0J7HJRQLGEFQrQxXGi8mAiKn5Yg33T58wQLjy2zXv555SxBSr/Mfhipnmdzip+VG+pi4ofr0AfPKlG5wudj34R7WxWTHE/Xty/sD4Y+A2Xm7jocgxNBhtEDq21kHuaPOTU3DhuIM/cFhvV48Upl7jvtXLHVJ93hQPIa91hg7zsHQJyL86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZlty9+PeXdlqevKTItXD70aWdJS3mDnRfY+avolBylv3kz2r+913OH2zjKum81Dhlx5ZkW2v41msV8kV6phuIht4NCD8pIMo62+q0wRgm0OBOMPwKaUcJ6JpyHotr1PTTkt8BVp4KB+SdeoHEwVW98Ag+wa8sQImJHn6rfNX1Oz24apmSuhaQAe4AfmvKCmgYoUUa2ZngmqjIebg5d1LMxeW9EuY2cBrJxu4LSbQysQBabV1jeQcTgTVpW1KRH5sUKiVEea1Lp2486+B69UuvK91vvzHKZFTOrp++HkplGuicoZ7tOFo49ygFLudTaUrlynLz6wxWn2/sS4wgYbhhkx5OBUj8g9Y94q+SN3Y+4AuaMwzsFfXmfUNG8j7uc62eOdCLkhBwVsa93QL4xtqt09hBAF56u5BhmI5JuQ4PxckPhh6r6awn0rrcJDQreKTGDXEoJkwQpSrp77uo1cZJpvrl2qyusy2MYis4NSf+ieeOfBU5+l+/dkf3J3OETeRSSeS99F1LYUBTr3GPd0ITpntXu6PkzE+CLI19u8+WfR4vVnXRP8PPrSF+LpTGjOAG498n6uNtVtpFKvssfUAxa67g3omv0NHNMF2KnOChELUDwA26YbRbBNK34+aqN0zRbnVXzesNNeXckV6Cyx/VgGWic1FuTFqS6usJngwE+fg2D5o/pYPAjNU/XjuvIYWFIw0pihathV2nLw6kDRhhpjHi+sU6YN2ROJwb1ooPI1GTgkgDBtYoVpwQ39yK7gLTTqXrPRttCgp8H6CNxC49NiR0cMGtwP+TL5IZHt2eYdptz1jndNeBvVoXpt6jp0hCSSr1mnQayXM4Xmtpr7iN0e7FyKhK+QjoSXpCpZME6QOrkl6uEuljdErZTna9YRV2dbMc/qUSas+omIyWMA6lnZejmq8tg2lGZxF7wO8lt6/+j2+WzV2YK0uj+k+w8PppxDwh5AD5E0lwsac9RzboUcczAzuSyEZxtqzMGKZJ+y9comKad5H7ZCteu7Rjv5THovWHz9YJsNGXOTybt/mvvpu3/49YLwOX+i7s6IUw4uC4btTlsor9iNA3yys9nwAd3HGBkGFljixggNEJ151D/0tBG2XNxygRJVmDSKzWhvru+t4eq1zn3ysKGhi9qfakg2muZ+utHw65yv2QKrHGK1yhaTskrOEcIqetFXBczhRUpDcOeLNMzobiNqJ9rO8Ni0Z9bzvR7ri5EN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW819n6TchqajHAJhZyWUF4TLFbUrv5DCv3IynDWlWr8Kw5payD5gGIsg54Q1EgkpXNhsiubILX/Zh4fccCr9x+nTp6xOZ+j7I4doMcpeCfqHsyTGftDINM4PyR4bLgcBBWwrOFErUaVuTSZsXg9K/b5IN6Thv1vvQ+qbmuT55oNp4nSst+cQazOn86r+u5A14LDzU0BSywIovwCJPmTZBffNfBF9Nu7zzsm/jqltfEiddXkjsfU2CjbTAw+WOppBBDJ1SOBr8phqFeHquzL96jNGXlSQe1YD6QWrM+AEtZw3/nxZT8sb7j0QrRFD43alV7OK/FAKuGAgzWEvXXDmZ/k9+4ovYmjip+Ubc5ONi5Kp/NtnP14yGBeXcmzH33u547xTsuiulbvZPsuSdZUL28D6kYHd2RMiFd0wfEA4CeosCdckpJO538JFWZgu216MVYye26LtzAg9SPAZyzUQs3cI9C9RhR84vgE0TNL/hJ1Jpf1Jpd1Jpfv1zTi3ojoqYXk2+q7SpTAZ+jTwnCBc03D6731Mp3seTIxq1LLSeQSxAK6KNDUGCBoW+HVk7vMKGz54KHxU5sLiN7V9g1E6jjD83phMpegAk6sY8zEcW0mED6lUKNqxrHHoqyLe58xFHy/EdpCXmpUbdCjVSUpjx/2Odr9y+us24snHN/1jguUFKxojTwMa0ME2u2i6beNQyMdACImvVO5jDNo+gchl8vigVvrMd8Qi002TlgSOH+tMf/M39KlfMxkD89+YjNn6569J8/xe3TZKvI0WH9Tt+EG7NC/3qZeo4Df0qVaeLAUxx/xOYpdjwqan/aobLnovFNGzjHbrbeNLbt+gwO/Cl1kYADlFaxojT9URH6UyqHGt2fYj2G0Z8CpHB/GmDycwLqcOImma2NWfW3c0SRLvs+OIfvuDSnBwdTAtdHbFOCtlrIAzlLZitPQG6AZDaEBh7h6hEaeEQyG0IDj0hmQ2jgEclsCA08rcQgXQOPSGajRmi0jDXoFdGTHop6HgcZaz05M7KlAY38azqSCFFFwsjUPX+aTcyZbEKVLeTAJkFMNllx4F6fadmfPFIP7E3dOew+NX9IopDK6fXpmRybnYAfCe/ABV5gWXS+Qhkl1YgLwRKpbBq2VN1FxKvo4u0sA4JVSrm8B2QseDHvyGdON4onXG/5+naNyCYuqa5S9cZi81RMntCip1qqgkVYiY9t5KKMHiKHuVrgfTDhnxBZFP7dQYQBdzkexGyimKQEgwP1byzmNX0AHGgHES9mmqiMj0QVJlN4S0NJBGipudxDFhZOul5acz1QGZn/KtkL1wtsLP7a5EFmBQxEfxU8Nxgl07xVKeKtUANKJRnpoQiBslsEvGal4UW49ZLvEharwwQZ7aWyAVBVQiIXQS2ofEQUpZJKIrQ/Y8LE2nvwrtrL5GmZqgLK0VIdtf9zwMtRD9h4OeQBwcu9TR5zqryq6S6PDmZN7PfXJvb34Ywmy/EMR5MI3VyCJhG6uQRNInRzCZpE6OYSsdCDlMFP292r5r1sZocuvEXXsvPFQoMW/HUu0SvDc//Qh7aNvMeH0MgVen1kR6KK8XJArn2ZLFk6YOmITdFDXZJffZK24yeSp0YV8I0/H/AfFXCVuqsC1iC2DBV8v0ipws2bH4E/Q7cNQaroMOtr0VX3KL+g49DwtxXzwp/C3RoRGCe0pRkwM+M9pW0RsqVJ1NZ0bUJ9EkoIREOZznCJApAc8otn1ojet/6Kg2DNgi5ntj61KU7eEHTRPIG+IUg0cK5gBCAJgZBsYUqc8H9qlMSJEsEAWq3T2LVr1099xP74ZMNAfalouUSF7TPKYfiCtE3AG8+HB7zG+ixeVMXi0wbJLYqIKv4QhIgq0VIU1unMah07U7AO8EY/9ckuqiuOkKkx2eJgkpkIF4JOpD8iut5s32nPHQ9l63J3ridvjVlonohYxM1rKQrjVGI1Ds8UjAOhy28cgpmYjNNOEAE/ErMJeB01uFWqCB6tEV3swldGSoZDjcYW2E95v8GQnn1V0tl7W1fBn8s/J9nMXxxBPscemO/59HPspNaiMN7LJ2zGu2ZCQkFkIU3zAizYJc+C6nCZYrQCBMHAfMBcCqUCmg78S64ciTXCH51gU4RklOYCWlMkS2277VVpj3V/mO2omb5+JK22DiItGr9cFJY7zmq5HUa3HLwJ7qjolSpjrVmPlinC2B3hnZCPTvtPtvHbUnbgGLOUSeTo0YIxZspr4XzB2xGPIeCM4yQtrGqOOUI8Tu3HFKdWNx8bcPRgrt8Ri+RHjduOtSfv1Ik0Czn+KukImXQkOUyFmDJlttkKoOqQOt9iECYgGyZVRkijVKP5kZoHqit4aLK5PBQ9pAp8/sIcvFLLYrC9K31XkdxePgj8J1KpinKVyaM0H4wK9xlPmDYR8/6F2C9D7TbGgZD2ND2kJSbIyNmwG4ENdnASe0edIvoKnXc1a1C7o8fm+k6ZI0+ZkbXHLIin0rultqWgeTJV3Kyw82SA3DuInDPKj/g3E/PuPNUr0b1yYL4Qhq8cIVWpZAw1K3h7PUYrpWPcFsYN+rfirPctCj+EKVhRfQQHWJ1mxWqfYUMdYh2zFD7lgr8Eg53b8bd/WkjxiI+4KHQS/iyBcRuVVS2IiQHxq/D/ZfOHPeQ7tNPt/kxu7D8R/l8S4adWEzKYCP+mZ2wi/KHPikKEf1J8j6eVFCPc97VYmubfe8tGDk+bc+wjoWb5umdsmuVznxlEhH/+qyD/Xu+2iBfwsx69XT7ulNFF+MewogL6jcnMHfQ7+MOdCH+5quq3K8bwnNe3Hrqtf6jjMpMR4e/BarquxjGdwUX4l10NvT9vbU+/rQGb43I9Z3wzsgg/5mUYVdSBlzGYCH/p9QnltncLd5s62yu07VXviyYgwj+GFZzQZwYU4V9dfUqpWndruE6zeV1vZWy40gTkLCBCPVgRAmMaj9sGMMVtYkHTZj+7XBJsuVMn8cKaN2S5d0vsEF+kUg4YnR6zWTDg3CZvi0SWdz+uhQEQVymjw8JBDAerXCtD9dJyoFZYZHxbuupBvkZdc/saiXmjngN8JSK46ELBNwvg2/B5YQ9WVcp7LXAVxwL51U+OGiBdOFngvvSk3/ZP7lnmha/dRQmhqI6xkCEUH6AXBdGrK0LVI4abtc/1K4StGb4h0jCVFB1ferZ2KZvwcL9PzLpKJw7Z/lhKOSGF3Yg4IaW5zrnsL/j+3qzfv/1zYwdL2p6pR6AEX1mmDJEFs2jbLL7PS7fiLfTao3zQr/nOfyl15ogH0PuqtqUojNGQ1RhWxjEGrTi2PjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerj7tX873qeV+8efrtXUc6Rn0l8xr8gICo0XJE/cu8pqIw1rdnbMZ6avRpBpFXo1e0WjlvoVsRrRqiZhlBSR/8e+6ZHe+Z5h8yU53bt2thpsqFNEecE+7I4VHPLJouVAtxzz7P9YtScU/OEm1Fv5y/+OWcWL+FFb6GW6Y6eRt12gsBcCYAuIYAALoWvSJRgsqYRSb+uD03qaTDN/G6pNNNpgS9aUGhMsMe9oUAlGEDIOm1NtAc+P8sH4damNtg+TgjXrDl45R/UdT5ODturh56v1yO14GF/QZmZedkmEA+juoF2+7mwBcmkFSwfPlyA+TjPOq3WW3e0sVzw+1/2tVb8CTbJPJxPFmt09YUrGOQfJxZfnW83u+299g5IfvD6kequSaRj1Of1TjlTcE4PGPm45SPsIqt/c8b52Vlc6ZstrCOMal8nC/P2Yz32OjTRBPKxwlrYsazmdDQZ1123By7iGm3jJyPc4HVcmlGt1yR5uM4f2/3ZmqDjm6Jd2we2379P/a+A6yJ5P0/eihNRFERRTFWsIDYFcsBIfQmWO7skQSJBoJJEBEL9or1VCyn2FBUFLtiw947p553NixnO3uv/5ktgd2dXRJYknx//+N5fB7Zl91sPu/MO+/MfObz7r1mEnwcLIdg5eOAQEjkqf3/L/Bxlo1yC317Mzp4zfunpwZ9aDLcyHycz0+5+DjnmSltqfBx9krsrp2sUsVv888Hcp9MWCvnnY9Dn5vzwDF5/5SLY5L/tLT4OJrr/4RXGRPqudBsUKcvHx/H8s7HoccIHrA6z4lVjmFTHWPzcQawhbGhB+VN5aHrRbsOhCn+ud/7BXWnpGsCPDvpp5LExzBPmOqxfdHAR66Oh6fHtLs5Sa74KVOhBGrmDYKfgGx5q+ucPXD6fbrXkorzJAs2L3nF+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg08y8B1qlvQj+o53/lDqLJ6beO24TKVMAh8mkASCuDycfh7kVd6WEzZX2+ak+dh4XRCva3Du4+WSiD00FA+3Aynh0R/hMYIWbKIesiMGAcfiKLyUP+iH5Yih56JodlGHxkjvIyGpCuR9YIjfXi0B9IBvq3yduXV3Fzcx7Zx+HxRnxITSyEuL0pVXpI6/ziU366T2+TmwWr99weWTfLbpHotg8kj4nNeFZ4Ee/BUPt1YunNetLXRP1heQZDTMjY51e4jcI1WDUx+tdJqhhyovVaotRKqRQjhFSAqOxv8PSYY1kkFqnHIR+RLJ8sDJqiEyqvQn16szlXPy6rrvVLmLBjNsAzLIoUh8UVQ++jZBfghDBeRxCfgn+o8svhU681SXyxFPPCWe2p1i8Csujyy+N77lizI34Pv5puemLHqbN6ELaycOoxZZnon8wQp6JzdPWUD2AcCN6D8zyw+oOc5cE7lB6tb+1+0C7kniL/90w4Ncp0K9LUSnPbHjQ/LZRCk9aw/qO/dXgO8QNKggYBb9joSbZ3SNiFEIlis1Xdr4FvQ0kRJoEFTpxfeJ3qnW3Cmc8p8RMOOxWq8s1TpeZi/AnIbSOCUNpOG0Ap9OCDes0MgSbBYvwgApvGaPt95hvyD7KluzV8yFKX8vj1DIVxroDH0EJmEhfDem6vd/IR8u89tXe3zIwqPoauq/MQxI0koEKrYCFgLbZBT/VnTlcuRep9VXM4YrLqe05ndrgNkPri7OAAtHYZbg+C7pEAE0mhbOhm8FIxyzTgV3lnVHqRsSlXC9EpXvP5lgTJ4Z0KduQ3vXe7TBzxXm/5XsOlB2zs+4kKlc2MkYerRHCurLUYR2OV2w1rR3DoqPhVESiUBDlV+WwcB4U73ZDAkwvOMj2Coh8SVe6PWgZ3W4CpLp5o4rhNRMLqt4sKY/MBqu+C/qmGr4wWh6/7uatXw7nBs4Zk/nkH/OXWfQCL8ivWGRKSC+6XlLiPTx4D7FK80JxP8AEv9NN/VhjuAeVWKtA4tLbP6397cmbRal/h0dNnLWhMWNJOVo3YEran+Chds5vDlqJCSwnYy1Qjz02a6gzxCU91T1sS0rNnyaIxvdV1jy540Y2tV3Cuw0Fv4AT/md/mwZDrKSFuvEeAdnO4JugpTpoFXeLGSlKuprvSoSCXE/EADPAFesQxAAjYxtg9NbzcdF6r/T1fDRzckcPPNnea3+t1KRFiXWTC+n5tFhyzvO3pTVC0o5OePTv9il2hfR8TrlN/uVE9JqwOW1mDjnT3zqkkJ7P0Ur7Ggx1kIetKyOa/Pq2eEkhPZ89juX84mvle+3avGJKXN8/ZhXWNmRW/iW1DRGVf8lCvYjKvxaEaVH1fn365aR7p3T/K+DhHx+gMKMlYSq/v+Iau7huwb/XO/vmQ2hQRWCyIkz1KvhufL5/XtCeMbHjJLY144DJmjD5dD0WOcr5pNfsWus/e0/e8A2YKhCm7DsjGtt3uuybGfnzXcX8vp2ByYYw3c2bWD3F+l3A8ua/nZ5Q46k/MFUkTC19le+b7/vd+/cRibl+R/y2AZMtYVobM7pm6onqQavs1o5pMLtXJWCqRJh+it1xrLbtM/GyL/3Sex8y9wamyoTp9d/bL6+LHiz6/d/YF2XXbd8ATHaE6f2zid12Onb23yWJGDIx2lIFTFUIU50uz3esPZkmWv1+dovkvPRUYKpKfq9hC2qPmKQJW2GZ12rR9MdRwFRNwCoDZU+YNnweEdNwdqBofeWfT/0lmeoATNUJ052E/V2i+/j6zn7sMPbggK+1gMmBMI29k1vmTpO2nst7NGp7otqwocBUgzB9W7Khyfpmwz33Djz+540vr9YDU03CdP+1JuOux5TAiQtqvuk14o/fgcmRMLVyOLz73otXwUumDp4XmXUEAlWLMMXc+b5swsiDXpkLOzX4s9mzxsBUmzDJ2tWf96a7d8iW5F52q5rubwhMTqS/dnQwv37zi/eaS1Gv69WKh6KddQjTPbFz4IiHKvGS5TlZnd4vmgFMQrI7RL5ZkhTpH7LLvfb4jb1GOzOEquoKWISq7it+ldQ5X8F//qe/XTxmWV3kQagqmi1EVYves3nxsVPipRvzR5ypNTKdOnUVD49XKKWI0xdsCXAj4g4heV4WK1OnjgUJMQhCRAVAHY9b0AMU8tWYs2rCoKtuuDOYVj0/DuMrYucwHBZkf65fAc2C06j4iyC/2z+1Fnd8/CDGf8XFz0fshtfZxONhVJ43COHKXmsIkBQ17zzZWCwQPtcrJ24TIQNNA+M9SWWwxJFSLceOn4D3kyuwqRPZToQSFTxxrYyVR6GZaiOSm5SpOypw7dL2d2S5O1dQ6ePaz2HSxwtMvJemccFaDAdcH/81iUyOedRRz0zOleho0gJ3aWIkGmGsZIhMCBIQbQlrdp65Rbby0Kg6W/w27zc7FhWiqENjGhKPRTANSQvf3qvkSjR2H5T30tywxs5gm+sJXF3yUBRJ+JPRgUSC5d62r1jl2Cx4WhOfkye7zaFG6mIdweIBrAqcYIGmTow/g9jGn/+UG4ql3EDP0A2m3HDrOZdywzL9xkodlRtedP7lL9vcKgE586Ujarw/d4/HwZIegXhQbrjxnOug+3H9BsviKjd0d1rfdOelwSETPtU1a2q/NsHoyg1bOVEB7cZEWaaGU27wvl+uzdy4e54rXcsFS+97DDIZ5YZpnK4bZhzXGVy5QVgmY6NyWm/RZodvUcrDU58bWbkBizKsR++PI7KU0lJuODFcaDts/s7QiTtr+q+amb/eBJQbtnKCs+y5AZUbGk20vOOySho44/2bqFsfDlGLshlPuWEaJ0KgTxN5Wwxb3nZqiST4W4fqfuMynMyf1E8+QM1Gg0GOJoz0CdZ94cBbWwwXVhMgM2EwQ4wGv4K8K0kIsFVpcI0CEGyJ9gpzLyJ1G6VT4kRfv0S/NzOLJi16lMU9/pUoi8tIlTyBByZ91W9ZAXuBQhggv12G4Eq/Q2dv+k76d77H9hFvBtJ2k+DdiAMK2OWiMiV6/OOh5u3hrwT7itEIhU3Fgk1f9eIdO2AAke3CRSpXgeYL7OjB1qK5tXDbqkchq6s/U1k5jqTKGlv6kDczu2WBqSjAxtmeW365wlPxtuz35ge7tWvIA2CLOQEDLcooSRQ+ZsC/aSVg+2HKYVlw+NIa8yVHVG1ufmb+E0nZgE1pW1an3Lz2ww4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa/eGp9UXD4kI2tz+1dvxa7NdeHCtitO1/YzkWlR+PPtnvVKtCsGF4jnSmaPv9Ljlf2q4Z1qdCxHJmdf30Tf8EIeq8Ku8r925ETEpG0UqyXbDuhgxMMrZBkbvvOo3h7Xb5pnVu5/D9B77qeIBVSH5VQOXPuFJZhnk1sv0qBjfXKSMBZDjFFzsMdKCx2CTw4JC8ZBUqtOISN+2K/qFGe5A/pWu2Qhkjr4CoD/yRhSQHwAaf/yrkvJTvIILgQKXG2AZJJhtKOOELmTxc4AeLoAE/4fHNDVcjVYmyljUS/7I7J7atslT0bJjdn/Xcl9KHW3L98BIB8wYQ1wvKsbU/HirceIH39Dtiz0aWbfovqWEMWY2JHJCmM28ESXT0xpjMJd0SbhhIfdrV7eilHFqWVQC1jwwThRaW0t45++dl4/47x5v7xnw/i614KF1wXOZ01+KkXcqZTMCtj4o2K67YrARIWEwW0g4U7H+mxZtlSGTXr8IcrsyRkz5bjYRMozDKAxNUCgQsYAtYXYl74NEWKzNyuOGSRRyKd7IE+WaGKESTFNUukcC+i49x3syvEA163psz1ksqAXRtUZtvqUDdF++LGnftw/AeHhw1VWmxojYGGJIAIa7Tfrm0W1s2IwdT8rUO3m9FzV9xh7ETJ/xy0V1ZzoroaRH0QByDhC5laiUAVZ+NXvFmj7riJyjFjkVpanBpoWE7/3mYbbz1lTxHt/++S+ffTyoSXUFooGgt3SoVr57MUQLtCQOtP5+aRQWu0W3pHhZYRzqF+LsuAWBlFamcIN/o3bz8+8Pk9xBMhWNEgd/Shq47bEBEjoWPAJMqpNwVyO9TB+YStJJSujXAW5EL3iJos2FN8d6gV4LYQ6hGLYwV8D5u0TTlyKhaDJ6yYg1N9aHjW9nVf7gsLAbtI0J+K0QGxPY5dKAAmvirFCAJk4MVEPYBiqTqflHj5b8lD8uhZJ/y15ylfybqYVcYfKQ07lx/EA+1qx8q7ke0QFLNB1X7nvq+DMPkA97wwV59BsS8ljeWJm2JOQGYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszM6psvdmS0W+C2Yc0hyxtvidQXmDjRfZ+uj0Sx4ob3Fs/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHHmC9DJriNPjIAZeegLvdauHfHdNkxJQwldA/AAv7DzgrrN/D7iYddnwWmxLhl1puRvL8leW+kuY18EWE17QQy7LxnihGBarXiBzMPZsKqmpUQUxgqJ0ryFPaL/uersub7xm/nrB03w55EWMbZ76LuTGcN9M5VT/ad4Jx3mAaVQTpTcXzAXH7jytGbhZL/COhuGGdnl4FSP5J6xb5U0mf6xzKYu/waPsz5bW9XP5rUR93PdmxGNCLkhBw9PD3uhXxrbRLt7CCGKKqT3CUcgSmxCgnMs2Sdn4JNq/nPCt81JuTq+twnsWkKQBnKCFPpCv33dhj5y/Jtrl6oKmgy2scgeoF70W9/GxTcrcK2n9WqX0O404iL5XOYuotZSGuh4cKLT6AWZGCnZBsanPUKDzZp/Es1fddZ3RVhAL+ZCPHMkNGMBty51P1dLdUtU6iW5Tz9goevegK7sbxCYmsEU/qw3YgFKAEsTMxegSr5N29rRtvefAxZ7TWgSXTmw5TNqGWZrbD+WZVinGIuK4vQQV1ImOIjTLhCscFQbSwepedWXeo11FTGwZKCnsUOl+bXB2nI71X4z/my3tadtvbPUSCQG96KBKmQycEoAYRJwwvRMz8Gu6C00+l6z0bbQYKTB2gjcQhMyckc3DBoiDsWzxSGR89nmHcbfDk73XfFK06FGbfo6dKwkXoiv0yDWy9lSc2f8PnK3BzuXIhHGyRLhJZlKHkUMkDqFJfrhLo43RK2UFzLriKuns1gw+PNxqDiNyMlTAOpNPusVqCpi21D44i54HfRy+I9RKeu83nnvfuXhJPa4RS15Wg57ADNFwi8X1efo59xK2OcgMzkawrMR1eegGmbEZ73YJDb4+3CJpP/8/MYEV4f2ASmNjv0VuKhSJnX3D7+fuftHXC8Knxp5+U+GtdocMtaviUXvfr0H84BPF058QPMxBsPAAiNuDMOB6CSg/+hXRc2mm0Q1SKbhctqTrdJ6n9dmhmV3GZLnpOwVQXUafj/TacR13tdsgVfsOb1S1qS88vIg6RW9hi9bLODFy6RE8EU65mbi0qn72m0SLXNoOSyo3ZgLVMeEYPczHUNc59sxnm5EOIHLjIz5akpzscD/s34TMkctBtjEQiEvCo/wdXVOug6dHpy5I2TrPjO7vTRJIfwBCEkhwlAaiDThRKTCZ3JcH8o2rmfPDXrbu6NHwKS33zQWR268ofoY/0TdyTCdtDMM6gAuTIyRR8WAtBKeLZSo1VANUsuKIYZ/3SYf9HPaqPdltkn8uj480U8ET5TBfvEEs7r1n0q6A16LSDVw8SRM4BceYcLfBPnF3Z7NDo9V3g2Z77TxnZ95tzbUxseW2GgNBh78MSopxNAdxdEQNsEw1CtidQolWhRe0oRyUAvygdT4+gAsowD/X5BTCpNDRyERpY/nRq2oAue1GGAOKMCgjjUAjOjMKpPfuKK3Jp7UJunbHDzsXMV84tq5+kWLuZoN89BdvudPCY6KUnrV6Ch/EliZqrgdQhFCZQZSNqQdQ0A+AIYnDbhTQZNT1SlO0pUpuF6LKQROteu6cAMPUn8BcM5ALdzAPYqzXxB6k+R4gtCbhJ9E15uk60XS9SaLrSdJvxGhJ8kWm2r7ylUg5ugjf/us8jenRpZuXjP7NT7WOafhn1T5Wy9m7/AqUtzuc5eYck3aPQtb+nJk/t1cp+UlXTMBveMtdKc7ir0ACTp3vhxHCDmygVQckeBvp25nda5XO2TGbZuVQdPrUc9X6yYSTEfpTvv6ox98lQbknHiiaNDke0k5nBCls5wo7f7CkADkZLvgtRZgYqQDQHTWO3UMwx/FHMOI66Wx4I21mI+ohSYXVwwpIp5q/sfiKV3Ox0DxtB5nPH3/+b94SvhH5i2pNlHzLHDuhujMxuXdlvEQT+kyTTxECifOSGFV6vH0uc1c8aJXwUHLW3R9UzHz8mge4il9kYAHlN5/5kIp/3MpxlP6GGr0eOrEGU/fayf4CSY/J6B3J37IbG3K1HiVKor32fnOMyY7LzWChylB+meuKcFsLeTDeCOzVSQhNwCZDaGBR4Z6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYajIrIJkZXz+OBsZbIm5OtDejk4ulIIkQVSSfT9/wZPjFj8wldtpAHnwxn88ni3Xd+nXz/Y0DO7h05W4bcpZ7zKxcuiZMpmLVR2AKbi5cwHt5RqEKXME6pkeHiQlCem0vDlq67iHgVXaKddWSUSqlQRMARC14sOPL58mdaJNzR+/ur25nlw+aoTw99PrkGK5PaortapoIC4OTHNvRRJgxUQK4WrKIDhX+kcg3x3UGGAXc58lMyaC4hyxwxCtk2EgvGfQABtINIkDJZZBUiUQ2SxwXLoikDoDV+OQLWOy183RK/3k0ZX/gqNQpX7dFIfHnsh+O2GIjhKnhuUCPH38qcfCtUh1JJEgPipFB2i4S3jCW8CLdeCl3CcnUFUZIJnxDAKqpyiUIEtaAKDUQalUwSq/0dEybW3kM01SSTH5bpKqA8LdXR2z8P4/L5D1zj8oEP5Lg8wuQxp8urmu7yaA4nsX+9ltifzNswaSMw3DCJ0M0lh0mEbi45TCJ0c8lhEqGbS+ZC0V2qRN6dVE+0d+KIr2sO1wkrlAsdHp908PrO8V4Te53vZzvy0S3G4AqjPnp9jCbGy8PgOpLNkyZarp0uOmywcu2Hv3GVa+/1rbTLtR8fsvhdWodQ3zlHzJscH/hrtAmUaz/wjav47fpvJlBzesOGDQYo1x5wzsnj2a9pYcv2318Z2WEJreKokcq1L+D0zjhT8I5ByrX/FH4pX701xvN3Qez0HYkZS02iXHscp3N6mYJzBMYs13427HxezuneXruiH5aPGHKMWpfW2OXafTmd19I4zjPNcu0HKmTVc3Bf6jVt3zrZn5ctqNWqDF+u3YnTc1ZG9xy8qdTKtXeQfai20s0xeMe8VeO7hG+makMYq1w7lkOwlmsHgZDIU0ex5an/S+Xa6WUxjFyuPfw7V7n2Bt8NU669yvuQFYfmhATse+8X67y63BDey7XTxc14KEEe/J2rBHn776VVrr3S+Ozq8yctDl3dtX2rJKfBu3kv106PETxg1YATq0rf/78q1z6aLYz9J8JfLBF+ejUhg4nwC35wifDnMmMnDyL8f3Txcp9Tr73vitGO8bI1aVR58pKdNuc5RkLN8q/fuTTLHzFjZGmI8K96eTbz+vWm/qvcnnZwWyXuYHQR/jxOVHINGw055w76HfzhT4Q/2ibv5zf7W4RMrL90T6PtTtTS9cYU4d/I6bo047jO4CL8XeYO/eVTrao+GxMnPYuocJW2q2JwEX4syrCqqIMoYzAR/uyTV09LOouCsms1/nrxQiPqzppxRPjzOMHJ/W5AEX6PYz8O7v9jjs/Gj8t622S6U6dpxhPh38iJEOjTRN42hi1vE3s1afqjc57XultOmZeXvWhF1RHADvHFKxVgRGfmbBYsOLcp2CKRF9xPaGEAxFXKhEExIIeDVa6V0XppOdArLLK+LVP1oJBRV25fQ7HgMkyTJCK46ELD9yLAd/SPkh6sqlrwWuAqgQXyqy9V966Xlv1StOywbfNq/eKpEtfFqt1FS6HogbGkxeYBeuchenVEqHrEcLP2h36FsPHuK5UNUsnQ+WXDtYsFXqMqB8+4vtFhy5FoIe2EFHYj4oQUfp132V/w/TM4v//cH8ZOlrQtU49ECb6yXCmVR3Fo24S3MVuUdHG7z/bLle9psi60o7ZV8gHMtqq1lIYzRnM6Y7BxnMEojq3PjoVbUJxSA4YvSRRcO3Vx7wymrGBmEdtM2KJzVIxSJW0mbNlZPVSlwX5BZ6s3oi4+qREa5r/k0e7AWbmtVlPHNfgBkZokBaL+ZYGpNJzVg9NZ3ibRc+Cj9MpWqxUsdMclqAaqOXrQ+KmazID8hYG7m9wakf6h8v6STJVL6I7Z7kQgh0c9LzJ0oVqIu2/7oV+WSkRyjmxrbbs7GSeOKUSrVp4+EfCsy0KjTnshAItJAK4jAIChRa9MlBzK2EUmGrb0P2rZZoPnXsu+w2aM0eyjDWWGPewLAZByAbDe/weZaKb8j/Fx6IW5DcbHiRGc4ODjtBacKGU+zsot4XU/T34UOnnsnG1r2qSsNQE+TjSEhHV3s4/ghPFJBXPmzDEAH+d62sstdk0zvSfXKNPyW4XUZSbBx4ng9I6/KXjHIHycjnVmnH6XJwzbtfuPUx0+db1oEnycLpzOaW0KzhEYk48TE3M1o4PfqtB5WwOnnukcet6k+DhNOJ0nNI7zTJOPs2i7W/uVjd/5bow+tHTYlzYNjczHsef0XAWje65U+Tgr5/VsccpOGLJg185jHr+tvGoSfBwsh2Dl44BASOSpY/8v8HHuiZ0DRzxUiZcsz8nq9H7RDCPzcdZD7Fn5OL8xU9pS4eN8SR1/qooqICTj4qaTr6qfFfHOx6HPzXngmKyDyLFyTJZRkeORj/Oumvq9v9my0O3dFrUo3+j3JN75OPQYwQNWv3FiNc2wMdfYfJxxbGFs6EF5U3noetGuA2GKf+73fkHdKemaAM9O+qkk8THME6Z6bF808JGr4+HpMe1uTpIrfspUKIGaeYPgJ6BLRka+WZIU6R+yy732+I29Rjuzvh9zJ6ewkdH+LCNBCAsrfBQL0Srp5550bJXapyH4NA8/HhcI7EXwH+38Z7SzuM+Dj8dtImUK4DCZNADE9eHk4zC34q4cz+ZK+/xUHzuPC6IVbe4d3Hwy0YemgoF2YGU8uiN8JrDCTZRDVsRgwDh8xZeSB/2QfDGUPHTNDsqweMkdZGSaL0SJ3FwvAvUJbKh/n7h1dRU3M++dfRwWZ8SHrCny9KVV6SOv84lN+uk9nk5sFrPfcHnE/i3dIxPZPJI+JzXhWeBHvwVD7dWLpzXrS10T9YXkGQ0zI2OdXuI3CNVg1MfrXSaoYcqL1WqLUSqkUI4RUgKjsb/D0mGNZJBapxyEfkSyfLAyaohMqr0J9erM5Vz8uq671S4gCEEwy6JIfVBUPeMtQn4JQgTncQj5JfiPLr8UOvFWl8gTTz0nnNmeYvEqLI8uvzS+54oxN+L7+Kflpi96mDajC2knD6MWW56J/sEIeSY2T1tD9QDCjUhvWT3tlPp3ZvPQ/TEvE/OGVM4vibf43w0Dfs2Hfl2KSnlmw4Pmb41SeNIa1nfsrwbfIW5QQcAo+B0LNcnuHhGjECpRbL6y8y3obSAh0iSo0Ilru8sN2p7rlBK0Lq9G9Qqyl/c5XWYuwp+E0DomDKXhtBxOp2UY1mlkCDYLFuEBFd4yRtvvMd+QfZQt2avnQ5S+lsepZSqMdQc+ghIwkb5aHiZz7TpqcVBG7DPzwUtuDaD7yjwkQSMZqNAKWAhom13wU92Zw5V7kVpfxRyuuJw6l9Opo98ytL44CygQjV2G67MgwaPLpHA2dDMY6ZhlOrCrvDNK3Yi4lOuFqHTv2Rxr4sSQPoltSO9673aYueK83/I9B8qO2Vl3EpUrGxkjj9YIYV1Z6rAOxyu2mtaOYdHRcCoiUSiI8qtyWDgPine7IQGmFxxkewVEvqQr3R60jE2vAVLdvFHF8JqJBXGvS8ojs8Gq74K+qYYvjPyi3rZ2z5fcehI4c8a+oXbHP4fTC7wgv2KRKSG96HpJiffw4D3EKs0Lxf0AE/wFr/VjjeEeVGKtAomLvcvbpyN72gbtHbRS2uTXr98ZS8rRugFT0v4ED7VzfnPQSkxgORlrgXrssVlDnSEu6al2it1pnnlzRfP8Z//Y0S6kD7VdwrsNBX8vTvh9jQM/gyFW0kLdeI+AbGfwTdB6P7SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigJnMNsDorefjovVe6ev59HTq1jTp8B6vFf+O6Vrtzc/BhfR88r5e/euLy1BxjrRxhR0BVg8L6fmMzr66YNn6XwJnaypPfd7i5dBCej5RTQX9H3//22tZXp58e/8+Vwrp+czNauo8O/5S4MKz/hUP3W30qpCeD6LyL6ltiKj8SxbqRVT+tSBMt4/WbGHbY0bw2E8b/q1x+sERYLIkTBbJ5Va8lz8LyVwzQJ65SwHRsCJMdzscqtHppxueqRU1/pFDHrcBJmvCdGXI09//7pEvSh0a2Hf/NafzwFSBMN3cMu90s+UXAjf4tRa0+ivvNjDZEKas5B8LPMPk3mObtTrzY55/EjBVJEz+4e2k7ufVogPSJ5nTrnVZC0y2hCm5uYUi8fZM/5xOX++lZcvnAFMlwtRum/TKP282BqfciVt059iZ2sBUmTBNe3XO6bGsfHD6qTN/5w+8bgNMdoTpbOcdF7/kVAtNa9XmYtyLAa2BqQoJb8PRZVYduxR44MyCBu+2PzoKTFUJU/kXdx60yRwi2lH9+paPV1v2AqZqAlYZKHvCNGXdgxdbIqYFbO57pN91ae0BwFSdMPnOyRv88515AZNclic7Lup4CpgcCNOEVPXRNXe6eE255D9AdeTEXmCqQZjcpm2JDk0f7LPGtezGvr2drwJTTcIk3rrj3DvF4+DJdT0qiKb2gApRjoQpoorZ+vN/XxLNPtP4zI22jZ4AUy3CVNWpvbtGecp7efOZ1XZ9fQzbRm3C9HnZyC6v+n31Tt31SLjTLHslMDkRpg7Z8og7jUf4TJeOrragvX0uMNUhTBXKNhZvrjjCd9L0uBu5i6rAzxISpk9OHmfmzmnou3ZWBf/POy+EM4Sq6gpYhKqsljc817NHc88V/TWzFuzPUfIgVDWFLURVi96zefGxU+KlG/NHnKk1kioaby4eHq9QShGnL9gS4EbEHULyvCxWpk4dCxJiEISICoA6HregByjkqzFn1YRBV91wZ7HgZZkTML4idg7DQXp8owxj55CzgGbBaVT8RZDfrcwbP/XCnm6ida+6De26ZFI5Hg+j8rxBCFf2nkOApKh558nGYsH9MowNQq6UrE2EDDQNjPcklcESR0q1HDt+At5PrsCmTmQ7EUpU8MS1MlYeha5g57Dz8LQ1+WETj4bdG7xUQi1Daqn9HCZ9vMDEe2kaF6zFcMB1sYxReBlFH3XUM5NzJTqatMBdmhiJRhgrGSITggREW8KanWfe4V7sq8pLP4RsfH46Z7GZkFrMziKSeCyCaUha+PZeJVeisfugvJfmhjV2BttcT+DqkoeiSMKfjA4kEqwZK6f8bPdcFDq3zIOJ232aUk9IFusIFg9g3eAECzR1YvyZyjb+/KfcUCzlBnqGbjDlBlHZExzKDfXL6jVW6qjc4Pgu5dsA1zOinDVnek0/ZOHC42BJj0A8KDd4QYRYD7q3K6vXYFlc5QZB/eTt80ff9Fx1qOm4zP4rrxhducGVExXQbkyUZWo45YZK//Z6d/T6u7CNWQtcBe+7Ubf8jancUIPTdbbGcZ3BlRuq98tybR6f5bXolvnVVv1ox3sNr9yARRnWo/cgyhhMueFCxsHsOYPahWV9fxB0fY2QqqtjHOUGV05w6tPAKVXlhji3T773Uw+HLfPY/aXa+DLvTUS5oQYnQqBPE3nbNLa87dQSSfC3DtX9xmU4mT+pn3yAmo0GgxxNGOkTrPvCgbe2GC6sJkBmwmCGGA1+BXlXkhBgq9LgGgUg2BLtFeZeROo2SqfEib5+iX5vZhZNWvQoi9vO8gReFpeRKnkCD1S31G9ZAXuBQhggv92/9oPape7tEpYesWjrpK9mA2i7SfBuxAEF7HJRmRI9/vFQ87YNBCge1QiFTcWCppZ68Y4dMIDIduEilatA8wV29GA79d2OF/e/HvPcVkVetck2P6oOj6UPeTOzWxaYigIsx/na7L8G9PHJvvvTlPanjuTyAFhdTsBAizJKEoWPGfBvWgnYfphyWBYcvrTGfMkRVW2f399a+5SH//oJ3du82vkwyw4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa09tSjl9d8hfITmnXV2aDbHx5sG1Npyu/clIrkXlx7N/1ivVqhBcKJ4jnbnA502ixbMOfr9LNt57HbrLm77hhzhUhV/lfe3OjYhJ2ShSSbYb1sWIgXE628DonVf95rB22zyzevdzmN5jP3XVuiokv2rg0ic8ySyD3HqZHhXjm4uUsQBynIKLPUZa8BhsclhQKB6SSnUaEenbdkW/MMMdyL/SNRsBjX/xTwD0R96IAvIDQOOf8RPr0R0dV9y8gguBApcbYBkkmG0o44QuZPFzgB4ugAT/h8c0NVyNVibKWNRLqtfO+v5Z80Q8TXn1090Z76h7J+V7YKQDZowhrhcVY2r73bQdvGmTaE3cs+fSJrOWlTDGzAYwp0GYzbwRJdPTGmMwl3RJuGEh92tXt6KUcWpZVALWPDBOFBLLFm9z86Y/3+63paKgTq+Lba9RT2QUPJc5/aUYeadSNiNg64OC7borBhsREmawhYQzFeu/adFWGTLp9YsgtytjxJTvZhMhwziMwtAEhQIRC9gSZlfyPkiExdqsPG6YRCGX4o08Ua6JESrBNEWleySg79JzvCfDC1Szrsf2nMWCgRBda9TmWzpAN7jEfd8+AOPhwVVXmRojYmOIoRuhJLyzKKO27/y8SQl+i2fWpqbP2IOY6TN+uajuTGcllPQoGkBuAERuJSplgJVfe/zEmj7riJyjFjkVpanBpoWE7830VTm1G23y3z3v5aCq38v/Sj3mTjQQ9JYO1cp3L4ZoBXOi5f2TQRMs8kUtuiXFywrjUL8QZ8ctCKS0MoUb/Bu1m59/f5jkDpKpaJQ4+FPSwG2PDZDQseARYFKdhLsa6WX6wFSSTlJCvw5wI3rBSxRtLrw51gv0WghzCMWwhbkCzt8lmr4ULcuZazm1/Zvm3nMq3frz24dqF2gbE/BbITYmsMulAUUwJxTe2oEqlW2gMpmaf/RoyU/541Io+Vf/J+LAP7Lkn6MW8pkmDzmdG8cP5NG/OfaUT9vnmdrlw8NH5uIPPEA+y4wL8slmJOSzeGNl2pKQG4CViSBRkqxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIn7w+ubzu1me/cBX+2DP+0exmD8gYbL7L10emXPFDeZrP5v17QUdebW6x815pJB159XInq/yr4Yr9IoVTDdBHbwGEm5eVZels9XzksdxwD6wPjD8CmlHCeSdAQdNvep1NOi3xFBjioP9I1KwdTxSVwf+A68sQImJEn67fN74jvtmFKGkroGoAH+IWdF3Q0sJt9/Oy5oTOeNe7cfELH0yXZayvdZeyLAKtFZYlh9yVDnBBMq6cxN/y5sKqmpUQUxgqJUtoRl6n7ct6F7Ci7oFXNa+PO8EiLGNs99N3JjOG+mcqp/lO8kw7zgFIyJ0qKsszFB648rVk42a+wzoZhRnY5ONUjuWfsWyU/7NJrLNw8IHiPi/rquWwPjRH3c92bEY0IuSEHD0/P0nM/t4l29xBCFFVI7xOOQJTYhARn45tZuaEff/LLKdds0dVh49xNYNcSgjSRE6RkPfd1G/rI8W+uXaoqaDLYxiJ7gPqY5fybIj7fPyPzqWeg7980Lh75XOYuotZSGugM5URnkHZPdw7bwPi0R2iwWfNPovmrzvquCAvoxVyIZ46EZizg1qXu52qpbolKvST36QcsdN0b0JX9DQLTEwjbWW/EApQAFoHQb6jTbZt2zo1djx+VXxU6/tuvkS2GH9xFXezE9mNZhnWKsagoTg9xJWWCw8JDEKxwVBtLB6n5Lf3GuooYWDLQ09ihepLwMLh6mp//hBavkyedH0EVc7cUg3vRQBUyGTglgDDlccJ0Ws/BrugtNPpes9G20GCkwdoI3EITMnJHNwwaIg7NZYtDIuezzTuMvx2c7rvilaZDjdr0dehYSbwQX6dBrJezpebO+H3kbg92LkUijJMlwksylTyKGCB1Ckv0w10cb4haKS9k1hFXT2exwNLiBFScRuTkKQD1x+Z6BaqK2DYUvrgLXgf5LQPLzjox/ceWgEnb6u16E5PVhJoiYQ9gpkj45aL6HP2cWwn7HGQmm0N4NqL6HFTD/GauF5vEBn8fLpH0zUPyhZkNrL03brl0pOyUE/eou3/4/czdP+J6Ufg8PNGycXiVqZ57kzN9LP5tVdJ1E4jPG3MufEDzMQbDwAIjbgzDgegkoP/oV0XNpptENUim4XLavl7lphz7bbPf2rAl2UPbfA2iOg2/n+k04jrva7bAK7c5vfKHSXnl5UHSK3oNX7ZYwIuXSYngi6658DhLsKXzCu+ZOadmtK0W5kR1TAh2P9MxxHW+HePpRoQTuMzImK+mNBcLPprrNyFz1GKATSwU8qLwWJYs3tc+rXXAjOe96o3MXyilSQrhD0BIChGG0kDksTkXIjfMyXF9Htu4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51m3zQz2mj3pfZJvHrevBEd5kTPFEG+8UTzOoymeO6njvgtYhUAxdPwgR+4REm/E2QX9xyozpy8tvGXntjY1vWlQ+gDm3mbImN1mDgwR/S53ZADN1RHA1hEwxDvSJWp1CiReElTSgHtSAfSI2vD8AyCvD/BTmlMDl0FBJR+nhu1IoqcF6LAeaAAgzqWGdqO/NvJr9xRW9NPKlN0rc5eNi5mmLOtXOVosV8Phvmobt8z58SHBWl9KrRUf4ksDJVcTuEIoTKDKRsSDuGgHwADE8acKeCJqeqU5ykK1NwvRZTCJxq13XhBh6khiP0DNTCDdyjyLE4wdSbJMcThN4k/CS63iRdL5KuN1lsPUn6jQg9SbbYVNtXrgIxRx/5226TD+XcPH5YtDjmzd6jP22sRpW/9WL2Dq8ixe1eqp1Gm4UMDlv2r/m3sGMPTpR0zQQKSUJ3uqPYC5Cgc9TiBELIkQ2k4ogE3ww+Lhs4N8R/juXpiGZO7dcXQySYjlLSr3dTK1ReHXBw6KdmfarJSsrhhCjlcKKUbXGCLgHIyXbBay3AxEgHgOisd+oYhj+KOYYR10tjwRtrMR9RC00urhhSRDxd8D8WT+lyPgaKpzLOeBr2Xzwl/TN994agFq3+9V4xq5KZ+s97N3iIp3SZJh4iRRRnpPi11ONp8uw+XV5NdQ1e4XcvZ/TqvQ15iKf0RQIeUArjRElcmvGUPoYaPZ5GccbTMG08XWjycwJ6d+KHzNamTI1XqaJ4n53vPGOy81JLKhYBpwQNLLimBLW0kKfxRmarSEJuADIbQgOPDPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDUYFdF7uDT1PB4Ya4t4c7K1AZ1cPB1JhKgi6WT6nj/DJ2ZsPqHLFvLgk8VsPlm8+86vk+9/DMjZvSNny5C71HN+5cIlcTIFszYKW2Bz8RLGwzsKVegSxik1MlxcCMpzc2nY0nUXEa+iS7SzjoxSKRWKCDhiwYsFRz5f/kyLhB2b1zhZc0pdz9n1YgSPaiaw6i5bdFfLVFAAnPzYhj7KhIEKyNWCVXSg8I9UriG+O8gw4C5HfkoGzSVkmSPGonQjsWBeeRBAO4gEKZNFViES1SB5XLAsmjIAWuOXI2C908LXLfHr3ZTxha9So3DFgEZim7nlT9hiIIar4LlBjRx/K3PyrVAdSiVJDIiTQtktEt4ylvAi3HopdAnL1RVESSZ8QgCrqMolChHUgio0EGlUMkms9ndMmFh7D9FUl5j8sExXAeVpqY7e/nkYl/eW5xqXt5Unx+WlJo85XV7VdJdHt3AS+zO1xP7feRsmbQSGGyYRurnkMInQzSWHSYRuLjlMInRzyVwo56z7md/WnRFv+WPCiGuCrg0L5UJL/ty+yOtx+4A5FeNarQkaNZoxuMKoj2xIdDFeHgbXZWyeNNFy7XTRYYOVa99hyVWufSxTSobncu0PelUqWzZlVEhaUvPU+bv6dTGBcu3bLLmK32YaRzCDWnN61apVBijX3t+1YWT0tNPixZMn9hxWW7zQJMq1L+f0znxT8I5ByrVfOl5r/WLNNM+p36LNIl5bPDCJcu3TOZ0z1hScIzBmufZVFjcVe3fleG6TXT98W1HJ1qTKtSdyOi/WhISCjF6u3f5GL2G5obdE82//dPpQ4DhHI5drj+L03K9G9xy8qdTKtQtlv1Zqst/Vd3GneLO1Fe9dMoly7VgOwVqufaxW7Gk5W576v1SunV4Ww8jl2r9acpVrf8hMaUulXLvS50KfaUv+8JleLzroX8u1O3kv104XN+OhBPlnS64S5C/1k03Uo1z7X5VblV3Rf5vP1g5pZRq3kU0qeRemYUWPETxg9ZATq78NG3ONXa49nS2M/SfCXywRfno1IYOJ8Hez4hLhb21VGiL8HYVjGh0WrhHNP3T3206zrrd4PG3Oc4yEmuURVlya5f5WBhHh/+foDY/B2V/D1pb7mnDkSL8Ao4vwd+FEBbQbk5k76Hfwhz8R/sDTZ24me57zPDjfwtGt7uezJiPC34TTdULjuM7gIvw1O/6uyNn/LmBqy777h167+p6202loEX4syrCqqIMoYzAR/uGKFX9+epQbtvJHlNXYsKgpJiDC34UTnNZWBhTh/7t5b8vtrb8HLrlYPv3zoSTq1Md4IvxNOBECfZrI21aw5W1iryZNf3TO81p3yynz8rIXrag6AtghvnilAozozJzNggXnNgVbJPKC+wktDIC4SpkwKAbkcLDKtTJaLy0HeoVF1rdlqh4UMurK7WsoFuyH+EpEcNGFhu9FgO88Zpqk58GqqgWvBa4SWKDJQv3mf7jUsmrQ+iM3uyWftqAVOitO7S5aCkUPjCUtNg/Q2wvRqyNC1SOGm7X6pVAV8O4rlQ1SydD5pXSUm+rrl7reO38/8jRhU04c7YQUdiPihBR+nXfZX/D913J+/9+NnixpW6YeiRJ8ZblSKo/i0LYZXbve+k1XBL5To3Ltl3Ub1YDaVskHMNuq1lIazpjH6YypppH+CPTZsXALilNqwPAliYJrpy7uncGUFcwsYpsJW3SOilGqpM2ELTurh6o02C/obHXch9GCldELglYMSfP9bUX/5dRxDX5ApCZJgah/WWAqDWeN4XRWgkn0HPgovbLVagUL3XEJqoFqjh7kOHP2lJH2fwfsXTD093lVJyaWZKpcQnfMdicCOTzqeZGhC9VCvCFLzyyViOQc2dYOdXh8EycHv5Tle/18WlY6ZdRpLwRgBQnAdQQAMLTolYmSQxm7yMSxF3fSUqVm/nP/qH+336w7SbShzLCHfSEAk7gA6DFcm2iu/B/j49ALcxuMj9PJmouPY2Fd2nycv553Ew/t9S14nmxj35i+zioT4ON4WHPtbrpbmwCpYNq0aQbg41jN2DvFu9MN7+WTnBP+riM5ZxJ8nEac3qllCt4xCB/nwGBxbL97PQKm9n8rqvteHWsSfBw7TudYmIJzBMbk4yyLiXRaWy8+OHXGtLONbZ0+mBQf57sVl/PeGj3ZNSE+Tv6VNe7JXjO9t0zziht6vEZTI/NxnnB67o7RPVeqfJwfHw74NW7UzmueXfukadK8zSbBx8FyCFY+DgiERJ666v8CH6dC2cbizRVH+E6aHncjd1EVY/NxRltz8XFimCltqfBxxo05FPPhRbJo71zPFhNsnV/zzsehz8154JiMtObimKisS4uPU3nHa6VZa5n34jXnPWw7Ro7lnY9DjxE8YBXDiVU/w6Y6xubjrGYLY0MPypvKQ9eLdh0IU/xzv/cL6k5J1wR4dtJPJYmPYZ4w1WP7ooGPXB0PT49pd3OSXPFTpkIJ1MwbBD8B2fI+OXmcmTunoe/aWRX8P++8EM76fsydnMJGRvuzjAQhLKzwUSxEq6Sfe9KxVWqfhuDT+EBhLnsR/Ec7/yl3Fl8WmZ+wiZQpgMNk0gAQ14eTj8PcirtyDZsr7fNTfew8LohWtLl3cPPJRB+aCgbagZXx6I7wmcAKN1EOWRGDAePwFV9KHvRD8sVQ8tA1OyjD4iV3kJHNtCBK5OZ6EahnsKH+feLW1VXczLx39nFYnBEfsqbI05dWpY+8zic26af3eDqxWcx+w+WR22Z0j6xl80j6nNSEZ4Ef/RYMtVcvntasL3VN1BeSZzTMjIx1eonfIFSDUR+vd5mghikvVqstRqmQQjlGSAmMxv4OS4c1kkFqnXIQ+hHJ8sHKqCEyqfYm1Kszl3Px67ruVruIBX7lAJhlUaQ+KKruXA4hvwQhgvM4hPwS/EeXXwqdeKtL5ImnnhPObE+xeBWWR5dfGt9zxZgb8X3803LTFz1Mm9GFtJOHUYstz0T/YIQ8E5unraF6AOFGtPjg5ycjnF9uFs9/k3vuc/e9u0riLf53w4BfxdCvS1Epz2zQhTqWM0rhSWtY37G/GnyHuEEFAaPgdyzUJLt7RIxCqESx+crOt6C3gYRIk6BCJ64nm4iXrLxXOST79R+KIe0z/+V0mbkIfxJC65gwlIbTWnA6zdmwTiNDsFmwCA+o8JYx2n6P+Ybso2zJXj0fovS1PE4tU2GsO/ARlICJ9FXiq0/Px699Hzq9dYOM7KWjBXRfmYckaCQDFVoBCwFtswt+qjtzuHIvUuurmMMVl1Nrczq1SjmG1hdnAQWisctwfRY0Z5omk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+jq2Ib3rvdth5orzfsv3HCg7Zmdd6nkQq8gYebRGCOvKUod1OF6x1bR2DIuOhlMRiUJBlF+Vw8J5ULzbDQkwveAg2ysg8iVd6fagZTSFaU43b1QxvGZigbVZSXlkNlj1XdA31fCFkV80yH3fooylB0Mnds1pMLH7BKrakBnLVywyJaQXXS8p8R5g1RhileaF4n6ACX4dM/1YY7gHlVirQOKS7d70TmOns96Tqmxssz7/sy1jSTlaN2BK2p/AN6/G+c1BKzGB5WSsBeqxx2YNdYa4pKdyd/QbXmWKzH9uK+Gw29s7HaO2S3i3oeAvwwn/B8PW9ybhZzDESlqoG+8RkO0MvgnSI/SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigMlkG2D01vNx0Xqv9PV8RKnbenm6fAvc1dB/bM/z5dWF9HxcnzcUJKWuC111wfZvzQL7zEJ6Pm0bdRodu+Kg57aLjo9y1zmXK6TncyokeXrmw8qBc5++WCnZGf53IT2f1edWPnIcPTto3Y4W4+9VOd62kJ4PovIvqW2IqPxLFupFVP61IEwtF1YN2LDtu2ha7e+HPO+mrAYmS8K00Nw3ob23PGCmz2/1T384Pw+YrAiT1cw1oeH9vUIWTth3L3zMNE9gsiZM+cNDlyd8WBKyyzatb6cX76H6YgXCNHvtyoPJYTY+B2ZMix/Yq2UAMNkQJo+frvlWfv8saGq5cxcyWg44AUwVyQeuuXdxStyN0PVrqrV/IW1nCUy2hCmm2a/dXVUtAhddLfsmtvfkEcBUiTA1jreq1l94wC9L/M1i9O24KcBUmTCpWniGC1wv+x0oe85vtPedVGCyI0ztvo4d61NeHDRuebDn53FtFwJTFcL0eL3CRhrfOyR96sdzZv/2eAtMVQlT9NHH5nuHfPaZEH/r7fW+c/4BpmoCVhkoe8J0pXeTbxVe/eaZvXpl1IJ1D7YBU3XC9Orp0SNBVmOCFg70XmrbYh4UUnQgTCN3zogJtunqt+VwnLSnh9QCmGoQpu0O5R42vJUQsjDraq3RFxceAqaahMl69F/dhiy6FrTFudHeVr5TVcDkSJjsHzxufGbOi7B5aqvKEZ6VZgNTLcI0uZdF8MSkn8XzU4e+ihv9yQyYahOmepGup/Y+Ge69vO/73fMc2kOTE2H6RTTz15Euf4ZsHyGsVCnHYREw1SFM/o01v90dXtP7tyGXWmVVSXoMTEKyE+05ePRKxsiQrHZ53rEeDmcYQlV1BSxCVTGvlPva1Dwbtkw2reHGyfVPIcKGvkJV69lCVLXoPZsXHzslXroxf8SZWiPTqVNX8fB4hVKKOH3BlgA3Iu4QkudlsTJ16liQEIMgRFQA1PG4BT1AIV+NOasmDLrqhsMSVhVOwPiK2DkMB+nxqQr6FdAsOI2Kvwi6WH2Fu1Ovtw73XTq29Yfmp+5RpehLdhiV5w1CuLJ3EwIkRc07TzYWC65U0CsnbhMhA00D4z1JZbDEkVItx46fgPeTK7CpE9lOhBIVPHGtjJVHIVHs9/jlxkkhwoAlDX5/3Tky/iGVPq79HCZ9vMDEe2kaF6zFcMB1sIJJZHLMo456ZnKuREeTFrhLEyPRCGMlQ2RCkIBoS1iz88ytruw4PN/3vCgt5tXm1629qtOYhsRjEUxD0sK39yq5Eo3dB+W9NDessTPY5noCV5c8FEUS/mR0IJFgLQ2tOXj/i6U+83+3vH/y521UHcxiHcHiAaxTnGCBpk6MPxvYxp//lBuKpdxAz9ANptzQ0oZLucHOpjSUGxwsLi4/fiw2dPnSLXXfLMttxeNgSY9APCg3uNtwHXRvZGMQ5YZl5pfXTTxpL8rJanSnajPLtkZXbqjFiQpoNybKMjWccsOFoAoBbb/EBa6rsitl1cTpvU1GucGC03XfTTWd4Vm5wWrUml6nLeaHpX8/+vn3227UGnGGV27Aogzr0XsQZQym3NDWcV7K829fxAvnS8z/zRz7wwSUG2pxgmNnY0DlhiW/VMwfvbyJ3+8OGfvqR6x/ZiLKDRacCH3X5m0b2fK2U0skwd86VPcbl+Fk/qR+8gFqNhoMcjRhpE+w7gsH3tpiuLCaAJkJgxliNPgV5F1JQoCtSoNrFIBgS7RXmHsRqdsonRIn+vol+r2ZWTRp0aMsbqOqRFlcRqrkCTxQvqp+ywrYCxTCAE2K/23b37dlY/y2L6mR02lwzCvabhK8G3FAAbtcZKZEi3881LxtUJVgXzEaobCpWFCzql68YwcMILJduEjlKtB8gR092B6J3JPZ6NQvwSsTek/JTH74ndotfcibmd2ywFQUYI9O3GlQN35O6LSHwqd7uu5owgNglTgBAy3KKEkUPmbAv2klYPthymFZcPjSGvMlR1Sd8OztxUoT/UL2V+v+MmPl1t52mJAJcIZ4eLxKpqU9Y0mtl3ekyy+NS5YA01w7UJXU4Nvsd/7bnk6tcVtlH8yDa79W4XLt6yqmkx/P/lmvVKtCcKF4jpYsW2lhN9VznueOiUtH/rns/R76hh/iUBV+lfe1OzciJmWjSCXZblgXIwbGLLaB0Tuv+s1h7bZ5ZvXu5zC9x34q0aEqJL9q4NInPMksg9x6mR4V45uLlLEAcpyCiz1GWvAYbHJYUCgekkp1GhHp23ZFvzDDHci/0jUbAY1/akUA+iNvRAH5AaDxJ1csKT/FK7gQKHC5AZZBgtmGMk7oQhY/B+jhAkjwf3hMU8PVaGWijEW9ZOAG98NVJuzxzp54aGHY8TrUssTle2CkA2aMIa4XFWNGBf95IvWcp/+0YZuCWgpu7SlhjJkNYJ4MYTbzRpRMT2uMwVzSJeGGhdyvXd2KUsapZVEJWPPAOFFILPf8tfIP7zGfPGd4Xnx6eeP4mtQTGQXPZU5/KUbeqZTNCNj6oGC77orBRoSETWwh4UzF+m9atFWGTHr9Isjtyhgx5bvZRMgwDqMwNEGhQMQCtoTZlbwPEmGxNiuPGyZRyKV4I0+Ua2KESjBNUekeCei79BzvyfAC1azrsT1nsaArRNcatfmWDtDtWOK+bx+A8fDgqqtMjRGxMcSQADQc827KWfFA39//nWIxJaY/jYyFPYiZPuOXi+rOdFZCSY+iAeTCIHIrUSkDVvm1Imv6rCNyjlrkVJSmBpsWupCL84gFoT5DA9Y8rTn5s3JJf+oxd6KBoLd0qFa+ezFEqyMnWi0qGoXFbtEtKV5WGIf6hTg7bkEgpZUp3ODfqN38/PvDJHeQTEWjxMGfkgZue2yAhI4FjwCT6iTc1Ugv0wemknSSEvp1gBvRC16iaHPhzbFeoNdCmEMohi3MFXD+LtH0pUgoBuVPcOp36ZLn+uYtN4d/TT9P25iA3wqxMYFdLg0oOnJC0UI7UG1mG6hMpuYfPVryU/64FEr+2VXkKvlnpYU82+Qhp3Pj+IH8q/zKY6tGXX3WPVQu9BeOyuUB8tG2XJAPsyUh38IbK9OWhNwArEwEiZJkZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKVueB4Vm1nxSffne0UWebZ2ZsZlDfYeNG7KzT6JQ+Ut61s/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHEa3B+4jjwxAmbkg/Xb5nfEd9swJQ0ldA3AA/zCzgsav+jql5nmqaLMn/46+bL52skl2Wsr3WXsiwCrKTbEsPuSIU4IptVJzA1/LqyqaSkRhbFCb2XctXWfEvDVc3x7x6xrDy4s4JEWMbZ76LuTGcN9M5VT/ad4Jx3mAaXBnCj1tmEuPnDlac3CyX6FdTYMM7LLwakeyT1j3yoJPHXzry5tHoTtHfPP+nsZ1f4x4n6uezOiESE35ODh6dF67uc20e4eQoiiCul9whGIEpuQ4GQ1DG/Q2mlPcOoUdYZqfLrSBHYtIUgaTpAG67mv29BHjn9z7VJVQZPBNhbZA1TbZ6lW/2z+03dmapOjbarvaU/dRSSfy9xF1FpKA50BnOj0sCETo21sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMf0LYznojFqAEALYj+g11um3Tzmh73npD6l++Oy5teHDpo98A6mInth/LMqxTjEVFcXqIKykTHMTpaxCscFQbSwep+Tn9xrqKGFgy0NPYoRo99Oq4G1a3/NbbHe6a1svJgxqJxOBeNFCFTAZOCSBMRzhh2qPnYFf0Fhp9r9loW2gw0mBtBG6hCRm5oxsGDRGHtrPFIZHz2eYdxt8OTvdd8UrToUZt+jp0rCReiK/TINbL2VJzZ/w+crcHO5ciEcbJEuElmUoeRQyQOoUl+uEujjdErZQXMuuIq6ezWPDR7gRUnEbk5CkA9et2egWqitg2FL64C14H+S2vPet/vcHh4QFZA9of+3IhfxQ1RcIewEyR8MtF9Tn6ObcS9jnITH4P4dmI6nNQDfOZnV5sEhv8fbhE0rM2pO49Mr2WaJNj5tnvccFUlSPi6zJ3/4jrReEzZNtn+cVLtr6pNy4k5NuYC3nAJ58TH9B8jMEwsMCIG8NwIDoJ6D/6VVGz6SZRDZJpuJz2cXKr/a3++dUvZYD9nciqN1tSnYbfz3QacZ33NVvglfOcXjlqUl55eZD0il7Dly0W8OJlUiL4opXw/Q9V8H3jFLZgyMaDIzKHlqc6JgS7n+kY4jrfjvF0I8IJXGZkzFdTmosF/9jpNyFz1GKATSwU8qLwGFb2+tlxc2/5bPx50aHqnzv2pEkK4Q9ASAoRhtJA5DonIqfsyHF9B9u4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51XIWjndNGvS+zTeLX9eCJZtgRPFEG+8UTzOrSmOO6njvgtYhUAxdPwgR+4REm/E2QX/yniTWmBC74HjS2/NOVPmU71qI2PrbERmsw8OAP6XOrIYbuKI6GsAmGoV4Rq1Mo0aLwkiaUg1qQD6TG1wdgGQX4/4KcUpgcOgqJKH08N2pFFTivxQBzQAEGdazTtJ15p8lvXNFbE09qk/RtDh52rhLtuHaulFrMd7FhHrrL9/wpwVFRSq8aHeVPAitTFbdDKEKozEDKhrRjCMgHwPCkAXcqaHKqOsVJujIF12sxhcCpdl0XbuBBakiZnYFauIF7FJlVEHqT5HiC0JuEn0TXm6TrRdL1JoutJ0m/EaEnyRabavvKVSDm6CN/6+WWl791hNRvbJ37sz9s//SYKn/rxewdXkWK24U3Cbo++OFZrxy/lId1L7VpXtI1E9A79kN3uqPYC5Cgs63KCYSQIxtIxREJdu2rHLPMwzkg/UDq6hkL644shkgwHaUGmX3Va++dFs+Xtj3UcOBIKx5QyuREaXkVhgQgJ9sFr7UAEyMdAKKz3qljGP4o5hhGXC+NBW+sxXxELTS5uGJIEfF09/9YPKXL+RgonnbjjKdd/ounpH8y341Pr3rtZuj+fSf61khUneQhntJlmniIFBGckcK/1ONp7ajD7Resu+27Rv7038BfN7XhIZ7SFwl4QKkLJ0qtSzOe0sdQo8fTCM542kUbT/eY/JyA3p34IbO1KVPjVaoo3mfnO8+Y7LzUCB6mBFWqcE0JrLWQ5/BGZqtIQm4AMhtCA48M9QgNPJLMhtDAI8lsCA08ksyG0MAjyWwIDTySzEbP0BiMNRgVkU2Mrp7HA2NtL29Otjagk4unI4kQVSSdTN/zZ/jEjM0ndNlCHnyyj80ni3ff+XXy/Y8BObt35GwZcpeaDZcLl8TJFMzaKGyBzcVLGA/vKFShSxin1MhwcSEoz82lYUvXXUS8ii7RzjoySqVUKCLgiAUvFhz5fPkzLRJW7H4hUNr8dVjWlzr118xsV5ktElp0V8tUUACc/NiGPsqEgQrI1YJVdKDwj1SuIb47yDDgLkd+SgbNJWSZI8aidCOxIKUyCKAdRIKUySKrEIlqkDwuWBZNGQCt8csRsN5p4euW+PVuyvjCV6lReJZ/I/GbMZVP2GIghqvguUGNHH8rc/KtUB1KJUkMiJNC2S0S3jKW8CLceil0CcvVFURJJnxCAKuoyiUKEdSCKjQQaVQySaz2d0yYWHsP0VT3m/ywTFcB5Wmpjt7+eRiX11fmGpdXVibH5QMmjzldXtV0l0fTOYn9aVpi/0HehkkbgeGGSYRuLjlMInRzyWESoZtLDpMI3VwyF9qyz7nxiXULArZfcLJWf1c1K5QLXT5y/XDDWS+CUxPDr8YeVBxiDK4w6iMbEl2Ml4fBNZfNkyZarp0uOmywcu2rq3KVa49nSsnwXK7d1mHnb8fkz0JWXf5jXKuMw6ZQrn1lVa7it2nG0UKh1pxeunSpAcq1T5s3xDIwJTZ4sXvElUl/nEo0iXLtMzm9M8EUvGOQcu2fFY0i7RquFG9X1b7XuUY4dSfdWOXaR3A6J94UnCMwZrn2udbZ8ZrNEv/FL/9yTv5wnCpLbOxy7dGczutjJA0okyzXfsS+e0pvj7nBaUGTdrgeTMgwcrn2CE7P+Rvdc/CmUivXnlzTvF5KvbiQub42Z5PsplELmxurXDuWQ7CWa4/Xij0dYstT/5fKtdPLYhi5XPvTqlzl2v9gprSlUq5dMP7PjutO3/Db1W/hX7UUUzfzXq6dLm7GQwnyx1W5SpDf1k82UY9y7R+XJ2ert1cN2zwmf0qtv/pX4L1cOz1G8IDVH5xYnTFszDV2ufbDbGHsPxH+Yonw06sJGUyEX1SNS4S/frXSEOHvOa225vnE1r4b1w2+fPic5z0eT5vzHCOhZrlXNS7N8nbVDCLCn3XpUezZi7V85wcdst03Vr3D6CL8rpyogHZjMnMH/Q7+8CfCX35S1Hb7sDz/7HOrR0YNcuhjMiL8NThdZ2sc1xlchP/qwy45Qe9CAhcMvZjxaFDaTiOL8GNRhlVFHUQZg4nwP5SmrLzS2NdrSs/4cLOG1WeZgAi/Kyc49asZUIR/5xOLzrm53fy3Hdp9vFX9P1+YgJwFRKgGJ0KgTxN52xG2vE3s1aTpj855XutuOWVeXvaCWhjHGjvEF69UgBGdmbNZsODcpmCLRF5wP6GFARBXKRMGxYAcDla5VkbrpeVAr7DI+rZM1YNCRl25fQ3Fgo0QX4kILrrQ8L0I8B3HTJP0PFhVteC1wFUCC/TUaYzUe+OOtX5ZFl3G36mylFrTtli1u2gpFD0wlrTYPEBvPUSvjghVjxhu1uqXQlXAu69UNkglQ+eXG+/MyP5+dr7fhhoBzf/ulEHVUizvg92IOCGFX+dd9hd8/wWc33+G0ZMlbcvUI1GCryxXSuVRHNo2TT7Osc+SVfLJbBIe33H9WlpbJR/AbKtaS2k4YxynM4abRvoj0GfHwi0oTqkBw5ckCq6durh3BlNWMLOIbSZs0TkqRqmSNhO27KweqtJgv6Cz1Qed7Hd3Gd/TK+P1ns2dYytTl/Qs4QdEapIUiPqXBabScFYcp7OkJtFz4KP0ylarFSx0xyWoBqo5etDxOW5n+nU76j9+c9WtvSzNnpRkqlxCd8x2JwI5POp5kaEL1UK8YameWSoRyTmyrYTHs7x2vXbxz/Q5s1yQ+3mCUae9EIDZJADXEQDA0KJXJkoOZewiEx3Kfd/4d8om35zurZ3al+s11qiHfSEACVwA9BikTTSP/o/xceiFuQ3Gx2lqz8XH+cDMLHnm4/i2DZvyzKJr0IbesoEXV5//wwT4OI3tuXY369ibAKlg3LhxBuDjjOow5sf8OauDlu/xvpIuzn9iEnycapzesTYF7xiEj7PEYf4zRd4y7x1b+33zTDhRxST4OGU4nfPBOPmSCfFxok533nU0uJFnlveDCrWyyj4xKT7Ov9W4nHfP6MmuCfFxnHJW93qW19Mv5cyXWjt8zjUwMh/nT07PXTC650qVj1Otw8EdK5TjAyY/XbOobdmpk02Cj4PlEKx8nA/aPPXY/wU+jn9jzW93h9f0/m3IpVZZVZIeG5mPE2vPxcfpaW8YPk7lO+Nk6munvFa9HO4ya5/rMt75OPS5OQ8ckyH2XBwTiX1p8XHOpS7u6e62JWTTi3YPzl2/eo53Pg49RvCAVU9OrEIMm4cam49znC2MDT0obyoPXS/adSBM8c/93tT9KuuuCfDspJ9KEh/DPGGqx/ZFAx+5Oh6eHtPu5iS54qdMhRKomTcIfgJaKmfPwaNXMkaGZLXL8471cDjD+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg07SEwlz2IviPdv4zxlm8s4XdCZtImQI4TCYNAHF9OPk4zK24K0+wudI+P9XHzuOCaEWbewc3n0z0oalgoB1YGY/uCJ8JrHAT5ZAVMRgwDl/xpeRBPyRfDCUPXbODMixecgcZ2SiyRG6uF4H6STbUv0/curqKm5n3zj4OizPiQ9YUefrSqvSR1/nEJv30Hk8nNovZb7g8ct6W7pFTbB5Jn5Oa8Czwo9+CofbqxdOa9aWuifpC8oyGmZGxTi/xG4RqMOrj9S4T1DDlxWq1xSgVUijHCCmB0djfYemwRjJIrVMOQj8iWT5YGTVEJtXehHp15nIufl3X3WoXsaBtJQBmWRSpD4qq21dCyC9BiOA8DiG/BP/R5ZdCJ97qEnniqeeEM9tTLF6F5dHll8b3XDHmRnwf/7Tc9EUP02Z0Ie3kYdRiyzPRPxghz8TmaWuoHkC4EV0goLXT1hVl8v1+88gYvHby8TYl8Rb/u2HAr62hX5eiUp7ZoAs1qWSUwpPWsL5jfzX4DnGDCgJGwe9YqEl294gYhVCJYvOVnW9BbwMJkSZBhU5czX8X/nj762nR8uibhxKc7NI5XWYuwp+E0DomDKXhNCGn0+wN6zQyBJsFi/CACm8Zo+33mG/IPsqW7NXzIUpfy+PUMhXGugMfQQmYSF/dGD7izDx5tnhbhU3fR/3T14XuK/OQBI1koEIrYCGgbXbBT3VnDlfuRWp9FXO44nJqBU6nlq3E0PriLKBANHYZrs+CBI8uk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+mm2Ib3rvdth5orzfsv3HCg7ZmfdSVSubGSMPFojhHVlqcM6HK/Yalo7hkVHw6mIRKEgyq/KYeE8KN7thgSYXnCQ7RUQ+ZKudHvQMmrCNKebN6oYXjOx4HOJS1TbYNV3Qd9UwxdGftGhv797/Gfsz+LZ/1TtOihrK1U5xYzlKxaZEtKLrpeUeA+wcoBYpXmhuB9ggl/RVj/WGO5BJdYqkLh0HFDtJ7uFcaEbY8o/bWF99jxjSTlaN2BK2p/ANzfj/OafDVtgmmU5GWuBeuyxWUOdIS7pqQPrq9ZUTLLynVzu9r/PFD2oa1CYSpGh4H9ZkQv+h8aBn8EQK2mhbrxHQLYz+CZIj9Ar7hYzUpR0Nd+VCAW5nogBZoAr1iGIAeYM2wCjt56Pi9Z7pa/ns/+lyqzDyIv+2/OnhY1Y0EBYSM/HrqeFV9djWwNWVFpoP2Gt4l4hPZ8jiZtunO5wISBdfv1pWlRAi0J6PkfuDZ7Td4kqaM/id5b1RrS6VUjP5/3dtat3qYZ6zg+0ia42wO54IT0fROVfUtsQUfmXLNSLqPxrQZgmWbYP3DO6dmj62APJ9zo9tgYmS8L0fM+fyfE+fwRumx6829WlzThgsiJM1+cuyNj1MsJz8eqVC/uMbPszMFkTJosGd3seudo7aOfIuZqE5N0iYKpAmDqOrdBMuu8Xn5QLZ2SNN9/fC0w2hOlRmfC1XyMeBW5veHXh0K1VvYCpIonGz5bdB4cN81z8vU+PiL+2/gZMtoTJ9WgP+w+TrnivuHW1x5w9Ej9gqkSYyow0DykrFPgsy2+Q/3D2sZXAVJkwlW3vF330H3fP/X/UtJkwotkkYLIjTDtHVuiQef6O1/ajYSuXPWg1AJiqEKaxbqH7I375GpCVcuttt0p75wJTVcKUGFhLXmbn8aCDV3s8sv34VwVgqiZglYGyJ0zbN//ZTKACD3y0y3Hak+hrwFSdMA0e8bRs0uv8gFl31n8coXq6G5gcCNO4hBq/Ln4ywX9TmShNxqckd2CqQZhmjz9Soeu7vLBllxb/NMu56ShgqkmYfHacE5i96Bg22f214+G83AbA5EiYfFOfXZ/yZVPgWE8fdfvcpdDLtQiTx9UF+bUffg3ZKV6eFPhTeagrVZswVW+w8Z6ojNp3p6+qyl672lHA5ESYnJ33vl6y+R/Rby8ez/9lSkU5MNUhTJ1TLisTfRt5bh/1dOzNXguhQKiQMNUbt6PPpx8OYQd/vfVhqmvgYoZQVV0Bi1BVh0crh7Vau9Zzz8wN15bvfZ/Og1DVWbYQVS16z+bFx06Jl27MH3Gm1kjqZ5mLh8crlFLE6Qu2BLgRcYeQPC+LlalTx4KEGAQhogKgjsct6AEK+WrMWTVh0FU33FksOF39BIyviJ3DcJAeb6+uXwHNgtOo+Iug6+9Vjgo906FL0LqTT6/N95syg8fDqDxvEMKVvZMQIClq3nmysVhwoLpeOXGbCBloGhjvSSqDJY6Uajl2/AS8n1yBTZ3IdiKUqOCJa2WsPAqJ4unHcTU6WC4MnBNwYuPC0RXnU+nj2s9h0scLTLyXpnHBWgwHXOurm0QmxzzqqGcm50p0NGmBuzQxEo0wVjJEJgQJiLaENTvPXNBo0tXJnYd6r734245Lj7r3pjENiccimIakhW/vVXIlGrsPyntpblhjZ7DN9QSuLnkoiiT8yehAIsFanBhUp22lg0FTLfZaB/r3pc4Ui3UEiwewtnOCBZo6Mf6cYxt//lNuKJZyAz1DN5hyQ20HLuWGb/qNlToqN2hetJk39cF1z3W3Bl345dms6TwOlvQIxINyg6MD10H3yg4GUW6oF2G3O7PxatGS23+1N7vffrnRlRvMOVH5ZpwxUQeWqeGUG9zO3b94Lf2MeIGy8eqyR1ZtMhnlhjfVuVz32FTTGZ6VG8Ysi7vzdvEAvzWrO/ed8fjaWSMrN2BRhvXoPYgyBlNumNPs1k/W7sdDMltUvug5pyGVFG0c5QZzTnC+VTegcsOP7jk/en/b7jPff/lgy2X/UCUcjafcgPVpVoQea/O282x526klkuBvHar7jctwMn9SP/kANRsNBjmaMNInWPeFA29tMVxYTYDMhMEMMRr8CvKuJCHAVqXBNQpAsCXaK8y9iNRtlE6JE339Ev3ezCyatOhRFrdyHaIsLiNV8gQeeOWk37IC9gKFMEAfUHgeP9dnoJvncqeAGp2vBF2h7SbBuxEHFLDLRWVK9PjHQ81b2zoE+4rRCIVNxYJydfTiHTtgAJHtwkUqV4HmC+zowVbdYv7Ek5deh06fO1r575jGnand0oe8mdktC0xFARag8H/cP79N0CzFqcCeY85U4wGwL05cgIEWZZQkCh8z4N+0ErD9MOWwLDh8aY35kmvMObbofnqX957ZbRs+/SfBtrIdJmQCnCEeHq+SaWnPWFLr5R3p8kvjkiXANNcee/0j36dfV98DzjfnfBrT1oMH1/7D6dqbRnItKj+e/bNeqVaF4ELxHOnMTjPWr+0w8+fALM2TrNEDhZ70DT/EoSr8Ku9rd25ETMpGkUqy3bAuRgyMF9gGRu+86jeHtdvmmdW7n8P0HvupZZWqQvKrBi59wpPMMsitl+lRMb65SBkLIMcpuNhjpAWPwSaHBYXiIalUtxGRtm1X9Asz3IH8K12zEdD4NTUA6I+8EQXkB4DGH12jpPwUr+BCoMDlBlgGCWYbyjihC1n8HKCHCyDB/+ExTQ1Xo5WJMhb1krW9lRXrCTNCtq5t9YdEPJ56iL18D4x0wIwxxPWiYoz3ovPxG49YeW512DZryC9L65QwxswGMKsgzGbeiJLpaY0xmEu6JNywkPu1q1tRyji1LCoBax4YJwpN01v74Oacz37BS8b2mPfs/qQl1BMZBc9lTn8pRt6plM0I2PqgYLvuisFGhISLbCHhTMX6b1q0VYZMev0iyO3KGDHlu9lEyDAOozA0QaFAxAK2hNmVvA8SYbE2K48bJlHIpXgjT5RrYoRKME1R6R4J6Lv0HO/J8ALVrOuxPWexoBNE1xq1+ZYO0G1U4r5vH4Dx8OCqq0yNEbExxJAAXFh/Zs7z/HI+27p07r/73Mld1PQZexAzfcYvF9Wd6ayEkh5FA8h5QORWolIGWPnVvQZr+qwjco5a5FSUpgabFhK+1xsbT1nwaVLI+lt7ag9bL7GhHnMnGgh6S4dq5bsXQ7QacaJVq4ZRWOwW3ZLiZYVxqF+Is+MWBFJamcIN/o3azc+/P0xyB8lUNEoc/Clp4LbHBkjoWPAIMKlOwl2N9DJ9YCpJJymhXwe4Eb3gJYo2F94c6wV6LYQ5hGLYwlwB5+8STV+KhMJRPqzmtfRnPjnzb92bG7mlHW1jAn4rxMYEdrk0oGjECUUt7UB1iW2gMpmaf/RoyU/541Io+ffNgavk3zsHEvLLJg85nRvHD+RWg97nNdwcF7RwR6i4ztvsVzxALq/JBbmkJgn5Fd5YmbYk5AZgZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKViSBRkqzMod5BI/vX6xo4e/ewC8le+acZlDfYeJGtj06/5IHylsfm/3pBR11vbrHyXWsmHXj1cSWq/6vgi/0ihVIN00VsA4eZlJdn6W31fOWw3HEMrA+MPwCbUsJ5JkFD0G17n045LfIVGeCg/kjXrBxMFRNgXLuOPDECZuTdHfRau3bEd9swJQ0ldA3AA/zCzgu6fGtSskWnCj6T41/td13hNrEke22lu4x9EWCldiCG3ZcMcUIwrZYyN/y5sKqmpUQUxgqJ0sKfbj8I2hnp9fuX0c+3mX+pxyMtYmz30HcnM4b7Ziqn+k/xTjrMA0rdOVHydWAuPnDlac3CyX6FdTYMM7LLwakeyT1j3yqJ6bDljMuv30PHrk3/o07faYONuJ/r3oxoRMgNOXh4Wq7nfm4T7e4hhCiqkN4nHIEosQkJzjDP27fqBDwVZwZE/xp8oXqACexaQpD6c4LU3UG/fd2GPnL8m2uXqgqaDLaxyB6goq7/SDhxr4HPxNYeG5ocs5hK3UUkn8vcRdRaSgOdIE50vLS56B9sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMRyFsZ70RC1ACANsm/YY63bZpa2T7nsoTpgcvGHYnufnqMdTNKWtsP5ZlWKcYi4ri9BBXUiY4iNOHIVjhqDaWDlLz3fqNdRUxsGSgp7FD9dJxmvTlinr+m1JqXHrWa9Y2aiQSg3vRQBUyGTglgDBt4oRptZ6DXdFbaPS9ZqNtocFIg7URuIUmZOSObhg0RBy6yhaHRM5nm3cYfzs43XfFK02HGrXp69Cxknghvk6DWC9nS82d8fvI3R7sXIpEGCdLhJdkKnkUMUDqFJboh7s43hC1Ul7IrCOuns5iwb3aJ6DiNCInTwGoH6mtV6CqiG1D4Yu74HWQ33LN9BmzW43c679D/NOe20kRrakpEvYAZoqEXy6qz9HPuZWwz0Fm8l0Iz0ZUn4NqmNdq68UmscHfh0sk/XCZB7077OnmueKL+RbrH6Ig6u4ffj9z94+4XhQ+luu6XXph7R+8s0n9s5LAdfY84HOOEx/QfIzBMLDAiBvDcCA6Ceg/+lVRs+kmUQ2Sabicdv/zywFlTmwLntE2slPm8ZttqU7D72c6jbjO+5ot8MoeTq9sNimvvDxIekWv4csWC3jxMikRfJGOGTe9XcTwo7dDsu+5Palr1YK6KFM+BLuf6RjiOt+O8XQjwglcZmTMV1OaiwWXa+s3IXPUYoBNLBTyovC4U6bsq10f9vgd9CrTrGFUMnU51lyEPwAhKUQYSgORI5yIbK9NjuvX2Mb17LlBb3t39AiY9PabxuLIjTdUH+OfqDsZppN2hkEdwP9fe98B1kTy/h+VUxSxiygqwQpKs2DBlpCEXhQsZzk1QoBoIJgEEcuJYlfsKGLF3nvvZ2/n2XsD29n1PO/UO/U/syWwu7NLQpYk9/t/eR6fR3bYZPfzzrzvOzOf+bzClHhldDxIK+HZQrlWC9Ug9awYIvwbNvmgn9NGPS+zT+LXjeCJzqxD8EQZ7BcRmNWlM+O6kTvgtYlUAxdPwgR+4REm/EnQ9V+qTg3o0Px8yHZ5nwnuh07LqZ2PLbHRN5g5+EP63HSIoTeKoyFsgmFolMdqH070KLykCeWgFuQDafH1AVhGAf4/P6cUDg8fiUSUHs8tWlEFzmsxwBxRgEEd63T9YL5p9RtX9N7Ek9okfZuDh52rAXW4dq566TG/xYZ5+G7/C2cExyVpvWq2U74IrkxV3A6jCKEyHSkb0k5hIB8A4UkH7lTR5FQN8pN0ZQqux2IKgVPbDV24gQepIWV2KmrhBu5RzKmL0Jsk4wlCbxJ+E11vkq4XSdebLLKeJP1GhJ4km2+q46/UAJ9jjPytPHCt95kBqsB9tZoEhMnbZVDlb8XM0SEuVNxu4G93Pv5Ywls0s8TceW0H925h6poJGB1roDm9UewFSNBZXPcUQsiRDaSiiASf7bNjQ6XL+2RZN1K7Jg15FlkEkWA6SlHpK7edea4IXytI/BIbOK8BDyjN4URpcl2GBCAn2wWvtQATIwMAorPeqTEM/yhmDCOuF8eCN9ZjPqEWmlw9MKQIf3r7P+ZP6XI+ZvKnnTj9qdv//Clpn1bpR/eV+DlEunXfsb+7v+gu58Gf0mWaePAUHTg9RYti96dXf57a5lj/xJDdNVq2PfzoXhQP/pS+SMADSm6cKDkXpz+lx1CL+9MOnP7UTe9P71j9nIA+nPghs/mUqPk+Q5Ik3fVRFL/lakYkD1OCb5xTgr/0U4K7vJHZKpCQm4HMhtDA05PZmBp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxto93oxsZ0YjF01HEiGqSBqZvufPsIkNm03osoU82OQ+m02y9zzsOeHxp6B9e3bu2zool3rO74fO8kSFilkbhc2xuYqFSfCOAhW6hIlqnQIXF4Ly3FwatnTdRcSjGOLt7KKiNWqVKhJGLHgx/8jnu040T7h8WFju+LeHwvZ2XyBLldoPZfOEtt20Cg0UACe/tqFUnTxABblasIoOFP6JUeqIdwcZBtzlyEtbRTMJWeaIsSjdSCZQ1gYOtK1EkDZBUi5MrolTJoYqYikB0A6/HAnrnRa8Xha/3lWdVPAq1QsvDmskWxtf+1RFDMTOGnhuUKfEn6oM+VSoAaWRpwQlxkDZLRLeEmXhRbj1UuASlquriJJM+IQAVlFVylUSqAVVIBDpNAp5gv53TJhYfw/RVR9YfVimq4DytFRH7/88xOXM2lxxOaM2GZcfWj3mdHlV610encJJ7E/XE/tzeQuT9gLzhUmEbi4ZJhG6uWSYROjmkmESoZtL5kK/Zn0dvfzMT6LxCa//+HeZ/6gCuVDnp+8rLcko55++afzJ3l0eJzOCK/T6yI5EF+PlIbjmsVnSSsu100WHzVaufbozV7n23s7FXa79nG532Joy0bIVwff2B835hTqfsky59gxnruK36c5WUHN6zpw5ZijXPvB0ZpO+v1YJ2Lph9Za0H//Osopy7amc1lFbg3XMUq797JvfSs6r4yTK+PZLsvxgTaq2iaXKtSs4jdPbGowjsGS59iZrXs+J3isNPtxljm3N0IPXrapcexdO4wVYxnjWWa69077fv+cELg5aUlbVsNSCtz9YuFx7B07LtbC45eBNxVaufXEF3yDh4RVBa55uH1PmTcd/rKJcO5ZDsJZrB46QyFMfseWp/6Vy7fSyGBYu137dmatc+xFmSlss5dodorbZKN3dAtb/nbvo4ve+w3gv104XN+OhBPlVZ64S5GeNk000oly7LvT4uLUp+yTbo5d3k49aV930IUzDiu4jeMDqCCdWu8zrcy1drv0xmxv7nwh/kUT46dWEzCbC7ynkEuGvICwOEf6d++5Ne/BlhDTnxgH/PudbleHxtDnPPhJqlrsLuTTL6wnNIsLfYnJYx0M7q0Ws8pk7YsSEClKLi/A7cqIC+o3VzB2MO/jDnwj/XM3TKmV2tgmY2r9Osq5mdaoYpiVF+G04TffFMpMHs4vwV+6oq1n2gE6yut/0DzO+PzplYRF+zMuwqqgDL2M2Ef57yxYNsq2+OOjgma4r25953cMKRPgdOcGpIDSjCP+sD83np5brELawWUhD59F/jbYCOQuIkA0nQl/0088nbHmbTNyk6fcOV8Vr7tdde3nxWyqDzA47xJekVoGIzszZbFlw9snfIlHm309oYQDENerkuHiQw8Eq1+pYo7Qc6BUWWZ+WqXpQoNFQbl9DmWAexFcugYsuNHwvAnwTmGmSkQerquU/FrhKYIGWm3f3bbXmVE7oRPm5RgsWLVhteu0uWgpFd4ymFpsH6GVC9JwlqHrEcLPWuBSqPD58YxRxGgU6v7w4s/49+wPPxbPm1hZPdT+8mHZCCrsRcUIKv8677C94/9Gc759i8WRJ3zONSJTgIyvVMcpoDm2bXhu+fI9vFSHO3Hzm0eGPoRWpfZX8AGZf1bcUhzESOI0RbRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbSDNTrsF3S2WuZIQoy7/LN0Q7/Fu6r45FK35MvCL4jSpaoQ9S/zm4rDWD05jRVhFSMHfpRR2Wr1/IXuxGTNAC3HCPotq/JhB3X1wJXOA8dc3p9215SpsonmmOFNOHJ41PMiQxeqmWz9BCOzVMKTc2RbF0SKT5ouW0P21/QJe/Bszx6LTnshAMNJAG4iAICuxahMlAxl7CITlR+dDLXP7h4yp261nZXkj79Y9LAvBKA/FwDdI4Vkovn0P8bHoRfmNhsfx8GFi4+Tx8wseebj/PBO7NpLmBWU2eSXDfceOP1kBXycai5cu5vlXKyAVDBs2DAz8HEeLh4Z9zUlQTRvVau+1Za9eWoVfBwBp3X+skxItgAfZ/RxF0l8i/r++6tM+rWW98sAq+DjvBJyGSfPGowjsCQfJz1QO7/PwjOhCw43mvNg6JlNVsXHuclpvAsWT3atiI9jP29kXc+jN4KnlHo80Tdh8WsL83GOc1pun8UtV6x8nG07xHUXLfKK2LG918PMa8GJVsHHwXIIVj5Onj5PffZ/gY/TIe2yOsW/kWjHyJej7/Wad8rCfJwfXbj4OH4u5uHjtHNL/VAi8UZYWky3lv90WLGKdz4OfW7OA8ekuwsXxyTUpbj4OKd7v7syzv20NCvU47FdvWsJvPNx6D6CB6z8OLFqY95ZgqX5OL+zubHBh5VNleHrJLsPRaiePe79lrpT0iUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAbkD2v3pidfT5/d4w43PP+35M8grNZn4+5k1OwkdH/ykYBFxZR8CgWolfSzz0Z2Cv1n4bg0zjBU/gOEviPdv4zobFMVavOKfsohQoYTBETBPz6UPLjMLPipnzOZkqHvAxpFd/fJDk+jw5vPp1C5YCU8EMbsDLu3RE2E5TDmyiHrIhgwDh8xZeSB/2QfBGUPAzNDkqwWMkbZGTxZIncI2IC9RdsqH8bt21FVU8bv119HLNXJYWtLPT0ZbniR97gE5v003s8ndgs4rjhssjeWnSLvGSzyNKZGcmvgj8FzB3soM2e7E5dsSrtD8kzOmZGxjq9xG8QakHUx+tdJmthyovVaotXq2KgHCOkBMZif4elwzp5nNagHIR+RLJ0qDp6kCJGfxPq0ZnLufh1Q3erXWUCFycAZkkUqQ+KqpdwQsgvQYjgPA4hvwT/0eWXwsfd7xh16qVo7LkdabbvI67S5ZfSe+SMup3UJzDryNL5T7OmdiTbycOoRZZnon8xQp6JzdJ2UD2AMCO6Ck6O84ySKTclm1zjP+69H93QFGvxvxsG7OoM7boQlfLMAEOoupNFCk/awfqO/bTgHRLj8h1G/u+Yqxnu7Rs5EqESxWarKv75ow0kRLpkDTpx3exeLm7BrXV++0fevlQ9obKQ02RlJPgnIbSOiYbiMJodp9FKmNdopAu2CZXgDhXeMko/7jHbkGOULdmrJyVKXysTtQoNxroDX0FxmEhbdX/0qXTptekhY7dsH7wiZ+A5uq3KhCXr5ANUegELAW2zC36rNzNceReu9VW0cMVl1L9rcRn1dS2G1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0L6K7aQ3uXRg4gyqgsBS/YeKjlqlwtVprBcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3siAaYXHGR7BES+ZCjdHvSMH2C/6eqHKobnLhM8MblEtT1WfReMTS18YDS/89SwF8syT4myh//mEOUZTi2IasPyioWmhPSi66YS7wFWpSBWWWIU9wNM8D8zi1JzssZwC6qxXoEuG39meYths/+Q7FixsOFy5S9yxpJyrGHAmDqewJu/rcn15k/MW2CaZTkZ64FG7LHZQZ0hLump+fUdRl94PdF/TvqbOqczWoRT+yW821zw3+GE/5Jl4GcwxEwt1I2PCMh2Bm+CtAi94m4RPYWpq/kehCs4IkIEmP4e2IAgAsxrtgBjtJ6Pq956xa/nU/2il9uS366LN94+1eDIm8xTBfR82vw1v38V8QDxQtVnyd/R3s8L6Pn4/nrl8sHaS8XTZ/f89PeJ3dcK6PloHl5dFHN0lXRfqdvn5+ZO/6GAns+Rr7Y3cvcdDDwc/XtY2K34twX0fBCVf0ltQ0TlX7JQL6Lyry3RtG55w1vl20cGTLZL2ORZzeF30FSWaGr7ceqwR8+PitN7Hf9y02ZhKdBUjmia0fmZy5UpL4O39Qz/+r7ThxOgyY5oqhvcaMeT2d/8M9o30X5daf8UNJUnmu5lja2yuE2ngJzggcdr1xZoQJM9CVR0u1HtW63yT98y+Kdrv64YDJoqEE3CvBVHl04qJ9u4o7Oy+S5pKmiqSDRNFtUr59ba2X/XtuvPSrin+oCmSkRT58yjx2r+czdwaxff0T1ajHQGTZWJpoP2n7KOKiaJpg63OV3RaT9UUqpCNMXFPxkoDKwUlPblacXAst3jQFNVomlNldy/mjaeLEqrlZs7/kwA/MBqRNP6LJ9FS3vcCt09JMd/x2PNMNBUXcAqA+VANH0+6TDizJG10uVZMxpm+h5tBZpqEE3yl227uvuG+GfVu1f18rywi6DJkWj6npR+3MXTV7pRUrbygQZxItBUk2hyr+p3qqNkld9Ue9syX39++hI01SKaLkyqsvN2tWi/KcuTfu00p3l30ORENJVq2jpCcHtk2HbvUi2rzNdAPcfaRFPmmi/nm/iWCjnUdtikXle3LgJNdcgO8Mvsb6ebO4ZvfbTnXu0bTiGgqS7RlHE6pEOlR+v9py8Kmlyt5asjoMmZaOryvnzjEBeNaLrX0chmHyR1QJOQaGq1fc+6slFBQYtWnSh9LLeMLUOoykXAIlTVrvbV6k+X2YeuzHK68aTXwWiE2zBWqOoNm4uqHrt3c/aJM7KFG/KGnas9Yil16iobmqRSxyBOX7AlwI2IO4TkeVmsTJ02ASTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeo/inoXxE7h51BevyinnEFNPNPo+IPgny3/vemt9e9HhK+/kRNl5mS4BweD6PyvEEIV/a+1QMAxaDmnafdZII/6xmVE/tEKkDXwHhPMQpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vicoo9EK3RsdSw2uZRex73r5Rd0PjO9GpY/rv4dJH89v4r00jSvWYzjgeljPKjI55lFHIzM5D2KgxeSbSxcv1wkT5IMUQpCA6EtYs/PMvx0aNKR27QjJHMGVE107rOhIYxoSH4tgGpItfFuvkgfR2aUo62V5Yp2dwTY3EjgX8lAUSfhT0IFEgqWp0X1t1IOx0plTxT3eCPw7mH4EiwewXnCCBbo6EX/essWf/yk3FEm5gZ6hm025Iao+l3JDi/rFodzgseNEUvPXEwPXNanWfdTMeat5DJZ0D8SDckOX+lwH3QPqm0W5YcKoWcmbI3YHzG2T1n1/17sXLK7c0IETFdBvrJRlaj7lhjPrdCW2fejoN3vgpmvldxy4ZjXKDW6cpnO2jOnMrtzwolrNFxUm3Q9b43/y+alKs1wtrNyAeRnWo/fAy5hNuUHjO6T1+Eqp/pOUq5b/8rgGbQZpEeWGDpzgtKhvRuWG5D2zbwapzwaPWXds84UevR5aiXKDGydCYEwTeds7trztzAJ56Ne2NQLGrKpb5kX94Yeo2WgoyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRhkle0dYv0c/NzKLJFiPK4gY0IcriMlIlEbBA4ybGLStgD1AAA+TbtZZEB8/4+q80/UKNq//+2ZKWKUXBuxEHFLDLhWVKdP/HQ81bWROCfcXohMKmMkG7Jkbxjh0xgMh+4Rqj1IDuC9rRwbbzlchSB6+VFk3cu8S/yxolteJnWSl5M3NY5jcVBtjAWpva1H3oJF3tIJQ36X1DyQNgzTgBAz3KIkkUHjPg37QQsP0w5bBsOWxph9mSw6tOPX785KxLw6Xb4q73O6p9nV0FEzIBxpANTdIo9LRnLKkV+0W5/uhmWgJML4vZuXXl/qd+D5yYPtHtwsPJP/Jg2jqcpq1qIdOi8uMZnYxKtcqHFvDnaHbui6nlBkR89N88r96H2Y+6OdM3/BCHqvCrvK/deRI+aQuKVLLFExtiRGB8zxYY/a7WuDek9XbRxt59Had0P0gtq1QNkl91cOkTnmRWQG69woiK8V4SdQKAHKfgYh8Tk/8x2OQwv1A8JJUaFBHp23aFPzDDHMi/MjQbAZ1/XQMA+u9+iALy/UHnX9jAVH6KOLQAKHC5AZZBgtmGOlHoShY/B+jhAkjwf7hP08LVaHWKgkW9ZMBdr1tPMtdJt3f3KjtQuUdB9THdMdIB08cQ1wvzMT9J+i/wyGsomqvL6Tq+f49dJvqYGQDmNRBmGz9EyfQsNwxmU5eEGxYwv351K1qdqFVEJ2PdA+NEIbFMHKC7VG/QVP9Vn5ruvvXymyP1REb+5zKnv5RG3qmU7gRsfVCw3fTAYCNcwh9sLuFchfofmrVSh43/422I55VRMsq72UcqMA6jMDxZpUL4AraE2YO8DxJhsT6rTBwiVylj8E6eotTFC9VgmqIx3BPQd+k5npNhBWqzocf2GssEGoiuHWrzbSlAt4/JY98hCOPhwVVXhRYjYmOIIQHIuzdy08vKt8VpvW+s+D664TFq+ox9EDN9xi8XNpzprARTj6IB5JIgcstQKQOs/BrbgDV9NhA5Jz1yGkpXg10LCd+ic2MG/23zJHDNoDqKxC61N1CPuRMdBL2lQ23lexRDtPpwohXZwCIsdtuuqUmKgjjUL8DZ8QwBKa1C5Qn/RusZENgPJrlxCg2NEgd/THXcDliAhIYFHwEm1am4qZFWpgcmUwaJiXbt70mMgnco2lxnL2wUGLUQ5hiOYQtzBZy/S3T9GCQUpUY3uTD89OGAdQcrTQuaOYrmL7C3QmxMYJeLA4o+nFBE6gPVB7ZAZTU1/+jekp/yx8VQ8q9FA66Sf031kP9p9ZDTuXH8QC7s+E9Y5eYzpRkOm90r7I9cxgPkSxpyQT6vIQn5R95YmRVJyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZn2yqfWgz4lTAin41Ssg7P/uVQXmDnRddm5FGv+SB8vYXm/3rhRz3uLe1nP9qm5gB159Xotq/Kr7YL1GptTBdxDZwmEl5aZbRVs9fCcsdx8P6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6nierg/cBN5YgTMyKcYt83vhO+2YUoaamgagAf4hZ0X1KT3mzt37lcO3Lxw6Pda4+/4m7LXVrzL2BcBVmvrE2H3HUOcEEyrs5kb/lxYVddTIgpihT5S4+q++fGnhsEzex7Jq/VSq+ORFjG6W/jH06uG+q9VTwqc6Jd6lAeUpnCiNKI+c/GBK09z70yOK2ywYZiRQw5O9UjuGftWiX/v6BVl/gmULbT1mTxGMTrVgvu53u5EJ0JuyMHD00uM3M9tot89hBBFF9D7hBGI4pvQKwFDmkScLhkh23ArcVLjs6/PWMGuJQQpkxOkKUbu6zaUKvE31y9V5XcZbGOR3UE5Dlba2jV4ErqgkuM/OQP+rkXdRSQ/l7mLqG8pDnRGc6KTot/T/ZstML7sHh5q4/VZkrn8vH9ORFAv5kI8MxLasIDrQt3P1VPdUtRGSe7TD1gYujdgKPsbOKYvELbzfogFKAGA7bFxoc6wbdpX5Wrtm5i9JHjn2vIpT9++aE1d7MT2Y1nCOqWxMC9Od3GmMsGBn/4EweqM6mNLQWr+xrhYVwEDSwFGGjtUO0ecv/4sdUHguvEJO373+Zta9K+sDNyLBqpAk5lTAgjTY06YbhsZ7ArfQqPvNVtsCw16GqyPwC00ISN39MSgIfzQJzY/JGl83qtt+oPQpf4573Vta9ahr0MnyJOE+DoNYr2cLTVvjN9H7vZg51LkwkRFCryk0CijiQBpGIuEdriL4wlRK+UFmg3EVdRYJqjpdgoqTiNy8jSA+mdXoxxVBWwbCl/cBY+DfMtmB174qsqOD9j8wXlo0LZrjakpEvYBzBQJv1zYmKOfczNxzEFmcg0IzwbUmINqmPZuRrFJ7PHn4RJJD0/t1/Zblw7B65//OKb1q5vUSQrxuszdP+J6oQfb23496ZZaJ3TT5ujX/46r3oMHfEpx4gO6jyUYBrYYcWMIDkR7Af3HuCpq9l3lmjiFjstop0seHt3yl17i2SeHf2/48Rfq0brS+P1MoxHXeV+zBVZ568pllSdWZZV3h0mrGBW+KmIOL0kRQzhfdM2FwVFBCv/+QaPDxfN71Fpwj2qYMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQS2bsZNyJz0GGATC5WyMDzm9e3yjzS0Q/gy4fLay/4a258mKYR/AEJSiGgoDkQ+u3Ih8sKVjOuf2eL6llkhf/Zu5xs0/s+vOttjtz9QbYx/o+FkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vMw+iV83gid6ypXgiTLYLyIwq9vLjOtG7oDXJlINXDwJE/iFR5jwJ0G++F9zPqTk/fs1eM38x665fzenkufKsCU2+gYzB39InzsBMfRGcTSETTAMjfJY7cOJHoWXNKEc1IJ8IC2+PgDLKMD/5+eUwuHhI9EyL7R4btGKKnBeiwHmiAIM6ljv1Q/mL1a/cUXvTTypTdK3OXjYucpy5dq5mqHH/B82zMN3+184IzguSetVs53yRXBlquJ2GEUIlelI2ZB2CgP5AAhPOnCniianapjeJE2ZguuxmELg1HZDF27gQWoYoaeiFm7gHsVZN4TeJBlPEHqT8JvoepN0vUi63mSR9STpNyL0JNl8Ux1/pQb4HGPkb9fJfr0wesvzwFmvt/2j2R4zmyp/K2aODnGh4nYzzkRVKvlkSeCm2ydlzdNnmHpuUgBGx31oTm8UewESdK66nUIIObKBVBSR4OSJY0R5G53F8w7PmjPcdm2rIogE01Ha/aHG8t/HvfA/vHbP3+VXHjOVcABROsuJ0hE3hgQgJ9sFr7UAEyNDVJRprHdqDMM/ihnDiOvFseCN9ZhPqIUmVw8MKcKf/vsf86d0OR8z+dNkTn/a73/+lLTP/N6KyEc2G0Qr7vZ7c77rkp08+FO6TBMPnkLL6SmUxe5PD+546ruvVvfg2aF5G9OWDnzFgz+lLxLwgFI/TpS6Fac/pcdQi/tTLac/7af3p1+tfk5AH078kNl8StR8nyFJku76KIrfcjUjkocpQUs3rimBux7yb7yR2SqQkJuBzIbQwCNdPUIDjySzITTwSDIbQgOPJLMhNPBIMhtCA48ks9EzNAZjDXpFZBejq+fxwFj7zpuR7cxo5KLpSCJEFUkj0/f8GTaxYbMJXbaQB5tAgyBtkr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChU7zM6v1HhmQWXJ8taBZrmfYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIsSjeSCRY2Bg60rUSQNkFSLkyuiVMmhipiKQHQDr8cCeudFrxeFr/eVZ1U8CrVC3cPbiRrsaDxqYoYiJ018NygTok/VRnyqVADSiNPCUqMgbJbJLwlysKLcOulwCUsV1cRJZnwCQGsoqqUqyRQC6pAINJpFPIE/e+YMLH+HqKrlmDrqlYTlukqoDwt1dH7Pw9x+Vxjrrh8rDEZl0taPeZ0eVXrXR79hZPYv1dP7C/FhrnRYdJeYL4widDNJcMkQjeXDJMI3VwyTCJ0c8lcaGzLeQurPpohXZ3WfkPM2D+OFciFbqzvfnDAb/XCl6elyLpcTVnDCK7Q6yM7El2Ml4fgasNmSSst104XHTZbufYTTbjKtc9kSsnwXK79qm7f4I/SPMnhKXOnPHvq8s4KyrUfa8JV/HavZQQzqDWnp06daoZy7U/+yKhcLny63+64oC07dKnU1UJLlWvfzGmdldZgHbOUa4+uXOd7h5B2kunX2wQfaxNKXWG2VLn2BZzGmWkNxhFYslx75WulXva8Pyh4XkTrdpUPdy9jVeXaJ3Aab6QVCQVZvFz7tHoTPcZIK/rvr3Llz/67FCMsXK5dy2k5pcUtB28qtnLtZT7vnhN7Xy1ePir7k3DZ549WUa4dyyFYy7XP1Is9/cCWp/6XyrXTy2JYuFx7+aZc5dr/Yqa0xVKufWDU3UHh85cGLFb+9HzZT7tocpA8lGuni5vxUIK8XFOuEuSCpsVVrv3lAXHJf/0uhW240G9El6lvTvJerp3uI3jA6q8mXFi9Mq/PtXS59tJsbux/IvxFEuGnVxMymwh/TFMuEX5p0+IQ4X/5Z+Keg68dgxa82fltlnudejyeNufZR0LN8gFNuTTLf2T6yOIQ4a8wdnNa0M6W4Ztqlb/w5VFAlsVF+MM5UQH9xmrmDsYd/OFPhL/qHMdNQbGlJHs6Vu7Vq9aXilYjwu/LaTpvy5jO7CL8v9548G/i1jai6aO7Rm5fV74ibafT3CL8mJdhVVEHXsZsIvwZBxw/J/8yVzxDlPUt1/1ODSsQ4Q/nBEfa1Iwi/Hc3eF4YW3+53/LyOz4eW1N3uhXIWUCEfDkRAmOayNvKsOVtMnGTpt87XBWvuV937eXFb1tQdQSwQ3xJahWI6MyczZYFZ5/8LRJl/v2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVpmaoHBRoN5fY1lAl+hfjKJXDRhYbvRYDvcmaaZOTBqmr5jwWuElggX33o+8vSytW6S+dOa79glX8vqp5KkWp30VIoumM0tdg8QO8cRM9ZgqpHDDdrjUuhyuPDN0YRp1Gg88ugKqX9yvq2C8u6n91i0/X1j2knpLAbESek8Ou8y/6C99/N+f4bLZ4s6XumEYkSfGSlOkYZzaFtE97ucbnzvzz0m/+1qSb330gVta+SH8Dsq/qW4jDGck5jzLeO9EdgzI6FZ0iiWgfClzwarp26encAU1Yws0hwFzbrEB2v1sS4C5t30A7W6LBf0NmqqNPSq38JjwWMdeyy8+v6mVRuR1n4BVG6VBWi/mV+U3EYazqnscZZxciBH2VUtlo9f6E7MVkzQMsxgtbtFPWcOrFM6Mz71aoHXR/z2JSpsonmmOFNOHJ41PMiQxeqmWz9QSOzVMKTc2RbpZRf6+95Pjxwvaq0eFMj560WnfZCALaSANxEAABdi1GZKBnK2EUmbuZ+Dm2gbi8+MGnStmYvg8dZ9LAvBGAuFwDdJ+oTTdv/GB+HXpjbbHycUHcuPo6je3HzcUbEDYr+2T43bN6OzInXq6b3twI+TrA71+6myN0KSAVakNIXPx/nXo9fp63uMiw4c2+6yz3bm2Wtgo/TitM67tZgHbPwcZLSN9famnbef96dng9XfUk/aRV8nHqcxnG0BuMILMnHya1179v95XbhK3Mj1n3ZM+WIVfFxKnAaz8YyxrNOPs7EUktdA0v8LJm39Kp72vWHfhbm43xpymW5d1YxTSk2Ps6EDz1vzLk2V7x2we5Hr8o2k1oFHwfLIVj5OMAREnlq2f8LfJwu78s3DnHRiKZ7HY1s9kFSx8J8nGnuXHycocyUtlj4OM1edd4zaOLLwC1Rn52bbrsVwDsfhz4354FjMtWdi2Myxr24+Dj28V6Jg1Z/kqRnB7e1qZl4hHc+Dt1H8IDVUE6sEs0bLS3NxynH5sYGH1Y2VYavk+w+FKF69rg3tRCbXZdkeHYyQCNPimeeMDVi+6KBVKlNgqfH9Ls5qR74KVOhHGrmxcFvQPa8Vtv3rCsbFRS0aNWJ0sdyy9iyPh9zJ6dgI6P/lY0CLiyi4FEsRK+kn3sysFfqPw3BpwmDwlwOEviPdv5zYGPZX6Gup+yjFCpgMEVMEPDrQ8mPw8yKm9KOzZQOeRnSKr6/SXJ8Hh3efDqFGmdL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrLFbkSJ3CNiAvXybKh/G7dtRVVPG79dfRyzVyWFrSz09GW54kfe4BOb9NN7PJ3YLOK44bLI24Z0i9izWWTpzIzkV8GfAuYOdtBmT3b/ibom6g/JMzpmRsY6vcRvEGpB1MfrXSZrYcqL1WqLV6tioBwjpATGYn+HpcM6eZzWoByEfkSydKg6epAiRn8T6tGZy7n4dUN3q11lgh6NAJglUaQ+KKreuhFCfglCBOdxCPkl+I8uvxQ+7n7HqFMvRWPP7UizfR9xlS6/lN4jZ9TtpD6BWUeWzn+aNbUj2U4eRi2yPBP9ixHyTGyWtoPqAYQZ0ZoP7rsPqKpqQuc8HfIlqeKF86ZYi//dMGDXbtCuC1EpzwwwhEIaWaTwpB2s79hPC94hMS7fYeT/jrma4d6+kSMRKlFstqrinz/aQEKkS9agE9fBcYc+LOy8OTAr9ajgxrqEJZwmKyPBPwmhdUw0FIfRxJxGa21eo5Eu2CZUgjtUeMso/bjHbEOOUbZkr56UKH2tTNQqNBjrDnwFxWGiBdN3594YevOteNv+lK01W92dQLdVmbBknXyASi9gIaBtdsFv9WaGK+9Ctb6KGK64jOrBadT6jRhaX5wFFIjOrsD1WZDg0WVSODu6DfR0zDId2FXeGaWehF86IkZUuhd5YV2cCOkV2EJ6l0cPIsqoLgQs2Xuo5KhdLuOpXNmoeGWsTgjrylLDOoxXbDWtnSJiY+FURK5SEeVXlbBwHhTv9kQCTC84yPYIiHzJULo96BntYJrT1Q9VDM9dJnBqaCqPzB6rvgvGphY+MPJFI17eH7OlcaZkedbF8muGxR+kF3hBvmKhKSG96LqpxHuAVVuIVZYYxf0AE3yvhsaxxnALqrFegcTFbmhEiex1iyI2i1XdO/4kL81YUo41DBhTxxN484acbw56iRUsJ2M90Ig9NjuoM8QlPdUjWuYydJpENL1svxr3s+evo/ZLeLe54K/MCX8Zy8DPYIiZWqgbHxGQ7QzeBF20gFZxt4iewtTVfA/CFRwRIQJMfw9sQBABpiJbgDFaz8dVb73i1/OJdxoffn9m68CJBzJrpqxuVVDb8FPmufPvI5TS6Vf2TTjyRbClgJ5PH1mD3BJ9B4q2xB9uHHu3pWMBPZ+xSW9nNz1dPXzW9UlfAk4OaVVAz6dExJOV1eL2Sw5UuzxE2FDct4CeD6LyL6ltiKj8SxbqRVT+tSWaSi21n3lxVU7EgQP7xH65ufVAU1miaWlyyvA5G677zVgy/GsLxchaoKkc0bR9bUVRr4GDpYdfjzr/yfsb/EA7omnIEM/hSx6rRFkfBtdM+5peAzSVJ5o6/7z2uOM/ZaUZecMn/OKfkwya7Ikmz7cOl6dFHY2YdebOsqdxfjNAUwWiqZ/XsbDbNU+Hbty93rFZ0AMxaKpIGuXLipnbf7kVeKB56NpjuwfCx6hENJWv5z/Cc4+TdFOLMlu75fRzA02ViaYzS4SPvmVr/NNSNmf8PkL0E2iqQjTZ3vvzQC+72oFbI/w7uiV16wSaqhJNDh0+9tw/rmHIHP++I34dp9gMmqoRTSvTYl81O3hFdLhNv9ZBgaeqgqbqAlYZKAei6cHxbHHN+UtFB0v16PteF+0LmmoQTfapZfdXmFNZlu2x7Ilb7bOwAzgSTSEfFmhSms0KyOx2oPelN4nwu2qSVu65JySwVrJofKvwVZOz4rqBplpE08XsXoerSOeI9pQKudWu7rTpoMmJaNof0LBJ9XIrAhZnXs9cGe8hB021iabffr309H7N8MCcHy+Pi7dfshM01SGatg3KdBJOOSlbdjekp/LbuTzQVJdosrHr4l11/QjZjMu3BonfV7gDmpyJJv+WO7ydb8SE5axM7xp1wucmaBISTXkXPOT/vpkjHn334rF3FW+dYQhVuQhYhKriNj/xLd/zr4gDD5LPV477bM+DUFUlNhdVPXbv5uwTZ2QLN+QNO1d7xFLq1FU2NEmljkGcvmBLgBsRdwjJ87JYmTptAkiIgRMiKgAaeNyC7qCQj8acVRMNhuqGN5YJFnuegv4VsXPYGaTHEz2NK6CZfxoVfxDku/VMCOwRs7qi/7ijqw//NFl1g8fDqDxvEMKVvYUQoBjUvPO0m0wwy9OonNgnUgG6BsZ7ilHAEkdqrRI7fgKeT6nCpk5kPxHKNfDEtTpBGY1EsfebSuVr1XMImbWi+YOmU7fPpNLH9d/DpI/nN/FemsYV6zEccP3saRWZHPOoo5GZnAcx0GLyzaWLl+uECfJBCiFIQPQlrNl55mvqdg5wz+4k2Tb3nz5Tl1W8SWMaEh+LYBqSLXxbr5IH0dmlKOtleWKdncE2NxI4F/JQFEn4U9CBRIL1zq7jv+Nm+Ug2ry03IutS+RjTj2DxANZETrBAVyfiT2W2+PM/5YYiKTfQM3SzKTe89+RSbrhkXKw0ULkheXJJjeTgUfGEe67yq74fHvAYLOkeiAflhreeXAfdnxgXLIuq3FBtXKl6u+a0DTq8Kv7wuKNzqf3DEsoNdzhRuWSZmGgAy7SwBSb+lBvOfn1Wpf/4x2ErWxyZ6eF3tJ3VKDec4jTdQWtNZ3hWbki2r+r9surysEnrP2adrFzyi4WVGzAvw3r0/gkiSyku5YY6J7M2VtsiiNiTUfZj5TqfqAQhyyg33OEE55KnGZUbJpZxmrI+o3NEWtzwklJp55ZWotxwihOhg/q8rQpb3nZmgTz0a9saAWNW1S3zov7wQ9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6uZlZNNliRFncJz5EWVxGqiSC9Ut9jFtWwB6gAAbIt2sQV2pi0vTL4ftGeoVW8p1GO7gbBe9GHFDALheWKdH9Hw81bx/5EOwrRicUNpUJbvkYxTt2xAAi+4VrjFIDui9oRwfbXj1sW0+63li05+7jx9OGCyZQh6WUvJk5LPObCgPs2bWYpuOy/pJkKGqnbq+nOsADYL9xAgZ6lEWSKDxmwL9pIWD7Ycph2XLY0g6zJYdXDVvpnhbWbn/Q3skz3/QoPcWzCiZkAowhG5qkUehpz1hSK/aLcv3RzbQEmGbas3U+/N5+2jBJZo7bm5dzckzVe4Om3c9p2q0WMi0qP57RyahUq3xoAX+OPtLo/PvOuNEPpYvPOw2M9vG7St/wQxyqwq/yvnbnSfikLShSyRZPbIgRgbEqW2D0u1rj3pDW20Ube/d1nNL9ILWsUjVIftXBpU94klkBufUKIyrGe0nUCQBynIKLfUxM/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/K0GwEdP5AbwD6736IAvL9Qef39TaVnyIOLQAKXG6AZZBgtqFOFLqSxc8BergAEvwf7tO0cDVanaJgUS/J05as+HmWd0T2wGM5iyWtqEX6SnfHSAdMH0NcL8zHKHKv5fQRrfAfl+SqGf81Mt1EHzMDwOwPYbbxQ5RMz3LDYDZ1SbhhAfPrV7ei1YlaRXQy1j0wThQSy3kTPb9JckTSXem5g+JnBt2hnsjI/1zm9JfSyDuV0p2ArQ8KtpseGGyES6jG5hLOVaj/oVkrddj4P96GeF4ZJaO8m32kAuMwCsOTVSqEL2BLmD3I+yARFuuzysQhcpUyBu/kKUpdvFANpikawz0BfZee4zkZVqA2G3psr7FMUAmia4fafFsK0P3iZerYdwjCeHhw1VWhxYjYGGJIAM713b45NU8QmPPwvTDd/1xbavqMfRAzfcYvFzac6awEU4+iwYPbELllqJQBVn618WZNnw1EzkmPnIbS1WDXQsIn6zxlW5W7ZUOmOL872jyjP1V4qzzRQdBbOtRWvkcxRAv0JA603nlZhMVu2zU1SVEQh/oFODueISClVag84d9oPQMC+8EkN06hoVHi4I+pjtsBC5DQsOAjwKQ6FTc10sr0wGTKIDHRrv09iVHwDkWb6+yFjQKjFsIcwzFsYa6A83eJrh+DhEI7LeLotWVdg8Y+63Ppw1sVjd+FvRViYwK7XBxQYF2cFQrQxYlAVZ0tUFlNzT+6t+Sn/HExlPy75MVV8u+MHnIHq4eczo3jB/JjJ+7KG453CFkx8NLDeUc+xvIAeYdmXJD7NCMhr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+wFn65vKm6RZDUqnTlm6t5kBuUNdl5k76PTL3mgvDmy2b9eyHGPe1vL+a+2iRlw/Xklqv2r4ov9EpVaC9NFbAOHmZSXZhlt9fyVsNxxPKwPjH8ANqWE80yChmDY9j6dclroIzLAQf2RoVk5mCoGQb92E3liBMzI3ZhZOdfatRO+24YpaaihaQAe4Bd2XlDd5rXGPpkzI2jaD4vCAprUSTRlr614l7EvAqwCyLD7jiFOCKbVbbyQeTgbVtX1lIiCWCFR+vefw32qd7sim7ti4IwDujFPeKRFjO4W/vH0qqH+a9WTAif6pR7lASU3TpRqeTEXH7jyNPfO5LjCBhuGGTnk4FSP5J6xb5UMOHIqt8WR7sGzRE/CBGtGKyy4n+vtTnQi5IYcPDzdwcu4NLaJfvcQQhRdQO8TRiCKb0LXiRWutn20MFc84cadFW/LxU+2gl1LCFILTpDcvIzb120oVeJvrl+qyu8y2MYih4M6PeLJ+4PHw8bOf/5Tqe+nN1F3EcnPZe4i6luKAx1nTnSq63PRmmyB8WX38FAbr8+SzOXn/XMignoxF+KZkdCGBVwX6n6unuqWojZKcp9+wMLQvQFD2d/AMWVB2M77IRagBAC2McaFOsO2aeOcBv7ldbeULE2U+nHr2ydnqYud2H4sS1inNBbmxekuzlQmOPDTcyFYnVF9bClIzacaF+sqYGApwEhjh2rmqNf7p3qVlU2KbuD2YsPe9lRPJAP3ooEq0GTmlADCNIYTpqFGBrvCt9Doe80W20KDngbrI3ALTcjIHT0xaAg/VIvND0kan/dqm/4gdKl/zntd25p16OvQCfIkIb5Og1gvZ0vNG+P3kbs92LkUuTBRkQIvKTTKaCJAGuSW6Ie7OJ4QtVJeoNlAXEWNZYLdLU9BxWlETp4GUJ/X0ihHVQHbhsIXd8HjIN/yQa9Dp+pdmChblzr8364n2zhQUyTsA5gpEn65sDFHP+dm4piDzOSdEJ4NqDEH1TDXtzSKTWKPPw+XSHrt5Ffyq/36SrI89kSsEi3fQN39w+9n7v4R1wvD58j0XbUTrs0LXzEw536z7A0XecAnhxMf0H0swTCwxYgbQ3Ag2gvoP8ZVUbPvKtfEKXRcRju49UralMhBkkUnB/lf2hAbTDUafj/TaMR13tdsgVUyOK2SblVWeXeYtIpR4asi5vCSFDGE80UapnXpbO2I+KsB03M23nnWaQ/1sF/pMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQSrWho3IXPSY4BNLFTKwvBY3lu5Y9Cr22GLMmpMSsw6702TFMI/ACEpRDQUByLzOBGZ2JKM605scX3LrJA/e7fzDRr/51ed7bHbH6g2xr/RcDJMe/0MgxrAhSnxyuh4kFbCs4VyrRaqQepZMUT4N2zyQT+njXpeZp/ErxvBE1W0JHiiDPaLCMzqejDjupE74LWJVAMXT8IEfuERJvxJkC/+ouGIE/4DW/ovv7Nsblj3lbTOx5bY6BvMHPwhfS4aYuiN4mgIm2AYGuWx2ocTPQovaUI5qAX5QFp8fQCWUYD/z88phcPDRyIRpcdzi1ZUgfNaDDBHFGBQx7qHfjDXtvqNK3pv4kltkr7NwcPOVauWXDtXnnrM67BhHr7b/8IZwXFJWq+a7ZQvgitTFbfDKEKoTEfKhrRTGMgHQHjSgTtVNDlVg/wkXZmC67GYQuDUdkMXbuBBakjVnIpauIF7FPE+CL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOv5KDfA5xsjftnaM+nRRKvHbc/75Mt3Oa2qq/K2YOTrEhYrbDavsNaVi+SvSXUGqDUM1LQeYumYCRscIaE5vFHsBEnQ0PqcQQo5sIBVFJHjL0B3v784f7zd/yuNd51wOXimCSDAdJUWPyOAHa9tFTN909JD36Is7eEApnhOlvj4MCUBOtgteawEmRgYARGe9U2MY/lHMGEZcL44Fb6zHfEItNLl6YEgR/rTuf8yf0uV8zORPq3L6068t/+dPCfu8LLk+pvbIn6RZBz0/KQNsyvHgT+kyTTx4isqcnqJMsfvTM5JDW2p5TgpbPPFATM3F4qKIrtNRoi8S8IDS15ZcKH1oWYz+lB5DLe5PK3P606/6/NTZ6ucE9OHED5nNp0TN9xmSJOmuj6L4LVczInmYElzmnBKc1UMu5I3MVoGE3AxkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8HxpoLb0a2M6ORi6YjiRBVJI1M3/Nn2MSGzSZ02UIebFKPzSbZex72nPD4U9C+PTv3bR2USz3n90NneaJCxayNwubYXMXCJHhHgQpdwkS1ToGLC0F5bi4NW7ruIuJRDPF2dlHRGrVKFQkjFryYf+TzXSeaJ/ytWcCWG4kjw2Y33vrQv/NDDzZPaNtNq9BAAXDyaxtK1ckDVJCrBavoQOGfGKWOeHeQYcBdjry0VTSTkGWOGIvSjWSCti2AA20rEaRNkJQLk2vilImhilhKALTDL0fCeqcFr5fFr3dVJxW8SvXC7yIayezbtDhVEQOxswaeG9Qp8acqQz4VakBp5ClBiTFQdouEt0RZeBFuvRS4hOXqKqIkEz4hgFVUlXKVBGpBFQhEOo1CnqD/HRMm1t9DdNX6Vh+W6SqgPC3V0fs/D3FZ2YIrLstbkHG5gdVjTpdXtd7l0X6cxP4eemJ/Q97CpL3AfGESoZtLhkmEbi4ZJhG6uWSYROjmkrlQ0w3DZ3daN0461md1yA9jPW4XyIVU92d1PFkhN3inyz13cfYaMSO4Qq+PVk6hifHyEFwbsVnSSsu100WHzVauPboVV7l2r1bFXa79WE3hyM3aM7K1s/zayBfWpp7stEy5dnkrruK3PVpZQc3pcePGmaFc+5oWM3T7l2aGb7uZPPpBVAx198VS5drDOK0jsQbrmKVce632mfYu4g9+E57N2V/iZsddVlGuvS2ncbyswTgCS5ZrPxp6VjmoVoh475R+fetXGkNV2rV0ufaGnMZzsozxrLNcu2TB6BpdquhkizP7nDxZPXSvhcu1V+a0XBmLWw7eVGzl2su973XcvuUg0WK7zNpnS26QWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1dK65y7XOYKW2xlGv/O63Zo1H9vgVsnpX8e5/N2VTBRD7KtdPFzXgoQb6mFVcJ8sWtiqtc+z2HK6H+K/sEjO5wSChSXMrlvVw73UfwgNUcTqwmm9fnWrpcuyubG/ufCH+RRPjp1YTMJsJfsjWXCH8e03fyIMJf+pe/xjhX6hg0+9HE/TvvH3vK42lznn0k1CwXtObSLP+L6SOLQ4Tfy6fXvdfTe/ktlIRv3+i9l1oH3RIi/K9acaGSZ/EMtOCOk2VE+GvUTlDZRu6TLqhRI33ryn4LrEaE/yan6S5YxnRmF+Ev89Ft1KPAbL8VW2Yln/Zq+8bCIvyYl2FVUQdexmwi/I8vvkh3+fQgKNPNu7EsQtbUCkT4MWfDCk5eKzOK8A9dtn1eepMnklmN1m4u2WDnPSuQs4AI3eRE6IJ++unGlrfJxE2afu9wVbzmft21lxe/bUHVEcAO8SWpVSCiM3M2WxacffK3SJT59xNaGABxjTo5Lh7kcLDKtTrWKC0HeoVF1qdlqh4UaDSU29dQJhgEh6dcAhddaPheBPiKW5t6sKpa/mOBqwQWyFdvU75ryNHk+RF7dk6dfaBW6nHTa3fRUii6YzS12DxATwnRc5ag6hHDzdrWxhXCxodvjCJOo0Dnl4Pnda7afP7biM0OzTSjkmtTCzGXlmI3Ik5I4dd5l/0F79+N8/1DWls6WdL3TCMSJfjISnWMMppD2+b3vUfXrq011W9M90NvBOmfqXrgtuQHMPuqvqU4jCHmNEZryxiDURzbmB0Lz5BEtQ6EL3k0XDt19e4ApqxgZpHgLmzWITperYlxFzbvoB2s0WG/oLPV+g9HKrd/niRaGPTIb1vQUGo6VBZ+QZQuVYWof5nfVBzG8uA0Vn2rGDnwo4zKVqvnL3QnJmsGaDlGUI7P0PITE1767Y0KHZZhl/vWlKmyieaY4U04cnjU8yJDF6qZbH3v1sZlqYQn58i2xk91GfRmbKWw+Y0TRzrUy7pi0WkvBCCCBOAmAgDoWozKRMlQxi4y0SqtxvoN9Z6ErbkbWWXYttA6tFBm3sO+EICWXAB0b9SaTDSb/Mf4OPTC3Gbj47xozcXH2cXMLHnm49geHTJ6W/jY0PlDV/88SPtmjBXwcX5vzbW7ed8yTp9KKhg0aJAZ+DgpNWaualyrkmRb3V7Nf415ILQKPs5VTuuctQbrmIWP0+vb6xqxzyJDDq8ecD9j/IaPVsHHOcJpnF3WYByBJfk4JUdNim+fnuI31/tT0pHvXyOsio+zgdN4yyye7FoRH+dT8siMVkmxkvRas6d+6LW+loX5OFmclptmccsVKx/H41enRXNT1oZvXHnup5m/qN5aBR8HyyFY+Ti79Hlq0/8LfBz/lju8nW/EhOWsTO8adcLnpoX5OO5tuPg4Dm3Mw8eppfy+/LBfL+mm05ubTRNcrsM7H4c+N+eBY9KkDRfHRNimuPg4LjHVHIPfLg2bfOTqsjxp5RW883HoPoIHrBw4sSrf5v8rPo47mxsbfFjZVBm+TrL7UITq2ePeVOds1yUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAb0IUPL3jI/30zRzz67sVj7yreOsP6fMydnIKNjP5XNgq4sIiCR7EQvZJ+7snAXqn/NASf5gU87ecggf9o5z/VjWW/PW9xyj5KoQIGU8QEAb8+lPw4zKy4KT3YTOmQlyGt4vubJMfn0eHNp1Oo1dFL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrL2ZIncI2ICdU821L+N27aiqqeN364+jtmrksJWFnr6slzxI2/wiU366T2eTmwWcdxwWSSjGd0iXmwWWTozI/lV8KeAuYMdtNmT3amaRqX9IXlGx8zIWKeX+A1CLYj6eL3LZC1MebFabfFqVQyUY4SUwFjs77B0WCeP0xqUg9CPSJYOVUcPUsTob0I9OnM5F79u6G61q0zwEYJZEkXqg6Lq15oh5JcgRHAeh5Bfgv/o8kvh4+53jDr1UjT23I402/cRV+nyS+k9ckbdTuoTmHVk6fynWVM7ku3kYdQiyzPRvxghz8RmaTuoHkCYEWmt/po/N26o7x02O/PQ8YfOe8NMsRb/u2HArh+gXReiUp4ZYAg9b2aRwpN2sL5jPy14h8S4fIeR/zvmaoZ7+0aORKhEsdmqin/+aAMJkS5Zg05cLzg+71QvtFforHVdzjx9Vrk+p8nKSPBPQmgdEw3FYbQHnEa7Zl6jkS7YJlSCO1R4yyj9uMdsQ45RtmSvnpQofa1M1Co0GOsOfAXFYaKPPHtFO3ttLBmye0bJPJcl4xvRbVUmLFknH6DSC1gIaJtd8Fu9meHKu1CtryKGKy6jnuM06i/NGFpfnAUUiM6uwPVZ0ARxmkwKZ0e3gZ6OWaYDu8o7o9ST8EtHxIhK9yIvrIsTId2bLaR3efQgoozqQsCSvYdKjtrlMp7KlY2KV8bqhLCuLDWsw3jFVtPaKSI2Fk5F5CoVUX5VCQvnQfFuTyTA9IKDbI+AyJcMpduDnnELlpjt6ocqhucuE+w1uTy9PVZ9F4xNLXxg5It2319/w5ojC8L3zqnQf+yy5Up6gRfkKxaaEtKLrptKvAdY3YBYZYlR3A8wwf+VWZSakzWGW1CN9QokLlPHTfxyPOcH2fZhPj4bPFxKM5aUYw0DxtTxBN78GOebg15iBcvJWA80Yo/NDuoMcUlPBXm+e3nwbrXg/avu32nx/sJEar+Ed5sL/s2c8K+0DPwMhpiphbrxEQHZzuBN0FIdtIq7RfQUpq7mexCu4IgIEWD6e2ADgggwzdgCjNF6Pq566xW/ns9tYbXdq7U20oNtn9iUan8ppICez4en5cIOZw8MXbirVxkH2X51AT2fcF34rZCwZSGr/xQlBwRnrCmg59O9anTeYNdzfjOjptyxOVsnrICez/322R/tOw+QHWr1ya6S12JFAT0fROVfUtsQUfmXLNSLqPxrSzQ1amnXrI9DTtCiH17nqLbH/AWayhJNz0vmNjixPUk258fo6x2P1vUDTeWIpsa1Xq2NapkasSQzZE6bwN9agiY7ounOxrXxtz0GinPkNy8NvXynJmgqTzTNKqs9Mf/xLvG2xGsO8XtXJ4Ame6Jp6pgOT7Pb3wqd5t8/+1/tvO6gqQLRdH2gS3RgLV3wgpTaTic0VW6BpookUHbj6vzxKsRvu9PeWntthN1AUyWiyfeO7eWqdknBa/yPSkbatDgEmioTTRW6+uR2dUj22zVmaP+Xw6f3Bk1ViKYWEen/vtg6RjJpb4vcK30a2IOmqkTTyWsXIvf98Nxv41ZR/W+tfzwNmqoRTT3KfXjv9DkoYNUgjxLDQ0Nbg6bqAlYZKAeiKeDQ8ZvtwsaFZe64mjku68Ye0FSDaEp4/6NTztrb0g1dfJycfce6gyZHokm5e1ngvKslxOM3uPY87zjjDWiqSTQN9VB1+SpzCdr+e7PaQ67YLwZNtYimYZNPXh0gl/jNEt38uOji4QGgyYlo2vssr2X2sn8Cp0+Ovjr47oDnoKk20dTMJn7rmi03xBkfHJ412Tb9PWiqQzSN/XHN9J/t2oUuUVVt2qxkX2ivukRT7OEz1d2PnBCN3n6yW4r7hDzQ5Ewif+JGeMZkUcCkL/fO7pMOnw+ahORdczteWra4hXh9qFvlaXV2VWAIVbkIWISq5uwRLuvtODF07d7aHVMlTod4EKpqzuaiqsfu3Zx94oxs4Ya8Yedqj1hKnbrKhiap1DGI0xdsCXAj4g4heV4WK1OnTQAJMXBCRAVAA49b0B0U8tGYs2qiwVDd8MYyga/vKehfETuHnUF63MDXuAKa+adR8QdBvtvINhN8c91WB02tMCzr0NJeZXk8jMrzBiFc2WsDAYpBzTtPu8kEnr5G5cQ+kQrQNTDeU4wCljhSa5XY8RPwfEoVNnUi+4lQroEnrtUJymi0hG3utjXXS22TjM1c8mZV7ME1VPq4/nuY9PH8Jt5L07hiPYYDrlq+VpHJMY86GpnJeRADLSbfXLp4uU6YIB+kEIIERF/Cmp1nHtm+fv2w7h8l03o8Gu8ZKv2HxjQkPhbBNCRb+LZeJQ+is0tR1svyxDo7g21uJHAu5KEokvCnoAOJBGtn16UOJ8d2lU67MrNL5pW/B5p+BIsHsBpwggW6OhF/WrDFn/8pNxRJuYGeoZtNuSHDl0u5IcG4WGmgcoPt+GvyMatcApaO3uOo2brZk8dgSfdAPCg3TPHlOug+2rhgWVTlht1/DL546c6l0NV9L94LnJxLKxNqAeWGFE5UEiwTEw1gmRa2wMSfcsMToSQ5bnht6cyWg8vfXfqCeurIksoN0Zym62mt6QzPyg25Le9P9/SJDp79T+9DD2v2sbGwcgPmZViP3o9GZCnFpdww8XXjbzunb5Ks93z6KuRzqUFWoNyQwglOgq8ZlRsm/lz6wHpHkXTi1jiPk3dfPbcS5YZoToR66vO2lmx525kF8tCvbWsEjFlVt8yL+sOpaxS2oSBHE0ZJQw1fOPDTF8OF1QTITBjMEGPBryDvShUCbDU6XKMAOFuiv8Lci0jdRhqUONHXL9HPzcyiyRYjyuKOFhNlcRmpkghYQC42blkBe4ACGKCPvi+OnRfxVCnaNy/57ABVqTzabhK8G3FAAbtcWKZE93881LwdJSbYV4xOKGwqEySLjeIdO2IAkf3CNUapAd0XtKOD7bgFVTUCzfnwFTeaZ7/0mPaAOiyl5M3MYZnfVBhgV/uWDZ+SZxuyynvZuPvO95vzANggTsBAj7JIEoXHDPg3LQRsP0w5LFsOW9phtuTwqi1LHn83YtW1wKnZwYcWzL7UvAomZAKMIRuapFHoac9YUiv2i3L90c20BJhm2nN9d9RNWj9PlO7y923l0+rteDBtD07ThlnItKj8eEYno1Kt8qEF/DnSmBtXDAxsFP6DeMGc2BOu8Vvq0jf8EIeq8Ku8r915Ej5pC4pUssUTG2JEYPRhC4x+V2vcG9J6u2hj776OU7ofpJZVqgbJrzq49AlPMisgt15hRMV4L4k6AUCOU3Cxj4nJ/xhscphfKB6SSg2KiPRtu8IfmGEO5F8Zmo2Azv+4HQD9dz9EAfn+oPNfb2cqP0UcWgAUuNwAyyDBbEOdKHQli58D9HABJPg/3Kdp4Wq0OkXBol5y13n49s0LSwfv/ePNnib+a6jqVaW7Y6QDpo8hrhfmY/aVzK0XcVMmmaB173TptmuOiT5mBoA5D8Js44comZ7lhsFs6pJwwwLm169uRasTtYroZKx7YJwotBOo+2n5siHbwsZ8mbnmt7c/X6CeyMj/XOb0l9LIO5XSnYCtDwq2mx4YbIRLaMXmEs5VqP+hWSt12Pg/3oZ4Xhklo7ybfaQC4zAKw5NVKoQvYEuYPcj7IBEW67PKxCFylTIG7+QpSl28UA2mKRrDPQF9l57jORlWoDYbemwPHj+G6NqhNt+WAnTnmjz2HYIwHh5cdVVoMSI2hhgSAO0X3ZYN96eEr7y79P3OkBFXqekz9kHM9Bm/XNhwprMSTD2KBpBbB5FbhkoZYOXXpe1Y02cDkXPSI6ehdDXYtZDw9f5rz+i4dvaSeXev5bwZadebesyd6CDoLR1qK9+jGKI1lxOtqe0swmK37ZqapCiIQ/0CnB3PEJDSKlSe8G+0ngGB/WCSG6fQ0Chx8MdUx+2ABUhoWPARYFKdipsaaWV6YDJlkJho1/6exCh4h6LNdfbCRoFRC2GO4Ri2MFfA+btE149BQlEx3nfNs9QfxHNKrClzcJrzeNrGBHwrxMYEdrk4oJjLCcVUfaBqzRaorKbmH91b8lP+uBhK/iW04yr5p9BD3sbqIadz4/iB/E3UhzF9Ss7y29vL5diWjzvdeID8VnsuyC+1JyFvyxsrsyIJuRlYmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCszYWRZ8YGICwEz+lbo371/3jUG5Q12XmTvo9MveaC8+bLZv17IcY97W8v5r7aJGXD9eSWq/avii/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MfwA2pYTzTIKGYNj2Pp1yWugjMsBB/ZGhWTmYKj6B+wM3kSdGwIz8hHHb/E74bhumpKHGisGrISuQnRc0+FhFhax/hGRT6zkxy/bVWGfKXlvxLmNfBFg98iXC7juGOCGYVl9lbvhzYVVdT4koiBUSpT0H7+6ct8gnKHNipevzPWTLeKRFjO4W/vH0qqH+a9WTAif6pR7lAaUTnCjt8mUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdOXCzpPb9wcu3vqh5bqYL98suJ/r7U50IuSGHDw8fcvI/dwm+t1DCFF0Ab1PGIEovgkJzquVP0xMdH4QsSftdNqP+79vsoJdSwjSb5wgnTByX7ehVIm/uX6pKr/LYBuL7A4q5cGAIwt9qoTPePR3ZHKpqz2ou4jk5zJ3EfUtxYHOfk50tur3dNuxBcaX3cNDbbw+SzKXn/fPiQjqxVyIZ0ZCGxZwXaj7uXqqW4raKMl9+gELQ/cGDGV/A8fUEqbw5/0QC1ACAFtd5gKU6du0bn2ck75vmy9ZmfJB1XrF1tXUxU5sP5YlrFMaC/PidBdnKhMc+OnmEKzOqD62FKTmrug1JzawKmBgKcBIY4cqdlXt9JtPS4Xvcj07b3bOjH+pnkgG7kUDVaDJzCkBhKkuJ0zVECvtpm2h0feaLbaFBj0N1kfgFpqQkTt6YtAQfqg9mx+SND7v1Tb9QehS/5z3urY169DXoRPkSUJ8nQaxXs6WmjfG7yN3e7BzKXJhoiIFXlJolNFEgDTILdEPd3E8IWqlvECzgbiKGssEUaJTUHEakZOnAdRbiIxyVBWwbSh8cRc8DvItXXeNPnur+yjR8hulMjZ0vkiVLf0B+wBmioRfLmzM0c+5mTjmIDO5C4RnA2rMQTXMAJFRbBJ7/Hm4RNIX7F/WIGy1U+iGL9ofvR+GlqHu/uH3M3f/iOuF4ZPyaMm/LWrODtn9cpR75vB5a3nApwMnPqD7WIJhYIsRN4bgQLQX0H+Mq6Jm31WuiVPouIy2Ym2nWWs3/RIweeaF9ie3xt2lGg2/n2k04jrva7bAKm6cVnG2Kqu8O0xaxajwVRFzeEmKGML5Ig0zKfrfmPZ1ukr39u59aM7acw5Uw4Rh9zMNQ1zn2zAiT8KdwGVGxnw1zUsm8BMZNyFz0mOATSxUysLwKOU/OnbsgfcRB/5sNttp5qiSNEkh/AMQkkJEQ3Eg0oITkQYiMq53YIvrW2aF/Nm7nW/Q+D+/6myP3f5AtTH+jYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U8zL7JH7dCJ5oCRHBE2WwX0RgVvehk6k74LWJVAMXT8IEfuERJvxJkC8ecvV9Wt3VTwIO9J177e+tgzpQOx9bYqNvMHPwh/S5751OwQkcgqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+Pz+nFA4PH4leMKDFc4tWVIHzWgwwRxRgUMcaAEYM5o5Wv3FF7008qU3Stzl42Lm63Ilr5+qsHvNObJiH7/a/cEZwXJLWq2Y75YvgylTF7TCKECrTkbIh7RQG8gEQnnTgThVNTtUgP0lXpuB6LKYQOLXd0IUbeJAaUjWnohZu4B6FjRihN0nGE4TeJPwmut4kXS+SrjdZZD1J+o0IPUk231THX6kBPscY+dtNI/6sF3BoZ/CEB20q+fSeXYkqfytmjg5xoeJ2GyY/S2lbMVW8aWq/8/3OXDB5aQmMDkdoTm8UewESdCqITyGEHNlAKopI8JNS284lhPQLnzQyTOs58cWkIogE01E6OfYviVBZO3D0hcnecxtl1OcBJRtOlL6IGBKAnGwXvNYCTIwMAIjOeqfGMPyjmDGMuF4cC95Yj/mEWmhy9cCQIvyp6D/mT+lyPmbyp5tFXP50vuh//pSwz2WF4EjG4HaBC+WTFq+7HDiIB39Kl2niwVNsFHF5iuWi4vanHe02t8qbcSwi66fJnZ6NPt2eB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym0+Jmu8zJEnSXR9F8VuuZkTyMCVIFHFNCWL1kPvxRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChS3zLsjXRMnGduxZen37S2fYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIUsm0kE1zuCBxoW4kgbYKkXJhcE6dMDFXEUgKgHX45EtY7LXi9LH69qzqp4FWqF87q2kg27lLHUxUxEDtr4LlBnRJ/qjLkU6EGlEaeEpQYA2W3SHhLlIUX4dZLgUtYrq4iSjLhEwJYRVUpV0mgFlSBQKTTKOQJ+t8xYWL9PURXlVl9WKargPK0VEfv/zzE5R84l+q+diTjsr/VY06XV7Xe5dF/OIn9H/TE/gDewqS9wHxhEqGbS4ZJhG4uGSYRurlkmETo5pK50OxxTdY5fvCX7bulOzVvcrXNBXIhz54pswc+/xC2enApr1LSH4MYwRV6fWRHoovx8hBcA9ksaaXl2umiw2Yr1/5dzFWu/RxTSobncu1dbFxqdtl0UbrsVeVVbcZ5UnfnLVOu/auYq/jtB8sIZlBrTo8cOdIM5drPjqgvaXlssGxChY6j/2xQhXq63FLl2p9zWueBNVjHLOXa/3z761ufMz9K56y51GDf+r7HraJc+zVO45yzBuMILFmuvW1d/7+bl4wLmT4981TC2ZhZVlWu/RdO4+22IqEgi5drvzPgfckbITVCVix6dvbgRVk5C5dr38hpueUWtxy8qdjKtb8tu61O+VPvArY6T3j4MO/5K6so147lEKzl2s/pNxCD2PLU/1K5dnpZDAuXa/f34yrX7u1nnnLtPUbffTjt2eLgLS9q+OXV3SDivVw7XdyMhxLkUj+uEuS+fsVVrn3k7ZT5WcMy/Xfkqm0bHNz5lfdy7XQfwQNW3pxYNfL7/6pcezCbG/ufCH+RRPjp1YTMJsK/2I9LhP9npu/kQYQ/+kevj8eUnuFpDTSJx8r1mMLjaXOefSTULF/ox6VZPovpI4tDhP9K+YuDBTuayPaMejrv8kSJ2OIi/BM5UfnZvN6Qc+5g3MEf/kT4T2h3Ju14vz1spc2z3ya0e7zRakT4dZymG2gZ05ldhD+kljjy59SKwSucnv7TySfPkqINcOEV8zKsKurAy5hNhH+C+PPNF00qBm/8e9uONppj1H5rGRH+iZzg/OxnRhH+P/ptrxBUabtkVrt3PoNqVbxmBXIWECEdJ0JgTBN5Wwhb3iYTN2n6vcNV8Zr7dddeXvyWKkBrhx3iS1KrQERn5my2LDj75G+RKPPvJ7QwAOIadXJcPMjhYJVrdaxRWg70CousT8tUPSjQaCi3r6FMUEYC8JVL4KILDd+LAN977FNMAw9WVct/LHCVwAKdPPX9+KXf0BMBS6KubfH/XULTCylK7S56sXmaYzS12DxA7weInrMEVY8YbtYal0KVx4dvjCJOo0Dnl9cdf8qeWn9+YPblb/MDX7tSy/6WlmI3Ik5I4dd5l/0F7//ej+v9n1k8WdL3TCMSJfjISnWMMppD26a2+LRM5zdRmrWyQbelMyedovZV8gOYfVXfUhzGuMdpjCvWkf4IjNmx8AxJVOtA+JJHw7VTV+8OYMoKZhYJ7sJmHaLj1ZoYd2HzDtrBGh32Czpb/dXl3IApa8ODx03adfTHyl4LqHENfkGULlWFqH+Z31QcxjrDaazDVjFy4EcZla1Wz1/oTkzWDNByjKDwzjZB0oYvZDOkC5tO8Wnax5SpsonmmOFNOHJ41PMiQxeqmWz930ZmqYQn58i2fhyf2W3c/fCIhe9n57rNbORs0WkvBOClHwHATQQA0LUYlYmSoYxdZML3X3cv54VTg3akyqY8rB1w1KKHfSEAF7kA6H5Un2iG/sf4OPTC3Gbj44yXcPFxIiXFzcepeLv5897VkoLnHu6cbvtmyQsr4OOMlXDtbg6TWAGpIDo62gx8nEkVzo96fD8teMf9T9N/H/oh2Sr4OEmc1om1BuuYhY9zLGnLaceJy6TL67y6FNlpl6NV8HH6cBon0hqMI7AkH6du2p+fjz/rHTinZrVfXv4dNt2q+DiBnMbraBnjWScf5+7u2U9/+7Oi6OD8JgdP1Pn2wsJ8nJaclmticcsVKx9n7tWT3x33xgStabhzeblK/VOtgo+D5RCsfBzgCIk8Nez/Ah+nwokb4RmTRQGTvtw7u086fL6F+TinJVx8nG3MlLZY+DiSfj1LRk59K5o56e3Q1lsTVvLOx6HPzXngmJyUcHFMDkiKi48TV7Hfz6X7h4QvuL3p3cUWgY145+PQfQQPWG3jxGqNeX2upfk44WxubPBhZVNl+DrJ7kMRqmePe7+l7pR0SYZnJwM08qR45glTI7YvGkiV2iR4eky/m5PqgZ8yFcqhZl4c/Ab0vHtux0vLFrcQrw91qzytzq4KrM/H3Mkp2Mjof2WjgAuLKHgUC9Er6eeeDOyV+k9D8GnGwtN+DhL4j3b+M6axLDC90yn7KIUKGEwREwT8+lDy4zCz4qaMYDOlQ16GtIrvb5Icn0eHN59OkdJUMNAGrIx7d4TNBOXwJsohKyIYMA5f8aXkQT8kXwQlD0OzgxIsVvIGGdlNEVEi94iYQL0zG+rfxm1bUdXTxm9XH8fsVUlh1DCCOn1ZrviRN/jEJv30Hk8nNos4brgs4taBbpEubBZZOjMj+VXwp4C5gx202ZPdf6KuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6kiNHfhHp05nIuft3Q3WpXmWAmBLMkitQHRdUHd0DIL0GI4DwOIb8E/9Hll8LH3e8YdeqlaOy5HWm27yOu0uWX0nvkjLqd1Ccw68jS+U+zpnYk28nDqEWWZ6J/MUKeic3SdlA9gDAj0lq3z3z6mvzj1vDVY9stFHeVdzDFWvzvhgG7Tod2XYhKeWaAITSug0UKT9rB+o79tOAdEuPyHUb+75irGe7tGzkSoRLFZqsq/vmjDSREumQNOnFdVGNPztGED/57b21/8eanzy04TVZGgn8SQuuYaCgOow3nNNpg8xqNdME2oRLcocJbRunHPWYbcoyyJXv1pETpa2WiVqHBWHfgKygOE2mrM3O/RUYuGCnZXC3NP+hWO8bwKhOWrJMPUOkFLAS0zS74rd7McOVdqNZXEcMVl1HjOI36UweG1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0J6JFtI7/LoQUQZ1YWAJXsPlRy1y4Va/bRcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3uiBUVoBQfZHgGRLxlKtwc9IxkKU3T1QxXDc5cJurU3lUdmj1XfBWNTCx8Y+aK9OmQIfk4WSqZsr+ffTXvrIL3AC/IVCyfe04qum0q8B1hpIVZZYhT3A0zwle2NY43hFlRjvQKJS0yViRGbt98UZWo9f1L2y53HWFKONQwYU8cTePN+nG8OeokVLCdjPdCIPTY7qDPEJT2lqRFd88qMxv5bzh55/e10eRdqv4R3mwv+EE74xZaBn8EQM7VQNz4iINsZvAnSIvSKu0X0FKau5nsQruCICBFg+ntgA4IIMFFsAebMAnno17Y1AsasqlvmRf3hVF1xW6woVpQ0lEk3YQsvftSadERBLWGMIhb8GiMckFqwcJs7mDDidHw4jyROpo00aAK50DfpYavbqf47VLa7pz/d5oV+bubCLNliIMbvQEojmnVCIPgdFZreAYxFM0/wX7zOadriW58W1AnY2GPq9XLdP02iuVx4N2IXD7tcWDxadFdees2N++JlLX54IosJPmRiPKoED4BCgMaicj4hcAsPqQAVNsFxxAAi+4VrjFIDui9oR7MzxRW/dx/pnCs5VOF6n49DP1JrGpeVkjcz2Zn5TYUBtrO2Ys3ikCni9LAbEzP3BefyANiMmVyAgR5lkTCGH4mBf9NCwPZj3JkxO8yWHDTGY98yR8lPlgzJ/Jry6cW1kSctSmOElnk3g8syS2dYxjLI03uHea5v2GfrsAOH/DqKsgIbdvt7yf5wi9U33OJJuJQtqIlTfy9shBBxrStbXBPuu7FL99tM8eru9RyWJ3pTy3+WjlTrGCd2uCZNzvgNIKqR58Y08JkhqVI+VKlFT5y6Xm1Ur++xPgHTKm87F/LXLH/UIyC0p7Hrhs64oTOZewIvbcQIT5VAeJqRaVx46o6/H6xZiD0I8s2e7hn3pY78n6DRfaMej3+d24X6ZvhHMN+MuF6Yv43Jsy0dKpkSmhPUsc2K9xdfmuhvRQCiNAiRFDWqA8Go9p6LDFCsM0nMQvAwEjQ9Ep8d/Tquqb54nHT00ScbfvPPopYttBGD25hDCbtaGDb0McoDNg8zubChdR/4QbYCjrIM+dgkwoP/rspE4jySFh2//9lQt9P7LyND9r1vPHqO8+x+1ERHDD+EmejglwvDSlsyuUZ4nUrBs7b+uXXgh93tWbHqplXgR5zyRWONwE/Eid+7OdYTMYxkOVXAPVEM4fKQ5ut/+OAHp/19/MfmrelZ4V3rVaY5AhPjxkUPYqTb+CHixk1PrDcTcaNbkfaS8Z5n9v1ko0cVveubMqpM3FSGhJQ9s0+QW5j/Dw==
                    
- true
- 
                      iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
                    
- 1e8725f4-37c6-4b42-8707-fa6926b11169
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
- 37
- 05a8c343-ff27-42ad-afcf-fa1ff667cbe7
- 0f64163b-c63e-4c64-8cbb-8773b580d59b
- 1cfb2837-6c50-4ee5-aa8f-99081347aba7
- 2b037c5f-58a9-4cb5-8e6d-67c8f9df143d
- 3d530c4d-e834-47c8-bcae-1b4fa53e44af
- 3d6b44d1-1154-4b09-a0d5-a25ea070c226
- 3ec98c82-8319-4c33-b41b-a024084f3a31
- 407bf4a9-858a-4660-9705-8e8f33050563
- 44da1bc7-88be-456e-b69f-45137693f9fc
- 48a0e7d2-c487-494e-9796-eb3b184479ec
- 4eec2e88-5e20-4514-909f-8ce5a6c4aeb4
- 566f2ed4-6b95-49f9-ad73-6761a75a717b
- 57c8a8a1-8116-4ccc-933d-b8e54b24f260
- 5eca0504-be11-4dfa-b0cc-3a8181406ff3
- 60a7fdec-17c1-4d75-b76a-594839ade29b
- 62dd3e82-b9dd-4a0d-8238-0d84ad1ad8c4
- 651fba8e-310a-4fb0-99f4-57c6a81c0def
- 6daf543e-8b47-452f-927f-1fb8d01a3f6e
- 7847ebb2-91c9-46ab-9994-605a8fcfd224
- 83fbba3d-44b7-4802-923b-8e59a8614a3a
- 8ccbf885-f178-4841-9249-66f8ea932254
- 8ee99086-b8f9-43ee-9bd6-fec9ccd7fd67
- a59ab02d-69c2-4571-bb5d-457becd6a4ce
- af2d2cb2-cbd1-4763-ab55-47294a5f0eb4
- c8100f49-2687-4e17-8c09-44290a64e5d2
- c8de52bd-b70c-4863-84a1-797c4bdb334b
- d17d9c72-dca0-490c-a89c-6d0ff75c8dfa
- d6a5a595-fddc-4f1e-93a0-1d97caef0559
- d72e8780-913f-4c19-ade0-67c1bc74babd
- dc078884-ac50-4cf1-ae81-92173c776b72
- e18d388f-be39-4181-8c9a-b9b6699fd507
- e458e107-80a1-4187-9513-8822082224d1
- e6adadf4-be79-42f5-b3c1-7fc3b6b0cd49
- ea5bacce-ee91-4be8-a5d8-d159ac821594
- f0683443-95a2-4914-b42d-62d543c955d4
- f25480e3-66b7-415f-b4b4-f9e6199b06e8
- f8b4cc97-54ee-4b3e-a165-111b7070d704
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- cb30ccba-a894-45cb-b1d5-847ad7005125
- daca2ebb-26cb-48f4-8885-277e43200f92
- 20d03587-b988-43e2-924d-d6655441a5e8
- 937bac2b-aa3f-4485-8435-a74b05842dda
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- 88db9398-ca86-4220-85b3-d1387046010f
- 1af94696-7c3b-4341-b4bb-415b935cb441
- 326b8016-5135-4828-b69a-a21c171e1a06
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- 9c973484-e313-4490-a780-3cac6484f2c3
- e860b9e2-e037-4c18-988a-393d0094d8e4
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- 53133e66-86e1-4322-bb85-7afca5c21f4f
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- aa2a8593-f318-4546-bad9-74c7978a14af
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- 43f684c6-6920-481c-81ce-8a3096268d23
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- 17750273-1d4e-4a10-92b1-f4b16af3b73c
- 8de15979-110c-49a4-bf71-f92c5c15659e
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- 735da924-e3a7-45ca-9564-36c125627c0a
- b2a58353-e9c9-4e65-a900-6efa66489724
- 
                          1562
                          3202
                          103
                          404
                        
- 
                          1623
                          3404
                        
- 20
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- d17d9c72-dca0-490c-a89c-6d0ff75c8dfa
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3204
                                  47
                                  20
                                
- 
                                  1587.5
                                  3214
                                
- Second item for multiplication
- 5eca0504-be11-4dfa-b0cc-3a8181406ff3
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3224
                                  47
                                  20
                                
- 
                                  1587.5
                                  3234
                                
- Second item for multiplication
- dc078884-ac50-4cf1-ae81-92173c776b72
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3244
                                  47
                                  20
                                
- 
                                  1587.5
                                  3254
                                
- Second item for multiplication
- f8b4cc97-54ee-4b3e-a165-111b7070d704
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3264
                                  47
                                  20
                                
- 
                                  1587.5
                                  3274
                                
- Second item for multiplication
- f25480e3-66b7-415f-b4b4-f9e6199b06e8
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3284
                                  47
                                  20
                                
- 
                                  1587.5
                                  3294
                                
- Second item for multiplication
- e6adadf4-be79-42f5-b3c1-7fc3b6b0cd49
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3304
                                  47
                                  20
                                
- 
                                  1587.5
                                  3314
                                
- Second item for multiplication
- c8de52bd-b70c-4863-84a1-797c4bdb334b
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3324
                                  47
                                  20
                                
- 
                                  1587.5
                                  3334
                                
- Second item for multiplication
- c8100f49-2687-4e17-8c09-44290a64e5d2
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3344
                                  47
                                  20
                                
- 
                                  1587.5
                                  3354
                                
- Second item for multiplication
- af2d2cb2-cbd1-4763-ab55-47294a5f0eb4
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3364
                                  47
                                  20
                                
- 
                                  1587.5
                                  3374
                                
- Second item for multiplication
- 62dd3e82-b9dd-4a0d-8238-0d84ad1ad8c4
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3384
                                  47
                                  20
                                
- 
                                  1587.5
                                  3394
                                
- Second item for multiplication
- 407bf4a9-858a-4660-9705-8e8f33050563
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3404
                                  47
                                  20
                                
- 
                                  1587.5
                                  3414
                                
- Second item for multiplication
- 3ec98c82-8319-4c33-b41b-a024084f3a31
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3424
                                  47
                                  20
                                
- 
                                  1587.5
                                  3434
                                
- Second item for multiplication
- 8ccbf885-f178-4841-9249-66f8ea932254
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3444
                                  47
                                  20
                                
- 
                                  1587.5
                                  3454
                                
- Second item for multiplication
- a59ab02d-69c2-4571-bb5d-457becd6a4ce
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3464
                                  47
                                  20
                                
- 
                                  1587.5
                                  3474
                                
- Second item for multiplication
- 44da1bc7-88be-456e-b69f-45137693f9fc
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3484
                                  47
                                  20
                                
- 
                                  1587.5
                                  3494
                                
- Second item for multiplication
- 2b037c5f-58a9-4cb5-8e6d-67c8f9df143d
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3504
                                  47
                                  20
                                
- 
                                  1587.5
                                  3514
                                
- Second item for multiplication
- d72e8780-913f-4c19-ade0-67c1bc74babd
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
- 
                                  1564
                                  3524
                                  47
                                  20
                                
- 
                                  1587.5
                                  3534
                                
- Rotation angle (in degrees)
- e458e107-80a1-4187-9513-8822082224d1
- Angle
- Angle
- true
- 0
- 
                                  1564
                                  3544
                                  47
                                  20
                                
- 
                                  1587.5
                                  3554
                                
- 1
- 1
- {0}
- 0
- Contains a collection of generic curves
- 7847ebb2-91c9-46ab-9994-605a8fcfd224
- Curve
- Curve
- true
- f654ad66-626e-4a53-b0fb-b97bf8db47c6
- 1
- 
                                  1564
                                  3564
                                  47
                                  20
                                
- 
                                  1587.5
                                  3574
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 256
- Contains a collection of generic curves
- true
- e18d388f-be39-4181-8c9a-b9b6699fd507
- Curve
- Curve
- true
- accfc6c7-d434-41c2-8fa9-df26450c2afb
- 1
- 
                                  1564
                                  3584
                                  47
                                  20
                                
- 
                                  1587.5
                                  3594
                                
- 2
- A wire relay object
- 8ee99086-b8f9-43ee-9bd6-fec9ccd7fd67
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3204
                                  28
                                  23
                                
- 
                                  1649
                                  3215.765
                                
- 2
- A wire relay object
- 3d530c4d-e834-47c8-bcae-1b4fa53e44af
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3227
                                  28
                                  24
                                
- 
                                  1649
                                  3239.294
                                
- 2
- A wire relay object
- 651fba8e-310a-4fb0-99f4-57c6a81c0def
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3251
                                  28
                                  23
                                
- 
                                  1649
                                  3262.823
                                
- 2
- A wire relay object
- 05a8c343-ff27-42ad-afcf-fa1ff667cbe7
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3274
                                  28
                                  24
                                
- 
                                  1649
                                  3286.353
                                
- 2
- A wire relay object
- 3d6b44d1-1154-4b09-a0d5-a25ea070c226
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3298
                                  28
                                  23
                                
- 
                                  1649
                                  3309.882
                                
- 2
- A wire relay object
- 0f64163b-c63e-4c64-8cbb-8773b580d59b
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3321
                                  28
                                  24
                                
- 
                                  1649
                                  3333.412
                                
- 2
- A wire relay object
- 83fbba3d-44b7-4802-923b-8e59a8614a3a
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3345
                                  28
                                  23
                                
- 
                                  1649
                                  3356.941
                                
- 2
- A wire relay object
- 6daf543e-8b47-452f-927f-1fb8d01a3f6e
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3368
                                  28
                                  24
                                
- 
                                  1649
                                  3380.47
                                
- 2
- A wire relay object
- 4eec2e88-5e20-4514-909f-8ce5a6c4aeb4
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3392
                                  28
                                  23
                                
- 
                                  1649
                                  3404
                                
- 2
- A wire relay object
- 1cfb2837-6c50-4ee5-aa8f-99081347aba7
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3415
                                  28
                                  24
                                
- 
                                  1649
                                  3427.529
                                
- 2
- A wire relay object
- 566f2ed4-6b95-49f9-ad73-6761a75a717b
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3439
                                  28
                                  23
                                
- 
                                  1649
                                  3451.059
                                
- 2
- A wire relay object
- 57c8a8a1-8116-4ccc-933d-b8e54b24f260
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3462
                                  28
                                  24
                                
- 
                                  1649
                                  3474.588
                                
- 2
- A wire relay object
- f0683443-95a2-4914-b42d-62d543c955d4
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3486
                                  28
                                  23
                                
- 
                                  1649
                                  3498.118
                                
- 2
- A wire relay object
- 48a0e7d2-c487-494e-9796-eb3b184479ec
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3509
                                  28
                                  24
                                
- 
                                  1649
                                  3521.647
                                
- 2
- A wire relay object
- ea5bacce-ee91-4be8-a5d8-d159ac821594
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3533
                                  28
                                  23
                                
- 
                                  1649
                                  3545.177
                                
- 2
- A wire relay object
- d6a5a595-fddc-4f1e-93a0-1d97caef0559
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3556
                                  28
                                  24
                                
- 
                                  1649
                                  3568.706
                                
- 2
- A wire relay object
- 60a7fdec-17c1-4d75-b76a-594839ade29b
- Relay
- Relay
- false
- 0
- 
                                  1635
                                  3580
                                  28
                                  24
                                
- 
                                  1649
                                  3592.235
                                
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.0625000000
- 
                          1149
                          3171
                          250
                          20
                        
- 
                          1149.177
                          3171.168
                        
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
- 
                      7J0JIFTd+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpobKE7LSQ3jYtSrt2ad/1tv3uHXd0587cG6875vb+Xv//26/mzFx3vs85zznnOc/nuXJGno6+HiyOz0/gR4pEIkkD/3Xzcvd1YXMW+bG43mxPDthkDbwMNoM/suBb+J+js5hOLC74FmmoWYHfZGoEviwPvDTu0Yv4VaGHzOO/cBpdjJZ9lrXmsvzYrGVguwLQLmPrClzFqTv0sgXL29UuwIsFNneEfnFXqM3Sk+vBdAdbBgOvpqSk/OR/ypblznL0YTnx29hs9k9lI5Yzm8P2Ab6FNdfTi8X1YbO8+ZcF/+tkxPTh/R454B9H73uEx4TckutsxPJ25LK9fKAvD94iqZMl04PF/9fLjvZ0Ez29B7nbG3aGAX8+iMsA/rwfl3U/Lof3F94/c1LBP2M28v6Mvh8T2/zO6nhL8O9bgsArbAM/8iBpb/Pf72/dcn9rbPPb7scdbL5a09uaLtIQdxR8fftagV/N/yx0S1DrQcHb2/Hr94Yn8N4cifX3hLTmC0J/Qq9gfor3d+gb8X4j7AYONt8bdJ/82/71Hl5r03eEfinvu0Oq8q4A6cP/rLCSTQpDajf9Ir4hILtAVxMwHyQvz7J6eiZ0e3kboIeBQ8GbP0zAn678Vw09fZsGUEf+EAA6mxvQGaH+0wF6WcaOyXVh8d7ZH/jnDi0Saaoa0LPmenp68EeQ0tzz06VnAd1Z4FfJg68I/Rp5G0cvBjPA09cH/l4FE66nr5fQm7uY0KkMtgOXyYWGgBQ0sqQF3gq+Itv0vgDePUMfV6R6e7M8HNwDaL7u7vChQLX2dXZmcZ3Z3q7DyLOaPMbU0Xr64P8NIxv6uvv4cllTOSxfHy7TfRjZ2tfBne1ozgqw81zC4kzlAFfrzr/0rF/+BryyLHQVGaqvj6snl/9yVwu2oyuT5U625gZ4cjuYOvG9TEr9DvVFI2cxMmQ2sX/UKywXGLEKv25TFuX3KP1yFlYOoPmaZZIG/ujc9JqAWODrMk2vgxp1gPTrZDLzl+8budemYl7GQdqBvd3Pnlj9cZvAXUnzbCVv6MnxYbI5TX5UG7qKjIEnF3KtfMPIGHq6e/py+R4O/F9Rvqo/lewCXpfs6Uw24TK9vV09vQDfR/Zs+lYdTI14vQf478eiw8lHpjVYhOxPj1e29TUGmqSgJm6OkkNw3wrzfdpXnDTqPr4CmjpATX2PLkqqm8GiZ0ZmrTnUfYo50NQRapLtqZbnrKhoWXz2qwLHK8gAaOoENU27Vm/ZOz2ZkXr9ekjRzY4NQJM01BRuYBQuH2tC37qzfssqv7CtQJMM/w5der4qZV63Wnc3zu8Uhd4INMlCTXmPl52okKm0DHF4UBnyI7IT0CQHNaV7MPZ/UYqxyK/TfaaQm0YFmuShppeDPpydumqG8Ubja2fZCi5LgSYFqEmLNTBOeXYYLT9isSxJN3MJ0NQZavLrJncmP0aPsfb2rEN0vYZioKkL1LRz48ObXl0vG8faTWQHa0yKBJq6Qk3qEaGdRunestpf93rVjamxN4CmblDTi0CXz4vTUunHZOqMXGVipICm7lAT2+wE2dnyOWXz3nE/nqtQXgNNilBTJ2kVHaWhfozMT49ND4d8mwQ0KUFNx5xHnPKnTaPvmdnNZbW0wgegqQfUFPtj3ktTf6Z59oltDT0m3bMCmnpCTUs14u6eMDjB2LB50Or0mKUdgSZl/gW397t+PWkKNZQ6V8l6h8tkoEkFatqk0PUMKfuw5TF2wuq40oZSoEkVahq2d2B4r2W2xvv871PvX0/8G2jqBTXdyoi5onVaxixzSJcNWRYDpYEmNahp4SBlizrSMpNQywrtUWOcjgBNvaEmurebxpLujwxifko5JPUt0QOa+kBNpPSNjt5zfWmlnyxPzR51SRNo6gs1XU7IXvpi1nLjSGaIjrWhTBnQpM6/+T3dspkpGpT1l+aOzPccFgM09YOabg+06RV+OYR+9J15tt6lMtAo/aGm08fjPxt060bLOzvSZk5m2TqgaQDU9NfLsujvX2VN0+x0nw0Jzu4LNJGhJurz0FOLvDItNlb1sVhYVh8mZ2q0SMCDDAQ9synH24fJcWSZ+LKbnZmSvsqnPUY/zFJGb34Z/epWnQi3IWfJdlwCf5mkQPXx4bIdfH2aPDzkuvkuSgo3FzWgHV1USa/Fh1PmhVoWnv0UaqMTYAtzUbR9umWyr15a5b7oqF3P+lIJc1FH2NXyZjP7mqx7cqf7Kor5B5iLSj/kPf6EuSktuJc0g1Y1URnmooxXlydTQhvNNi5I4hg8z9OFuahL82XVi5buMsydrPpx1BxpDZiLKpvtcXXeR1/T4JG9/WlBmqdgLso/pGLFxqHjKCnDS1PlNGYGw1wUe9/qYtaYy6ap0aSJ0/XKk2AuSu3nSNIFF2mTCKXeR+InUIphLsrayXz/iwB3SvoxrZCI0Z0Pw1yU3RBd9StPSiwS5Dw4IZsv2cBc1OTs9wMnXquxTC5ZqVE9atBhmIvSCHAbGnovyiyuenulXcqg+TAXdSL8ZOzVCK5lxKrjN/etvjEf5qIYO2TV/PuwrA6eYN2o+KQ2BeaiHqaOezvoSX9qCneH/UvZsuUwF2W5/t1A09gi04IYi9kKZ1Q/wVxUYuH3Bwe3pxrkechsTEh7pwdzUaMvsxhTZ8ibBOWlhmqu7LMT5qK4N+IOFPaYaJX64fjXOcMPP4K5qLlrOXnDIhIt4w0cErJ/vpOFuSgjL02bPAVbs9gLtfUbLCdqw1wUtfE7R222jvHOa5FP9Lmqg4TGqxraeB1W/GBW3sL1RhkVdru/T66pxmG8dsBtvGq143gVsW7gj1cR6wb+eBWxbuCPVxHrBv54XXHDvefzHaZG+UFldnvPaF39b0nx35KiBUsK5KwMW1IEGXbMT9fwpKZfMVa/dDxFEbakWDT3S90C6mDjI/aTGIEBe6VgS4phWmPUTluo0ZJZJ+Z7XKUWw5YUV2aNY5PT9xofTIhMPfDl0DjYkmLRUYY0fcNTw7U6umWTlKZeFnI2A9CcDXLZjoOz6Yibs1FtR2cjwqPwnY0Ij8J3NiI8Ct/ZiPAofGcjwqPwnY1cgJrmq4Icy/CzHuk7ax4/gDmb9MZDMQsKvjCiDagfJ65aHQJzNiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZiPBDfGeTdOfgJLf7n2kR2xwHPndb/g3mbJDDS6jzdkfrvMgJAofO2wmt8+o9dRj4jdtovnXO1doRB9KUBX5XFyO2H9uJRTb05fqxBPswaFjQTKJ6pw70MSbZEfwgmc3x8SSzlvoy3cnuLI6LjyvZm+UCxj+9ZehsJycWpznYIlIOZBdGv0UhVQRaEQo1x5wMAKM48V7SAP9dd6yCVJtaQSJ9MiCRAg2krdl+nj78NT1JPw9o3VvR2YvJZXosYnO8fHmBDVlIW1FydOf9djKggRPvbkR+yRvrdhctSOhHSysYX1czO/S6oM1FfzvoZSveb2sK+fJCXDK2gAtxZPFdgId1iPPIruvNt1Zb35z8bUN056ZmoaBWC/WpBvSpAvUhA/okU5H6AK3+qQL6SEH6dEDRp4elr4cD6Lycm/uFSIl2d6F9C54+1HRHvLX77Fs1oxESgV9HhES8l38nEXICxUEibUyJgC7UzRoMsnn7AN/XiOnDbB4DJFEBRxkDLiCHKwk2jIXf1Mma6ePK/+YdV+iv6mTqw/IgkX4dTMhweFLzPwS+D24p8NIyGJbqZevlzvZpthKZ6UNewuYsEW2ukm+vy4b1O8/IKFj2qVhpn76guczBzwmbq+llIXOJsocIp4dlj9C9WPaYIBl7yDp4erqzmM0OkNSlyRqevj4IxyJDdXRkeXvDLy/S14AODwzdkr082WgD6WPQ956vLRdbJmyOYdO9aV8FLCNjzfugkGn4r+Num1zIncwXZZsPOTx3IiCLVOtlGWTH5LgAhiX7AXOhJ5fXc51aoFS9qcKlTp83mwSPNM9cyzlwUkApOeiiwlr9ahGHWtqYagGeRUCtDq1XS8Ma/DzLB/DJfkx3X1aL5Vry5H5j/Y1J9Kw5GWuvat0ejThf4F9VWDB4mzgk4w1+VMmAwQ8tk6RJKMukM4lMxveJvUzW7esv26CxolSwIzCAVRHZ1oghvESSRpHYwJDLYvqASyR38LOQRyU7gecrLCeyQwAZUJfr0yT2MLIP1H2ZHCdoCaW3qkVrJ+QaX/R9C3dgfksLNc7MryDp7wE01jEUsWYKBTTW3y20ZsKaaRR5NwDTQOS3S/vmd6+fZZhJ8vkTx2rKknMEpxhb8NPCU0zTy3j3smRAATKowCtRvewUsGqs3i2RKUbB0BPYZbI50Cn+aBL6D3LRhmUgNZ6B+P1S24nNbTrN1RFpKK9HlfHdWL3paXIvNROe9fhbwFDyRvwPCxkL1iQOgwXuxjKYvmQMJtM0Rwka6810LGP9bt3WmWesJsch0j6bumk+/5z9zqCoLltj5OSlRoIrAgbvg8IrAuh1cVimLgXLMtEpkl498w/9QcsIrdlkSOhzaxcGzN+LtAVyuyZgi07gx4Us0fQq3nbQzoFcWiYVGMFIp159lDdCoImT3/v+NRMnMgImxokzPx1r4sxPExlsaNvE+aTWnbViwHSTTeXmX24aylLaMnEittLIzUUbt9KgMziQjuUM7NP/f+fVSwbZ79+OMzE/etvFx/HQ3D0EmVflMA0G9GjCzKv8n1/zK3JexRpsv51XRxv4JMotybDcTQnMTH71PKRt8ypipKne6XPvZ+AWWmwexS/h9uYpOIw01zQsw6lJyHDtMu1Olro97bGdo0HmlQgpVekSc4lOuzyPhzrtAgMImnb5nVNo2rU8RrtwhnTKMHBu78nsBjMlgW/TzcLX3Yft5c52ZIK3Ljz5ovX3vhaArVgewKccme5kD4GrtGhWRZ4QYd2WkNyI9hbKqXgMEGw/IGck0K31kXLSgW4tt7+ia3P8gd+rQRl4IVJT0BEI2JLnFXgvmzrxx+Icp6qNUmXyRoWvell01e1ZzW+XQmnvbMXrtkKjQa7pdfQLN90P73ZJJOxzh340Ntfbh8wGhhPZ2ZOLsJdI+1T3l9cc16W/RWyXjbFfFsxzEbCPFFXIJMBLyO4vhfBSyCO3NnopEmDOA6A59akivNRVcD2wvwImktRvROpvy3L0BBaHrVFpgN5Hit3Frkbr99yLsrpQKCeokoGwSga/VSk6e398oOomRsw1SuDjoTc34aCSHKZK+fsqoD7Y3Jew/KeaDcsbEAY8o2mBQMiZSXDaa7qU8LQHvY63P63PhXpMIxU8AEBo4Z7LUwryp3Jo/nRb/ccdw2dGMgr+sjpu8jN5kGBk09jfi8vy9hbypVgLPVVjMLbK28pwyKzmC8CuxX+nEs3KxoJqpz1ohf4km1WDhlnptMjXIg/P0W5ZOBj7q62lIVYwlhIDSDwO2MXUIbtbHSCxYowIH8s/lBbhY6VE+Nj474GFKTH2pnn7D1pSHuveag8f2vOXFmQ/JpfNdHAXfX6r9qFY6txwKj35Tc/S+6fWVAiqPQv6KNlK2DlYtbcLLQes5RUDOYdypLW25vOs1RrnoPzLOfzqyCJVmp2ecIF2+4NJ6onem2nDfBNa5BikyLj7hMVHIQnKKSIkoB/lSQD5BHk0n5CQXzcn5FGjaWF+bmHWkvsMwU20NZPDchd0B/wridJQm0r2Aj/Bm4Mcfb19PD3IHE8f8OwFmJ18WP4+0FmMSF2R2TAibkU4Y0SUqo5cT3d3G9Cz8/1X08+b6Yg+ibQkWp+Um+nN4toBt8//tZpGnr7gSHAEZpAlYFIEy4ntA313YCYGdxYPAvch7Mgn55B2pBdUkLQTADvOMiQFhhgqWDC5LmwOg+Us0Ck6N71sw3ZxFaSDml638/SCvyrYGZKNCyo6kRMquvNEFETkZPl3JSppi8tcZspxYjvCUCJ58EVwuwN7ibemBUNZv5y5rRfLkc10N/R0+vVZYO/nw2UxPZr/3Wk2l+n1y2E0dVUFtK5KdtHIC40KM9hy8hBj+5eCFYL9w4blzgwQ7KpyJJEnhmi9tyeVvIzNZZG54JWgLDSRHRWZmyXiRlo0/hG9Edn/2+gh44EF0uJEKF8gEOkeGoH5jJzIdw+dCa85cvrASXNk7isOmstFY2letYmveRc0zVuditmZr3l7oGTC2Yz87aGIbEZ+KqaIbEZ+KibSsEIZhuACS2SXQCY74pBh2BXNJkvL2LpsyzTDY6VW7k8fzXst8Ls6z/AFpwFAOC9X4cmyFTkLg43Y3l7gQGCSvVm8pUjAcH7yAvD/gI2A3yBSC2R2J+r9CSki0Cg0XORtPbk+VvBeJWIQ/cOlXfPVkPMhuLRLBgaRqiH4n+AgqjHKr0jiJFd05XPgwPzE8he4XJMpu6GZsoS1L43z/SwjaljFUX1ujwWC4WYwG5EJsqzCASUZFKtNbt4E+biyeNmivAuA5uMnjzJ9QJOCU6Izm+VE9uJvIvRatAlCcgIodywcIG9uaukuE9hxZ3oAyv8tKmsU3INmLmlV1qhSc9YoC9JI5BccnrV6/I6zl8wOWswwWT5nzBkc80aRtEQbHXwtoFA0qBAdUOgN0sGDYbpkd5F5o2gKaf5KUwJ2Z029xcnTA+h4v1WNZPfde/JXRcbGYapJV1/WqAh2i+brCneLX02/U69zt7jY0lwdsygtlRvrXd/o4KAe0IMw1Ct3q2hVSFyFl9D3SzpgoK3wWSVSrji5CZVHs8cYrl2ot7xjxI2ziO0FeB3hTtb0Mt47t9BcqBdNEXVKcS6ngvTGXThdEEuHXs1DHcoOxFJiaHhHY5quGi1+ze1pu494ZbXen4hFEWt3LEWAfiOUEthCRRzZXEd3zL7h5WF2rMroLbWsTMdgrrHpPIIoorgESxEvN/5SEoQw/lQwAkm6tQMYEeiKBUYEOuMPRnxcXrxeyuYGY/3OmG8751OqiTvBgVnmi12xsszLXcQCRhSmmi/u+lyJHvrY4viKQws34whGIAk8HCQiu2BJBHShfzsYERi63d1B6odl0tvhNpROf12QMBhRx8KyB4X1fwRGrLn23NJnLI2aGr9LUWP8um8SByN47gQ1bx1wJ5ICI2xqh7p9UQ+wzJ/IeZL23O4KIcAInmdBVQvwLBIDI5CbAcKAEbzBjyoZMPihZZIiCWWZtGvFtppX9UsMDxzW+X7h4qgaEdOz6LiOKH2HQO8EAzaOnu7uTSlq4PwHdBoWl+3YtG5q2eoIObvLWjC9vNgcF75S4NfBcTGBxNjbOFOSwcWEdQWYMiN8QnU+P7fCK96KbxwlNOM4aAdrJHQqpeTaD1ZLO3tDVeDrdjcCMx+8fbi+jj5kKtex5Tm4k21YwFdg+TVFbRyY3iyylzuTwxpG5jKd2L5NR1bAQHdv3o+D8RwOmcl1bFnUBlmMAfO+hQyGfEMLFY8GF2hcQPFzopa3gcDyttyrVctbdeB3k4HtpGHTHgpc5v66MZHfOzN52jcfGzYtadb6YRYntwrG1zqK+q68F3/XNZFbtDZ2zUAwVAMKlSwqQY23zvVqXSiir0FzH+J1lSbdmvaeIoWizFc1/lS0wTRlEIs77VzjakF/yruaNXg1YX8Ka8Pbn5LzIF3sRflTOuBtSdxWhiZsmsZTizTZvb7xo6xWR6M9V33254Y/OY44W+ddSUTSTdPr4tBi8VIsLZB95HdBCTIV7lC0gf9AZ8PkeOtA8ogUxe7Jug0xlyqMymaTH+3oW9VD0OHzLins8JteFockZC8sSQI9+R69B5pHH7F5VUC/ST9oMTPHRpAS58QJdnwrYPxY+QGrE3thZ94RRdeehp4egPzAwAMHH/hh/5Y5aWRZHLRbER6Dv9paKJ09uG3cCKbEGojILyIBwmZGtco1d+ZlADUt4kR+uRMm97dxVmuYpmePu6jyplowUVV6Fvg54X7T9PLvvDGyjk8bvTEd0EYR1KZeVDbP1SZtWpcr3ZT6g6GO4VeZm4klfkaH4xuf9WU+WSbR/L7kXEiARlECDM7lCQCNq55o44owh/XIU3WcDuuRFsPjsH4T5mH9Rr7mymia/4E5lciiXmLOqdT3x8qptF72L8+prJQZ2vdYTiezPI9D6575bCnEM6cSZy8M5lQq+mPlVALWEk9Opb7dxR3zmJPMw5ZN1paLfK3aImcsppxKngSoOZWABJBPUEHzCQTKqURW6RN/TiXSkpLJqawFAb4NgB0niiunMuxqfoVZxw3EzqnkJ8OoonVV4iwZEDUjcVoyIPs/DksG+2CsJYNaMN899CK85sjpAyfNkXt4HDSv9sHS3NqHr7kamual+yKnHfieYZZbPsWuqshbcAst03REKSg61pnmCNQQr7O7J+AjOS5NcXRy04GcaNeMLNcm6paE9x/Q67+zwaiabcojjDUZ2802yGXaHS1p68oArFfBhBJ3kNOi3OfcCrXziyV95PlrToqmQN2hN1p3aHXAnz8ExR7wR5a6xTG4j4SDcegT9MMofeLWx9wK2uND/HHZB80Qrc51bvaF7ZDrjLSFUGoy+FtFWhFZNrUlqcnSotJY+F0a0rEvmo4X+z1/9mmzhUXQkW2Dhi/+KJgL3cnCU1SCD9rJyFA7YGh6u4M7UG0P4JM64Ea0SR0y090TcG5M6KS1ZTE25KMdhO9NGEoHX21hP3wDxuoLgX74TRQbDcbVFAtbFVfryguvu7A8gT0pN0DkVyroveTvjb0KDUsy38/fbnp3guDJsQn0UeGT4+aW3+3skF2vjWMVzHrKBDWiiArb8o7pCluX1cPvI7z9L68ziD4Euzp4YFqNnGV89Z4hRxv6Cp4Zy1h4imTk+a//zqHpnffn0Gz0zQOV7aQ7M0i7cBBJEVOk8gLiFf3g/wymtCo+2rN5kDthd3Xtd/r9NFnXreLV7UsGT8+60uaujkeolNeX6aLMVJvD68utOqFq0sIZfOQcrz87AYYV7cnMEpUXaj5mRAXcf2u2uucPwTTR5qsIp4n+ahJL4BhTDaDTQrOHOgll9kjXK5g18NJnw61X3Gvf3GmoRcSomhKK7efMbTkTodVc4QpKR3bmenqQV/gHLF8FrJE8vDw5YAJNy+YP5PN/0O5OOF75q62lp8L5FbyYJYlsKOL4nARoXX1MaC7h8/YiI2DQLazwh31vkd/SlLL0py0tlxHhVJyjovIluocpx4fFBXqKcNy3w3B7Qb7H/te1hfkeeOPvPOqpM9WxW4KPmie8WppZ672/bxs9qhcgJRhUJJ0S1TkPAFMz8A7CbBvelLVmBmy2bMDvLHv4Dikr4FUhJdePbNpz8rREQdvNwbLdnFbYzv5OQICFf6RBOnVAgtTZyW1NkABtR8a0HTAUCGO71mW6Nttu+e9s96F/b1V22UrGrpQnUsqcQeGCtpuLZbu5WLZro9cHjQNmsKAbR59QxmnV0kQRsg52mhFy8Se4smy6hPDKEnod91k4B3J0cqLAJjWglZ7fujVJV0gEjLps6drJmT/ktIwPXPl+t+BQnzeSrXeaw3MIGArYH+OvQ/qRUNYhWYsYT+YHZZmFKS0avUG1ULByk4wtC3ymacv3sX2b1yDevE+CG34oINeyhQfy6YKibkdY4KbXW0FcgtAJ6YOofD1w86qf26qa032a6mU1fU8ySBG6sqDvL/I7KrzrxVWb+cl4R9H23GXhuR8lWH0apAPB/CLRxJM60FqdSxyn9mZ6aypiDrb1YXmRvdnLWbxzPBbT0ZXs7csL57P9WJC5RBro1XDfNT/oziZba9Ypq/oXfBGMnoCXFY6e8F4Vh3kCc7HMo09Y8/DT5NHM0/8XpATlxP9+5Kw3dTVna60yPjrCbjfJ/iLi0Z1tApaQDyjFAbuty8GyXHSOpC3HB5aEVgooh19o86aSLdLXizQecqPz27z637h7sezrm52hUH4ymBAGjDZoPu1PQplPdb73UjtC7mica/DmK6u/i+DzmDozAGuTm5YDLc+07GfBYnqDUC04OiDek1fowB24WsumVeSTeVHvSnhNDWtsoY7+4KOcMgEdT4jKuvQCU8AyRe7oW9Hn5HkBY1AA0X3tS1rS7PndzfN0RwaMWOsjmA3XCfxKooqyev/eTeCMfroCUrmCUsWLSv8B3QQgFSrCJnKf9cutgqUpeV6VIVIjlfqvT2bZmjFi4t567KV49UGORymh8djO61vFPEgcUaddPFgbEAcajwPQxiOBEoOQUwzuiUFCvVUuNGv4gbsrLNMdcvcbRCl3kUxiUD5gR/+jzfFSMSQGheTlVSxcehSPxCCScGIQCd9ia2S0rjqww4Z5Q3KvmUc6PKO6nucIZid0tWB6e5OpToAdhFJbQeE7oXVZYI0BRsHJHuDnmdDnf80fzY6iRfMI8lntGLco1JUFm1txQOSaDdUOEDppBPNU8rPaOpcMgCX1ezfV8oVrpSc6ErB9R9qBqZNMMgw2WsSdqkKcovOuKLwUbXr5d3MM0jHjwM7bgxLWUknCdWydjvEkbFW0qBesqC9cKZFCIX2QRHP+J+RBWoSKWpZrg1NKdpvZ6F4MaFwB1/EBfASZy/syoieFHRvzB78ZkG5UMrzT3DHfX90XRBatoSs0ySG8FBZ6gzgEA7oHhmCuWfw5eCCaY2t1xkkPvuDtkHGCTJWAVddDnoLBqush41Sw6nrItTbsQcfIFQDsQcdIzwp70LHey61h4dvCzLf97PGl++ALi2APOl7xbMbbkZFaRgdIo19JF4YEwx50rNh//5kC8w/UDXVH0qYsvz0G9qDjcdEzKSFKr612yGcsZU4u6Ad70PGljJqwLSXnGYlx6h13OVz+KZR/AxY+FNmR/3pZFv39q6xpmp3usyHB2X1xKA04CK1DEb00IPIx6O1aGvAfEgrNVxNVGjACpTRgb1p+xWl2xO9LA2qgmfJPfc5TSa/Fh1PmhVoWnv0UaqMTYCvG5zx5vcJ6zpPXSzE85+nYxQ3B+xzSzXcPLVRXOFG5py0havE/52nxK6ynzyi++v99ztPlqTejv0zYQd+qeJpBU+n6liDPeSp/iWUwoEcTLuVLTM952kaaMslQwZ6W0sOvoeb0khO4PudJ8YJr5yuGymaHho/cfnC47BYcRhoZ03DVLyQd0hbjc572m06Jzuozw2o3q0vyYrerOyX6nCeex0N9zhMwgKBpdzAJZdr9Axla2j7dMtlXL61yX3TUrmd9qRQzQ0u/icXQ1t74lzO01xKr5saqPrEo6RG77dKNR5/xZGiNV5cnU0IbzTYuSOIYPM/TxYGhnXATi6EFrCUehjbb+kVKx94H6Imrnb5nyIbvkyRDy5MAlaEFJIB8giaaTyBQqPwIu1rebGZfk3VP7nRfRTH/gG+o/PSFDvVIhhZpSck9l6TugTifS7LBqKCiQ+0DYjO0/FC5FlpXJQzPmX7Ie/wJc1NacC9pBq1qorKIG/knPCey/+PAc2o/wuI56x/y3cMQwmuOnD5w0tw/pGLFxqHjKCnDS1PlNGYG48HQ1mJpHl3L11wbTXOiB7ouzZdVL1q6yzB3surHUXOkNdo10PUPlxFogS5rYKGg/Qwl0FVonl+RpPXs94EuHcIPnxPhJ2OvRnAtI1Ydv7lv9Y35xK0UpFaNNXxqL/KHz1A0zQ2u9rrjN/4o5fC8hWoRs0oEVzTK4Ff1AVMBjdjOziwuC9BJRKorWlbOCH79My7/Mk6/LsNb9fw6YAXpphbtccpme1yd99HXNHhkb39akOap39+wkKlEvquFolcdA/Y9NWBNMFGZO9aASWqvtvW0lcqAiQKul8AVCJNXR46sDeWPgRULm6rign9rLjHs7u65jOUkOtJV7aH+14j6RYaBiVpxa3U7pSJy03neTERuetPrv+vbSRTpE1cvTKLvj7r0uZL+7mUb+3Y+IPMEUOZOohJbxhzjydzWwtWaMPOTHVg+y1gsDi+/n+Xoy+sevFN/kVo+D73xeWjaE6vU43IWd27mChYG6fzruk7CXh3eiPcm500uJNt8UbIp5/Jkg1yCLuHdMHK50RI3LGKLg+ipSNPhUXzlGmbxlWt8yYcRXnL2vtXFrDGXTVOjSROn65Un4SM5cj7FQfI3l7Akz7zEl3w4muSEfp4dsufDTtyRFoKduCOnRtiJu7WT+f4XAe6U9GNaIRGjOx9u+fPs1H6OJF1wkTaJUOp9JH4CpRiHQ2s9NJuc7abxfuQ4T4vgd6/N9a6sMRbMnbJhAStwRxbZ0tfdvRXAzXD+5zjg58DZks0Blu5sp6bpdRkbzBX2cQXs0OI1CFJNjPsUzvESaG5pgVtg4V13BejxnQ1F5HiBOSb6V9q66lA15SXDAssN4GZ8eMszUDGRAmian1uypoe+ydrJyRZdrjk3IFK7wAuJSO3ivfw7X4Hs3230FYogOw0qt1vUkcw58Mk6V1BrTLRQub7NynEFuhrYtUTKN35AWY1KtxsGh6+XdV6QX14l+HQhqIN4iHzMg2Ar7vnE+byehKFW3eV2PcDi36icXYAXC66DBsyB6pmzuByWux74Hm89E/oiEFJ3YXERIAf409YloypvaQ4aFrgEmckJaDK1SCsjl8RtGSRttGtVDjQK3lBF2NU6hzcKWkWCqiGT6KGu7yRSijP5m1LT9udZpjlte6A6r1DwLK2VVBIOUuhjSgF0cWiiGkFCmagsj9EunCGdMgyc23syu8FMSeD7dOMFeL3c2Y5M0YnIaKu0vhbAMGCB5T4cme5kD4GrtGheshuiq37lSYlFgpwHJ2TzJRus2xLSG9HeUo8BPrGgAZAzUlT2MR1cqT0TcQ7IDxuIOAfkZQwgzgGRx3n8dimU9vY4J+zXxLSCvb8pI1pAPpH2SX3Zy3vA9LGmOQvlR82uTVMXsI8UVTimRG3vg0ISiN01QAeFQqMDLHlOaaiAiST1G5H624LP5XBqlUp1xeuctaMGWMQ4dJ9/Y+JlwbwxKQNhlQx+q1LWjc1bNYI2GOwdfDL29pqItj5BBlTpzTMslZKfteo4VQ2WLv57gZBZKxLNFwefv8vrMWCNeKHcefdcnlKQP9VH86dELhQ3Ofv9wInXaiyTS1ZqVI8adFj43tpcKE7uA1ahOPv3eBeKOxkXu3PFKD3zhE9Xrb7lWKfjXigOmQmEQw20xvdYNdAOvBdLobi5Cmu27qnLNEyduHrB8HJXbVwLxZ3rahk1/UeUaUSRh/G7k7FncRDJHlMkuffEyxrk/4irUBz5b8f370frmpa4PSmNeTL4eJu7Oh4INa8vo5ZGA/qyeArFxbx5YHCwB4cS+3rO2oW9lh0iSKE4e0w1gE4LzR4jSSizB7ELxWkEuA0NvRdlFle9vdIuZdB8tLvDqVCc4jusQnGKb8VUKK6039aNjfenG0XsdV6/3VIlQyKF4qiN3zlqs3WMd16LfKLPVR2EQ7Ex0juselaZbwmUziumQnE7LRyXGRZlGgf13Vmz9GpKiJgKxZ0/NuaSw1dds4NSPyp2X1//DAfbLX6LZTtFItlOqC4MPoXiejckbhs89apxaWDxQuVT6ioEKhRX/gazAuMb4hhHLIXikIs/iReK4zk61DJpoW9xLxT3c7nqc637dZa7foy09Lz0zF3iheIU32IpEP+Gvw4ZRUJZh/ypoN7Oe8Omd7kVYJznP7psRPitzmIE9bqoVGKAepHKlfiDenIXfWi6p7ebRSbGTSsqoguWRyYcqNcJFAgVH7qtXPl/C+oVrPu+YvjcO2apdskvfz5QFXxAnORAvRxlLINFSsZgkgD1Nter3Nd3vmW2cdDlvY+MI2bgCuop0fI1kzYUUY50cHA70XPGRxxGmhOm4aZIyHDtAuqljup34/PwrgZJBvau55hDBSuwtTeox/N4qKAeMICgaXc0CWXa/QNBPbXFmftf0FmWBW+n9XF3LZJGu2WcQD13+UoMUG+MfOW/G9SrCu/zwCCVa1GalD/j5qbh8niCetVTZCOe5He3Opbb+dmhapMVOIB6TqC1UEE9wFriAfXOp8Y+u0qayEhUzjkeP9DEUJKgHk8CVFAPkADyCWPQfAKBQL20PHXqeuYu42TT4d9XmKQ7i/9hl0hLSg7Uy+xaKUZQz9mkoCL7cNfKPwLUG4vWVQmT+3tvyEybVdJf6OvqtdeX9tO1xol6QfZ/HJJ/rbtVYiT/6nfju4dxhNccOX3gpPmsNbfWW2ssMwgfpiN14uYgDg6aZ8phaR4tx9d8PJrmRAf1jhyU83nCbDDZ88CqQCFv+/d2BfX+4TICDdQDK1LVKlaKBvUSaPkVP64qVv4W1JuAZso/DhrbdfbY4BuDOVbhumULpTmLV0kAGnshU4kBjeXICEW+iAGNFepoj1HqE0zbcdi3y9AjNycg4tRtg8b6bq5zOLKnmrF5GPUvQ8bERBygsUegzKjQGCCzBKGxtINyf81aMMIiS6Eymtbvs+DzNyULjfFkQ4XGANkglzARzSUQZkZFTn34EExI0+EwofrIYk2odrJ8yScRXvLnieeiuEZ65sGyUTFms77PwEfyd5T+nU0TLphl33zqfzt5biYOklOksSQnS/Mln4wm+Z8CKL29POoT+fNI6pH7+pmlgR5bMO4TP0BpAuhDUAGlOum2znCtAZTUpT5r3O6nZFC0fPvrwnR/BLXWJkAJ2dtxAJT0QeVQkRs5wbUBPLNDXIDSk9Uvv6bYcCxSN72PHB5exSUUoFQnjaVWvnS7Bu7/ZEAJufySMKDEGwWoVI4cYun2uwyE1gFKI06HKYx2szQ9NHHh/qOvXydLGFDidXFUKfKbJ6opJJSJiqCAkv/WUQ6dc/IY+x5O3nx/YQitnQClCT0rMQCluh4izj/+PwGlwGdWs7mRhy0O91Xl3mIeNsIBUML5gAREb/R7VmKgN3I9K8UMKDUO6VKYGTzT6sD8u4yC2uogHACljve2Pkgr7GFeMOLZGoOfY17goBLQrTFUyu/RqmOk1gFKyNN6iQNKvB6DCigBSkH+dCqaPyUyoJS0fsjyodu2UQN763jc2PLsphgApfhelRiAEqWXyLQt1NzA3wNKUx6fWG+scJORNfJ69NO5MhtxB5SQGRA4sDfRoEao7I1rL9RFfFsApQNTjLWu+NIYeaUJya96mjnhCiiRJ3zSntflg+lR76FylwaedMdBJAqmSGq9iJctxf8RF6D00c5RjfMmjVZmcfTQuyEf6wkBKPH6MiqSA/Rl8QBK+zLdK0ezCikll4b1TSrc70kQQImCqQbQaaHZYxoJZfYgNqA0RC5j7KcX9xgbTri9OTvqpqOYAaWtqpUYgJKyqsgwUdsBpSEql31XJcy3CHp1X3tMdX6iRACleQohtl3l3tL32Vopvf/61wYcIJdIUE5UjsJJlUBpjGIClD51Ojk2tJ8zdbNdB5M+f630FhOgVF5THGhvp0gtHptWU/NYio6D7aZg2k6ZQLYjUcQDKK2cPMJPReOT1bG4BTT36DUjCAQovVDBMs4pFQIZRxyAEnLxJ3FAiefoUPEca9XWrUlaACjdiJsbrK76kLJLhkoeFesXL3FASRlTgVoV/jpkOgllHdLqmocDmnuv+GseIikkWM1DZLo0rOYhMrsMVvMQmc8Ge8ogMigFe8ogMg0I9pRBZBYJ7CmDyFNn2FMGkedFsKcMIo/pYE8ZREZKgabOUBNyvw80dYGakEs5oKkrSfRxKtDUDWoy/LvajxlAM9s5t2Lrz0If8HGM3aGmjgPCRu/dZmcZqehTdSnb4x3QpAg1PXt0rrSXVJZRoJ4RPSWg4xCgSQlq2rNwPFn99A3GscsDGKOfD1oGNPWAmspedawy+njONLzruDtSlmazgaaeUNObze6sRikuJW7/gA0ptTtigSZlqEnRdqju1B1PjTeVSmcePB0zDGhSgZq6f/M++8ogzipl6KyFitMazIEmVahpSf3LHNm52+hry+wP3OxSNA9o6kUSvRATqoepRkKph7m8exw9YXwcJVSnNH/KvCN7caiHSUEbr4Q54Ud2HpzSFHEuXsV71nEnrCP++E58H0lF0/xPhTi/36hbemP+dIsN80y7rtZonC/6vnGBOCP1sSDOLvpigDhD7eXTQ7lcRkRo736rRilcJjbEGaSPhZbN1///hTijHlalucTXW+yPL+12oT9bEDWWHMQ5BtNgXSRjMElAnPMGzcnY/vaIed7kLqVblWozcIU4A3v92NBjQQVlV7ZfD5XQZ444jLRHI7AMVzyCOJs03CFO9st+3hWn5lJDS4/EFjm/DZQoxMnzeKgQJzCAoGnXgIQy7f6BEKfcDK2YuxtcLPb438yJOeleImaIk6SFBXFWaf7LIc6e3Tazzl+bTdt/Tbf6Wp8ixLMt2wZxzu194cA1p3LKlqW1R+7GTAnBAeJs1MSCOAFriQfiPL3K4ewGL2uTnWMU9js7HHguSYiTJwEqxAlIAPkEQzSfQCCIkxnUbeV6xnrGvu3vdNe9ffZF/BAn0pKSgzh9hooT4txrVFBB9x76Z0CcRmhdlTA79fgC7dAVd5NNE3sEBa8dmvMAp506sv/jsFNX1sXaqX8YyncPxoTXHDl94KT50hPl43rI083CE6ZPlT/v19YiuqDm0ZpYmns1u2QamuZEhzjHeq/zCyncYZap5xy3Q+ps+0Kc/3AZgQZxgk9bTB6OAnHeMM+vGLBr+O8hThM0U/5xECeFOef+/nRTy8OcTuafSG+3/P6GcYc43QdjQZxjBhMU4txrofEl4Yiy4cEXV4vjNvfcjivEuWXY9iG22XsNwuqvZ+suS/fGAeJ0GowFcQIySxDiPHTXKn5xp1m0DRZ+pi5DFgrmKEkW4uTJhgpxArJBLoGO5hIIM6Mipz58iEKk6XCYUL8NxppQbzdLbkp4ycO79Xxue3m0+b4biotcRr29gY/kb8ITs9PcDjB21xZzDqQsLMOjEMUgzEIUg/iSm6FJ/qdAnANDUnw1nYaYFJ1I3vs0a8bEdoE4czSwIM75Gu0JcZpNytXSmOBqmbJgi/XIyDTEqWObIE5kb8cB4jykgYUlBmm0O8RZGH7I1vLBIoPixyo1c5/cFsSyJQ1xzsdUa4zGfxBnCyFO5PJLwhAnbxSgkovAKBAjxDlUNmTq5ktUw0Pj62OTUhc8kTDEOR9TCqCLQxOVOQlloiIoxNl/Z69v/fdGWGQsdu7gqD17ENZt4QhxFuthQZxOev9BnJB9OsRXjZnZ8Nko50TY9cNvt3TDAeLE+YAExBNz9LDwxEg9cUOc7icYa3VtrOlbXow3LBivLVhO+p9BnBaaKoeZ78/Qoq/l3uq7+OFlHFRywlRpip4YIU7kab3EIU5ej0GFOAGlIH/KQPOnRIY4/7bTNC9nOVsVP2ZOfJbw0lj43toMcaqPxoI4T43CG+L0vxRcxXRayAgcVLpPi/VJFXeIE5kBgQOfqDwai098MUosEGe3S/v22ejcNUqIHPKtZ+eniMq7bYQ4d34/duf+ulfGhUvtduhenHQHB5GAroIhUtIo4mVL8X/EBXHOWFH33spnHWXP4pHj/MKp9wkBcfL6Miq2CPRl8UCcmX5Me5rLRvrmPrcC1ZWNBHuz5CBOXqdFVQPotNDsYUFCmT2IDXG+Xl6+JbM+3nDvOnOvqn2M0WKGONVGYUGc8SPFBHF6lt3su+SJg1WaVd2KzUHdciUCcX6Y+eV4SFigxdoez876Py3oiwMIqDgKizWrH0mgNEYxQZy2y+krOUozzYI0G8bpXzstmLeAH8TZgeHVi/nR2KDYRS9j5aU6kY6llbYrH4llu3gC2U5OTBCnqmv6psUhvmaHKyuuPdm7T9AzShbi9MI0Dp1AxhELxIlc/Ekc4uQ5OlSE8epI3CHOPvSgAbYqnqYbR7CWAvsqwSetSALijB+JpcD8kfx1iCUJZR3Saoizf3PvFT/EiaSQYBAnMl0aBnEis8tgECcynw0GcSKDUjCIE5kGBIM4kVkkMIgTeeoMgziR50UwiBN5TAeDOJGRUhjEidzvwyBO5FIOBnEij1NhEGfvbEWt0BeVhqFnpoSW3y3xhkGcM3udyxn8PcA4y2zRvN25d+fAIM7hOkUx0XcGUEoWS+VOH9njEAzi3P6mU+KVvz9YHh3wbqNtrJsyDOK011fNKXB9ZLVD0yHZLtKuBgZxRttnWVWM7mJVwn2wYouHQx8YxDn3tBTn7IxMRvbwQwuXLurvD4M4BztUKSZl1FP2V6nrX6/tFg2DOJGrLSFSE0Q6RQ79CV7L0s52PWMWV7Px1pLgDztwIDWt0AYlYY7xkT0Ep1xEnKv4gef4ZMxzfFLzOb41muZ/Kqn5sKv+dXuWr8nGW7nMR2P+0hAjqRnEwCI1OzHEQGrOzvq2MuzYS6Oy9186lSslvSQ2qbmSgcWP2TH+f0nN+qUe7wYPWkA7rLOhfP2V3hUEITWHYRqsk2QMJglSk6GcHF/Tr8AobN5F/7E6mw7hSmqOnvVwwZa5NwzjLIZHrp2om4XDSLttjmW4HHPi7MRwJzWly+Q+vw1lG5c1KCWoMUMHSpTU5Hk8VFITGEDQtDuDhDLt/oGk5naP+M9SKlbmccd7kM4u3bdHzKSmtgEWqfmG+i8nNS1uHi0ov7jaaPudn+vVn05APNy0baRm3tEhi6UZJ+k5Xb5kqlV9L8eB1CQbYJGagLXEQ2oezNH5UjdtjlX+8EFPKV5WVZIkNXkSoJKagASQT7BB8wkEIjWnm/ncq9/nTs2xCdpYd2TzUPGTmkhLSobUtC6oIB2giZPUjDcvqDi5l/ZnkJq2aF2VMDt1cscIxo+JWZRQr2vbnqs21OO0U0f2fxx26nQTrJ26tgnfPdgRXnPk9IGT5i8dI6fIF7hYlOzYbFXj+ekZDpp7UbE0t252yTPRNCc6qSk3OYTyOU2BmjBSeuqpVR3Gtiup+Q+XEVikZrUpCql53iy/Qvmc6e9JzVlopvzjSM0tnb0f3q9XMjwk6+x3bcAtcwmQmh+mY5GaxdMJSmr22am5REE7gxY1gWPZ555fAq6kpsNnzhHqYjtGyvd5Jg9cStuaxQuSmi+mY5GagMwSJDU1lZNcjlwJpARNlisfsnMEm0CkJk82VFITkA1yCbPRXAJhZlTk1IcPNog0HQ4T6koK1oQ6n8KX3J7wkl9zmra0m7aqZVHfsWOPDSnsgY/kP/KDQxcNnmiY0jkzzjDTZywe68ZpmOvGaXzJ56BJ/qeQmt2ypU/uiv9AS1E4oC/z18NN7UJqUqZjkZr109qT1DTR3/spo2632dFzgaWM6hzB57q1jdRE9nYcSM0J07HYQ8Xp7U5qatcpTWi8FmQeaZjQz/32BTdCkZr107DUKp/2H6nZQlITufySMKnJGwWoeKLidHGSmsGbTeYHN040iKzZOVRl/lZBEqf9SU1eF0eVorx5oppLQpmoCEpqLuLKbWIUbzHbOJOcei11BOZt4UhqfjDDIjWTzP4jNSH7BKyRJS3yqjA7vKt8yJMzWrtwIDVxPiABGcQXZlgM4ikzcZOagVtu6Q9fU2qZcqB6r2kiW/Bh1P+M1HzvtX1H3txcSua7y7N/vh40HAeVkjBV8jETI6mJPK2XOKnJ6zGopCagFORP56H5UyKTmvKlNgX95nsabWrMynrk4vtJDKSmnRUWqfnNEm9S89TKAPdte8IsY6V6ugwMP3gEd1ITmQGBA4TIsMKCEAdbiYXUdBnk1K3ny49mgbUrVT/dC1bEldTsq2l7cWX4ZXrGm6G3XjEsR+AgEtBVMES6akm8bCn+j7hIzfekfMMr118Zh/SlLS89+3Rom7s6Hmwiry+jsolAXxYPqTkhafF3g5QIs+J3pIr9nX5YEoTU5HVaVDWATgvNHvNJKLMHsUnNgs9RSaaLFOjbX9oa0G6f6C5mUtPaEovUrLYQE6n5jv3M0LLPCsqRzes67LkWMFAipKZ6pkNqmNlx6sY78tarYsv74UD70S2xgDKyhDxqe5KaP2STzfXCR9HT6XoJxlsnnBUTqalq0xD6alCBYZlZmfeIvS6bcLBdowWW7YChQBjbKYqJ1Lxi29GS4vnGOCixq9xorU99CERqHsA0TiCBjCMWUhO5+JM4qclzdKicYhdL3ElNE+9Zyk9unqOUhvSNdxk3YoHESc1qCywFtlrw1yELSCjrEEKTmkgKCUZqItOlYaQmMrsMRmoi89lgpCYyKAUjNZFpQDBSE5lFAiM1kafOMFITeV4EIzWRx3QwUhMZKYWRmsj9PozURC7lYKQm8jgVRmouCq5KnNKhn3HERymTB+cCrsBITa27KfXMggkWZXoXo+6+Gr8bRmr6nk2Mmhn41uLQkM5OqamyQTBSM73yvVZZ8DjGvoaUxSk1JvkwUvOO1JNCt+G3qGH+G5dvfT1uJIzUzMhInm5b7G62LkPB5GbRRxqM1LQpHE4dpnjWIqQ8SD3ar98DGKkZ/fN+z2fnGIbh967GnnlSYAwjNZGrrZaTmpkjx2m6f1lOz335gvvojvpZEQOltaTmQrRBSZhjfGQPwSkXEedSfeA5fvlUrHP85Kl8R7gITfM/ldREPhhXTKTmhMIKknYPQOMQUdu0+mxgcaQktE3DWhC2jNR0f2qVEpi7wDyRqnNr5cthp9pCarYVTAIUIIMKzDcUsQDMB/pgoxJRUMzwjGMqpEZSedTlgQpLfv4USffxl0P4oJjDbsnb9x3iSt/6OW1CwffgOQRAMUGDVSthGeyAZAwmMriYOV3wf4VRTCxj/RbF/PDJsbtHYKFBcYdlk08upT+V6MoVtEwgpmXsJWSZdmEtB654PoZVbG+cpnrcLVWm9ozEWMvQbMiliWQt9ZucOjRxLib9yybOQT8nbvuwK4de8vdF+Y1nvz0WY4mDYlesEgdTXMVQ4uDbiESZzuP8DXdsGX3VQmXyN2KXOMhxxQKvI12JMq+i/YhvXvWLVT2dWfDIJJ6qETfn4IPNBJhXQYM5YRpsimQMJokSB5nxpEuDl9KNYg+aqivOOaiLa4mDHX/fVO9XKGe6N9+BM2n4wLbmO4OGU8Y03AuXf/G0O3534+RN9jNoWQVV6Yn9Ho+W2LQLljjgeTzUEgfAAIKmXSYJZdr9A0sc3DfZmml7djwtXv/Rs9QpJ5zEXOJg8EKsEgcvFvzLSxxUbY75NEmuxii4LtrA4tn4IXiWONjR9dZF3z3PTdMeliw7vElLG4cSB+oLsUocANYST4mDxWeGaWrtczOIfqZrF3HLylmSJQ54EqCWOAAkgHyCA5pPIFCJg6o4o8EfFTpQso+eNl7/fK2e+EscIC0puRIHex3EWeKg1LSg4nyKw59R4sARrasSJsSdMXHszUMhW61iCl2lNmqvHoZTiBvZ/3EIcS92xApxUxz57sGJ8Jojpw+cNC98W3ZtyUEuNWOIte+IEI9VOGieswBL863NLpmFpjnRSxxIv1EZqH8qwiCUdHV4cI/gPqj3J44SB/9wGdF8NRElDs6xUEocfKDnVww4w/p9iQNnNFP+cSUOigxG1SpN5Rqk9Y7zPF0lpyWBEgdv5mGVOMifR9ASB+uCZ33o3r+KnvywPvPCo75KiEyXtpU48PwZv1fjirbZZv9KyriUmraCHWCJg/p5WCUOAJklWOJA42Gf0YdW29GT5+g3hp7dOI1AJQ54sqGWOABkg1yCC5pLIMyMipz68OHtkabDYUL1n481odrP50vuSnjJTYt0kgdHjTfcvaXr8VdBzDx8JP+romaW1fK7jFSqtq5X3ewtOEhuNBdL8sFz+ZKz0ST/U0oc+G4fazH5JtU0caFB3MHgNTPbpcTBlHlYJQ4ezW3PEgd11GXyCspxxodTFO39ikcZ4VjiANnbcShxMGYeFrTfZV67lzjolXi3omhUkmHGh8lxOwtm1hCqxMGjuVhqFc/9r8RBC0scIJdfEi5xwBsFqFx/l3niLHFQvHC+CpfZm7GpbnX0+OnTEIWR2r3EAa+Lo0pR3DxRuZFQJiqCljgYtfqcsfWNOnoON8sgurH3hnYqcVDrjFXiIND5vxIHkH0O3DFd96LmJT1ISu1VbHGXzjiUOMD5gASE96udseD9A87iLnEQqTGpFzkyy3RPUd+a7nb1M3AocWC0Zv2zsB9+ximFtU43erGccFApEFMle2cxljhAntZLvMQBr8egljgAlIL86RI0f0rkEgcpuRfNg6p0TQsnbYlWuPhwpRhKHNCXYJU4eOOGd4kDm9Dg5bUrfQ2OFU3spx2ksxD3EgfIDAgc6H3KEix6X22JWEocUEwzSoeZGFltMYmZlFLk54FriYO/jPtqj86cSMsf4pPtyQiPxEEkoKtgiFTlRrxsKf6PuEocTFo3Zxqd5EjL6Nyw3jlKM40QJQ54fRkV6gf6snhKHAwYNrCy/8x02ja7Q/PPPZdRJ0iJA16nRVUD6LTQ7OFOQpk9iF3iIGrnoRVLHluaxOS+Jx88vtFbzCUOGG5YJQ7OscVU4mAsPW24bkmCeYFNbXjCWOUsiZQ4CDDVvmAdtMlqw4VuLpQP8pk4YPJGblgktrqEPGp7ljjwV33TcMPAwTh3zJ0+uvfTU8VU4iAlRXHKR/l+1CMyPS/37b7yOg62+8DGsh0wFAhjO2UxlTiIVXm23Gd2Jm1b7VeV/nSFBgKVONiLaZyVBDKOWEocIBd/Ei9xwHN0qIC/nBvuJQ4WTPS2+HTiDKVM81FArxccfYmXODjHxlIgms1fh3iQUNYhrS5xoN7ce8Vf4gBJIcFKHCDTpWElDpDZZbASB8h8NliJA2RQClbiAJkGBCtxgMwigZU4QJ46w0ocIM+LYCUOkMd0sBIHyEgprMQBcr8PK3GAXMrBShwgj1NhJQ5MXpjrBO2cRN3iq7Ns08Kj52ElDoafte3nsTvLqGiqY//v2warwUocLGAfsbRSmmiVYn8yLXVgZTisxMHJ+6rpDl9CTEpKgsxnOS5cACtxoCFvK6fbP4Keff2qCqsHyRRW4sCatPCR1a65FmmWShfH7XJQhJU4QK6bhIoVgAUPRA5ibm+yf/TrEeZBO2endTyjPACHYgUctOFFmAN5pK1xyirEuVoteCJfPAfrRD5pDt+leaJp/qcylzmnTqhOe/3RJCv5YOMp2xd9xchcGqzDYi47rBMDc3nR1ksnT4NtGWlh0Es17IEDsZnLaeuwSLCh6/5/mcuid/ZJsxZLm6zdv+9yVPxeKYIwl6qYBusgGYNJgrl8s4d1/mL5W9NsasfFV75K++LKXMoabZK90ehjnBi9olL5x2ItHEbaq7VYhru5ljh7KtyZy9MvXYa9dZtncET1m8aMhl7pEmUueR4PlbkEBhA07XqRUKbdP5C53EMe2nihINtqy9dbat8fzAwUM3MZuRyLubRb/i9nLreuPrH2NHMcNbeSkkAuNv6BJ3M5MbmmWH1pB6P45MQhO3couuHAXAYtx2IuAWuJh7mUuf26wep9lsH+ZzIzHizYM1+SzCVPAlTmEpAA8glL0XwCgZhLg3tX2JHZd4zXjZfP1XnTgyviVnBmLpGWlBxzWbxanMxlhWlBxfyi1X8Gc8lF66qE2al3yXs1a0pHa8PYHrbDpm8YFIvTTh3Z//F4IuMazCcyruG7B2/Ca46cPnDSPFfq8pUUzi3q2lGdTWTlZTg4aF4dgKV5ZgBfcx80zYnOXK4fu6hTmGWCVYjfuthLYeqG7cpc/sNlBBZz+S4Qhbn8m55fYfM28PfMpS+aKf845nIle/qENR6FtE0v7rEfdXxm+Psbxp257OKPxVxeXUZQ5tLl0KGR5mdZ5iXJhX6JDzKycWUuf4z1st+V9IOxaUJcffinhzdxYC47+WMxl4DMEmQuc+2tel3doEfZc2tqb4MLDvkEYi55sqEyl4BskEvwQ3MJhJlRkVMfPgAg0nQ4TKhb/bEmVB9/vuTLCC+5xoQR2epVYcalbtMotn3St+Ej+Y0ea20HzthtUvrtdDElaao/HrU6/DBrdfjxJfdHk/xPYS63ZTccP9fV2yD+4MHw/BkPemDcJ37Mpf0yLOaS1OYZrjXMZdWkh42r/DNMEvJlB3/MGog4am0Tc4ns7Tgwl9bLsChC7WXtzlzafQ7f9q3ku1la6ufMfHaGYIFvSTOXJEy1av3+Yy5byFwil18SZi55owAVNNReJk7mknNr3rTcHq8tto0Y+Gltv4YrEmYuSZhS1DZPVAEklImKoMxlYKNXybVOjYYlb2YlPzx4uQfWbeHIXHLXYjGXtLX/MZeQfSYVXDfuF5ditnZdIMO4SMoPB+YS5wMSkCbkrMWiCeeuFTdzeWVmyPWPE3XMouW+6NPHvRMM2v0z5lKm4USOwYhTRolm9uaU5WvwUImGqdKotWJkLpGn9RJnLnk9BpW5BJSC/OlyNH9KaObSfHvsiEXyhkly0VP1R699JnxvbWYu89ZjMZfh6/FmLt2vPh7YLeQVJezrhUyT/FkHcGcukRkQOOCE2euxcMKd68XCXGp57uDGOO0xOrr5oNJX6uNRuDKXm/06T7YatN4oUY9hvMrD6DEOIoVjiuS3nnjZUvwfcTGXatlvCyIcgmkFa59/8v6xt3ObuzoelCGvL6NShkBfFg9zKTu39kb3rsctDyQd2usuU/Q3QZjLcEw1gE4LzR4rSCizB7GZy8Y5mp2ddFzNgkvMWVNnTnVAuzucmMsx67GYyw/CKcD4MJf6AdS3UUvUDNavodE7+VyslQhzaarFtewm35eaGdfVxS3oyQEcuD399ZjMpYQ8ansyl5p/fXWLOvEXNZJUb92wyfOtmJhL1+crx8540tMy/5Tb+ogHygk42E4O03YfJJQ7LMp2amJiLlN0SFWrn36hbN9vRZl5INacQMxl3TpMIJZAxhELc4lc/EmcueQ5OlTisEcr1yQtYC6nFRg2DHpSRts3LrRvwPmCaokzlx/WYSlwrTlTeiUJZR1C6MdKIykkGHOJTJeGMZfI7DIYc4nMZ4Mxl8igFIy5RKYBwZhLZBYJjLlEnjrDmEvkeRGMuUQe08GYS2SkFM5cIvb7MOYSuZSDMZfI41QYc0kburJmQ42N8dYj9kFuC0/PgzGXSt6htW7XJ5mXvVMZua/D9UMw5vK95eaIs0OH0NZ2Tn90Kv7FNRhzWXJ/36oP0evMSidqZsy3UngPYy4PDRp/tLvmd6OssIhc3RAtJRhzadZT8YRV3EzLfWvoR5c923Udxlz6qfWXZx17aRlpEnzt7crOarDHSl86efnA+fGBlCP9dsguf6f2N+yx0sjVVssfK31QevHqjy7+psVqnQ4vi90dhwOpuQptUBLmGB/ZQ3DKRcS56B54jl/ri3WOn+/Ld4Sr0TT/U0lNP0eplMw9uy3SHrnSqGsfVIu+b1xITddoLFJTO1oMpKbZyMap1xo20rdGxb8q7f66ktikplM0Fj9mHf3/S2rqV4xa7NQ1y3zH2iXUg669JxKE1JyCaTBtyRhMEqRmWfqiF9uvahrkHBtXsc9dZ0PbFraIkXZ3y5CacZVWjKw7IZMCFxcMxOPpmJiGI0nIcO1Cal4xVhnhnLzHfG1C6gC1wXerJEpq8jweKqkJDCBo2l1DQpl2/0BSUzPjgcnE6Q1GhaxxW5RUpaaImdTUjsAiNbtE/MtJzYAJOzKcz3c0KrkbUBB6uMcxPElNxV3k514hAdTioTdNZxRVDsOB1BwcgUVqAtYSD6mpZj/8maOvoXnJfWWHd5r35CVJavIkQCU1AQkgnxCI5hMIRGpOmz6hp9zQDPNDo7tldr+bc0zEreBMaiItKTlS0zVKnKRmBL2g4rxL1J9Baq5F66qE2an3t6tJdDkSRM17pbQsbdisBTjt1JH9Hw9qMAprp14exXcP6wivOXL6wEnz8lPKPxLHxZnm5a3QCFuzZDcOmv8VjqV5YThf8/VomhOd1OzwWsvwyv33JkGhJd+ORJ2ntSup+Q+XEWikJh1YKHzbiEJqHjfJr/D7uvH3pGYQmin/OFLz0jlvHdOjTrS9+w/n1f9Q8fv9DeNOaqqFY5Ga38IISmpyfBaN+Dnph2GoXqacXz53DK6kZoDsTdnETxomW69Q+jAuHbPAgdRUDsciNQGZJUhqqt1/qf515BeTrMqCbjNji+kEIjV5sqGSmoBskEvYgOYSCDOjIqc+fLBBpOlwmFDnY06ojOYJNZjwkhe53BzocOQRdXuYfM8t1Znb8ZH8w/W9m6Mf7Kfn7f8eXO32Oh4HyQ3CsCQf1dzLQ9Ak/1NIzcj+Ofdkv983y1vq+mrbpR+J7UJqloZhkZqb2zzDtYbUVDIa+5Q1dKt5cu3x17NvnxIMZrSN1ET2dhxIzcIwLPZwX1i7k5qO1okKN44PM9l9i3z6p9dWwfoMkiY1N2OqtTrsP1KzhaQmcvklYVKTNwpQ8cR9YeIkNeVGnwvdnFxrnDe+hxXr+W1XCZOamzGlWN08UYWSUCYqgpKahhcbtTzPzLXaPvacg5Lmhw7tRGqu24RFas7a9B+pCdmnMlMtMfb+epOkgfdWm+QqCz6V7p+RmjgfkIAM4upNWAyi2yZxk5o6dhpONgbeRnF3vEoXLKUIlrT7Z6TmzV2jjLWNPSgHNOwezq386YODSrMwVTLYJEZSE3laL3FSk9djUElNQCnIn4ah+VMik5o/cialvVp5nJa1dGP3tddKqWIgNatisEjNpBi8SU3zZXbdhmstt8hOKh4+I/68YIICHqQmMgMCBwjxVAwWhJgZIxZSc3fKbNvX56+Y77BaTasOqRZMJGgrqTkoNpb1sSbQNLkXyfHxjaGXcBApCVOk0BjiZUvxf8RFam4YXmTd287NJD3bW6u0+iSnzV0dDzaR15dR2USgL4uH1DyvopJc4HuDuunbNrcxiz4JelnJkZpJmGoAnRaaPcJJKLMHsUnN3OStFn5B+2kp13d2mxG695uYSU1aDBapKSM8l+BDana+F1FxZ9pR85jo8q1q0+4MlQipudx90GE/N23jUoXjV+cs+qKOA+1nEIMFlOlJyKO2J6l5y2gT5fkJPfNt70Y46L2O6iMmUjO2Zlv0M9Jro7KIeysLzXc34GC7Ppi2kyGQ7dTFRGoGdiy6lXFwFyUu7ucz0rhqwRCUZEnNd9FYxrlLoPxgsZCayMWfxElNnqND5RQHt3JN0gJSc1Qoc2eHnbtMw94HzDt/pEO8xElNGUwF6pszpSNIKOsQQpOaSAoJRmoi06VhpCYyuwxGaiLz2WCkJjIoBSM1kWlAMFITmUUCIzWRp84wUhN5XgQjNZHHdDBSExkphZGayP0+jNRELuVgpCbyOBVGat64w/V+HTfB6IDbV2ppacc4GKk52uHsg/y8owbbGoZdHD1j9EEYqXnMKrmLwxmaUebCffuefslTh5GarqmDUqr93Kyi5wbMe7/b8SGM1EwffbdIUZvCiKNq+u9X7JIGIzVHrbjCuXIuhVI2PK4heUmdBozUrN7f1SzNfz1jS/qXLnox56xhpOakbrUTw966msYdMjr9gGoxAkZqIldbLSc1owqjU3cdHWmYZPzwYo3julgRA6W1pGYk2qAkzDE+sofglIuIc6k+8Bz/RyjWOf6rUL4jjELTXN42zm+fr5tRxstG1njywXcCX7U7tLeyAP7gspnuwrsyWRSp+/B3ZRyylReLY8Ige0DXaNlOLG/PMdebvRiUZNecrjILdD0xb0vIFsg3tFBQe2CtE19aAUwiwJ6sWuiABBC0sbgCuSfDWv31a5oZQI/v49qUvufrzSI7ujI5HJbo4/pk4+qulurnTIN6WA5eVfakn8AXlzVquoLQF25uwHuyBdMnQ0FJDoha/jUCPXBCaYUkln/SjoC0zXPu58+ff7aGtyQLGsbbi+Xo687kkl3ZLq7uYAK+SNsM9ZpnXW6VQD34Y2H3jXZHBbN75GyhiwgHqJpbxGGd+hIs68SXEMA6wAzwszWbpgHGHmxvbzCD0FHATHwXIvoo6tKSVz9e7LFIvae6p/rQ+dmCxmm6oogI8K8WcRiHjmkcwJtI3jigfeDG6fgb44yneoC/kmcTMNYIfJTFcQwga+vr6ZOnkj29mEt9WcPII3n/+vUO0SNq0+yrdznnPGh5Dy8d0f1qnSeYXWMHu75wdo1AqziMd6AYy3j2kjGeyG1v3XS4BTv9xoJTf1nQ25XNCeAASyfAfIC5OJ4c0HTA39w9l/EawX/qg00eTP+mF0SXuNP7vLfPPUOr+D4poZYbgooQlQVcRXG00MvisJwcpuXyiyRtOfBDYF5Dq4IVPZpOhdkcF2xHaKNmxNRfsZG+9UtQYRffeYsFHSHqmulXC+7HzjnQGgJcp1YJLatyeI4QWqduJKGsU3t3WmF7ouiDVZlcxmOtcSsE8aBuhk0oojWX5cdmLRPGm9EQiyFUMOPfG4YzspfDjqnIXk0X9O5uynF093VimXJsWBxo+4++eD00PKvCZY4XJWnIkYbiHuf2Yd2rcG6PYHu3WcAfXp5cHxrb3afpF4vaYqFi5ccAdcsA7eNFHVlPAJa09DKhJS1/WyVyD8U/bQNzKCF5WrSin7RG13Ht0W60nCFRk+oG2D1t++keYnel/U6/nybrulW8un3J4OlZV9q4u1IDlKsHlRN5RmsPrq0ElftdGF/FDraEIXv6sbhctpNod/rkLPVz9SeSabR81JDRbt6ktg9hhFZIH4GDVnRMrRrbd5fAJ3FloS0X+CZwsXMn+c5PORa04uO/aKBv8FOaN7chZ1U5/saA/1bwf7vAlz2Cn2gOcWxCc2Otjjs2Q3/tEHdEbrphcUekSxMKIIHfVmRf1nu5NSx8W5j5tp89vnQffGERDgGkaDR1CRrMYOyQVfPvw7I6eIJ1o+KT2pR2C2Y0fsYKZth/EncwY1qXqbIG/ka0vHEFztPlBw0jQDCj/jPmdvkzAXZkb968aYdgxknVj7m3dL0t90d9bXiUSmUSIphBx7RO4ycCWKddghkdxjlX7tpz1rTI6u27ExoLgwkRzDjwCXM/TATjkCQZzLgY8bhkkkWG4Ya6DdZfDuykESqYIYdpvPyPkt4SEyiYsUDGfK7C7AyD1HuvnoZtHhEn4WCG60csy6lJ3HJiDWb4VibmVa4eYbiH4rtnhvL8e4QIZvDWEKjBDMARQuvUGNK/IJjxMHXc20FP+lNTuDvsX8qWLZdwMKP+C1YwY8KX9glmrDfUzZ36KsMyPLk/yX1l9y64BzPIfzu+fz9a17TE7UlpzJPBx3HYoNd+wdqgh34RVzDjy9CGmd5qNYY7PQOZw+YXDMA9mIH0EThoNQFTq/rG/6tgxmY0N0boYAZy0w0LZiBdWsuDGZbr3w00jS0yLYixmK1wRvUTDsGMLWjqEjSY0XFA2Oi92+wsIxV9qi5le2DfFp7BjMDelRjBjEw1oWx5nIMZj1WStvaoG2+87tQd+fc/L40nQDDDH5QEdWlo3VsiibmCO7L6+vp2CGZEr7GjfarvTonwHFQRo9kzmBDBDG1M65CIYJ12CWZUz/M9WzGsI+OA+/JcxuUjdoQIZtSqYRkH8CaSNw5JksGMLUcn96OSKBYH7Toft3HXf0KoYEYopvEWS8Z4xAxmrEqO5OyYfcg4auKqZdfPnvwu4WDGBEzLKUrccmINZmyuuDW81jCNnnb472/5P/RohAhm8NYQqMEMwBFC69StpH9BMOPZo3OlvaSyjAL1jOgpAR2HSDiYsbJPJUYwY3Af1DphuAYzbl7zePFqu4bBfm6fxvefB37EPZjx0c5RjfMmjVZmcfTQuyEf63HYoPv0QaPnwQ06o0+rSgy0IphhrZDxXjZ5ukGBashpCz1bW9yDGUgfgYNWgzG1+ta+61BJBzNi0dwYoYMZyE03LJiBdGktD2bsWTierH76BuPY5QGM0c8HLcMhmLENTV2CBjN6Zytqhb6oNAw9MyW0/G6Jd7sFM7qMxQpmTBkj7mDGVPOqbV0XTGDsGBwfPuze8o8ECGZ0Gou1NLw9hgA7srq6unYIZsz7rPGx5Hw+LebkPd1dciOjCBHMyBmDZZ1IIlinXYIZQwYelpk6Nsc0bK/PiBEdejEIEcxwwjTOFCIYhyTJYMaJQaPYFTUDKPn7vBX7FyV1IVQwQxnTeC9GS3pLTKBgRm3VxJePrtSbhL68adUl4ruahIMZp0ZjWS5J4pYTazDj76Oci5uHcSxSl4ZnUVIijhEimMFbQ6AGMwBHCK1T40j/gmDGzF7ncgZ/DzDOMls0b3fu3TkSDmZ0GYcVzMgZ2z7BDOMshw0+35wMj07cKP/qrUbb6yUiN+gzVtS9t/JZR9mzeOQ4v3DqfRw26J3GYW3Qb48VVzDjajlzy8Gh7yziSga+fvGUcR73YAbSR+CgVc5YLK0ix/5fBTPi0dwYoYMZyE03LJiBdGktD2YM1ymKib4zgFKyWCp3+sgeh3AIZmxHU5egwYxFwVWJUzr0M474KGXy4FzAlXYLZkyYgRXMcLUWdzDjVDeDLmlsdaM9RzrK5XO2mhEgmKE/A2tpKDeDADuyGzdutEMwQy1n94JzH5XMiycFPl+xxSmBEMGMOmss6+RbE8A67RLMKCp3e1G04qFR/gq/OfPsI9IJEcyIxjSOKxGMQ5JkMOOxQXnFNvdvhlunvFjct6OOEqGCGRRM46lJxnjEDGaYBebStZPl6NvDFLvH1Ax5L+FgxhsrLMtVWUnacmINZhhOH3Bcy3gnpUjhskpUWX9iYCa8NQRqMANwhNA6NYH0LwhmaN1NqWcWTLAo07sYdffV+N0SDmbo22AFM2pntE8w4/GlW6teyrkwtsVfYI3u+n4I7sGM96R8wyvXXxmH9KUtLz37dCgOG3RtG6wNOslGXMGMfvPv5ew9uNskaIqfpvL1VfjXzED6CDyQnBlYWmW27y5B0sGMRDQ3RuhgBnLTDQtmIF1ay4MZvmcTo2YGvrU4NKSzU2qqbBAOwYwkNHUJGszIS9K6PTLVxnD9retnlzj1cW23YMYUD6xghru7uIMZdg4POtpu6kjNntLNcXSQ9WICBDPGeGAtDbt4EGBHdunSpXYIZqTFTVyjGNPLKHL7fl/bYukcQgQzHrljWafYnQDWaZdgxgTn2dwFhw0okU/+2iE3KpFLiGDGVkzjuBPBOCRJBjPkhjZMlZtOMo+YPCLCsKfOHUIFM4wwjacuGeMRM5gxqn/0ErdRYyjbpVZWXVV5ESXhYMaHJViWO7dE0pYTazBjxPHXVxZL9TQO3V5Ot8vSO0WIYAZvDYEazAAcIbRO3UH6FwQzwgy+PWUP7GB21MV+i8GImOMSDmaM4WAFM257tE8wY23MrRfraU+tSpOW6BSv9TqNezBj0ro50+gkR1pG54b1zlGaaThs0IdxsDbonTjiCmZMKf57wuN5/la7lS5Mz7CvZeEezED6CBy0uu2BpVVO++4SJB3M2InmxggdzEBuumHBDKRLa3kww+SFuU7QzknULb46yzYtPHoeh2DGLjR1CRrMoA1dWbOhxsZ46xH7ILeFp+e1WzDjSBBWMIMWJO5gRj+T5/M73bRhrL909lBR3J6bBAhmpAVhLQ23BRFgR3bmzJl2CGYwlzqOvtPN2/Solt4D5sYiGiGCGeswrcMhgnXaJZiReYsh62T6zDR7vm3Rrfl5HQgRzJiLaRwaEYxD+l97ZwIPVffG8UEJlVe7SpokKdL6SrsZ22BmyBattgllJ2mnEKUiQmUnhJAtSyFFSqv20r5JG61S6n/vmJG5M/fG25259/V/+7zv51P3mOve3/Oc5zznOd9zBstihm8WRfvEvRD13JBhopuGDSnAVTFjGqLxZLExHj6LGU7bxoj4Su7R3uE4O8t6zE4njIsZEoiW+7wNa8vxtZhhEpAo31wwWO+AUmnwojH35uKimMHMIWCLGUAgZOWp8YQeUMwY4BF4a9XN2frl74dMTRG+mYlxMUPZH6mYQfAXTDFjEGH97dVvzAwyr+yX/9ttoxbqxQzp3ObindYB2sW+rz57/EjuiwaZ4Y80QR/sz69iRgB5RsO8WeU0n9dPpto35m1FvZgBjREoaEVA1Oq1YEdLrIsZCXBhDNfFDOiku1MxAxrSul7M+EDfu7N24nht374ZT09Hvb6BQjEjEU5dnBYzoN+RLLBihmgYUjEjdi+/ixlnTh5kyBsIU8J9a6yT/nrhi4NihnAYUmr4di8OZmSVlZUCKGYYDzx39dncREpI4MUnosMtxXBRzLizF8k61XiwjkCKGdPmjm6Z8/C9VuCJN0LKWy9MxkUxIxfROLF4MA4By2LGRvEFXu+19uiWjBkkeXLv2QO4KmbsQDSeFzbGw2cxo8/fWdcnqjbTw2MozQFkyb8xLmZYI1qOjrnl+FrMmFi4ccFlQ4Jmsrjqz9uaISG4KGYwcwjYYgYQCFl5ahKhBxQzplvXPi4qzCNHNCpfmr5w+mGMixlbw5CKGWZhgilmnPAJVRg1UNog33yURIv1/GjUixn+k0oNh5us0snI9VAou3zKGYUJ+uYwpAn6qjB+FTPUhx+8r+t6VzfwsCpjZ+uLr6gXM6AxAgWtzBC1Iof9XxUzkuHCGK6LGdBJd6diBjSkdb2Yccwgvp/1WW3NnOUpKS++FsqgUMw4BKfu2YNW1LZZw3S2psj2aRy7oYyz31ABTYnGmlTuKkZvmC5LZlcxiI7gZz0Ydk6A9xJtGSuBf9oSrdcRgfd19yS6ujg4eyoTgXe3A9utnG2JjgxnO097lU1dio3bdS0sFwWUae94dM42M21Pf97Pzd3f2S1d7KY5QGoUHwt00wkaBIIPdDAIBAZiy1iuwQAppEkxH6CTBjzfzqZ5q/jE2CNahYe1fma+C54DSQ7BT/NIDpmXf3vos1/boHd0S/qBvaEOFA/tb38Yx+IBgaJBgd7yimOnwW+wisUkd5TQcAG6v4Mz4Izgz00nwP/pThlEmmk/ttsq2jq4A70LaJ/A+8vV629UqZjdMoi/+r5KqsE6m8OO4prsD3PZslMT2qklaDBPRINZYmMwUS/gjdsn2dzGalrAy1jCv+lsfZnGao8rPO2TmGe2xHHEcc3MyQoj8k2yOM9sEKUyP8hlHPb13/U0iwFZ5C375OmRywsjZq12lUChp1ERDaeGkeF4za+bFnRrptaP2mm04GmqBd+V+4bbDNPPd35meMnyCCeu2IvKa7rcfhXtDqSYz4p4OSQCwRU6JFzOY3Yg1rCbQoAZdiMaPsVMMg2mFp8zOKnzM16O420ktLyBaQIz4eKel8H5+lAtLyvHNawFBEbHDTrdi/2TA7QNjGgkE0W5DVNmG22SUzaY0KURV1T4xwq60Q7trAVNw+ONzsTCPTKXGTq1dVHiy4Crr98PSKwKjLoPoa7+EJiCLd9f3d8Q9C8GkL6zPb0XSx4JXTA4cHlyH+ZlXVt2/4xq8ylJCDXXLUw9TFd/pnS3rwHTVbk+J9Z+/dcHLWxrdguVi2uWvB1G66806HL772M+DoEVkWDngr+0IHpZARMPa0fe8xnrb3taPG3itY99TDJ89WMt55czSZixPko04FJbyIDL44UggWnOpsFpGVFaBqk3V45df6xG9Q8DUwVgLS/QWlOADlEBtVZ4EdNaLHE7REIKBoPbyzZg9v3LkXmq1P/LJcb60H4avi0viioWuiznjN/tt+FWiIh6TLDMY0lQoc5DAkoeUwJWTEiFiwkHih5abH/aoltSVFBydPUjziOsextaOTMcuSc6cOFAkUR0BT/RqU5DdHYBXoOZansyvD2JYLxgePA+d4Uid3iGeI1O7qiBp3ZWu57i8SjcMxBeqtq4uzg6GlkB16HDA8QnoZaE80kxUw+Guwnw+OxfO07TZQ3YE2wcgecBKywMWwdP1rvbAGoB48ljnxSIHdmTXa5KaHEVoeQgYEczDYLPdg0JmpW7nYMzlbGSwyn6tl82Ale9Ol8Xb79u4uLa+SqnM0zVKa7yKT5Y/RdTREN3F2Be6enQ/lR92E/Fa5bqbrVW19nWwab9R5ndWhy8CA7PnS7RwHqnI2ti3h7MwbU0BytHDRfbX58FchVPYKLm1PHvXovcrVx/BYx2V02Dc1Wi3djCwF1B5LBTmdT9X4s3cPqHEcPRah2nq7LrY6IkG+ANPNj6wHnvIBJxLZABE93BO7Gm3Twd1fHO5tslssbUsMcDCog31aV4PEiX+j/0TBGI//9hhIwCkjNiNKuc68NVYAfGM6lodng4jHvNocMHSprH3tSRkswPpwSNyO5zLu3iMBQ0H7EfSXOJjpCcDqe5W7mDkgM9XeNYmYHji6dL3nG8at+Fa8CQowN0HHuYChSn8nDjnbymg4crKLoVkAEzh711k9qDM9EK+I9oB/4GnqaIup737NvC05RE210SUp/st8A+H5dBOBq5TCNu7OLuadC5esbDYP8wjei4G49VKHoMYLChGuD/nAaz1S6qmkCLqe5vzHAEDMawBWIhw5vjdu2mzIAzJfnasHteM/PUjyxZLr3T7ATn6DoY9FpPcPkcpEIYYJ2S4cFd9IJbE5ms4eIEJDftfYd5G9tft2GOwGA5zINpWlsgWe1Svm2oISIvk3yIFvPXg0qPzXEKv39gLiPz/Kku9p+aY1UE+yjAHA1kHjm4IfhtXlGwyyBddHwStZMo4NgNjobgFAbIjhXbZ5UeREA9ZqGM+bf2GgHQKcBFKIYt76rL2Pf72y7a2ensaYr9UDvZvzdnVmjG7Fncs3rW9d+FKftTNl/UpRZQCvVWfPl7innTH4apIkBmW1DmXmQemeOMY0yZuabSfbqn87hO5idaMzzXMhjOYHLkwbBZw3QPB2BKzzsT3JgdF3GiJJW298psq93j1qpxRphf97XljjCdG9FOuJsKWLIt5SXb4AKmbKyQkAkXEnAzokKHvq6MqDzSbYinQk2HwoCaGYU0oEZ3SH4E95Jbn5ZhEEyi1f1iyK6zm823oCP51vjLn6SlQ9RjrW5TwkNPvkVB8r2RSJJvjWRLngUnea3k2A9TVV1oAe/f6atc3cKJxPc3YgCZhw2DSF/j6MhjxINb5pnE/pwz+DkwMjs4AymLg217KF/r4GlPdPG0Z7h3fbxbPjuuunGCOT2btOhOdMUNUYTn5LIMZ3MX1SUCCYck6NB9NXgs9CsC6j6O/NMRbihYLPUAhzbgYTyZqQCoGE8BxIUXKpuJZdN9jKTW3KDnl3C6JPNG3Is+7Zd/55dQb/9Dv5QCdz+ByiXyKkWfB3c/RcIu9HdRuZEdyrlzuBroWjzlk9ycSHfZKUdJ/2x6RVehMYUTjGM5CFhe5laRsxXtsQpU63EkkloXIwVauGc/qJjJOldGZx3GdlrsVtFnuDszHFXAn/FQ0aGs0HX2ZNgx3CFMFvjnT9OTocw0EDQscAuilfO6dlPztDI0/fqTTvKHdq3JZ/WCJhIPuxrmM3sBhzbsxUU4IaTpTG3BjJiZkbFd35anFG+ezMyyqhxNjTE4n5q23MiLUwrmW3FL0X6ZH1IwXRxWiosdA1U2AWagoh/TvniWcFrDZ/HwOQ6NepyLcZLMwparo4MNWEx05h6p4DKCkTSgGzCcgE/ZWDkSnTju0qVxqbXO/EvoFCI1rp7gdvOgwmakx+JG0zjbuxoxgLT/MjgVDuaFoFGAiJEcw2P9gz1F5bH+wVwphax/QJcx2O1CMO2CWB8Zpe3gDsQC0PuZgyWnvXjaZ0zyaINvksp6vnWEwWYv7O9y2EeIxF2KIgl6gYQAmPN8DGuBhKt3XAO/2iKmupNIQr8RSdaYAUzebLulUtZ28YjwvO8Gh+6ILX7Xr3Aep0pkbpXIv1Vp2ZTir0RZO/XwVfm0QEsNMRRUSkZUKSSmW8tI0r+WkbogEHS1vktLSezrqPO/BSyPaSGByT9EC8cCplKseJoDF08vjXr18vNeGs0vK0JukuWn1Zwr5jQXL0bX8/2JzK0DjmBtRtEJ+OQEcJW5fXpFtHJ0cbYjWrFqM13brBb7aqW7hoyZRqrcsv0r5jbacT8b92o+eLWr5QHAl6TjAf2+8wqgBHCraBxPbAvOl/qTrTwYHZAz763H9gv2XehnQzqxZuFud8mD/n9M60L7G5SA+MP+9hDQaHA8HIFKBDfbxneL1h3I9hHm4jbTGXgK5Ubd5Vb+TpUc7yVePv25bhpnT6O58BxI2dd/N9OpWrR+hFndWHJSffCisyIzNVEQCXAVBJFuxeGPlmL/kVfvFoQzqKOT2yK7+p0tIWPyH6drFbTetL0dPGH1H7v6H0NtBSxfpvAy0618pi93KxVv1wIYXJ3a/RksY/DeueBfskdL3JQeGGwgY5K0BoL4ddyFG/H71cQPNZhOC6sG4LSs0eMoAWb0yFApNhtz5YtG+FXHW033Gm9BABSm9xHNLRZzjyGiMJIqdKDB7b5LXOnu4kTc4L1u/SaijYuTq4szOP3u2vgRKsX4WS8+nxq761rzaYPGm3BPxw0j/Wrropo+wPQ9AlSTyAsBJoD7QbjHEjECfJwczHqEDd6d3pvnW37PvmfhfrGPfukgRZdz10drDgTn4O6Ap3BDXcKTzDlL8+a/7s1dmu/c+LuIertlzVWxAg26/9hBZsqDb/7pd5G4AnLuBeU8zcs504CheTNGEZUnxljenRGww7LrfmfZaUOO7NoRZaWeImxsMcH9AufZG30tkGxn0Q3bGUopzqCoZWoGUZMGxLWKxqFgu1WItjPDke2I6t3ZQd1hu/W/s93o0yXHV0/z1omSs9TTv+f9ltN2i5FstxjJdn8Y9UHjkBGNo4Ij43RzJ6cUyzrgoqWn+xqYRR1o8gdZ+GXegsfCb/t11EfhfFagEyODdTGIPaSBVs+47uUk/VkiIADtY5bmiMh+mENLWPVQTHn5N7M/A9pRUMAMUQG1jjwklwCTh3R7+5dsh/fyf/sXdBdSp+1fUFwaaBIm8KbLgCYRVhOUZwOaehF4F6WApt6sJigGBDSJspqgFAnQ1IfAG7gCmsQIvNeLgCZxVhN0mQ5okmA1QSulQFNf9u+CzPeBpn6sJmgqBzT1J/BeTgWaJFlN46XIX9YqTtA8nFfU8HbO+ytA01+sppqYxzfylHI0ojQumEUPZbQATVKspgcfrgy5PFBfJ2qoYVLk7S/1QNMAVtPKGKPBQYeHU/bMj/64eHNRPNA0kNWklre59ilhnca2hLqaMbkNh4CmQaymu/fnTsu/d18zc/TNZn2D1eeBpsGsJqur+jYWjCEauyQeyu6XHisNNA1hNe25cG7aM+n7tAPH6ZGF28q+A01DCbyzLa5dg8MIMLsG9e7cOrb4y0iDgNnzcq8++pTIo6N0d9dgHlynxM0yPtRDUGIRpeKIr1y3ryMdn3hHd2FptTIK6/h0xHX8+R3LI/lwmuP02CloRxTYsVNmCUjHTr2N5/exUxMGzHdpCVDRjDL3i16dPpaTV8Dm2CmjBKRDPOYn4ODsnJKSEgEcOzXpJGP3u4FESlyJsXzEQVHOpUSsjp2aiGidoXiwjkCOnSq+HTrf+uh6/cARU168db/PWf/F6tgpYUTjANEEe+MQsDx2Sm1KjeqZhlEGkboLdOnn9TkPWMT62Kk78YgHumFjPHweOzXsvETKk/rRGnm54nOj5YUgWaLAj53KRbRcLOaWAz/Et2OnLt8tXaI+qVjneA7BK3ujHmdGh9WxU8wcAvbYKSAQsvLUAgJMnvpvOnYKOlXE+NipugSkY6dSEgRz7NQkfYKPEGkYPbxR1s1rhsJl1I+dgi4fonCU0sUEpKOUShL4dezUt6mPexttV9cLmvNgw4qbBbdRP3YKGiNQ0CoFUau9gs1DsT52qhAujOH62Cke1S923REa0rp+7BS0OIZCAekYnLpmo4VXhx+VIhcnOL6bs0mMwlk16DjKor0w3fViRrHQr1MwgGHCHZiYWHmCf2W4gzcgrrRiFtDbiSUHTw/2mVOsX8Rq9yDaWDkTrYHZ5hpXV0cH8NgqF6AR+Hz7Ldc4gx8F99E7g3yAI3MkYl5UIWrYg0cDMSdBS+jLiK5sRpO5BcDFzs6R0bEBC/wZz7UuRCdwY3bXii0bXi5snhqsoJlGmP62d8n2AETZuIstkB/oYswwBPI06VNVQFzktQCeBoxM0pVV3YGpBmgwZQT36rMeiPd+iPwfc9+MqdUIADxHbrkq5xFfvZn34ME3My//Lqoqvp8yahzjpkGUjPkJ+QVHr/5hVFUHFBIDFdrNK6rKAzG3iFOh31U95Dj8kZX0gJqxBIODGGVOh7gGJyXoZAlPzdx65Jkapss/oCr2lUiqAH6Dm5lZ04LuFD5m6K4kmriD02ewF3Nay8Gjc1xgzrY3g7Ns3ptVw8XUCqcfHEbPmmNHUJIjc07IJOgdN+ImWTq18cN0NSeRTOd9EhPT9bF2cXFkWHUKk92ZmI0yBDcSg0MCu5bosBIM7wgLqteHTO6tH5OtFRT8+e6tnaOKICehgPfjDkLtl1GfLxewogxPrMsnnxllurWgrGDCOseOBWR1R5jEvChGhH8q/dCr0YNj3WmcJ/v3Yd2Yu/zNbuCHOMxgAyuONEQc4d+IM759lPo1gndHnQFpZ+NDp53QSmg8GyX2tx8nTS7esXODmwr81cQPhZh9GlYhoE+z8rYiAkzepkWaqPRz3jVS2n3Zw3Wx76Zzsi9MPM3VBSRIuXM2MRid//61AOXw6/O2rAHP0x7IO+3siR1HY7SfBdC1dElKNvVssf5Hkv/DrPS56+tnwD4tN6nTqbGL+noXAwpWA/paaYAlLYi+UoC+ilVcaVI3t5MO/vVYIJTargXPV88+6zo/ru0QZZ/o3/lCY1o4v+pczAw8dIjXiRG/Wn6XQkED4x+mUPaAevageqM1eHjna2BiKl3drRSqX3v3tWXYuTN455cGgUktpQVmpJgHU0evpoYkcSZLmswPcidLrOto907w/WuqkN7fuwrrZKnDM7uRKIGP7OBi62DT3p95fxFZNMNv8+pC/YPDje5+8qzR4fRV9g24fbWjhR/GUEQ0xq3TuEh/CN1ZD1LRd3bxBIYvKxuwMq04ZR4wZQX5c2Xi1Hk29i7utsrEafM83Nw9mf/gna3qHlhoVJZVTPJ5c+2O3DV/zs2Q4uAvMPZc58jdbTo18cNYgaeRjKWGjbEgPYdZd+lOtjrk1zKC8xp3aw+EHnT+kUmohWqb5iG/QY+ubpld+ydT5T80R04eK5BLA2nGZS7oL6/KtK2qe1kqK5IjZFsSDS+/XT8zXGeb7pMv18ONEjGd9oICRFWxBLjFQwAwtHQrE2UPZS5OQELF+2upr5JCI1+LayUbbbVU9PIohgxlzA/yGMrar/NDgIrTCAKkG51mJ5rFhH8X7aQaYqq+fcA7gxjxbDerOcWjBEY7TTlXhUA7hdRwZZYo004Og9VqNjn000298zacNvPnABzQTkRQEti148tnMQn6nMjG/fv3BUA7OZR81WlYkkFLlqDMKf3mbIoL2snnLJJ1puDBOgKhnR7J7un1+cB+cuJtt7CWxdPf4oJ2eliDZBwgmmBvHAKWtJPPzbaTWWo3qYF6oXfU6rfMwhXtpI5ovKYzWCe7OKKd3s0RbU6IXWMQfSPDfYHbhkaMaaf4M0iWM8Tccnylnc6m3XprllVPLR1WPlrdeXYDLmgnZg4BSzsBgZCVp5YQegDtpCkjnz1GspdWyWnrsLy3G15hTDsRz1ch0E6utbDFUlRppxSLTaP2zlKh+D4fJ3R8wHND1Gkn6NwcBYJHClQOluCpqOUqlKJEO8k+Ut1uJJSmmWkqp/5++qto1GknaIxAQSvAjxC0ItYKNOZiTTuVwoUxXNNO0El3J9oJGtK6Tjtdyb4eFHbiAvVgpIxInHXdTxRop+Nw6v5HO/0j2ulgSdvjw/sPkQudRHcfSH+vIjDayec7Eu3k840ftJOXWN81r8+M1sovGOm1aMCWOBRpJ2KrzYcP05V0T6x6Xhb6XP4kCrST63ckOIT4XSC0Uy9p4YynblRaysAKlz4id6oxp50uf0NSBfAb3MzMsKKdlj56Nb+tqEU/KyNVNN3GAT+00xRE0z1sxcVyH99pJ6NWTZqfjht9Z9MbyonXhx9gTDsxowwsrgJEGYHRTtfE1o+YrLGafmD0hGJK5Z1QHNBOzGADKw4QbARHOz3dIPLauzhFM9Ts9sMfw5tFcUI7TUFUCOjTrLztBKFH0E7T6xjUeQvFdfwKDwWO2zgilu+0U8VPJNrJ9YfgaCfPV71cVzaPUU+v1MyhOGyJR512ggZGFGinnJ9IzILlT5Rpp5t/HVoouVONnvR4upJpaWIW5rSTFOL7V/zAOlniF+3UN92z9chYAjn0fujmD0Zy+3FBOwGdFcEYRGyMgTntVHGmXut4frV6iZr1+3PXbiXghHa63IZkLJ82PPQcftJOY186qa+s2kwKLz0wdDxBHvrFB4KmnZiBHJZ20vqJNu1kubcxoX65jH5Kv7FL++rPPoo57fTwBxLtBIQWlGmnQC0DxaCxV+hhkXMGWj3Xm4A57SSGJED6gTZ2ollG+HfRTu63I9NKBs4yOPTx5DeLSUeeCox2Oi+EdLbTdwK/z3Zqbp2wx6dtqa5PqZ2iW9nwNzignU4LIZ2UES2EgwNqbty4IQDaybbp+YBcg4PkcEuzO9fmFYnjgnbyRLQOFQ/WEQjttG7Sum1DTJNJvlWm3nNrNlBxQTvJIxoHiCbYG4eAJe20ZxG5VZ9Qq5O4VHLYtAkJl3BFO10jIBkvExvj4ZN2cqzTEJ30MsbgYHSs21MvEaxpJz9Eyy3F3HJ8pZ3sl3waMlk/RKcsdHmTvVLOW1zQTswcApZ2AgIhK08tJ/QA2mmxr3Oh8s6D9Ciy9YHcn+/7YEw7nRZGOtvJUVgwZzt5kD3XtSarUA7PG/rtcf6F46jTTtC5OQoEz3FhpPOKwoX5dbaTwz1jvRnD/EglISJXouslRVCnnaAxAgWtHBG10hT+vzrbqQIujOGadoJOujvRTtCQ1nXaSdN1nFGhhLHevou3GvzpsxRRoJ1Owqn7H+30j2in8rciNZqfzuvu6K96T4iut0hgtNP5kdUItBN1ZLe+KK+LtJNOFXmyTeh7UvGk4nIZ0v4zKNJOn0xspJ2b0rXLaXmZ78d/+lOGFIRDToMKwcIh0SO5RiB+0E7m305dfP7EixwZ+TI/79CwNsxpJ09EVQC/wc3MDCvaye2B+oCT0tr6udOt73vHnUrCDe0kj2i67yMwMZ3AaadCn6GjWupH6m7duP8Sadu0DIxpJ2aUgcVVgCgjMNrJco/Yx4iNClqxoxcHFT1SnIkD2skTURwqRBy+0k73DlaemFnziBronXOr3I6sjBPaSR5RIaBPs/K2SkKPoJ2a9joyWoTc1SNTR/sn3IrZx3fayXFUNQLtdFoGdgKPOu3UdE0lsW6ClHboZ4/cC8NoU1GnnaCBEQXayRZUD5ZZmDuqWynU72mn1au+ziyptVLf90burHLU5kOY006DEd//tQzWyRK/aKc1CusqvN5fJQV8NPYUkfjbGRe0E9BZEYwRjY0xMKedzExnUJXuRmseVshV2khrWYUT2skT0VhUXPQcftJO/cxvbeu1XEH94NnkLT/K+g/BmHZiBnI42ilDZVT3stTf005npg+QEvVIVs81WeHpP+NLFOa003eZagTaCQgtKNNOVUEtqx3bjMi5qW+URCefWos57RSCJICZhQw70TxF+HfRTlLGE5XmxbzQ2lPWO+fwmVBlgdFO5qORaKdAWX7TTsOOUk/UKL6jpZ6R270+6OpnHNBOhqOR1o4VR+MA2bh06ZIAaKc1J2sjkhdZ0DKzLn8Z4b0CH7QTAdE6t2RxYB2B0E7nv15re1s8Sj9N5Msp9+fmdbignXJkkYwTiAfjELCknY4WkJ9e0/TUDF0tMn+D5SIKrmgnS0TjqWFjPHzSTuYBrX2TtmrRj5aSxVscn7RgTDtJIVquYRTWluMr7dTPfuD41fXbNGPGVF7QVVpwABe0EzOHgKWdgEDIylNPE3oA7fTXd4/at+RIg4SJZsul5jfqY0w7GRKRaKeW0YKhncYsFz7hPlRe49iPfoHa19ZWok47QefmKBA8FCISwUMk8ot2opb2XzTSUkQv43Owb3he1CPUaSdojEBBq5bRSFpdFuwsAWvaqQoujOGadoJOujvRTtCQ1nXaaXXDm/w+iyMovuXmaXf6lS5BgXaqhlP3P9rpH9FO+5t6Hbza+pGeN/r9buN9qwYLjHYyn4lEO91S5QftdPiZl2PsZ5pGpv+hl/maz5ejSDst3PDwg4HnVvUky6mqXjtIj1CgnQxnIsEhijMFQjtNrTo1oa/sUI3gwCmWD9dJ/8CcdiIgqgL4DW5mZljRTpP7X/L9+3USKbBmV2LYFwc53NBOOapIpgvExnQCp50kMrOzVGe0GQQ82PYyz7jXUoxpJ2aUgcVVgCgjMNopp85XexzjpdaRvNb+d+5kR+KAdiIgigMEG8HRTs191OyD9d9plc7Wv+wUZX4BJ7QTs0/DKgT0aVbedobQI2gn8ylD84vtnxrEjLOONwk2uc532qlFDYl2MlQTHO00XazOzLXRn5ZxQCj1ad/aBtRpJ2hgRIF2alJDYhZq1FCmnUzvLpI+VCWvF2MYczhnyZbrmNNO8Yjv762GdbLEL9rJuFW/WnFOHSV+NWNGX4fQKlzQToaIxlDExhiY006vLMbdfXIpnL7D2dO/14Qn03FCOxEQjXVrJh56Dj9pJ/2FYvfks8ZQci5NkHzu9E4FY9qJGchhaacSNbRpp1Dv9NyBhkn6pc1T/ioJaHbCnHYKZAvAk3YyVEObdiqp2HBlG11CN2hFVJum8rWhmNNOMkgCmD2byU40awj/LtopxPyoQdX0fgYn3B9vCHOyHiEw2unpbCTaafBsftNOxH1q2qWhm0j50bEGOac3/cAB7VQ/G2ntOH82DpCNM2fOCIB2qt71pGXg0skGOZTnn9T2vqDggnYKRrSOLR6sIxDaKfWKqZKp9hatmN7B1UuV+9fjgnaai2icwXgwDgFL2mnLAa1qj0GRBmESD/IavuZuxhXt9HoWkvFOz8I62cUR7WR//uX4l35hOlsXLvJ6NcbZGGPaKRrRcp6YW46vtFPizScfMxecoBzWz5ooOnjyXVzQTswcApZ2AgIhK089S+gBtNPiM0LOtQtzqLmTMpe7rZD1xph2qp+DRDv5zREM7XSCmtZPvNdDg12Sb4Yef2QxDXXaCTo3R4HguTYHieDJnMMv2mmTqEONb5/JetnxpMkqZxZbok47QWMEClr5IWq1dM7/Fe10Di6M4Zp2gk66O5/tBAlpXaed5K1rpKKzG9RTa2Sm3LwlGYIC7VQLp+5/tNM/op0yqj8olAeoUlMaEywTrusUCYx2cjVGop2ajPhBO5kl/5VxKTWZni3uNrx/H2cSirTTB0KRxtWbb7W2j9ReX1b7YiIKtJO9MRIcom4sENqp7Nsu8Rz/PtqlKX0Wxz7yeIk57SSNqArgN7iZmWFFO7luXL+h2C1Y56Bj6sG/P+cH4YZ2qjFCMl08NqYTOO002Tvyoke0EeXEu5OaESk0eYxpJ2aUgcVVgCgjMNrp3ctBscuXOpMPxDXIThw4SA8HtJM0ojhAsBEc7SR6vHd+bNYE/WM+kYWVj/WO4IR2YvZpWIWAPs3K284TegTtdE/oecmqSXdJQd6714e/U53Kd9pJyhSJdrI3ERztFNRHaYTfjkTNCBXFgO1r5MxQp52ggREF2knMFIlZeGiCMu20xvb9iTk2tZTdlblrs1vk3DGnnYpMkN4/xATrZIlftJPl65fLXSZn62SNnxG8/OgjL1zQTvaIxlDHxhiY005KkweWLE2yJcVEN6xX6e2cihPaSRrRWE3GeOg5/KSdbqTJi5XdrKVky4WdtPrRSMeYdmIGcljaqc4Ebdoprne/vmrnU9QPjW4J3j/6/HHMaad4EyTayd4EbdppYesGQnLdJkqEyr1Fspc/pWJOO81AEsCszZidaF4g/Ltop+zs+AXGxx31tmZL6Nwp/aQtMNrpuxkS7aRsxm/aydl2/9z5U86SUyc+3pibMHE1Dminj2ZIa8fnzXCAbJSXlwuAdpIavSRt0/h6WkTsCjn1owFbcUE7JSNaZyMerCMQ2umH0PMqjept+nt2rusz9btRDC5oJxNE4yjjwTgELGknG0LcKN0RsZS0JepXVx6wkMQV7dQL0Xj1plgnuziindbHFlnF1P7QKaw+F/8lcfJ3jGmnfFMkywVjbjm+0k6E284T67LtyYGvspQGBig54IJ2YuYQsLQTEAhZeepFQg+gnYxKJpGUpWpp2yv8ZEK8Rj3GmHb6uAiJdopeJBjaaWiY6IJ7MpMMwhRq+hBCsk1Rp52gc3MUCJ7Xi5AIntOL+EU7KRqZ7x2Tn0rLc79Qs1h4lCvqtBM0RqCgVTSiVp6L/q9op0twYQzXtBN00t2JdoKGtK7TTiE/Hw16eZ6qsePBtX1nnxdroUA7XUZN3X4CVHejwwK1LU4l2nteP3B4KvJSo5O6BUJ1VxOc75J8p/XV6SMu6gw0CbOaxqpNzpWpCdIqWzVf3XhERgTQJMJqishtPHm+vwc56vDhHUULHw8Emnqxmm4P9DUeszBRp+z7mePq0fO44bTecObaOvG0cqLUI62tG09Jqa5Mf46Cua7Ames/OO0fwWmTao1HOSUe1SydZyPbFiEvLTA4zc8FCU7r5cIPOM3tWX/LeYfc9CLzqR9XbbJ6hSKcNnurxXwKwUY7u2/jtpW7xqWjAKdtdEFieUxcBAKnrRhqLLuhMYpcKBabmfmYWoo5nKaMqArgN7iZSGMFp5Xq5OSVNobTYmeqLVi1u60ZN3BavTOS6fKdcbE6y3c47V5U87orG+brxGbQNlm9f78XYziNGWVg6SIgyggMTrsYIn5XTMSGvM+IpE/WKOJM7rCB05QRxenlIkA4bZar+O68PZXqe3xWXqufrWKBEziN2adhFQL6NCtvqyP0CDhtmUMW3WDALIME81Pph8ZU7+A7nKbshgSn+bkKDk67muNROTgoVCPNx+L4Aal8zmQeDTgNGhhRgNPk3ZAQk++uKMNptZr9ZOQWh+jn5+/K9vZ6NQxzOO2aK9L7Z7pinSzxC047MNVi3bOjOvrBNikFSRXLOb97GSs4zQ/RGEuxMQbmcFqBweXUDN8Enez4aXPPxPdVwwmcNgPRWP1w0XP4CafVp/xYlnqgTT1+etrE7CX5qX8yVUYBTWIGclg47a0r2nDa64KyyyI5byjR+ZNrk3yLUjCH0467IsFpfq5ow2lTN0mdn7iljBQguSCJXKMGmfdjAKcZIglgNtyVnWheJfy74LRTj4ZmWH/drnPihJ++mc3yZQKD06Q9kOA0iju/4bTNCsuyg7/fIe1wulj4uWjBRhzAaVIeSEv9De44IGyKiooEAKdtvfHGMu3VWVpYn8+ZryTjOb9eCys4rcIdyTpReLCOQOA0XRXjsPUiKpqBqhXyanSNU7iA01wRjUPBg3EIWMJpX66tLPe+1qARNGP/p97Lv3zAFZxGRDReixvWyS6O4LR7oqtJNy7GGiQ8oacTJYo5z44RPJx22Q3JcmmYW46vcNqLpRPE0qxEyVEPx6Sqiu5O+XOyBQU4jZlDwMJpQCBk5anXCD0AThsrbiymJLuTknvz2hDGQIIuxnCalCcSnFbkIRg4jfzE7dEitUz90pKPMfZLrXNRh9Ogc3MUgCsxTyTg6qEHv+C0vhP7kXQO3tIqEMmptFePu486nAaNEShoVeSBpFWIx/8VnHYdLozhGk6DTro74VPQkNZ1OM2QsPypQdxiWjp9wCXVOGspFGinG3Dq/kc7/SPa6cSjlE0fQ7bqlc0al73UQOKDwGina/5ItFO4Pz9op6oRLzaLi5jSEtbemb9WXGEiirSTdG5z8U7rAO1i31efPX4k90WBdrrsjwSHHPcXCO1UOVTS9XBZL2rgx2k/hkv6D8GcdkpDVAXwG9zMzLCinSYKX/yxrLWYXPhkbpnisXV1uKGdfBBN54iN6QROO+W4uXvFXBej5n6I7Hv/gx4NY9qJGWVgcRUgygiMdvpRHvls4bK7BoWl/o0bT/SJxQHtlIYoTri/AGmnN4xV3ptNC8iB3l9JaX2+bsAJ7eSDqBDQp1l5201Cj6CdMuVm5v01rk3zaNDOAqXtCgP4TjulBSDRTiYBgqOdErWnWAe98aPEkcMO1d7UVkKddoIGRhRop+QAxKOoAlCmnba81t9y+4QaJe3VkuLDztOxP4prI+L72wdgnSzxi3bS/fh6puixZXrHFqs7a6aL38MF7WSCaAx1bIyBOe202WmQZe2FJp2MDHPVkcv++oIT2kkZ0VjSuOg5/KSd7k9v2DqzOEGvUJdeWxwzzA9j2okZyOFoJ9OgALRpJ8ZVpZtZwmupSb17HxLxyBXGnHZyZQvAk3YyCUCbdrpmsXRBxapzOscMBxtZiz1Vwpx2mo0kQLpsADvRvEX4d9FOeoOkKg0iTekpWyh5a1/G3RQY7RS7HYl2Ut3Ob9ppsZHkKY2Y4eSQ3O0KjPd5CTignQ5sR1o7DtiOA2QjJydHALSTjJ/sLVkfM2qcl3lsW2VUFS5oJ3dE6yzHg3UEQjvFOV3v88HGST9JdoLtUSedclzQTnqIxlHFg3EIWNJOu+Y370ieZa0duLO67kzbyGhc0U5yiMaTxMZ4+KSdxjYlNXtWG5H3zVGurRA//h5j2qk1AMlyz3ExTeEb7eS4xNnggZmJVurDKRPr149rxAXtxMwhYGknIBCy8tTbhB5AO3lJy4ozjr2hB+sE3Gje2FcaY9ppRCAS7fSWO6XlC+3kUH72x/ZXa2hluwf6vkqXeYo67QSdm6NA8AwNRCJ4hAP5RTudJyqXHznzWmNv2JsEyhtFedRpJ2iMQEGrt9uRtLoj2NESa9rpDlwYwzXtBJ10d6KdoCGt67TTlVN1aRdm+qhnjYrps/69dCsKtNNdOHX/o53+Ee1kf0gu4bLXKoOQxeuWfEi0eSIw2kkhHIl2eh7GD9qp/6m7+14HF9FjDRIzQg5tDEGRdvKfVGo43GSVTkauh0LZ5VPOKNBOcuFIcIhkuEBop7hzvbd5vV5Ij4nu1XzUWc4Lc9qpNQxJFcBvcDMzw4p2GjFcf0HMXhOdg8veXjIKOumIG9qpDtF0ZdiYTuC002Lh8Jq/DgjTD7wL2Bym00zFmHZiRhlYXAWIMgKjnXYFDehHWa+gFxgVrUdPPPcFB7QTM9jAigMEG8HRTuf+ev1ZoqqYVFiS7jd9/JZsnNBOdYgKAX2albfVE3oE7ZQx/X6plKI6NZI0zjtVql8632mn1nAk2iklXHC0E2n/zgfFUXtJ+/q2MqZOmlCJOu0EDYwo0E6fw5GYhcfdS6F+Tzs9oV537Zt2nhae8HmL2NJ3szGnnS4ivn9JONbJEr9opxMnSQTpnY80dix+PDzuZO45XNBOKYjG2IuNMTCnnRzUqAn7/n6jE1Q1+8vbWYmrcEI7bUY01ipc9Bx+0k7W4rTNSxXvUUOmVdwt11rgizHtxAzksLTT3W5mqb+nnU6WHhKamiqhf9R3DOmHWLkO5rRTJVsAnrRTSjjatJPpqwVngu7b6pbvW7NIfUx5Cea0UzCSAOmu4exE8x7h30U7Tdtw1fnq+QT18kmRjfGrH44VGO3UtA+Jdgrcx2/aSfmJzZjE+F66CUe3tv5cpaOJA9rp9T6kteNb+3CAbKSlpQmAdtq/W7lJe6aR+h6F3V6k+WEncEE7nUa0Tg4erCMQ2qnPQdoY5dgZun4ucl9tdi9ZjwvaKRrROIF4MA4BS9qpvnJJ2s/tdvTEDSEvNp+Rf4Ur2skT0XiW2BgPn7TT49i4I5Zqb9Tjj12PkIzUcceYdqIiWk4Nc8vxlXb63lrhMFYzRCtWsv8kk0ElZ3BBOzFzCFjaCQiErDz1PqEH0E6XU/vrpXtvo4ZlfO2nEnreEGPayTECiXZSjxAM7eQ+Tu6YaYqPXmJI2SzxCb7PUKedoHNzFAge+wgkgsckgl+005w55zdt6dWoHXZkvFub0H031GknaIxAQSt1RK2UI/6vaKcHcGEM17QTdNLdiXaChrSu006zJW/NCmq2143M1DzzmESbjALt9BBO3f9op39EO62MMRocdHg4Zc/86I+LNxfFC4x2Wp+IRDvNTuQH7aQW8fCzAWkybUfQ0aKlYkeNUaSd7mwJGZP/OF2roPWm7e3gCatRoJ28EpHgEOtEgdBOTQGrxPz2fdHIcyzfeKnCYRzmtBMdURXAb3AzM8OKdtKccPlW9qYZlHyX5F3uW9euxg3tpIBouoHYmE7gtNO82cuJVrILdMPWrFiYNJ2xD2PaiRllYHEVIMoIjHaaOO76yKUDhXTKyNKFlaPJX3FAO9ERxZmdKEDayepg5sWSMfOpR/z0xn1pqCPihHZSQFQI6NOsvO0RoUfQTmp5m2ufEtZpbEuoqxmT23CI77QTPQmJdmrlTpP4RjvV7c7wX7LambYvvLVo6V5dKdRpJ2hgRIF20ktCYhZUk1CmnQIt9pAGqKymHcwNH/Uo7KsQ5rSTHOL7SyZhnSzxi3b6PLmSuElGk5rUYNL87MEzP1zQTq2JSMZ4jo/0R+C0k8GP5U8pu/7SyjCg+B6zOLQBJ7RTHaKxyjCfZvCbdjq9O9dYbpg6LVF0qLHH62EOGNNOzEAOSztNTkKbdlqkaBIrElSqdbSh8rG3+xJ/zGmnoWwBeNJOrd3MRH9PO8W8qO9jZpFOifiQ7zyJdGM85rTTw0Qk2ul0R6L5mPDvop3u3p87Lf/efc3M0Teb9Q1WnxcY7aSZjEQ71Sfxm3bKX31R9njFQY3I78VTFkc0r8cB7aSejLR2rJyMA2QjISFBALQTVUHs1ifNpfohcoN6vTkQWYoL2kka0Tq98GAdgdBOlXWS77QuaepEr1z+IKnkiScuaKemJCTj1GMz08AR7eTdQI+59/i65i61/BXLwgdQcUU71SAaLx/zaSKOaCf/G3nVdNl63dR5AbqGvmaJGNNO8YiWC8bccnylncil6yrOqDzT2W0T5tUUNTcbF7QTM4eApZ2AQMjKU58QegDtZHVV38aCMURjl8RD2f3SY7E+26kiGYl2Ck8WDO208kd2ybIF10jbHo9+mnl861TUaSfo3BwFgud4MhLBk5bML9pJ4/wnHc2mBNo286b6YyPH90addoLGCBS0CkfUykeweSjWtNNTuDCGa9oJOunuRDtBQ1rXaac9F85NeyZ9n3bgOD2ycFvZdxRop2dw6hLtxhYG7goih53KpO7/WsxZNe1txHC0WsepLsyyEFwXHkQirnVwZxDdwTuxBOS9B76lzVl60QSt2BvBz6e4D5Xj8SDcL/37CHf28r6wgDz9A2/dcm55pI78w14bBX6Rxbuq9nHZhytTAsYGxXdVLMmf417yJRLbjfuLNVNSjA0GfPh2zh+3klOHVCNIrjyEnQq9wL3kH02/ntwe5EPzHfiy1vtF8UjcSn5+CpLkmVPYkjfgXnKZHOtDQXonSbvviRtu2lcxCreSi9GQJG+gsiV/iXvJ1+kqXjT022Pgf1HSTv2jeA5uJf9ujyR5vT1b8kbcS66r4E6XFB9Jyonsb7fK73kabiUP3ook+catbMlf4V7y9Y5yR7xWKWqVSZy8ZrHiqwxuJU8OQZI8PIQt+WvcS367Zc1VsQINuv/YQWbKg29OxK3kTbFIkj+MZUv+Bk7y6fl08mwlC0pZtg9tR1P2TUhBBBDb3cWRyKQ5PbjXGHvDCK2q5Q1MxWzaaUHWyj3rVu3AFnPrwGpnF+BvwNyHtVGha+uPruoLC3btrdBMLZO/cLSiqRnpiXmUcDjau6i0DzCJzjEH0vHTZB74PxHcum5WxQf833pe/uKZcq+0Ip4bJ9isYKSgiP+/9rH7Ypl+iHJM9KGmvWio0B/6oiugUAioUBMJ+AdUoZZ2hbhqqmyJuoj+jdHg9CHW2hMd9K9JIMajwlPF1TpRhS5SQ7VO1EiSbl8s1+IkA2AchX0d7YprRQFLKCKvegwRaG1aVMXFhnRTqBGLGOBKKVMhzn7HW6Gl71c0Gy8x1U5+5L4uMy6gjHNlm3Uz7pVtdgM/NDJchKQR1JmE/4FGTBSMRX0DOv3Oi1qvPi7Rv9pKjtrwfHJZbfVPzr4I3oxbIdZlfugjZYakj6spuzrwFi7wT2gbJp1FFNEqIDd9Y8jacQb+vlQHD0/YrWdwJftRNIaVxxr39q1f7axSe3R3BO7WteCuMmD4u6TysdQCZdLsMtul52CfihtX7tTYVVwZ3Am6BNCxEtDxIVRHV/DchMVcYb2buLI42cqDwRSA5/se05/wcf/pUzo7GfNl7g0X5fxKvl7gK3G9aPvV38V3aND7UzYZkIoIShUFxPcKqFQyx5hSwcZ3nhw3nbnmBjqIgyfDyQPcW0jlqZFb5dpnU6sUyGFxvRmqYhZ+A5kEOPDuWt6u7oyOejGz0mw+iXP1QtDkm1QhSydwhwGXToEFTJ1YXfMdqytxdc1eUz+SJM9cpiSpqt4Ryh57SoTqYM1uS2iIkVkx1YyaLbrH4UeDBCeExKLk2vnsrvdbog6jPVNrJ8WJYErC6HZe5qchUpQx1oWUcVVL5srJBCn4J+MGBjq3diPjiDcGlD7Oq/OCdqgw6lZORuzIyex4y8H7pIBrbqQ2sofW/hgXwxvUOX90yB5/UzRLQDAfY1aKxuWaDe2CdWvZe7gmxF9A0eAJ3WkXVz6qoAXpRkqbpBkXqjhjutkgp4ClhhSvjgqOoYAarI7aRIAZQyMaPsVMMg2mFp8zOKnzM55zLUHiV3jiXvWGm6EO/bV525nI6LiBBHeo602aRFaa2qWeqawwQ/oMTVo7nlG51Oka6TjcY3Lvr/zV1kVZ08BxYgUg6y1ei9oU0MmWVfXv2OHFXm1kRycJXbCncq1e9WFe1rVl94yoNp+ShFBz3cLUw3T1Z0p32e1CMO19DZj+zNVzxNqv/7qxhW3NbqFycc2St8No/ZUGXW5/Hubj/i58DPqlFdAh3B2srB15d4PW5vs79YyqdGNqVLNmPfDgjOASZqyPEklc1hAicfUCIUjIgA6Vf1phAKxJAK05hcQj0XQER/3lVZ00EkJLo2Fqb/3H90vQ3y2yo5fI56QcGI3I3BqRf6sRNAyhoBHg0wgaEZdVsRyww5GQourgdpgIjKe/AgDvgHo9YvBkrXHU/Xr+YjkmeZxH/Im234Y7oLKuox1QDQtYvtJCAicmEB2u5TNVYgXUZriAOvTxLs2Bsy9pJPz9pDy7Zi3ngZJCZN7r7wPasRweUhIk2ps4ynQsioerfMdzgd6YAcyfbZkZKpNEcgIxL1dHBxv4AwhCclOjfIbuoYbeUPd5NvHOHsg7dMVlu2qLDn4NYgtiSRVBOrUKrMSAgxtL9ff/SPX2ZEXgyo9n/UIPMAl1cXQEnh+MGkCnsGMAT8HeTMd75+dVM1UHYkay1uEDwYfSvmaqCmAvEJwpKkDChgY1xYd/ZIq+FoAUTq4uzgxnT4EbZLBZe6lkw7pNv56Cp/rm99ato3kHkzNIow8I1c5ZAvsO3HP4zo1oW0KstIowpQiwRFlnS3zsyaHo6O294WP9/MnJ8qf21W/ZqYpRKCI0Qv3/U0/2/wvHZlyx/qakd1joR1XizW0vceT/rs1Q///ck/1f5EH44/SSgfrFk19uIf+c8Roj/28YWA3x/y892f8rrh/3MTeRIh3/O/369WdCFBz5v+bQaoj/t/Rk/6eNG3LE6sNZ7ZAbBXdHWj6pw8j/HVWg/v+1J/u/MNV1mNUnLfJxO5XsjVceEnDk/zVTof7f2pP9/4Pr/pjCxQXqOe/rFv18JzcJI/9P1oP6/7ee7P9DjRoD38oVa5TrlXtMTrbbgyP/J9Ch/v+9J/u/5pZtL4N+eGkllNyyvT2MYYuR/weuhPp/W0/2/4QEqbmfxEeRskQH1Y38a+NNHPn/dweo///oyf4v2liZT558WvOgnrm++votqzDyfz1fqP//7Mn+b/9q498Lnw+iF51etW3n48EHcOT//bZB/R+Urcf6/524aVqKWk7qaWNNniyu/umJkf8v3gP1f6F/pPq/xP/3XY8IeUl4p1m+88HGEv3ERhz5v2wo1P+Fe7L/L5tS/JUoa6ceviqfFmipIYaR/6fFQP1fpCf7v6GU4gyKWqZmEDVpQFyraByO/N85Dur/vf6RJdo3PAvcBgN/MXMeDDsnBtzJpyvyqL0p/i80fCcolc8eMK+Ox7PzWP9iXkZbdZArirfpqP//Dw==
                    
- true
- 
                      iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC
                    
- 1ef12e12-a315-4adc-8a69-1049182100f2
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- false
- 20
- 02fb770c-ba15-4f83-acf9-af1ba24e79cf
- 3a4d3006-5e80-4a31-a2c2-77bf1567014b
- 3ac17cbc-7b40-4166-9558-9be4e21d91a4
- 40ec6168-79d7-4abc-9d6e-d41627216763
- 4bd05acf-e732-4c02-8528-9002b488a087
- 4e45cde8-7f27-431d-b06c-7f9c5ed9e84a
- 5f77937c-77e2-465e-8b74-0cd1dca8659f
- 657928da-9388-4d25-ac8c-5461f78115ff
- 9bbc0f84-6983-4117-821c-ceb85636c1d3
- a6f5321e-1fc7-4d0b-a809-2c998b9ba647
- b9b3f377-4fa1-41de-a46e-8c5b7fdb8176
- bcc4995d-3075-4627-86d3-17c54f203760
- c2fa32ad-abc6-48b3-98de-eddebf34447c
- c6051a24-e2be-4566-a3f9-7c05b6c560d3
- d1f9d08d-efb2-4192-a859-fc8b5bd7b96e
- d3b1c4de-65d2-4988-bd21-0fa96869795b
- dacca8b2-18e3-46ff-a12a-1c3dcbed30d4
- df5ac2ce-c295-431f-846d-10a3ddd11fe8
- eef837d9-6ad7-45c0-86d4-37d5df250d0a
- ff97abec-08b3-4858-8f83-c4185f48b077
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- e9837f44-fe89-4576-a1ba-d864d9176564
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
- 45329fda-4528-406d-a823-54e35ac6ff74
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- f9b9305d-1e20-4067-946a-b44d88604308
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 34281050-3848-44ac-894c-a3119ffa069f
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- 
                          1693
                          3229
                          110
                          404
                        
- 
                          1789
                          3431
                        
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- eef837d9-6ad7-45c0-86d4-37d5df250d0a
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3231
                                  82
                                  20
                                
- 
                                  1736
                                  3241
                                
- 1
- 1
- {0}
- 8
- Second item for multiplication
- a6f5321e-1fc7-4d0b-a809-2c998b9ba647
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3251
                                  82
                                  20
                                
- 
                                  1736
                                  3261
                                
- Vector {y} component
- 02fb770c-ba15-4f83-acf9-af1ba24e79cf
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3271
                                  82
                                  20
                                
- 
                                  1736
                                  3281
                                
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 4e45cde8-7f27-431d-b06c-7f9c5ed9e84a
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3291
                                  82
                                  20
                                
- 
                                  1736
                                  3301
                                
- Vector {y} component
- dacca8b2-18e3-46ff-a12a-1c3dcbed30d4
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3311
                                  82
                                  20
                                
- 
                                  1736
                                  3321
                                
- 1
- 1
- {0}
- 6
- Second item for multiplication
- bcc4995d-3075-4627-86d3-17c54f203760
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3331
                                  82
                                  20
                                
- 
                                  1736
                                  3341
                                
- Vector {y} component
- b9b3f377-4fa1-41de-a46e-8c5b7fdb8176
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3351
                                  82
                                  20
                                
- 
                                  1736
                                  3361
                                
- 1
- 1
- {0}
- 5
- Second item for multiplication
- 3ac17cbc-7b40-4166-9558-9be4e21d91a4
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3371
                                  82
                                  20
                                
- 
                                  1736
                                  3381
                                
- Vector {y} component
- 657928da-9388-4d25-ac8c-5461f78115ff
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3391
                                  82
                                  20
                                
- 
                                  1736
                                  3401
                                
- 1
- 1
- {0}
- 4
- Second item for multiplication
- c2fa32ad-abc6-48b3-98de-eddebf34447c
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3411
                                  82
                                  20
                                
- 
                                  1736
                                  3421
                                
- Vector {y} component
- ff97abec-08b3-4858-8f83-c4185f48b077
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3431
                                  82
                                  20
                                
- 
                                  1736
                                  3441
                                
- 1
- 1
- {0}
- 3
- Second item for multiplication
- 4bd05acf-e732-4c02-8528-9002b488a087
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3451
                                  82
                                  20
                                
- 
                                  1736
                                  3461
                                
- Vector {y} component
- c6051a24-e2be-4566-a3f9-7c05b6c560d3
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3471
                                  82
                                  20
                                
- 
                                  1736
                                  3481
                                
- 1
- 1
- {0}
- 2
- Second item for multiplication
- df5ac2ce-c295-431f-846d-10a3ddd11fe8
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3491
                                  82
                                  20
                                
- 
                                  1736
                                  3501
                                
- Vector {y} component
- d3b1c4de-65d2-4988-bd21-0fa96869795b
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3511
                                  82
                                  20
                                
- 
                                  1736
                                  3521
                                
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 5f77937c-77e2-465e-8b74-0cd1dca8659f
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3531
                                  82
                                  20
                                
- 
                                  1736
                                  3541
                                
- Vector {y} component
- 3a4d3006-5e80-4a31-a2c2-77bf1567014b
- true
- Y component
- Y component
- true
- 0
- 
                                  1695
                                  3551
                                  82
                                  20
                                
- 
                                  1736
                                  3561
                                
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 40ec6168-79d7-4abc-9d6e-d41627216763
- true
- B
- B
- true
- 0
- 
                                  1695
                                  3571
                                  82
                                  20
                                
- 
                                  1736
                                  3581
                                
- Number of segments
- d1f9d08d-efb2-4192-a859-fc8b5bd7b96e
- true
- Count
- Count
- true
- b8207e8f-d1d2-4ad2-b43b-73db4643f17e
- 1
- 
                                  1695
                                  3591
                                  82
                                  20
                                
- 
                                  1736
                                  3601
                                
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- 9bbc0f84-6983-4117-821c-ceb85636c1d3
- true
- Curve
- Curve
- true
- accfc6c7-d434-41c2-8fa9-df26450c2afb
- 1
- 
                                  1695
                                  3611
                                  82
                                  20
                                
- 
                                  1736
                                  3621
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- accfc6c7-d434-41c2-8fa9-df26450c2afb
- Relay
- false
- 650d961c-ef6f-4573-ade0-97f698f6a536
- 1
- 
                          1466
                          3613
                          40
                          16
                        
- 
                          1486
                          3621
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b8207e8f-d1d2-4ad2-b43b-73db4643f17e
- Relay
- false
- 7e1bc525-0327-427c-afd4-d8b6c2743acb
- 1
- 
                          1444
                          3576
                          40
                          16
                        
- 
                          1464
                          3584
                        
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 9698bc3a-1ed1-4414-86f0-6444e8ead760
- Panel
- false
- 0
- 0
- 0.0003860762109180463019
- 
                          -199
                          3409
                          160
                          84
                        
- 0
- 0
- 0
- 
                          -198.463
                          3409.569
                        
- 2
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b0414c5e-b2a5-4397-9a26-3d16457e079d
- Relay
- false
- 7876afcf-7775-45c8-8a25-88d8b7e1f9c2
- 1
- 
                          -239
                          3169
                          40
                          16
                        
- 
                          -219
                          3177
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 64dc2fad-67da-43a0-afa8-968d779d76bb
- Relay
- false
- b887e715-85b8-4d63-bcef-54f50d862634
- 1
- 
                          -241
                          3271
                          40
                          16
                        
- 
                          -221
                          3279
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ce270eae-dd35-42f1-a1e4-d2f99e5bc96c
- Relay
- false
- 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8
- 1
- 
                          -243
                          3321
                          40
                          16
                        
- 
                          -223
                          3329
                        
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- b431a847-2dd3-434f-9b59-8a6329452c37
- Format
- Format
- 
                          -185
                          3133
                          130
                          64
                        
- 
                          -93
                          3165
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 189af6c2-3871-43ab-b4a2-828404c5bac2
- Format
- Format
- false
- 0
- 
                                  -183
                                  3135
                                  78
                                  20
                                
- 
                                  -144
                                  3145
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- d97e0a39-4089-4172-9db8-c08197b8e7b4
- Culture
- Culture
- false
- 0
- 
                                  -183
                                  3155
                                  78
                                  20
                                
- 
                                  -144
                                  3165
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- bfcdd9ea-5052-41e9-a97a-cd0fe30a0d83
- false
- Data 0
- 0
- true
- b0414c5e-b2a5-4397-9a26-3d16457e079d
- 1
- 
                                  -183
                                  3175
                                  78
                                  20
                                
- 
                                  -144
                                  3185
                                
- Formatted text
- ba156c5f-31a5-4478-a04c-85f4b5333b7c
- Text
- Text
- false
- 0
- 
                                  -81
                                  3135
                                  24
                                  60
                                
- 
                                  -69
                                  3165
                                
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 1e3ae344-cd92-406e-aebd-972deee07f0e
- Format
- Format
- 
                          -185
                          3217
                          130
                          64
                        
- 
                          -93
                          3249
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- c1c6a58e-c0c7-493c-8c2d-21b09a647d80
- Format
- Format
- false
- 0
- 
                                  -183
                                  3219
                                  78
                                  20
                                
- 
                                  -144
                                  3229
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 118c54c9-0071-4749-be06-f6920b3500fe
- Culture
- Culture
- false
- 0
- 
                                  -183
                                  3239
                                  78
                                  20
                                
- 
                                  -144
                                  3249
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 896cb082-cf84-4e6b-8922-6cda5c56786c
- false
- Data 0
- 0
- true
- 64dc2fad-67da-43a0-afa8-968d779d76bb
- 1
- 
                                  -183
                                  3259
                                  78
                                  20
                                
- 
                                  -144
                                  3269
                                
- Formatted text
- 35a11262-770e-4498-9d6e-28b546897ca0
- Text
- Text
- false
- 0
- 
                                  -81
                                  3219
                                  24
                                  60
                                
- 
                                  -69
                                  3249
                                
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- f2c03e9a-5b86-4789-997b-bb044bca2f3e
- Format
- Format
- 
                          -184
                          3300
                          130
                          64
                        
- 
                          -92
                          3332
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- bc32af76-1e3f-4774-bfb7-f91555ff91fb
- Format
- Format
- false
- 0
- 
                                  -182
                                  3302
                                  78
                                  20
                                
- 
                                  -143
                                  3312
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- f7c98017-af59-4278-ba02-63d1dad43791
- Culture
- Culture
- false
- 0
- 
                                  -182
                                  3322
                                  78
                                  20
                                
- 
                                  -143
                                  3332
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- e773dc71-70c2-4170-b0f0-7457a89e3cb5
- false
- Data 0
- 0
- true
- ce270eae-dd35-42f1-a1e4-d2f99e5bc96c
- 1
- 
                                  -182
                                  3342
                                  78
                                  20
                                
- 
                                  -143
                                  3352
                                
- Formatted text
- dd0736c2-159a-42d1-af5f-93e121faa9f7
- Text
- Text
- false
- 0
- 
                                  -80
                                  3302
                                  24
                                  60
                                
- 
                                  -68
                                  3332
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 63179a12-0556-4bc1-9bf4-ef312b611dad
- Relay
- false
- c923a52e-eef5-4213-b91c-a99d00b79828
- 1
- 
                          203
                          3341
                          40
                          16
                        
- 
                          223
                          3349
                        
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- d25a347e-f2e0-4e4a-8983-14d071fa7194
- Scale NU
- Scale NU
- 
                          403
                          3098
                          226
                          121
                        
- 
                          565
                          3159
                        
- Base geometry
- 6c42c611-31df-46b6-a8ee-c7c7171400e4
- Geometry
- Geometry
- true
- 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7
- 1
- 
                              405
                              3100
                              148
                              20
                            
- 
                              487
                              3110
                            
- Base plane
- f2be336e-646a-4422-ad9e-e4e57dab9a98
- Plane
- Plane
- false
- 0
- 
                              405
                              3120
                              148
                              37
                            
- 
                              487
                              3138.5
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                      1
                                      0
                                      0
                                      0
                                      1
                                      0
                                    
- Scaling factor in {x} direction
- 98448143-b352-4739-bfc1-429bc2747dd2
- 1/X
- Scale X
- Scale X
- false
- 7876afcf-7775-45c8-8a25-88d8b7e1f9c2
- 1
- 
                              405
                              3157
                              148
                              20
                            
- 
                              487
                              3167
                            
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 0a1bb1d6-8dd1-4ff5-9746-b9d1ed378ab9
- 1/X
- Scale Y
- Scale Y
- false
- 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8
- 1
- 
                              405
                              3177
                              148
                              20
                            
- 
                              487
                              3187
                            
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 56b223c4-49a9-4561-a1a4-af9c5fd7182a
- Scale Z
- Scale Z
- false
- 0
- 
                              405
                              3197
                              148
                              20
                            
- 
                              487
                              3207
                            
- 1
- 1
- {0}
- 1
- Scaled geometry
- 9868f335-6dc4-451f-8094-d3711f42121a
- Geometry
- Geometry
- false
- 0
- 
                              577
                              3100
                              50
                              58
                            
- 
                              602
                              3129.25
                            
- Transformation data
- d3a424e3-115d-4433-a6ad-a72744f7056e
- Transform
- Transform
- false
- 0
- 
                              577
                              3158
                              50
                              59
                            
- 
                              602
                              3187.75
                            
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- e6c0b86a-3030-446a-831b-92169490ee8b
- GraphMapper+
- GraphMapper+
- true
- 
                          902
                          2886
                          114
                          104
                        
- 
                          963
                          2938
                        
- External curve as a graph
- 37bb3370-d544-4693-9286-1de205aa26be
- Curve
- Curve
- false
- 0517f2f3-0517-41f2-956d-3caa6df4c5ab
- 1
- 
                              904
                              2888
                              47
                              20
                            
- 
                              927.5
                              2898
                            
- Optional Rectangle boundary. If omitted the curve's would be landed
- 64776ecc-bbe9-4ec5-a5d4-07eb396f92b6
- Boundary
- Boundary
- true
- 3bfc7a24-36db-4b47-8c33-65ba8b072928
- 1
- 
                              904
                              2908
                              47
                              20
                            
- 
                              927.5
                              2918
                            
- 1
- List of input numbers
- 68fa507c-c522-4467-80f3-fdcf8a652e23
- Numbers
- Numbers
- false
- 8e13165d-ec24-43b2-ab6d-2081a50fd148
- 1
- 
                              904
                              2928
                              47
                              20
                            
- 
                              927.5
                              2938
                            
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain 
if omitted, it would be 0-1 in "Normalize" mode  by default
 or be the interval of the input list in case of selecting "AutoDomain"  mode
- 6653a230-3ac7-44b2-a9f5-1fe99c263419
- Input
- Input
- true
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- 1
- 
                              904
                              2948
                              47
                              20
                            
- 
                              927.5
                              2958
                            
- (Optional) Output Domain 
 if omitted, it would be 0-1 in "Normalize" mode by default
 or be the interval of the input list in case of selecting "AutoDomain"  mode
- f8e14406-9226-4342-a696-98d00dc96a74
- Output
- Output
- true
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- 1
- 
                              904
                              2968
                              47
                              20
                            
- 
                              927.5
                              2978
                            
- 1
- Output Numbers
- b0d8da91-bdcc-44b1-93f8-f3dc5e923e83
- Number
- Number
- false
- 0
- 
                              975
                              2888
                              39
                              100
                            
- 
                              994.5
                              2938
                            
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- 6e0d144c-1a3d-40c0-9029-376abdea13ca
- End Points
- End Points
- 
                          346
                          2785
                          84
                          44
                        
- 
                          390
                          2807
                        
- Curve to evaluate
- 9b920e58-086f-48e0-a7d3-9489d707f19a
- Curve
- Curve
- false
- 0517f2f3-0517-41f2-956d-3caa6df4c5ab
- 1
- 
                              348
                              2787
                              30
                              40
                            
- 
                              363
                              2807
                            
- Curve start point
- 8b6f6b53-ff10-4744-b784-aacd1ff32a2b
- Start
- Start
- false
- 0
- 
                              402
                              2787
                              26
                              20
                            
- 
                              415
                              2797
                            
- Curve end point
- 2eca5a00-e598-4c14-ac50-2590832a1ec9
- End
- End
- false
- 0
- 
                              402
                              2807
                              26
                              20
                            
- 
                              415
                              2817
                            
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- edc8e274-6c3a-472a-bf0f-4e3da7df79d1
- Rectangle 2Pt
- Rectangle 2Pt
- 
                          481
                          2794
                          198
                          101
                        
- 
                          617
                          2845
                        
- Rectangle base plane
- 53e04fb8-ff9e-4b0e-a27f-df57d3dc5efa
- Plane
- Plane
- false
- 0
- 
                              483
                              2796
                              122
                              37
                            
- 
                              544
                              2814.5
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                      1
                                      0
                                      0
                                      0
                                      1
                                      0
                                    
- First corner point.
- 0c1cf429-1c6b-4c8d-9622-d10850298528
- Point A
- Point A
- false
- 8b6f6b53-ff10-4744-b784-aacd1ff32a2b
- 1
- 
                              483
                              2833
                              122
                              20
                            
- 
                              544
                              2843
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Second corner point.
- d351db95-b5de-4672-a58c-f4c75d5d5420
- Point B
- Point B
- false
- 2eca5a00-e598-4c14-ac50-2590832a1ec9
- 1
- 
                              483
                              2853
                              122
                              20
                            
- 
                              544
                              2863
                            
- 1
- 1
- {0}
- 
                                      10
                                      5
                                      0
                                    
- Rectangle corner fillet radius
- da9761e7-1237-4b20-81d5-09d6e9f1afdc
- Radius
- Radius
- false
- 0
- 
                              483
                              2873
                              122
                              20
                            
- 
                              544
                              2883
                            
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 3bfc7a24-36db-4b47-8c33-65ba8b072928
- Rectangle
- Rectangle
- false
- 0
- 
                              629
                              2796
                              48
                              48
                            
- 
                              653
                              2820.25
                            
- Length of rectangle curve
- cd1c3d89-ae86-4bf4-a2f2-dcc79f52e1ba
- Length
- Length
- false
- 0
- 
                              629
                              2844
                              48
                              49
                            
- 
                              653
                              2868.75
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e3c2f7fa-3c6d-4eda-a7bf-aa70f955e050
- Relay
- false
- 7abea44d-07c7-4298-8d09-060192324a84
- 1
- 
                          899
                          3432
                          40
                          16
                        
- 
                          919
                          3440
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9d55f829-b54c-4866-9ced-6f44b43868eb
- Relay
- false
- 7abea44d-07c7-4298-8d09-060192324a84
- 1
- 
                          995
                          3406
                          40
                          16
                        
- 
                          1015
                          3414
                        
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 2ba1bf59-61a7-488d-a5b3-a5ed82a48731
- Bounds
- Bounds
- 
                          732
                          3031
                          110
                          28
                        
- 
                          790
                          3045
                        
- 1
- Numbers to include in Bounds
- d467ba15-dacc-49e4-a358-5f8b21727a8e
- Numbers
- Numbers
- false
- 8e13165d-ec24-43b2-ab6d-2081a50fd148
- 1
- 
                              734
                              3033
                              44
                              24
                            
- 
                              756
                              3045
                            
- Numeric Domain between the lowest and highest numbers in {N}
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- Domain
- Domain
- false
- 0
- 
                              802
                              3033
                              38
                              24
                            
- 
                              821
                              3045
                            
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 3a2cde3d-d6da-4bca-8862-90ed8bdd89e1
- Multiplication
- Multiplication
- 
                          550
                          2932
                          65
                          44
                        
- 
                          570
                          2954
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- afaeef1a-7362-4d75-84da-28445edb71ce
- A
- true
- 46440956-1415-4acb-9dea-f43095dd43e0
- 1
- 
                                  552
                                  2934
                                  6
                                  20
                                
- 
                                  555
                                  2944
                                
- Second item for multiplication
- 5e47cf8a-2eec-4f4d-83d9-a82abf38af83
- B
- true
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                                  552
                                  2954
                                  6
                                  20
                                
- 
                                  555
                                  2964
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- Result of multiplication
- 401b9053-c46d-4e8b-b861-4b450f5eb386
- Result
- Result
- false
- 0
- 
                                  582
                                  2934
                                  31
                                  40
                                
- 
                                  597.5
                                  2954
                                
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 14ae5d36-3b7d-4915-90c0-7ff8f5596059
- Division
- Division
- 
                          1110
                          2908
                          40
                          44
                        
- 
                          1130
                          2930
                        
- Item to divide (dividend)
- 3b11c51c-7806-40a5-98b2-da1587f628a9
- A
- false
- b0d8da91-bdcc-44b1-93f8-f3dc5e923e83
- 1
- 
                              1112
                              2910
                              6
                              20
                            
- 
                              1115
                              2920
                            
- Item to divide with (divisor)
- e38fefc5-a2a7-43cd-9c0a-3d3bcfa80041
- B
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                              1112
                              2930
                              6
                              20
                            
- 
                              1115
                              2940
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- The result of the Division
- 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3
- Result
- false
- 0
- 
                              1142
                              2910
                              6
                              40
                            
- 
                              1145
                              2930
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8e13165d-ec24-43b2-ab6d-2081a50fd148
- Relay
- false
- 401b9053-c46d-4e8b-b861-4b450f5eb386
- 1
- 
                          652
                          2946
                          40
                          16
                        
- 
                          672
                          2954
                        
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- 79911ab3-0bb2-423f-9b09-cc7daf554fae
- true
- Curve Graph Mapper
- Curve Graph Mapper
- 
                          863
                          2524
                          181
                          224
                        
- 
                          958
                          2636
                        
- 1
- One or multiple graph curves to graph map values with
- 0bb544c8-bab7-4688-bbcb-3a8261f6d9df
- true
- Curves
- Curves
- false
- 0517f2f3-0517-41f2-956d-3caa6df4c5ab
- 1
- 
                              865
                              2526
                              81
                              27
                            
- 
                              905.5
                              2539.75
                            
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 8f7ff6d9-d1ad-47c3-b95d-c907375d9086
- true
- Rectangle
- Rectangle
- false
- 3bfc7a24-36db-4b47-8c33-65ba8b072928
- 1
- 
                              865
                              2553
                              81
                              28
                            
- 
                              905.5
                              2567.25
                            
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- 0a194642-2ace-40a2-9371-1fdb31c6e9bd
- true
- Values
- Values
- false
- 8e13165d-ec24-43b2-ab6d-2081a50fd148
- 1
- 
                              865
                              2581
                              81
                              27
                            
- 
                              905.5
                              2594.75
                            
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- 1152e18b-29f2-4516-95b9-d00168a6ab5a
- true
- X Axis
- X Axis
- true
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- 1
- 
                              865
                              2608
                              81
                              28
                            
- 
                              905.5
                              2622.25
                            
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- 22bd9999-24b4-4c89-b7c3-8cfceb7bfd7a
- true
- Y Axis
- Y Axis
- true
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- 1
- 
                              865
                              2636
                              81
                              27
                            
- 
                              905.5
                              2649.75
                            
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- e894ba31-d10e-430a-ae57-3b907326c13b
- true
- Flip
- Flip
- false
- 0
- 
                              865
                              2663
                              81
                              28
                            
- 
                              905.5
                              2677.25
                            
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- 5dd47338-a69e-403c-b0e6-28ce8cb72d72
- true
- Snap
- Snap
- false
- 0
- 
                              865
                              2691
                              81
                              27
                            
- 
                              905.5
                              2704.75
                            
- 1
- 1
- {0}
- true
- Size of the graph labels
- aea304b8-4d9b-4ff0-baf1-1ab501b12c7a
- true
- Text Size
- Text Size
- false
- 0
- 
                              865
                              2718
                              81
                              28
                            
- 
                              905.5
                              2732.25
                            
- 1
- 1
- {0}
- 0.0625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- c49f47cc-5dc4-4e0c-b8c8-2572f883a609
- true
- Mapped
- Mapped
- false
- 0
- 
                              970
                              2526
                              72
                              20
                            
- 
                              1006
                              2536
                            
- 1
- The graph curves inside the boundary of the graph
- af88c05c-c65a-452e-afb8-03ead7ccdd13
- true
- Graph Curves
- Graph Curves
- false
- 0
- 
                              970
                              2546
                              72
                              20
                            
- 
                              1006
                              2556
                            
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- d53018cc-57d9-4a8a-8ec1-f657ce6bf8c7
- true
- Graph Points
- Graph Points
- false
- 0
- 
                              970
                              2566
                              72
                              20
                            
- 
                              1006
                              2576
                            
- 1
- The lines from the X Axis input values to the graph curves
- true
- 28ed54b6-fb95-4400-9b96-be39d08e61f2
- true
- Value Lines
- Value Lines
- false
- 0
- 
                              970
                              2586
                              72
                              20
                            
- 
                              1006
                              2596
                            
- 1
- The points plotted on the X Axis which represent the input values
- true
- 3859e8eb-a8d8-489c-9af3-07cbef237797
- true
- Value Points
- Value Points
- false
- 0
- 
                              970
                              2606
                              72
                              20
                            
- 
                              1006
                              2616
                            
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- 15f46ee6-4d3b-4829-92f3-0234381521fc
- true
- Mapped Lines
- Mapped Lines
- false
- 0
- 
                              970
                              2626
                              72
                              20
                            
- 
                              1006
                              2636
                            
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- eae5032a-27c6-492d-a9ad-a32197a98c69
- true
- Mapped Points
- Mapped Points
- false
- 0
- 
                              970
                              2646
                              72
                              20
                            
- 
                              1006
                              2656
                            
- The graph boundary background as a surface
- 385cfc7d-69b8-4bf8-a8e8-235ff6dcb3a3
- true
- Boundary
- Boundary
- false
- 0
- 
                              970
                              2666
                              72
                              20
                            
- 
                              1006
                              2676
                            
- 1
- The graph labels as curve outlines
- e5350df2-11ec-4670-a160-59d360906919
- true
- Labels
- Labels
- false
- 0
- 
                              970
                              2686
                              72
                              20
                            
- 
                              1006
                              2696
                            
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 7632ccf4-a432-45cd-8527-b7823f3b8396
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
- 
                              970
                              2706
                              72
                              20
                            
- 
                              1006
                              2716
                            
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- 70491f98-3972-4ff2-a978-dec7aa20383c
- true
- Intersected
- Intersected
- false
- 0
- 
                              970
                              2726
                              72
                              20
                            
- 
                              1006
                              2736
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0517f2f3-0517-41f2-956d-3caa6df4c5ab
- Relay
- false
- 2272069e-441f-44d2-9cee-25e8d582e273
- 1
- 
                          390
                          2654
                          40
                          16
                        
- 
                          410
                          2662
                        
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 014f3a82-3e2e-4c4a-b79b-fb754973b0be
- Scale
- Scale
- 
                          136
                          2607
                          201
                          64
                        
- 
                          273
                          2639
                        
- Base geometry
- 088ca25e-6ea7-48f3-ace4-0c8e930bf8c0
- Geometry
- Geometry
- true
- 244a5752-77fd-4f13-8350-52f02184bb09
- 1
- 
                              138
                              2609
                              123
                              20
                            
- 
                              199.5
                              2619
                            
- Center of scaling
- 9e7f199c-7b01-4add-9318-865c5543c1ca
- Center
- Center
- false
- 0
- 
                              138
                              2629
                              123
                              20
                            
- 
                              199.5
                              2639
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Scaling factor
- 43d3790a-ac7f-4569-a53a-79ba4fab9fc3
- Factor
- Factor
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                              138
                              2649
                              123
                              20
                            
- 
                              199.5
                              2659
                            
- 1
- 1
- {0}
- 65536
- Scaled geometry
- 2272069e-441f-44d2-9cee-25e8d582e273
- Geometry
- Geometry
- false
- 0
- 
                              285
                              2609
                              50
                              30
                            
- 
                              310
                              2624
                            
- Transformation data
- 6ff09d7b-d063-494c-aed8-d823c8e1aee5
- Transform
- Transform
- false
- 0
- 
                              285
                              2639
                              50
                              30
                            
- 
                              310
                              2654
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 244a5752-77fd-4f13-8350-52f02184bb09
- Relay
- false
- ffc7114c-425e-4e46-9780-4f5439b2a045
- 1
- 
                          47
                          2621
                          40
                          16
                        
- 
                          67
                          2629
                        
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 790c5d89-8027-4b3f-9974-0aa9c9725140
- Division
- Division
- 
                          1447
                          3499
                          85
                          44
                        
- 
                          1487
                          3521
                        
- Item to divide (dividend)
- c76f374e-534e-4e89-b239-d9dc8de969fb
- A
- A
- false
- b8207e8f-d1d2-4ad2-b43b-73db4643f17e
- 1
- 
                              1449
                              3501
                              26
                              20
                            
- 
                              1462
                              3511
                            
- Item to divide with (divisor)
- 897bf1c5-c5a3-40ee-991e-0ef5fe2738c1
- B
- B
- false
- 0
- 
                              1449
                              3521
                              26
                              20
                            
- 
                              1462
                              3531
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- The result of the Division
- f654ad66-626e-4a53-b0fb-b97bf8db47c6
- Result
- Result
- false
- 0
- 
                              1499
                              3501
                              31
                              40
                            
- 
                              1514.5
                              3521
                            
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- 2a8521de-e5f6-49cb-bbe3-75b663e3287e
- Power
- Power
- 
                          -559
                          2069
                          85
                          44
                        
- 
                          -519
                          2091
                        
- The item to be raised
- 29d4dc65-97fd-47bd-928a-25c3e40e4289
- A
- A
- false
- 0
- 
                              -557
                              2071
                              26
                              20
                            
- 
                              -544
                              2081
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 9080713f-2153-4baa-8370-7871a215faff
- B
- B
- false
- 1144e4e4-28c8-484b-b1e7-db119f50edf8
- 1
- 
                              -557
                              2091
                              26
                              20
                            
- 
                              -544
                              2101
                            
- A raised to the B power
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- Result
- Result
- false
- 0
- 
                              -507
                              2071
                              31
                              40
                            
- 
                              -491.5
                              2091
                            
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1144e4e4-28c8-484b-b1e7-db119f50edf8
- Digit Scroller
-  
- false
- 0
- 12
-  
- 11
- 16.0
- 
                          -663
                          2029
                          250
                          20
                        
- 
                          -662.1945
                          2029.497
                        
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 6725d6c9-efab-49aa-9d02-2daa52073dc7
- DotNET VB Script (LEGACY)
- Turtle
- 0
-     Dim i As Integer
    Dim dir As New On3dVector(1, 0, 0)
    Dim pos As New On3dVector(0, 0, 0)
    Dim axis As New On3dVector(0, 0, 1)
    Dim pnts As New List(Of On3dVector)
    pnts.Add(pos)
    For i = 0 To Forward.Count() - 1
      Dim P As New On3dVector
      dir.Rotate(Left(i), axis)
      P = dir * Forward(i) + pnts(i)
      pnts.Add(P)
    Next
    Points = pnts
- 
                          1128
                          5105
                          104
                          44
                        
- 
                          1183
                          5127
                        
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 996d5ff5-14c1-4c31-b303-f95d048ef52d
- Forward
- Forward
- true
- 1
- true
- 5bb9f473-b63f-45e9-b4cc-e2754dd53763
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              1130
                              5107
                              41
                              20
                            
- 
                              1150.5
                              5117
                            
- 1
- false
- Script Variable Left
- d2c0c4fb-9cf6-41fa-b702-09c17addb9e2
- Left
- Left
- true
- 1
- true
- 7eca8f17-b48d-4b73-ada0-90a22d3fe212
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
- 
                              1130
                              5127
                              41
                              20
                            
- 
                              1150.5
                              5137
                            
- Print, Reflect and Error streams
- 04cee30c-e625-489e-9e48-8001a66c4b60
- Output
- Output
- false
- 0
- 
                              1195
                              5107
                              35
                              20
                            
- 
                              1212.5
                              5117
                            
- Output parameter Points
- a249c8f7-8389-41ef-9421-d4c3316c347e
- Points
- Points
- false
- 0
- 
                              1195
                              5127
                              35
                              20
                            
- 
                              1212.5
                              5137
                            
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 40d5b1ce-cd1e-4185-b05f-eb342b59a010
- Series
- Series
- 
                          561
                          5266
                          89
                          64
                        
- 
                          605
                          5298
                        
- First number in the series
- 2b666a1d-1cca-44a3-a105-682eb0e2206c
- Start
- Start
- false
- d644c106-358a-4d53-8003-e44a23932f16
- 1
- 
                              563
                              5268
                              30
                              20
                            
- 
                              578
                              5278
                            
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 85a9b54a-9b4d-46b5-aa17-b491a16746a3
- Step
- Step
- false
- d644c106-358a-4d53-8003-e44a23932f16
- 1
- 
                              563
                              5288
                              30
                              20
                            
- 
                              578
                              5298
                            
- 1
- 1
- {0}
- 1
- Number of values in the series
- ac84610d-c601-4c95-a440-2d941cb8b3cc
- Count
- Count
- false
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
- 
                              563
                              5308
                              30
                              20
                            
- 
                              578
                              5318
                            
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- d2dee351-7ad7-4195-88b0-b83aeaa59ee9
- Series
- Series
- false
- 0
- 
                              617
                              5268
                              31
                              60
                            
- 
                              632.5
                              5298
                            
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- f446bebf-5581-4727-80df-0479210e1c8b
- Duplicate Data
- Duplicate Data
- 
                          552
                          5109
                          102
                          64
                        
- 
                          615
                          5141
                        
- 1
- Data to duplicate
- df3c469b-15dd-4113-9695-cfe00ba73739
- Data
- Data
- false
- 46557eca-0fa8-4257-9968-cd3caf6e4133
- 1
- 
                              554
                              5111
                              49
                              20
                            
- 
                              578.5
                              5121
                            
- Number of duplicates
- b029cd2f-bf2b-4ae1-ba0f-ef7e2e1f9cc2
- Number
- Number
- false
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
- 
                              554
                              5131
                              49
                              20
                            
- 
                              578.5
                              5141
                            
- 1
- 1
- {0}
- 500
- Retain list order
- 5ee2542c-8564-4e98-b47e-a98477318db4
- Order
- Order
- false
- 0
- 
                              554
                              5151
                              49
                              20
                            
- 
                              578.5
                              5161
                            
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 7a247abb-61c5-46ae-9afb-f19cc07f8a56
- Data
- Data
- false
- 0
- 
                              627
                              5111
                              25
                              60
                            
- 
                              639.5
                              5141
                            
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 53dfe8d4-944d-46bf-8495-cdb43c7556b1
- Digit Scroller
- .
- false
- 0
- 12
- .
- 11
- 1024.0
- 
                          27
                          5260
                          250
                          20
                        
- 
                          27.61891
                          5260.25
                        
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c2429a84-5049-49fc-9a38-42778a26f71d
- Digit Scroller
-  ЯR
- false
- 0
- 12
-  ЯR
- 1
- 0.12228574351
- 
                          32
                          5161
                          250
                          20
                        
- 
                          32.31831
                          5161.933
                        
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- bfe92d3e-548e-4939-be0c-6a54fc045c4e
- Digit Scroller
- °
- false
- 0
- 12
- °
- 2
- 0.0003860762
- 
                          30
                          5205
                          250
                          20
                        
- 
                          30.23642
                          5205.192
                        
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 2276773a-904f-4273-aa34-9d5c0f9aced4
- Radians
- Radians
- 
                          406
                          5167
                          108
                          28
                        
- 
                          461
                          5181
                        
- Angle in degrees
- 541b6184-b2d9-4841-abf0-775b3d5c9532
- Degrees
- Degrees
- false
- 778435a9-4a09-40c9-a8d3-b6ca4d0b2811
- 1
- 
                              408
                              5169
                              41
                              24
                            
- 
                              428.5
                              5181
                            
- Angle in radians
- d644c106-358a-4d53-8003-e44a23932f16
- Radians
- Radians
- false
- 0
- 
                              473
                              5169
                              39
                              24
                            
- 
                              492.5
                              5181
                            
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- ddf12dcc-4532-4f5f-9017-ca2181ae4120
- Point
- Point
- false
- a249c8f7-8389-41ef-9421-d4c3316c347e
- 1
- 
                          1057
                          5256
                          50
                          24
                        
- 
                          1082.998
                          5268.367
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- Relay
- false
- 9b585c51-4d8d-4d1a-abf6-db393bf44760
- 1
- 
                          417
                          5229
                          40
                          16
                        
- 
                          437
                          5237
                        
- be52336f-a2e1-43b1-b5f5-178ba489508a
- Circle Fit
- Fit a circle to a collection of points.
- true
- ff0d8658-7c8a-4efc-9ff7-d21a2f4d80b9
- Circle Fit
- Circle Fit
- 
                          534
                          5527
                          104
                          64
                        
- 
                          579
                          5559
                        
- 1
- Points to fit
- a482c1db-c849-4af7-9253-38455522194a
- Points
- Points
- false
- ddf12dcc-4532-4f5f-9017-ca2181ae4120
- 1
- 
                              536
                              5529
                              31
                              60
                            
- 
                              551.5
                              5559
                            
- Resulting circle
- b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2
- Circle
- Circle
- false
- 0
- 
                              591
                              5529
                              45
                              20
                            
- 
                              613.5
                              5539
                            
- Circle radius
- 823410ef-5164-49ce-aaf0-4fd337d12394
- Radius
- Radius
- false
- 0
- 
                              591
                              5549
                              45
                              20
                            
- 
                              613.5
                              5559
                            
- Maximum distance between circle and points
- 721bd50f-6894-48cd-8640-471beedf3b88
- Deviation
- Deviation
- false
- 0
- 
                              591
                              5569
                              45
                              20
                            
- 
                              613.5
                              5579
                            
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- cos((4*atan(1))/N)
- true
- 97df6443-4cee-4503-a278-5775d3d97c17
- Expression
- Expression
- 
                          469
                          5463
                          215
                          28
                        
- 
                          567
                          5477
                        
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- ac53965d-9c57-49ef-a4e1-15cf2c013e39
- Variable N
- N
- true
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
- 
                                  471
                                  5465
                                  11
                                  24
                                
- 
                                  476.5
                                  5477
                                
- Result of expression
- 8a13a8ee-43ae-490c-9a67-94c0a5edb3de
- Result
- Result
- false
- 0
- 
                                  651
                                  5465
                                  31
                                  24
                                
- 
                                  666.5
                                  5477
                                
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 0fb4bac9-595d-4516-9de2-921f847556b0
- Scale
- Scale
- 
                          708
                          5634
                          126
                          64
                        
- 
                          770
                          5666
                        
- Base geometry
- 269c46c8-fb57-4272-8066-350e30875f30
- Geometry
- Geometry
- true
- b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2
- 1
- 
                              710
                              5636
                              48
                              20
                            
- 
                              734
                              5646
                            
- Center of scaling
- f959d9b2-b769-41c1-a28e-850ee2a2a776
- Center
- Center
- false
- 3554d94d-6df9-4e70-a491-7d5078530e78
- 1
- 
                              710
                              5656
                              48
                              20
                            
- 
                              734
                              5666
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Scaling factor
- f2bf6058-f07e-4ee4-aaf8-c12678761178
- Factor
- Factor
- false
- 8a13a8ee-43ae-490c-9a67-94c0a5edb3de
- 1
- 
                              710
                              5676
                              48
                              20
                            
- 
                              734
                              5686
                            
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ec397e86-bb0d-45eb-be56-aed938deaf9d
- Geometry
- Geometry
- false
- 0
- 
                              782
                              5636
                              50
                              30
                            
- 
                              807
                              5651
                            
- Transformation data
- 4161ae35-ffb9-4065-975d-03f05b73c621
- Transform
- Transform
- false
- 0
- 
                              782
                              5666
                              50
                              30
                            
- 
                              807
                              5681
                            
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- cd77b622-9a86-4cac-9598-e29eb480069a
- Area
- Area
- 
                          522
                          5644
                          118
                          44
                        
- 
                          584
                          5666
                        
- Brep, mesh or planar closed curve for area computation
- 51ccef21-cf74-4b38-acac-13099eba9e08
- Geometry
- Geometry
- false
- b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2
- 1
- 
                              524
                              5646
                              48
                              40
                            
- 
                              548
                              5666
                            
- Area of geometry
- 2e0e9257-78e7-4846-ae26-603cf7b7191f
- Area
- Area
- false
- 0
- 
                              596
                              5646
                              42
                              20
                            
- 
                              617
                              5656
                            
- Area centroid of geometry
- 3554d94d-6df9-4e70-a491-7d5078530e78
- Centroid
- Centroid
- false
- 0
- 
                              596
                              5666
                              42
                              20
                            
- 
                              617
                              5676
                            
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e0da04d7-7efb-44af-880c-05873d34cb64
- Multiplication
- Multiplication
- 
                          833
                          5546
                          70
                          44
                        
- 
                          858
                          5568
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 00864368-5c1c-4f5f-99fe-d6e5c94e6ebf
- A
- A
- true
- 8a13a8ee-43ae-490c-9a67-94c0a5edb3de
- 1
- 
                                  835
                                  5548
                                  11
                                  20
                                
- 
                                  840.5
                                  5558
                                
- Second item for multiplication
- 42f713fe-412d-4667-86ff-c867d8d99fe1
- B
- B
- true
- 823410ef-5164-49ce-aaf0-4fd337d12394
- 1
- 
                                  835
                                  5568
                                  11
                                  20
                                
- 
                                  840.5
                                  5578
                                
- Result of multiplication
- d279ab5e-07f6-49ba-9dd7-e164e8d7e621
- Result
- Result
- false
- 0
- 
                                  870
                                  5548
                                  31
                                  40
                                
- 
                                  885.5
                                  5568
                                
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- .5*L*(1/SIN(π/N))
- true
- d089d8e3-7cf2-484e-bc5c-7ae0430080bb
- Expression
- Expression
- 
                          796
                          5398
                          207
                          44
                        
- 
                          890
                          5420
                        
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f0766318-0199-4d9f-ae92-ebd30f99e69e
- Variable L
- L
- true
- c2429a84-5049-49fc-9a38-42778a26f71d
- 1
- 
                                  798
                                  5400
                                  11
                                  20
                                
- 
                                  803.5
                                  5410
                                
- Expression variable
- fda47015-0c34-4726-8afc-bc4c082daa74
- Variable N
- N
- true
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
- 
                                  798
                                  5420
                                  11
                                  20
                                
- 
                                  803.5
                                  5430
                                
- Result of expression
- 31cc3c48-9804-4a57-8cb1-d42fea2c8488
- Result
- Result
- false
- 0
- 
                                  970
                                  5400
                                  31
                                  40
                                
- 
                                  985.5
                                  5420
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 14c9fb5a-3cf2-4f86-aa99-97cab6eec72b
- Panel
- false
- 0
- 31cc3c48-9804-4a57-8cb1-d42fea2c8488
- 1
- Double click to edit panel content…
- 
                          1060
                          5392
                          160
                          100
                        
- 0
- 0
- 0
- 
                          1060.971
                          5392.169
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- R/(.5*(1/SIN(π/N)))
- true
- 72dcab9e-b4c9-4e1f-805d-7d9edf73b6b3
- Expression
- Expression
- 
                          452
                          5029
                          224
                          44
                        
- 
                          554
                          5051
                        
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4208bc57-258a-4aaa-acbb-6ff9d4f4e246
- Variable R
- R
- true
- afcc5191-a0bd-476c-9768-591ad0f7378c
- 1
- 
                                  454
                                  5031
                                  11
                                  20
                                
- 
                                  459.5
                                  5041
                                
- Expression variable
- eb739245-110e-46d1-9a32-a5e452ca05bd
- Variable N
- N
- true
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
- 
                                  454
                                  5051
                                  11
                                  20
                                
- 
                                  459.5
                                  5061
                                
- Result of expression
- 46557eca-0fa8-4257-9968-cd3caf6e4133
- Result
- Result
- false
- 0
- 
                                  643
                                  5031
                                  31
                                  40
                                
- 
                                  658.5
                                  5051
                                
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 88abfddb-dc25-4a47-b1b4-50a31d0d4a16
- Division
- Division
- 
                          223
                          5326
                          90
                          44
                        
- 
                          268
                          5348
                        
- Item to divide (dividend)
- 999497b8-4949-42d0-82ee-bb6922eaa656
- A
- A
- false
- 0
- 
                              225
                              5328
                              31
                              20
                            
- 
                              240.5
                              5338
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 360
- Item to divide with (divisor)
- 2027e357-80d3-4640-b420-0441660b8610
- B
- B
- false
- 53dfe8d4-944d-46bf-8495-cdb43c7556b1
- 1
- 
                              225
                              5348
                              31
                              20
                            
- 
                              240.5
                              5358
                            
- The result of the Division
- 07a66282-69e2-4d09-a2fc-d9349dd70354
- Result
- Result
- false
- 0
- 
                              280
                              5328
                              31
                              40
                            
- 
                              295.5
                              5348
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e15bd0e5-52c7-4abc-b78c-67d41b71e40a
- Panel
- false
- 0
- 823410ef-5164-49ce-aaf0-4fd337d12394
- 1
- Double click to edit panel content…
- 
                          787
                          4979
                          160
                          20
                        
- 0
- 0
- 0
- 
                          787.0285
                          4979.544
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 3e455af5-11a5-4594-aa1e-1337627e9e91
- Reverse List
- Reverse List
- 
                          667
                          5187
                          66
                          28
                        
- 
                          700
                          5201
                        
- 1
- Base list
- 586d2783-4e94-43a8-943c-6fdfd3322a72
- List
- List
- false
- d2dee351-7ad7-4195-88b0-b83aeaa59ee9
- 1
- 
                              669
                              5189
                              19
                              24
                            
- 
                              678.5
                              5201
                            
- 1
- Reversed list
- 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065
- List
- List
- false
- 0
- 
                              712
                              5189
                              19
                              24
                            
- 
                              721.5
                              5201
                            
- a3371040-e552-4bc8-b0ff-10a840258e88
- Negative
- Compute the negative of a value.
- true
- 8bf27de0-4004-4ff7-b736-5cb42643e79f
- Negative
- Negative
- 
                          693
                          5285
                          88
                          28
                        
- 
                          736
                          5299
                        
- Input value
- b7de0a45-9da5-47cd-8e32-3a10c8e4a2c6
- Value
- Value
- false
- 3aa110d1-bf16-4618-8fb9-18875ca9621d
- 1
- 
                              695
                              5287
                              29
                              24
                            
- 
                              709.5
                              5299
                            
- Output value
- dc80f669-d3b5-461a-bbfc-9b9c97908674
- Result
- Result
- false
- 0
- 
                              748
                              5287
                              31
                              24
                            
- 
                              763.5
                              5299
                            
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- aaecc85c-5804-4f33-b45d-79f7f9c6f1ac
- Merge
- Merge
- 
                          811
                          5187
                          122
                          84
                        
- 
                          872
                          5229
                        
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 1a063d31-b99f-4b3b-a626-650425924c2b
- 1
- false
- Data 1
- D1
- true
- 8f5ab813-3691-4499-bab5-66b32b35b891
- 1
- 
                                  813
                                  5189
                                  47
                                  20
                                
- 
                                  844.5
                                  5199
                                
- 2
- Data stream 2
- 8b6a68fc-650b-43b3-b24c-6d7280ddacda
- 1
- false
- Data 2
- D2
- true
- 0
- 
                                  813
                                  5209
                                  47
                                  20
                                
- 
                                  844.5
                                  5219
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 2
- Data stream 3
- 0da47d86-2eea-46ac-9cc6-efef4ba603aa
- 1
- false
- Data 3
- D3
- true
- dc80f669-d3b5-461a-bbfc-9b9c97908674
- 1
- 
                                  813
                                  5229
                                  47
                                  20
                                
- 
                                  844.5
                                  5239
                                
- 2
- Data stream 4
- 1e2778df-a9ca-4306-96b5-4c9c4125ec24
- false
- Data 4
- D4
- true
- 0
- 
                                  813
                                  5249
                                  47
                                  20
                                
- 
                                  844.5
                                  5259
                                
- 2
- Result of merge
- 277e686f-fcb5-4411-b782-b0d4e125e2c1
- 1
- Result
- Result
- false
- 0
- 
                                  884
                                  5189
                                  47
                                  80
                                
- 
                                  899.5
                                  5229
                                
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 60e0663b-6476-4b01-bd63-0c0198ccc786
- Reverse List
- Reverse List
- 
                          674
                          5092
                          66
                          28
                        
- 
                          707
                          5106
                        
- 1
- Base list
- 2dbaef14-36fe-4e6b-a6fc-d6ece26ab7f3
- List
- List
- false
- 7a247abb-61c5-46ae-9afb-f19cc07f8a56
- 1
- 
                              676
                              5094
                              19
                              24
                            
- 
                              685.5
                              5106
                            
- 1
- Reversed list
- 332a85d2-acae-400d-b270-26b2f3125210
- List
- List
- false
- 0
- 
                              719
                              5094
                              19
                              24
                            
- 
                              728.5
                              5106
                            
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 23c55c34-6817-421b-8b50-44e1f6ed219e
- Merge
- Merge
- 
                          879
                          5025
                          122
                          84
                        
- 
                          940
                          5067
                        
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8b9f8878-3208-4942-ac54-df3ab345b55b
- 1
- false
- Data 1
- D1
- true
- 332a85d2-acae-400d-b270-26b2f3125210
- 1
- 
                                  881
                                  5027
                                  47
                                  20
                                
- 
                                  912.5
                                  5037
                                
- 2
- Data stream 2
- 19058d50-e13c-474a-95c0-830c3a9db49b
- 1
- false
- Data 2
- D2
- true
- 0
- 
                                  881
                                  5047
                                  47
                                  20
                                
- 
                                  912.5
                                  5057
                                
- 2
- Data stream 3
- a500a7bf-9d14-419c-b493-2feba5d238de
- 1
- false
- Data 3
- D3
- true
- 7a247abb-61c5-46ae-9afb-f19cc07f8a56
- 1
- 
                                  881
                                  5067
                                  47
                                  20
                                
- 
                                  912.5
                                  5077
                                
- 2
- Data stream 4
- c4fef57a-4dca-44a4-84c6-20aadccc963c
- false
- Data 4
- D4
- true
- 0
- 
                                  881
                                  5087
                                  47
                                  20
                                
- 
                                  912.5
                                  5097
                                
- 2
- Result of merge
- 5bb9f473-b63f-45e9-b4cc-e2754dd53763
- 1
- Result
- Result
- false
- 0
- 
                                  952
                                  5027
                                  47
                                  80
                                
- 
                                  967.5
                                  5067
                                
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 282f65b3-c82c-4daa-95bc-75a538e5c507
- Panel
- false
- 0
- 277e686f-fcb5-4411-b782-b0d4e125e2c1
- 1
- Double click to edit panel content…
- 
                          1328
                          4998
                          160
                          479
                        
- 0
- 0
- 0
- 
                          1328.951
                          4998.402
                        
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 2d148978-bc67-490f-aac8-90ad0eee5b78
- List Item
- List Item
- 
                          954
                          5545
                          77
                          64
                        
- 
                          1011
                          5577
                        
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 043107fb-534e-4338-b36d-df84e0cf9cca
- List
- List
- false
- ddf12dcc-4532-4f5f-9017-ca2181ae4120
- 1
- 
                                  956
                                  5547
                                  43
                                  20
                                
- 
                                  977.5
                                  5557
                                
- Item index
- 350a0836-dcc8-4f52-8157-c6cd516a99d4
- Index
- Index
- false
- 0
- 
                                  956
                                  5567
                                  43
                                  20
                                
- 
                                  977.5
                                  5577
                                
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- d7dc3b8b-6076-4e6c-b5b6-1ab79a6eb7b8
- Wrap
- Wrap
- false
- 0
- 
                                  956
                                  5587
                                  43
                                  20
                                
- 
                                  977.5
                                  5597
                                
- 1
- 1
- {0}
- true
- Item at {i'}
- f0a2926d-0090-4148-a401-3d572f930ace
- false
- Item
- i
- false
- 0
- 
                                  1023
                                  5547
                                  6
                                  60
                                
- 
                                  1026
                                  5577
                                
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- b86a52bf-2406-4de9-86d2-b4d485bc251e
- Deconstruct
- Deconstruct
- 
                          1067
                          5551
                          120
                          64
                        
- 
                          1108
                          5583
                        
- Input point
- 548b57c4-3a3c-4a6f-8af8-bf61e4e59001
- Point
- Point
- false
- f0a2926d-0090-4148-a401-3d572f930ace
- 1
- 
                              1069
                              5553
                              27
                              60
                            
- 
                              1082.5
                              5583
                            
- Point {x} component
- 44bc53b6-00e2-489b-a5dc-407425442819
- X component
- X component
- false
- 0
- 
                              1120
                              5553
                              65
                              20
                            
- 
                              1152.5
                              5563
                            
- Point {y} component
- 2f6a5a53-3d55-41a3-aff0-e99afa30befd
- Y component
- Y component
- false
- 0
- 
                              1120
                              5573
                              65
                              20
                            
- 
                              1152.5
                              5583
                            
- Point {z} component
- 7190c040-cf1d-4a5e-8023-43bb486fb5ff
- Z component
- Z component
- false
- 0
- 
                              1120
                              5593
                              65
                              20
                            
- 
                              1152.5
                              5603
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f154e627-b8c9-4f9e-b1ba-a80649ec7c08
- Panel
- false
- 0
- 68c4ecd4-8214-404d-ae51-7077c9a01211
- 1
- Double click to edit panel content…
- 
                          95
                          4973
                          116
                          20
                        
- 0
- 0
- 0
- 
                          95.03748
                          4973.852
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 5933667b-3af6-464f-b517-0cc7a179cde2
- Panel
- false
- 0
- f2e126e1-a59b-4fae-8f48-32341df4b306
- 1
- Double click to edit panel content…
- 
                          95
                          5055
                          118
                          20
                        
- 0
- 0
- 0
- 
                          95.86689
                          5055.486
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 85f48747-2124-46a4-98df-e9d256731d7a
- Division
- Division
- 
                          1211
                          5551
                          70
                          44
                        
- 
                          1236
                          5573
                        
- Item to divide (dividend)
- 2432be2c-9d9f-4aac-803b-2fcde25fb454
- A
- A
- false
- 44bc53b6-00e2-489b-a5dc-407425442819
- 1
- 
                              1213
                              5553
                              11
                              20
                            
- 
                              1218.5
                              5563
                            
- Item to divide with (divisor)
- 65c55d0e-0edc-48e9-8eae-b467e344896f
- B
- B
- false
- 2f6a5a53-3d55-41a3-aff0-e99afa30befd
- 1
- 
                              1213
                              5573
                              11
                              20
                            
- 
                              1218.5
                              5583
                            
- The result of the Division
- 1bd4238d-59e3-4478-af43-8dbfe4dda340
- Result
- Result
- false
- 0
- 
                              1248
                              5553
                              31
                              40
                            
- 
                              1263.5
                              5573
                            
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 007da1ee-8d7e-41b8-aae6-e1f819a393a3
- Panel
- false
- 0
- d2feb401-36df-4805-af94-8e108f24e9dd
- 1
- Double click to edit panel content…
- 
                          94
                          5015
                          116
                          20
                        
- 0
- 0
- 0
- 
                          94.83049
                          5015.627
                        
- 
                          255;255;255;255
                        
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
- 
                      255;255;255;255
                    
- A group of Grasshopper objects
- f154e627-b8c9-4f9e-b1ba-a80649ec7c08
- 5933667b-3af6-464f-b517-0cc7a179cde2
- 007da1ee-8d7e-41b8-aae6-e1f819a393a3
- 3
- 3d90ee0a-71c1-442e-a7e7-660c8099a19d
- Group
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 2bb0b080-8bdc-42a3-8107-71e06cc4368c
- Division
- Division
- 
                          336
                          5272
                          49
                          44
                        
- 
                          365
                          5294
                        
- Item to divide (dividend)
- 16c182e4-0901-4869-a917-a38957b02052
- A
- false
- 53dfe8d4-944d-46bf-8495-cdb43c7556b1
- 1
- 
                              338
                              5274
                              15
                              20
                            
- 
                              345.5
                              5284
                            
- Item to divide with (divisor)
- 7858c11b-02d6-4b55-b212-bd137673d36b
- B
- false
- 0
- 
                              338
                              5294
                              15
                              20
                            
- 
                              345.5
                              5304
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 9b585c51-4d8d-4d1a-abf6-db393bf44760
- Result
- false
- 0
- 
                              377
                              5274
                              6
                              40
                            
- 
                              380
                              5294
                            
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 5452b66d-1aec-4c7d-9c3e-d3512215367d
- Interpolate
- Interpolate
- 
                          951
                          4868
                          225
                          84
                        
- 
                          1124
                          4910
                        
- 1
- Interpolation points
- e9187188-4b3d-4dcd-89de-83e57a651893
- Vertices
- Vertices
- false
- 065f686a-4028-4e05-b353-3c9ef8ca5da0
- 1
- 
                              953
                              4870
                              159
                              20
                            
- 
                              1032.5
                              4880
                            
- Curve degree
- 036ab95a-1c40-4f62-81f0-cb6d46d98e73
- Degree
- Degree
- false
- 0
- 
                              953
                              4890
                              159
                              20
                            
- 
                              1032.5
                              4900
                            
- 1
- 1
- {0}
- 3
- Periodic curve
- 02139147-d05f-45b9-af8b-12fbeb61998b
- Periodic
- Periodic
- false
- 0
- 
                              953
                              4910
                              159
                              20
                            
- 
                              1032.5
                              4920
                            
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 17783bc4-4d55-418a-9ec5-a284d3ac4e64
- KnotStyle
- KnotStyle
- false
- 0
- 
                              953
                              4930
                              159
                              20
                            
- 
                              1032.5
                              4940
                            
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- ee4ecbe2-4fbf-4854-bfd4-5d67e8d925cb
- Curve
- Curve
- false
- 0
- 
                              1136
                              4870
                              38
                              26
                            
- 
                              1155
                              4883.333
                            
- Curve length
- 926602c6-92cf-4952-979f-f93dfb6a8664
- Length
- Length
- false
- 0
- 
                              1136
                              4896
                              38
                              27
                            
- 
                              1155
                              4910
                            
- Curve domain
- f0d328d9-b8a7-4455-a914-0a12376e0d53
- Domain
- Domain
- false
- 0
- 
                              1136
                              4923
                              38
                              27
                            
- 
                              1155
                              4936.667
                            
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
- 
                      7H0HXBNZ13dQpEpRUVAUgxXp2FFZCSEUCUVBxU4gAaIhiUlQsC0q9oaKitiwd8GOvWFby9p7X1exrdjLqnz3TmZCZjIzJA8B8nzv4/50YU7mZuZ/zj3l3nPPMQuUJKSmCMSKUvDHiMFg1AJ/raWi1CSheMgIgUwulIghKQpchmT4xxR+BLsvRMDjC2TwI7VQsgVGCg2El83Bpb7B959FD1oROeWuInKzLHWVaZRMMEIoGAnpFoBuEp0MRuHboJfDBfLkmHSpAJJrol9shdIiJLIUnghSWoCrK1euLMXuihaIBAkKAR+jCYXCUrtAQaJQLFSAt4iSSaQCmUIokGPDwr/GgTwF8j1m4Jedj1Omz51y18wyUCBPkAmlCvTl4SMyjCN4KQLstzc1Y0OCPT2f7F78cvk08O+TRfng38eLtj9etAv5Afl111r479zZyL9Zj+cuUH3yUk4E/Hl+JhxhIbzlydI1qp8fZ89/nL1A9bHHizaqRlN+TDnIy0U74fXF43Ffjd2LPhJK3Yh/vGVl3zs9F/nwTLqfczepBkT/Ra/Q3oX8jL4R8o1qD7BR9Wzoc2KPXfYZhKp8R/RLkXdHUUVGQPHB7tVEUokwirbyizBGoHxBR8OxD4UX4aynZ3BIrHkvIGFwKsixaQL/WGFX2ZJU5QSqiU0BIGxDgTCi8lMDvWwSw5MlCZBPOsGp9rW0dEAdIFn9JZIUbAZNaBzXvVYfIM64rzKHVzS+xrxXgpTLS5ekKtQ/axEsk6RKNT5cOziExRXGy3gydAoYoTOrFu6j8Iqp8nPpyDOjt9uy5HJBSrwoPShVJFKfCqyo1MREgSxRKE92Z/ZRagy/dp7e8D93JjtVpEiVCfzEglSFjCdyZ0alxouECWGC9BjJMIHYTwxGs8GG7lOmb+DIpugoJqxURbJEhl22ChcmJPMEImaULF0iqxHKx7TMyuJljYf49OHmm8wR/iq2GIWbsRZlj2lK8T11ypRFZDxknwqmPoCDlsprOLDgdRPldYhRDRQ/4+DeZbrPZ02vkwPyNwZtWGNz7vi4TwtxT1UL4ZU5WyJW8IRipR51QUcxCZDIUNWKMcaELRFJUmWYhoP/J9NVTixmEhyXKUlkBst4cnmyRAp0H1OifKsaoYGI9IC/83u9HNPvY1LEdK9Xnt9fpC4EJCOUVBp35/rD+y3CsntuH5Jz/g8LQKqBkmSjf7kXe1sG5v+R/9qxIKw+INVESU+cu/COes7gbl612eeNwMYFkIxR0vbTrBHfHR1Cjjx7NKezrfMDQKqFkj5cf1K4ql4xN+/Z80GZsZtfAJIJSlpxsJ3d9Z+1gw8Z1Sgc55TzHZBMUZI0n7t8s00XTkaD2azQluNGApIZSprw+SDD+rBxZMHBzkaX9wavASRzlDT1xMneR/6y4m7JfDK384uvboBkgZLEezxennqxjbPp0eY4X5d93wDJEiXVPDDsei3fX/55b+Y92uHV7zog1UZJ08e1/PHmRnzQAquoNx+jHPsDkhVKSvvUwNlNmhO2etwM0yVfp/UFJGuU9ONJiy4X3nTosdc32mP4yriPgGSDkn7uZy3rv2B1YK556eXVtzPNAMkWJTVtuuzcrPaPQ+YuP1O0I/j7fECqg5IWh73iHt3cmTtvj1vj5f17ugNSXZT0ZnXtxgUPbCN3xPXk33dsVgRI9VCSs/kxN++wd6zCmB9H59Zq0BmQ7FBSo4HSZXU7vQ1dYLzPcrh16CJAqo+SHrz8uH5WZoOQbceGPbXdsmQjIDVAScWtOaf+zerOPrCE5ZUw9vNjQLJHSb/PyjE78/Zn0FT3q/l/rB2fDEgOKCmxfvQ3o8ljgqYY7ZWJncOmAlJDlBSZUzghrWYEa9WQpLqvzDL/BaRGKOl0arv278dlhB98sPb2dbP08YDkiJIudpw/ct7xSz0K6q4/wDw13hWQGqOknEnX9n5flsLa+s7Zmi/OhRLVBJsORcLJde1zOFnvOW2Pc/1eAZITSup2pem1+cuPsNaO2TIhZdjoTYDUFHuvBxv6rZ/UIXJ84vN7DEZ2PCAxUdJyYUr2rtWenLW1cm8d/NVnj1lo4BCcBnGGmjlULFfwxAmC4FShSplNlP1Z6/aRGiFH9oTPenSUZ0yiNswihAnD1C8zLFgKhUwYn6pQanhUdWMqykhvKuq3KlRR7WIKF/0Ivcne0P1FJ9beKwo1FSXd1STfxDSFk3/TvcO0CS8HqqmozfkXt0148zBsR7xt3Bur7rZqKmp874hPZ9alBW2UTAuZGpB+XE1FPX29b8W74NCAaW5t5jBCmE/VVNTO/GO/Qnb3485ymlFybtFRGzUV1Tum8WmnvqWsxSfa55nH/PyopqJiujVMmdziVeSMCKOPE63CvqupqLHBCsnQtT7BB2pczXxY+8gHNRW1xC3CKejfwRHb5UuWrHcdv11NRX3PSQvcFMoI3tFght/zib3fq6mo+VM57S85jg5a1WU151nRzuZqKqrk9zp1/pwcHrIkpOmuGI82n9VUlEV4x8+XlzULye9xq/vgFtcuqKmoS1HvCzyeh3M2Nl/lZOUj91RTUdPdVqc7RnGDs9JzHXdc6bVfTUXtXVxk6mgq467re8PJ9HpRPzUV1WbXnTPvPr0Km7nynVd0X/tsNRVVw2/HvFH7xkUu/NLVr+3U0mtqKur466j3jWxcwxa7L1tmsT5oq5qK+pTfJ8gi3z9sX3OvOkm9um9VU1F3hzCF+6/3ClnqfLXXjSEHVqipqOlDWV9nnl8Ruj39Q728p+FpaiqK8VdSp6jdJQFZLd69HTSz2001FcWI7vf86LXVPXZcbbiv1ow7ddVUVK+Ofjn1ot1YuwZO6+Ey502mmoqa0nCkY+7O82EzRvPsi14PZaqpqD6pQ9jtitLDdpr6Fdh9lDVXU1Hciw6nlhXWCVp+9PfE+jvblqqpqI8+8zm+70pCdrLz9l8b1CJFTUXV+mdaKqvf9JCpPVkDLkhC/NVU1JYPkes6fW0RuNti+/tj4+fL1FRU889/vPZ3Pha81GQLc1KscT1AckZJvq4HuV7sTkHbT4d2ZA3bMQeQmqGkYUE+vU12rggYbzVp5rj7Z6EL0Bx7+JjMgZuXGgctjv+8zv7AqO6A1AIlHXJ+uzBuigNr8unsW37bDh0BpJYoKcMla1Nzp7kBB9rsj1nU/7EDILVCSeO4u/ufTtkQtDel05LZfZvaA1JrlORxl7mY/9WPM6PTMvsufeXwu1ywJ+x7xXrJiDY9ctfbtnpR1H06ILVBSQvqlEZ05I8JX/aq2Ye78vCegOSKklZ7FMy/5TnNfxYzZnJU0Zw7gOSGkpxW+/1xLiU5aNfqbbeXMTqwAckdJW006tniDDeaPflK7hDTbpZnAckDJZ2aZ2vy27uH4evWLHsUceHQIUDyxKbe5FWnalu97bGup6dtbI9mjoDkhZL+bdhhzeC2sf6HVn75i3vWXQJI3ijpy9en6y80LgmZ/Jv4clazK6MByQcl/eF+osG5mrPDj0z75PzKrO4SQGqLktZO6uS+fMDtgB1OCts/nK5BA9sOJT0btXfC/QvyHlu49qFn+KMCAKk9SlraRfqo4530oF0is71znu3wAqQOmGa71qrZ4BMDg2fX2XEu7PO8IEDqiJLkNVLtI5rY9pi3/eP2oR/2dtMwep0YFEZv0vrnsaxWZ0PGvzg908JmrLUejB40CKRG7/C6mb9t+JnfY/fRbjFnDsjr4r7LJCI1JV4gw1s9U3QoMnvmhX5SzuQxEyQikTL4g9YtUSThKYTiJKZUIhQrmGJkYDnp6xNNHdkjabw/dj0SeR7l0ggSCppEAzucIGCgXFn/eHHDsbc7R+z7c1xyuNulSZZKskbwR4BTFbsGgA/ykUtwojMyXDmMqHYnGYyQAAbjKKtWlHCEBBkHqhyGrTtn9PS2J62jYKQlVwjEikCegkcfdZoEyAAgyQw1hml+yDiKp0jGXr3maO+xxqEKQQqDUbY6ZaJEGH4Gi10ZjCx/VBxqUonDIcG6TeKf57iz3E/u9JbVHYTD3pydKhvBg4EsXiKgc2BCIRFdOSN4olSeQsBUJAuYCdgAUCR4yK8CJk8BfpRLBQnCRKGAz5TyZOA7FQKZp0mIkM8XiFV4kUoL0fuheGINgSkjaclqpgsHAAhY/R2wOiOAwGqmO6D+dtISefohQrE0FYmFTVGQyaCpw0ZeXyFhClCMSF9wzNsXrq+zV4XOHGDZtveqj+Px2gAZQ+Pl0MvlTQaiD1jByeAPEJL6o5OhhDgZLrXhMDK64xAyKgehllGYLDCBFlFKC1+SAgSvXNTmpTXP9wvrFrb1+o399jlNZHixUI2rKRZlpPLQ+9V3rqi4dm7QlJoZnt36TNmlB/SABNGgl+d3srYSPUmqAhUwExr46kchulYFHZhooxVjSeFyHDD/3kKfKP/dNo8bBV3vF40XMmQcTSFTXtaAiQwHhvY4PHJHpagbwCGPiEOsJ4dxqTseB6NycLBXTXXmCKD8JDI6JPhPzEy47BnclaG/dV7z7tIr3fVJpSDi3Z0OESA3OERqaI9IglCWIKKVjXN9b5aGrDsWvokn+qfI7om/gSBS4keHSJTfSdTWwaiW1NZ5Po93/iH7Gpbd79otrw2b7HDvVTtQOELIFzARRapp7kwpgG2D3obZNjBBgKIansoTMUUCcZIimSkXJMFdIblWxo0Yv1M/ogb6OKqWsHoDFeTdFcD6mczEZbkBqq9OJs5GZeL4yNOQvmT3ZalTbj+rHZI55fCm2aFFvwzXwEUBfGwhPkwyscsCKlrahdTAUfnLdZVeK/SGMLkghehSWp24Vg0VEcssnl3oMmrKegJE8HVIIEIulwcRMcbSA0SXfOkgAiJUzQ4xvIkJOaLGKUxjUnHKPloqEipUXIL6cphQPIwigvmjnfHy0U1DD8z6/rzB8On98OwKg/dpskt5Wd+aEvIjqzMdP0o6VQs/TOMlEpGAp1KADA3XBlMsJqyEBIFcrj48qa6BCg9uaClDTHLOLLvHM9lw8wFrVbtaf3P4PQ7jY0vEodFkDXZd77xxR9XJQDLemHki6kTD09ERlmYxPHESYCzq+iCSy9cCqd2NBRuWh81gTQy/OXXB/h6PcUiZoYNqYlVGqQy0EM1CiRbQLBpekI5oNS+LOGB0IdAaLmIwQNh1xUbVBEydVhmQIZOfEjIw+VE3qRaDwk1aMXrh9X+Kh7E3bG3z8+Kfba+TmGe8f2ROg29rygUiIDQCmTBB6Tdp5x0RrbtpOE8qFYqTMKTg6+jRmXjSzrie+f0D4bNXZA91iQzpWEFLCSM6pjlgznSSpaP+ue6cDv3NMOaYUDEn3mVy81zjw/67Y1s4bDp3uwHudW0CBQkSgJssNUHBZMkSNN3YWhRs6tpLAF5BMEK5ahPPkwuYUhFPLHBnynh8YSrgnpgP/iaJVPE4XM8RM3myBO1WbYhbTLTPrcEw4ge0jRqALTzKAYifJ3NvGcC9PcrWyb1tDL6bCcJJtjKGgm5u2YORvveDPRkvHd/1D9o3tG0WJ7LoHu69a5K9K3KxPNEkhmgVFE0GXGyAQOWxGAwpEai8NghQOi1FOAaoZAgRFSVuytiTFKjVfxptuOudFrS/aff6reVLmuD1KTJaFBxNU5+q0fStT4+6objEkulTqQeHweDouDTRSzmftMIkcPfB44dn3A+cnn2j7biRll/wzotyJE3nBb1eGVjEBdJhQZSR8hYlmCx1heIC/kJlwxPL26DwkIJiVniqnvHHfPa2t8sUL0s+P8IrfGRITYWvvFwZkDDZdJBkBGAaHYsKNTS617yx6U26/Aqa27vDDMaSfovwgh8J5k/kCOCdxGoq85oUuNZjS1IA/GDiwckHb07TTkkTN/upHkVzDpbRtPVUgE7JGgqgKwDQPSJCxwB+TIFQJ9VsGQo/pXTiSF9uyfM6v05u6x25yf5025vRPMKKZx94n6bcKC+Xp42JO9AV1MZSuK4AsSlmkewxxboi2OikjWtHIh+jQecVf1jD2v3rR+72H3Gn3dVHuQRVI5CnijRXHLDrep9X7igAX8kAKPRAAEDnlRnVvBp+ROgmjNjE3ns4UvT86YC3uDey7JkK3gWm4EiTyZ1ZLeOHFoFCObBy6XBHS6CAeivdAwskoM+bBL+BFHFi+gzl82nAjiNqYG8eLZEpItXzk0gklpj+oqXEqkYjMCyuNVB1IwDDGrDhX4JrO7Q1J2XsiJNWWKZ6qJgvSMOGg/9HWWlOxcpXfSK4xl7f2AtWnw9aGRnaHweVMRewTlM5GlMwzJktE8DdSR5TBD7OjBcoRgoEYqZipASN9rRTlcQMJ81H0mAbclUHzzUrEfVcvTU8VzADvAU6qUdb+OVM8B4yhfI9Sd+qTcOlT4xeruTMGjhh8y+rnQ54mYxG7ibfG8IRy9OXxM0nPXivUghWFJkZzgP68pJAp21IawQsAQh5qKF6uvu39rs8ngZsvNyH16vAdyZ+k4QD7iUHSo1UHkxEl1gPMAGpoYEpi6+jWVEKlXKJlBSl5JT0kF73d7O3HnGvMWn4lObaThP9mxQPVEYKWHBplOiqeSLQoHrIgkoPnV3C4/70tQ+esM7J9GXz0fjFRDMEjOhArvZRdwBeF6FAgpgyEfzKZ8anq09Yd6YCXdiDsbhyc8lzrFbKiphzSf7cmkt7GEVLjPOA0jJbBTC+RxZu+wMOmK2sBKUV0+DC1pjuQziTkizHeN20CMI7dohe0nTslJerWFEdBQB9XXkShtgkM5AJookNK3XaTnJAAMLkwoUvlCnX19qQAvV7sj1vA/c9Z8bikHq72kRZ4lVWIHazpsoqI5UHWNyRQx8cDwwMynyyoZ91Sad1egAslhYwIFHVsrmkXFyHn2nHoPpT0p244YQ5q6QBDMJL5bwmT42/wjt9NL2Qs9805NtU5922dUPFCoEMMIOTJpUBV1VtrBoesXgHnosMq+nAo9fLYysx01cPbC3Mo2Nrcl517xmWJdGVdNezUYzdP/75+xbFETPvf+3UcGGfhdVmFBmeqD4qIFv2K/BEphdqFC0ZFEaxT9Maw7K32wbsWyl623WsWQh+ZVeVDaiUNO0TK/YZqW7F5Q0mCGRwAGYiT5nYI5KIk5hChRyziOgXoXQ5M4EnBk4+U54qlYpgtmG8BBCFWIZUqhjeCg2qGDlgKxwFPoJc9GSyk6FeRRbEB0QMKktThMu+CkkSXLpSRQ/gMzCCSJHwBVoGEMTDDrSwaS6IEz6gJcNhnCbdBBhen01ioQtg2L2xMlIaHQ9+SE31suFOeLF9c/qB68v0uElDnEwVze8FCMVBhGaTqaZC4ELbbtIw0XR5BM1w8shMhCu+CGYoYOCjpJBZm0TN7rt3F2eucdAfR6ZPiKuYPq+gooCoHN1IhwqQGwNS2LokerQPTWTGyFIF7sgsxnNLKFfXCy7ent7McUwfT29y/8p0syBv45JWoZlbD9mtdGn/Fb98GqEaSHP5VI1WGaxj0rLu0gaDyAcx0snKNlGmugKTALlWlkxO4z/Nuz++Zpbj4R5bsi8e7sV7hd86rdqUV7g1gGiZEDKmMLwQLaPTvlIrfNaHTsB4+17rYNfalr38lnnRrRWX8Mv+pujAGtCoCJUBDqJsKMEBykanjabWSitVZsF1QYeftii7Zof93A0Fx+8Ht8mYrY/Ecj0gxKRFCMxp1G+rzaDw2zgsV7dSv2usDQ+cNl5Z/rYdfq0PiS2kEhGw6Jo+mxkFzh2w9QwxzIPF7uejBk+RLJOkJiWXrZTrst5KPABK+bSaK5NqRG394pYcRt5WgC8PuEkbiG7SJYBv1BYNN8kMU4/abRzYlT1WOZlGce8uN4zZlBY02zj1ROiemzPwqzd9YHEX8IWaqzcqSnkuFFExVtCFYgL0siB6Tdkk0ungymH4b9XJhaqtnL58QZJMQO5fXsizbmU2cj5nxunl2X//+uCKd5YCkRs1nSX0ur5nJ3z/ki1075+3pbqdJZVk6uAowUcWSvhYyhYpI7bM2+55qEshZ8/QvzL2x734Gy+r2ACasqqiVAYzomiZwageZmikw6qzomY5rPAME0sUwHzxEuAJSxdvPxCygsgixZ3p45eQLJHx3Zlt/eTDZQrkF3JvdaqTxdQxy/sHTj7n8zg5q/QU3q7BL4hWpJPkUqiRKoNZBZvpmBW32RBmDhxKt4NZyo1yyCxxqixeTjODsr7YZXb7raTHxCeO4hcTne5UJFSuIDuyvFFF7gDcjEtEdhz14fRuuVU3LxXV5DTeVuf8jt6Hh1wMn9PrbLi9965e1Rr2QgCObkEBuEUCAFQtOnmimClDUp5IARi53TK1Y0QrztrFdfp9tXxYQjBlyI0kpkx5vTIAKN5MA8CmUZsxR9OKQeFo/mcnzqkQ1MuJc2LNEL2eOCceZ9fHifMCihPn/Ru5c9Jf52M8sKbigc453WY0LNBrTjexRoselwaJqlQPjHi0jY4RY7ZhjLChYgQzqfmeqbOmBcw/sYW7+Nu+0fjX7SUQ8dLJGUEIK6g8g3os5kihTMCUwZHQskKkuBMzgEgeRAN3I2a5mBPzyCqaMw8wPzoMPc2UQVJugeE/DMPclgpz8+hFI9alDg3Mf/NV0Im5ER872qAxazj4RybkibTfoWhUFu1GSgXiYC4zBR1Du5CWWGeI9rE0dwAIH9A277I1CE7WQo0OXKxLGnkQHkDXrNEIbelc0SbKwldw9sMlFb4wMTFVLmAmJPPEYoGI9MVve3R4cuJejv/BDYMvjmoVdBa/3hSoHEFzvQkj6H01BUDyCEKygWw1xRbmxaytFq+zFlCuElVJsS9fvpTqEjUz8YyBa12pIp6MmSxMShaBv+Rq4dyQn39OPT4+fP2Pnwscp/w6gQ/gotFBNAM4FaUyuONPy52SNQbAndJSRqkuwXRTTopQLhcCXzABxyZMhZAyR7Jmy/IbW1aG7ao9/pVT5rODeOYoRyTJ3yijVAZz8tbQMSfKEJgD+aNLeN2JlQK/EuEJeBwQZ8sE4oR05QaQH1Mi5Q2H+0U+yG9lnyCfUT1z78qauDhy50z7/ad0e9dk/JH+GLXxNY/046iVwTwGLfMKVld3tF22qfcIt6lnXA4H/co4KE8WitPFwHUC7APsEkvgqTYf8JNIMhIhwl+9ISmFl6a8QL60FX5z6c3nXwJmbXX+slhWmkRIM0smS9tAL1cG5+JW03HOtto5B2/iM3RcJ6lbtk5CqwiXczk9g5xNAgt37Xl3dfiaWnhFSOkzlVH0zRFvT9SHgH7qGQ23ygtRhKifWodB4ac2NB4dffzAx8gjZvl/t+o42h33VtbsVLlCksJEq77j3VSIKdVpoNYsEZB0OZp5AMdANrOTBJIUgUKWzpQqB5TbhIoTRKl8Qai4l0CMnh6gdl6JlTDpnlWDDwS6NazyLZXIFEFCkUKgKnitLfYFcA97PcA+hyxXPgvula2n3K0hjaGCMWwUEgwerTx6sxq/559+0Sp4cr5oc9167ebhxRIbVVMsVZQqTnaBJ5KPQuT8yfRIlBuHIV2vUz5q/Rg1FwY5eiajKgLTxDe386MG70L3rQ0Y1LY5Ifr5j6YwASuijtDH6W1arC6tq1Kdi/WdMEVDLvgh6Ozcz7tfaiZAPT7sYoB3QGktxLYRraoZFhhgH4X/r63u9uDvYGAVJutSqTEDDbeJBXqrLNz2bk4Xbpc0rexwe/X6RvJHM+qGLJ618m+Ll4cWG0C4bducznmRNjOAmKGgoKAKwu3ipZwj9+KaBi34+3GhQOH20iDC7UvOdNzxdjYA7lRJuH3jyypb3tM37AlmK5b9PvZ+lEGE21lM2rWQpgbAHEZ1htvF05/brGY+Y2//fubliKFtpxtUuB3VlDbcdqruoM2Awu2cUN9TN5t1CNje2ybS++jgYdUcbts60VqsJtXNuUoNt2deaPm6ww1z9up3bWub2VgXGES4jfgQlOE2UISon1qP8f9BuE1sIVHN4XZeG7pw29+lasLtfnxLr26D/EInNrnbr2XD7Tv1Hm7ruZooUhC7DV0I+cilssLtvZd8J4ouPw3eKGon4br+M1jv4TZRR+gBKyBHNFjltf4/FW7bUakxAw23iZ1tqizcTt5NF26f2VnZ4bbF1PXXsvr1ZWdHzv/VbIzRSgMIt2N30zkvZrsNIGZ48OBBFYTbbXNc1nbu2TpyTlLbmmc7vN5vEOF24S467iTvMgDuVEm4fTOH67g9f0Vo9qu76U9inC0NItx2oGUO0CbVzxxGdYbbFqE7ml3ra8HKzmj2oODmrx4GFW6n7aRjnkv1MM8ww+27nVfb/jrQij3ee9aOFjZNNldzuH1rBx3npu6obs5Varht49bc2bdFbNiM6QfmdkuXbzSIcBvxISjDbaAIUT+1PuP/g3Cb2HuxmsPtuL104XbBnqoJtwPc2IuG9krvMXtJ3NUjDxu+0Xu4TUwF10MIGbWXLoRk7K2scPv5vPv1FIqYHjtvTv3XZs9v9/UebhN1hB6wAnJEg1Xcnv9T4XYDKjXG+jVC/loxLnRnUtNfUbK4GYS4VtVmiaS0KPwaqrKUTQJlPKDGeoGXkDAJo2h5RJrYFdaEK0kYJuCrbqJ9UpIIHP8BbU8MwSKDPrCSeABZhRlYuNJLQ13RNRBwVp6Ygvq97ImQqqogGkdKr2oFzi+vhnOHFwjZef1dItIZ7drTgmNQPYigAbD1oSrbiCTpeOukxppE81KkIuiFANTkQkU6Fp0FU9aqLfzt7V/FHWoHzq8r+9XwZfYftOiZBiqHJVnjQAn69k+QDDAvOoiA0BmAx4jIuA4l4ayjE3gipH4+dRnhlnaTE5udmxO2sce0kL5FLW3pBRsZkMSRRy6XJ9jE3tJ6EOwsTzqulXgYAteEDJVVsGdQWIXUbwfb7ciLCVv8M3bgtK7Lp+IdxkBhklDBjE6QwcNyOnTXbR6RmoKcp5OjtyJqUC5EyubTnW8kcopWKAiPp9WpL6oJa4aNAi9iNtwE+QLV0TVYkcQEOMeJwrSyr6gFuxaoikJbIsKXmqj2EbQWOwZZIvaNDCXntO252YLDOOoGZG4UW1Pm+vdowemw3w2LZByomM1ufd7Ld+JDbl7QyncK34b4VhVWvQQpPClTeVZUrn3f3NbK+1CuKvsI8phiwUh4CREC5aFhrawdsdU7zRNqsBtP1qGwXMEcqsJyUTBKma1TYTlrhNswRJHBxyFvlrhPlhLc/3zwxnGPVk/LOfFAjxX9iV3v9VBVLg/Cs4pM1ZnBczJzdLLhVsrnoTtIbtGsg/hMsDR4x+ewu3yWlxn+jLPyfs0zzuj18vCJOnD1pe35C9w1I1ZE9fx2uJ4e8GHQ4gPEpzpMgRlSpWeEEohuDOIf3SrNWcXwZEkCBR3TPg/quW1fL7uwfX05g2bP+YAvpmmivF+Taej1yigdFzebjiu2BsoVnZblbBCFJxXwUeVLypiwniU9zn26w80WhfXe5roQf/rHJBy5X5Mx6HV9M8bWE1UncD1Oo3N0lBeH4TJHt8IcjioMYC3UBJGwPDy+jzWyjDh7kjvr56ckTpcr7/ARAFs5gGYEgBEqA5GC2XSIdJ6N2fWGDAq7XjAv7OOArl1CJ3/8qTA7cQdfJh39Ru278HRTFXfHG3DmyGRhQjJTIE6QpEh5cjnsFMIUgRkE/XzU/GsX8DP+SuoUtbskIKvFu7eDZna7Sfa8mjKpvK5DSXfmLLSku0abHn/YpmdmRSuhNUZdDWjshcpVWligV/kkpC8uernHwrl3TOQKxciCSNcRh/DCR+XYqAhVbPxhtWtbiKF3AEk3G6YrgqFOGqsbFhcoy77gyhCLJCMFcmWPALgXDn8u8ymZoyPIW34T7Xm1Vp2B7U0QwBzIAIObEQAwdDI3oprMBlNogyhNeiq08R928KFcAAZiuGEGXaGN5BkY5o4GjzmxXr2eMLcy/r5sT0Qwa9HnFb/bj0z/q4KYl8DM4eVUmHsDzL2XY5g3psI8Ym/QxbOMInZG/4ZdhS971MGH9uFwv1EqEiYgVSY1jRcV0o7hwAcDLoEC3ClipuBG0co2TWk40jF35/mwGaN59kWvhzLpHktzBw1P11ZtwEodywCcM0l3ymB65dKTVqqqrJi3itlwC6SBHI6X8JtMkcuhfEwG+vHPzDY6Yh64/x/7cCu3epcwuhEF3VLZek1DRsyU16kHVj4P8rjwI3TBcpMgoQzoeSFwk5EVIjy/SPnjaZopGLdnQVDuvPp/txkxCN9g3oilOTtYGrPDiDA7mrw9dm9Rq3mhS4clD9s2fOOqipYRBezMgOz0ZpFEH2nwJNKyk2ogGZUDklM0bNXK1wmllCUuY+Y9fBG5ftbr6W+PiPHFqYwCNFEKKBelP9xPNDhXc3b4kWmfnF+Z1V2iB5SAWNOglLX0JCqDKlmi8y0clEkK0BnVAiCiRqzWtoGw+zUiMbBtoEaPpxAPBClUnzah0qe5hY/6TXn6NXR/4e7924c95hKqhPPEApFmw0AqNerCYkrhHWrpCUyxRCFQtpxQCNLQlozkbi73osOpZYV1gpYf/T2x/s62pSSPooEtgwxVZE22F+QivKheKJ8gnKztya0sHBpzJw5JWRd7nU+5wm/WWy6QxYDHx762ZaAkNV4kgJFjwjCkHQRfqEDfHcw6uDrwJGMdgY+q9WHiIm0rDqMkDvDRl83ImMK2COfJkoRiriARJxSWysu9YLKn+nVz5fUYiVT9KnGltxUn5U3cSRsExCiZRAprJSufyhR7KmWGKbyEbRxbwk3aUDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUm0QoQJKaofjfuK+NJyzSHUlSdqETVYNytjz7zOb7vSkJ2svP2XxvUIkVP7hZR/vXg4l6Kp3Nxo+Ix9dDU4DEn9pzVE+bEltN6wDwrmA5z22AMcyYV5j5rep0ckL8xaMMam3PHx33C90uqFSyTpErxmNfGMA+QqPdBNaKa1STOAouZBMeFZjBYxpPLkyVSoCNQhshrhAZigPVJHcJuV5QettPUr8Duo6w5IGGuIFF+AakGSiLOGECqySBvJgxIxiiptGvru++u27M2130+ucbTC3ZmoYFDcJyBGpW8eNGHyHWdvrYI3G2x/f2x8fNlJBBqmhICjxkYj5XscqZilwFZUF/Xg1wvdqeg7adDO7KG7ZijdwuqMX+Kut4btIi3LqBAOuxR73/+9KgeC3qpJYdROBWWKq00C3qnJWfijqn/HRa0GZWoGow2Hxbk09tk54qA8VaTZo67f7a+nrQ5Uf71oM39p9Npc8Z0TJs3N3jMuTGZAzcvNQ5aHP95nf2BUd0Nd2EuKo0O80sjMcxbUGH+PX7A6XYW68PXHqr5k5H8cz5ZVXXtdzacwgU8OUzDQ9ablQ2zgJ1E2/Rpt3dxyPntwrgpDqzJp7Nv+W07dESXOu/aZq3DtmSOALlCsr2LEjfgmTTSrR2tqtldihIA0jc7MXkBJ3bknsjp7f4OHpbPJzjDhpRZGAUTpCFAJSySdXZ/VwQg3Xpfllvfv4NRw3ez2NLAPZ/8kwuuzare+v6w4SECgBnZRgNsGQ0AQOdWS6q5ZaALsBkuWZuaO80NONBmf8yi/o8dqmABFkpM51yqBdhLYMJNXfy/BViUP9uGtdgwb8R4zoYBgQde7k3tpYcF2AV1SiM68seEL3vV7MNdeXjPCqqHOHhGLpdqabEQUG8truwF2BmODyN9f9vB2bxuQv2UgXIHPSzAEjM59IASEGsalDovrsQFWOKie7UuwGa5oxJDugA71QNBCtWnraj0qcH4h+O4u/ufTtkQtDel05LZfZvaa+MfkgSPle8eTt1O5x6GbMcgb23wkA/re8V6yYg2PXLX27Z6UdR9un4gT05JD+l1fzd76xH3GpOGT2mujzWtJNo1rSQMcheDh5xoNPQDOdHNqyDkUngYYBEV5NCNK1iEQd6GCvL6ifvyc0+e5Szd8mTUucZj8vBZQ5w0qUjCJ2l2WYsC4VboHVjco0zZlqfwkER9tP+7lplc83u9HNPvY1LEdK9Xnt9fpC4kfTTNhCaUoCWIj2Cfi0Mn4boMiXsGN8+8D/2H8ZBA+SCk7/aXXZB95K7LQXum9Pv8vRNniR7jIT0fGGW4gGAaAsQny3c9A6s3HdKpcWWHXgIgGkgdDL4ApvtJ5EJIZ4LnE4qYQFJUcsLkyWCDe0mKMIEUxT9N3tWwWRUWlDtt0sl6HZPwEmKu+h7Nbn1lJL2nabkgEkMD16ODBtFaUbOzNCbVWmYoeqATjV/GLkUyT8FM4Q0TMFOlyDpIPA/WBaJs67eh5pCWyzfLwxbbrk+aMWOLLaHyDDosSeUZjKL3jFkPVNgDybiX44kIu0YOsY7AOWM9aLEjhgIikKRgLXE/mJA5q1dY7nNZrNO2mfjdiv+o460ewPKmBQuIOmp/XBkU9qdP0xrDsrfbBuxbKXrbdawZPrffhgO3MWC+MNVqHFWhrn1GqlsxSwREE/wIwIDJoWgre55IIk4CsZccXZ3xxLe6lzMTeDCRlClPlYKIA3AoXgKI4H7lkKlieCvccxGretUrL3oy2cmwEzjC3wERg9TabAPLoJAkwcNq6hmqipESZgpcxNfONpbG3bn+8H6LsOye24fknP/DghY2zWPMhA/ocJ4p7SjVeSbocKQd0clW1imzlegDkb7s0LYcm6AbS0O2ch1H3txWVEePxpKogfRwZCcZIjSbbEoUAu3vcFQnY9kMJ4/ofh/EDAWMKgL2U/z4PGzslfDt1yP3x3bzi6nWFUWIypkjdKgAuTHQqkPlHV9qH5rIjJHB0lBwFuO5JZSr6wWkktQ4WEGKvPVwn3kzR00p7M3dt6Hzj9WfL13FscwiQjWQBtvUaZXBOhda1t06bKDuDN1yUpMopBsqMAlYnTxhIlTvNGv0qWcv+5gs/xA6/p54X/zRqYSNMWQ8TSWkvKz3WlAeqJYJIWMKwwvRMjqddGoVA40VQGSEQGkXdQCmYWnNS56uf3A2Zo9jZM94RYgg0YE1wzSMUBngIMqGEhygbHRqT9xaaaXKLLgu6PSYszP/hE1K6KwaD2amtbNdgA9RVMv+miFKGakyEHKhRQjMadRvc2NQ+G1nl/C4P33tgyesczJ92Xz0Ybw3ygU+GjM6kKv9wkGA6mAYzG/APGEQISaCX4Hflc4E2MoUyjbGQNmi8gp9L9R1G6uV4yQb/cu92NsyMP+P/NeOBWH1yZ9b04vGKDocEfP+jB4R03CV/KHn/Em3ZQXkAdQwIK92s6Obb5d6gSGb5v/Tm3do8kVCnQt4N0mdC+RyeZ4SUf/p4fwXEwIkJRNCJuwc9Emnw98OCECYXLjwhTJlB2ZyY3tz09KnM63GB2XU4/UvLHmyCz8tA7GbNadlGak8wHy8P7pG/r2kx/KlRluNfp1L1ANgGZ/oAAMSVS1OlNJmwM+0Y1D90TwTTlfixRLhJY1WlWXuV7SKfxc8rb64waiJJyzqImefATM4aVKZQFUGC3FqWQHRLrFtKuYAE1ibUjDtSNpJx6BM62FLLJorxuuBtY8+0rE266Ph+MdZuh0kr81V0+ekzLQzN3VvndsqcEHDKdt6tz6Ib2phzCUrsqm8qve1O09UJxWwIC+I8a0nMsVQw+jOoDCMAdfs74/otNN/64DBDjP6HMInetrBrQMFXPqEla0FsNaaQIfT015sSQqAXLmBgQzDLxsGCQ7LDk3zgZBoZRGfOHfhHfWcwd28arPPG4GNS/kPrMEO0k9p641AS3kOgF5MlpAUB4T/6B8VPUzN4qqBApcbYGIm9DYkYqYLdhAYoIcYVuQnpU6Tw9VoyUgBn9yIXEudZnfDmxe+d1HX1vtyfVzxOgapqUJy1By9Xp6OyQ5ydQ2L/i1kwfNIn3MDfdtVUMdkQXsLYTYmy+rJaYPAXNEl4ZZq7FetbiVIxHJBQioiHjDLgXx1c+R9F8bPHm4Byw9Fhw7MWNQNh6Vl2bia4S+OqG+VwHRHYRtIBtstDwQ2VCV4UKmEc9bNP/h0lIRPfv82zPPq7xxi4SGpiJcgYEakikQkuoDKYfbA7hPD+6DMCsUjeCIhXynkI4Uw/xCEKTLtNcH206wR3x0dQo48ezSns63zA5rnJCuQpEbWNtWsNYchPQvQtSTbfMuD6J6p6NxvAI0aUkZBAY/9QyUJESNPrLl44s8tV3oELZh5fE2/j89D8e4zMpCm+6y8XN50nvD5IMP6sHFkwcHORpf3Bq+p6HY7rEJzlqoKTSysQnOW0n3WEjlHFXIynKhB0SLPrjv1eEo6gxu087Rpm2vdZ3zHlz1HBYR8SwdP1fcshmgBSaJBS3qmSh0s7EHNYtKlAnUcmqudq/EMAy6tQOQJPyP3DA4ZAp3cJIGMUIkP/qmo4m6AGEjIWDAECKrTlawm5TLRMFVkklSQr3Ge6CwoIUszgwVuwCzQaSHMQVkOBfoKiK3CRJ9PXiAkPKzV1S1ZPbaljl95I/EroaIC8lYkGxPI5cqAAhFxSiiAiKOGypNh6Pk3RG2pn/wbYu6aHlKe0k7TpTx1Po1B7mXwkE89cbL3kb+suFsyn8zt/OKrm34gH/2jVYTPvTHhB/saHYzaZF+sB8hvXaGDPOcKBrk3FeQ6n5y0wSCvgpOTxGhM7eQk0T1TOzn54fqTwlX1irl5z54Pyozd/ELt5OSKg+3srv+sHXzIqEbhOKec72onJ6X53OWbbbpwMhrMZoW2HDcSkGoxyN0VQDJBSURBASRTlJTTROz9YGJyyBSHLR5GT6890DiKCYWXVPrEezxennqxjbPp0eY4X5d93/RwFNOHiv/Nwoo87m+3CFpvzI+/8cIWz/96ysV+tkgih+4isoGjfb3SZkFCeAAzGZ5YVA6AhJQwztTpIFDNA8Ou1/L95Z/3Zt6jHV79rpf7iBrgkH1IW68chIqdT4BJdots7RpmHXY+rtPataNytw3prCBBDjVLYFYgdV6Q69Q/Tz0WiiMLFlvVNm9U7/eK7LVV7jL2JYCVywnU7GqU2DsKGwgcJ/XDqbCqr0qJUMeKvPoiv4tNSdvWofMX9R3sm1jrnuGeqYIoAZmhQenoMd3OVLlHYfMKmWwIZtiUg6EelntGvVWSMtKspCFzX+SeIVl9E/s0tq/G/VxY1AoRItINOXji6tZx3dxYV9XuIYRICQ9aaBFYIJxuIq9gMzS2wb/yf0NX2SluXrgSmmIAu5YQpKnH6UDqfFy3fd2WgULlm6uWqspERlnxk1JBbTrBvPF9iWP4fpsF9X3HLmyB30XExtXcRVRRKgOd4mN06OQcwxyjtgwKw/iqTwTX2Osbe8Hq80ErI0P7ay7Ea1pCqtYdzvj9XFWq20gJusqqnSGcPq7ljzc34oMWWEW9+RjlSPJI5HsD2mZ/A8VUcBLAdp7scB4sucg4WQnbtBtNRVcapcwK2LBpaYtzD4ZOwC92IvuxFGYdRyx3m4qg4iqaCQ57HJ+kak2QB49kn9TJ1lkjYAnATKOGKrdm2Lpdvr2DFs77VOdDzDExXhNxwL3kQKmRqtglgDAxaGEqKNLxAHG5W2jEveZq20KDmgaREbiFpnHYTeqJQIPqoXZUesjwWwmkfWrg7CbNCVs9bobpkq/T+lZ6KwF/uIL5+iTsQEzik2fAlfJXem8l8PbTY8tmv1303/F1Q12bwDqN9dhK4Od+1rL+C1YH5pqXXl59O9OsoudNYacFCM8WsjkHuyPGvdZ3K4Emko5MWS1ej/H1bvfuEn9ni15bCdxo3vozl9Weta1J+6J9L2T39ICPLS0+QHwMsmi9nlsJtPKYNrp0xrrAOfuNjJ3rTWpZra0EIFekr+i4wjQorpQcwbii/1YCMQeO3Q8wfcyaaeYrSOns8rhaWwn4e6LqhLRwfgYsnP+6klsJdPRjn9rQczxnztrJc+VbGxIOP1Z5KwGIyNFXdIiEvMLsensGhV3/b2sl8ONJiy4X3nTosdc32mP4yriPldRKwPslXSuBoy+qvpXA+YH+lyXhfTgH2m3ayD929oueWwno2fgjqaQv6VoJAAyruZUA0Z5XeysBBDDKVgIAMHQyd6CazAazcUWUJj1VLCNuc+hh56qwmG7nKq0Yw7wjFeYGWlWpadNl52a1fxwyd/mZoh3B3+fTPZaeqio9AkH21/dUVZXgHkXI+/9VVUL5cym9qPOd/ZeCJ/m1tTYReT/XQ1WlG0vOzH7k3CJy6Y8a9/LjbCq8ZgJmR/F7qnpBMEEn531lV1WaL1p5ZfWFdRHbRmzxdG2fGKiHqkpTOlxiTt33hD0v/IYghrW2orvfEKUQWpS+vqvEqkrErPdqraqELHi/p6qq5OKBIIXq007/Zfp0cdgr7tHNnbnz9rg1Xt6/p3sV6dO8t3T6tOSf/+lTlD+PS9t+/vPe9KD1i3wytj/ev1EP+vTN6tqNCx7YRu6I68m/79isSA+aIustnabwf1vZ+rTP8DmhIwJSA6d3cKqxqovHaD3oU+IigR5QAmJNg1LeP5WoT4k2tNr1KSIxlPoUIIXq085U+tRgYgLidDLI+l0wJMh5QxcSxL7BIPelglznZDZrDPIqSGYjbpOoJbMR11bUktmIAZ1aMhsx0lBLZiMaTbVkNqI0qCWzET00jYw1qBVJRczZ/Jibd9g7VmHMj6NzazXorIeMtS56Y7JlFTKZWKZNjcnEKjVqTCZmuKkxmbjnr8ETYyqeNBooXVa309vQBcb7LIdbhy7SA0+6UvHEgBo6FLfmnPo3qzv7wBKWV8LYz49JHkXPLZFWOadM5t+Zzlrg/zSj88r0bdXXEinq8clKbol0kPv4v6OhQzcqUTUYs/z7rByzM29/Bk11v5r/x9rxyXpaqiPKvz6aCzyhLWX6BLPLfgaPeWL96G9Gk8cETTHaKxM7h0013OXR4qt0mG+4imH+GxXmOptJK0bVmckHLz+un5XZIGTbsWFPbbcs2ahmJonyq2YmiTNGzUwSGavmC2Xsdn94pvk5zqZTiy529Wxmp+YL7dwYMD0/4gF3W/KXNkvWtZ+hYVyh1icVpMicwglpNSNYq4Yk1X1llvmvHoxrdypOmkcvGrEudWhg/puvgk7Mje/x5e3Qjb9w8I8MqErtqwI2wrYMxcxIqUAczGWmoGNotyF4OrVd+/fjMsIPPlh7+7pZ+njax9Ksukf4gLYNKVpzGMzvcLeGDeaJxtIMiMwyvmpsEdKlSTRRijZWfRKWEEiFZTqTeWJg5EhfXC4cEt2/Ez9g5vDAwSmKFk/wG4KByhE0NwQxgt4rGMF0FgjJBsp0lm/VkjhRKwFAq1IaJSUlpboU+2PiGQPrS6WKeDJkn1EE3RdS3uSc2JYzcnnX8CM59f/t8H7zTkIRVXQQkiKqGKUyuCP9RscdpiFwB2ijUl2yi5pyUoRypGxxAo5NmAohZc6u3tK9JQNmRI4/4R3oeGLzGDxzlCOSLOKWUSqDOZe+0jEHaJPqZw7kjzpzMMtExZxOrBT4lQhPwOPIwa0CcUK6suiiH1Mi5Q2HNRp9kN/KPkE+o96dW9NvZ9qPgLWd/mn9aGcHfB2E2jFq42ueY8dRK4N53rTMe/TFcAoF4QtpGpfDQb8yDsqTheJ0MXCCAfsAu8QSMWQd+EkkGYkQ4a/ekJTCS1NeIOWjcEHTLj3X/hUx48S9FZI+QZcI1dCSydKi0cuVwbmsL3Sc8692zsGb4I6KTqkydZXr0UJxEr0i9LybcHip0DN0avLoFi/Oun3CK0JKn6mMovcFb0/Uh4ARxxkNt8oLUYSon+rPoPBTGxqPjj5+4GPkEbP8v1t1HE3YqWMrF3KiZIIRQsFIvJsKMaXKbGvNglWH5GqLQUgB2SSBJEWgkKUzpcoB5TahymyuUHEvgRiNX6id14sd54+cd/xSj4K66w8wT413pXtWzV1FPN26D/hHKpEpgoQihfKLydx9yhOmbTiM2B8A+xyy3cYs4NJu+Jcy6400Gg7GsEEOTiLPqJVH776pzrK9GY0jM69fnv77y2n4c8dm2KiaYqmilBcnE4ubVTROBsiFQOT8yfRIlBuH8fVfnRLd68eouTBMyQiBTCak6Flhbxk2uLbzTc7a2rXOTDyxrV7FpzABK6KO0ANWQI5osIr9t0p1LraOaYqGXPBD0Nm5n3e/1EyAenzYxQDvgNJaiG0jWlUzLDDAPgr/X1vd7cHfoQq3WVRq7H9F+P+jIvw5k67t/b4shbX1nbM1X5z7nRY2fRbhdyilK8Lv8KsyivDvZ+cMnXD/eI/9NSPbrGA0earH0+Z61pGwZrlZKV3N8sJfVVKEv0mdHXsO3F3CnjjUfvv0fSlh1V6EP/kXbWuCX9XtgarvOFVPEf7xyd3rrZ5VJ2Sz9zLWix5bBhlMEf4zP2n7J/z8v1GEv9aziRvPHLYLXFxyrvGfx950I+x0VnURfkTLUFZRB1qmyorwTx585se9xhnBWwP2+y6dNQ2fjVA9RfgRZUPdoeBXFRbhP3Td+/jhTacCNtRaGr750/XbBlDOAmlT8JO2TcFPLPwMYFD4bRyWq1up3zXWhgdOG68sf4svxWeJHOKTSkTAomv6bGYUOHco2yIRlt2P1sIAiMskqUnJwIeTC5ClGl1qOcwvEk6ua5/DyXrPaXuc6/eK8mk1qx6oEbXN7WvJYXgbnWIweGy46EJsuwzwnco4VcGDVXZljwWuoliQvrqpq+v6x+OiQxfIQyeuPeVVXPHeXQQXiqgYK+hCMQF6LhC9pmwS6XRw5YDRTuniQqE90PmCJJmA3L+0mmw5Pzf2Y4/MizdqW+6/1pRwQgq5keSElPK63sv+gve/xaB7/wLGKQNYrkMkUwdHCT6yUMIXJtDUtokZE2/p8WNP2HiH8dmPO/rWwssqNoCmrKoolcGMqbTMiKseZhDdH4YuOxaeYWKJApgvXgJcO3Xx9gMhK4gsUtyZPn4JyRIZ353Z1k8+XKZAfiH3Vi93em5dMPNxwOyz0ssZrJCJeLsGvyBakS4i6X9ZRqoMZnWmZZatQcwcOJRO3mr9soVucaosXk4zg9zOdixk9vFmzy1auG945s0vFQmVK9p83BtV5PCo5yWNulA+nM3vGad08lJRTU7jbYXH1uWaNJsduX3gw91/SK/tqNawFwJwlIECcIsEAKhadPJEMVNGXWQi/YdxcNxnT+7GP7v+69ig+8xqPewLAYhh0EhAnyaMU6ijyWb8d+XjdLvS9Nr85UdYa8dsmZAybPSmKsvHca95iiYfZ2ANDc9Sz/k4I5/Vqf9n/Db/XZ/fz106MivMAPJxWkBIKHc3f9SoFqWPTyq4ceNGFeTj/L7mDcvq1tbwFU/C+e1Kh3UxiHycazXouLPFELhTJfk4t4qMWp+xkHOzx5W27Nv66QGDyMfJpGXOQENgDqM683G2m3YymvdXHGunowPrL8fuzQ0qH6c9LfNqVw/zDDMfR5K1o8+HxK6RhbOiEgffGuBYzfk4T43oOHfQqLo5V6n5OItSwnPZL3xC5wjHXQnwPltsEPk4iA9BmY8DFCHqpwYy/j/Ix/n9wYZ+6yd1iByf+Pweg5EdX835OO2NT9Hk49yrSblYqtd8nMQm4fMV9gP8M9/l3AyYG5+l93wcYmyuhxwTd4gcZY6JsbHGQqme8nG4v+dwR9ik+u9bHB7eslntmnrPxyHqCD1gda8mHVa7alapzq3ufBwOlRobfkToJozYxN57OFL0/OmAt/idkp6p8OxksIwnTdY8YarD9kWLQKFcCk+PqXZz0j2Up0yZPFgzLwl+A6nkLRemZO9a7clZWyv31sFfffZQPp/mTo46UUP+zKOBCotUP4pFIpXEc09aSqVqNLLSsc9PMhgN2PAv4fzn0Nacg1uen7SKFogAwwT8UKDX07DhELYqWRlExUqdz6S5qGS78s+k2cxM75LZoU7A4SKbvZ0jasxQO5M288OHxhm3bwdnJj8b0KS5aaTambQ5Pu94AZuCIzZ7/tva1th5kdqZtHOx+8PuuC8M2H0pcZbLBa8ZamfS5tiGt1kUnBW0qsXtIbltD5WqnUm7OCjuHqfF58hN38ZNqxt4x0vtfH6XiCunF7YqCsnq21O2qMmUfLVmM3Me807F3JFy8kUNuuyP3ugDSGYoaXGTx46JU7oFbEqX3F+W5wLP2pmjpLZ/rv61PjGMs95uxoCV5ncmA5IFSjoiv/og1eJa+LTll8b5nK63A5AsUdI839S/549+GDqXN69zvVbyIECqjZLq1m3Wsr0Rs0f+pOdXQxMHTwMkK5Q02SJmWPcwfvCmB0WN5IG+lwHJGiUNGcJc/3d0u6C5s/PGvRzx5zxAskFJvufDDk4Ji4qY6ia1HzT62HBAskVJbbYmJt5ud6FHfg2THitif4UDUh2U5Hny0aEWPif8Z46Kib+6dMkFQKqLki41cZ26Z9i9oIm/fW10ZabFGECqh5JC9oekLS5JCsl/nNokp8adfYBkh5KkTdtaRVzexco5UnJlYL8GSYBUHyX9HX2k9O5Vc9YBJ6HPtx6HBwNSA5SUcOGGeZtVuZxDTd+0mfSP70RAssce/urTxNDJP7nTf+vECBx0sg8gOWDCFms3/fBiU9be7RefneqZ+DcgNURJ7XtHWg475B+x8/dfq5aNz+UBUiOUZJWw2u78uPjgwxO2nZtn3GYSIDmipJftSr7FvXoUsXL8g72no2Z3BqTGKClA0v7r8lfJgeOzmu96+21HPCA1wbh8R/Dt8pyjActNx70ad/TMdEByQkk+V6wbpL3dH7n6lMfYRrWf/wNITVHSlrb2r05crxWQ1ay92P7TOfheTJRUzC6yKz65MGBLl6HPatQ/JNM4bOnMoDhsubhuhybFDs/ZU/ztGr3tf2GwHg5bBlOpqPqJ+/JzT57lLN3yZNS5xmPy8IuJnDSpSMInySCgakzaCr1DlfOJlFqXp/BEIqCE0Cr2WqYMEBUU6aNprnOiBG1rXwELEGJ+CupXEu83yp3DKDHT8H5pm0CUZVQqH4T03drWqr3H3bGYO+PD+QSLnsN/6TGhUs9OLsOFw/CHAPHJHLczMHXQXKdsgA69gMMkQ9bu+AJYplciFyIpFOD5hCLYdFklJ0zgQTF5MORKIEXx74TGF3/rt4g90dmqzS3f35vht0BV36O5BVpG0nt5VRdEYmjgOmNmEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+V/nrqJCm8sTYs+9OXx87dT6YRVsvRYUlWyzGKvrln64EKeyAZ93I8EWHX2DHVEThnLLEHW7QWEIEkBatX/d17PuVeCZjZ5OiolaO/Jlc8jUgPYCGiTgkWEHXU/oQw/nf6QJ+nD4geepWdPsi2OEVz+sDOQidbqeXpg4eZaevSrk8N2VOrlVPTlg7j9GgsiRpID6cPZkKEKJO1+RY6Gcv/9PTByjlC1xWrhRG7J/vEPqnfdkW1nz7oRosKkBsD3SmputMHk+7ku+99mt5jzups6xUXopcZzOmD1+Z0rCsyN1B3Rs+nD543OCVetLkVe3ro8VoLVh+/XM2nDxAtQ5k+DrRMlZ0+OD0xd3P4D7PA+Xc+tvB+HtvKAE4fdKMFx85Ct5yvCp0+GNpnXZu+6d8DlqeZPKjd9TW+Bkj1nT5A5jQlQmBOo35bKIPCbzu7hMf96WsfPGGdk+nL5qMP471RpGdddCBX+4WDAHzLSNQTBhFiIvgV+F3p6n0VgbJF5RX6XqjrNlYrx4m4fkn+3JpeNEbRobWLouUpZWsXDVfJH3DgYwvdlhW06i0pmTSllaOfJGBt4V9N1zDXtyZsssO7STbZkcvleUpE/aeHvi0iCJCUTAiZbhxGYEud9s4cEIAwuXDhC2VAfAGd3Nie6795vMUYT07WgKL4ey2P4WsEmwdiN2tOyzJSeYD902f2yX39soLGX20qutE6rKIH2iFgjWkBAxJVLU6U0mbAz7RjUP3RPNJpRsNLS4SXNFo1YMb211kd0jgHnJOObdyV+KUuchgHMIOTJpUJVFt3iFPLCoh2iW1TMQeYwFqZzZxZzxpOC5/d7tmgKz0LDuiBtedb0LF2TTWxlsw/ztKtAVz5/UuDva1u1nrmHjDVplbI17Z9M6qtfynDE9VJsH+pVCO+9USmGGoYezAoDGPANfv7Izrt9N86YLDDjD6H8KWB7WDJTQVc+oTZuAK4PyzQoeuZF1uSAiBXFv5EhuGXDYMEh2XNzvhASLSyiMRtu/IfWIMdpJ/S1huBC6Y2APTiAJImaHFA+AttKnpWj8VVAwUuN8BSvtDbkIiZLlgDL4Ce8hAf/Emp0+RwNVoyUkBxAudqkItju9gFQbOb5k8X7Q63wesYpBcqSYs49Hq5+RfWfew7mHVjb+/i/nONrH3bCuqYLABzMYTZOICk7VdOGwTmii4Jt1Rjv2p1K0EilgsSUhHxgC0kyFc3a25KSes1+ERw/nV277m8Cwn4rIKycTXDXxxR7yea3FHYBpLBdssDgQ1VCWFUKuGcdfMPPh0l4ZPfvw3zvPo7h9gwWCriJQiYEakiEYkuoHKYPbD7xPA+KLNC8QieSMhXCvlIoSKZKQFhikx7TUDcpad5TrLGxmpkbVPPYClPiK4l2eZbHkTXuqJzvwE0akj7QwVs1weVJESMFIAdx9eMSCq+GjHvzajgM09MjuLdZ2QgTfdZebm86UzMSqhoOhUscwKRW0XmMsDuJY+sKd1nLZFzVCEnw4kaFC1S+BYErUx9dOFi6EE7T+7IY29e4lO1UQEh39LBU/U9iyFaQJJo0MqyrlIHC3tQs5h0qUAdh+ZqOTueYcClFYg84WfknsEhQ6CTmySQEbKE4Z+KKu4GiIGEjAVDgKA6Xclq8uRhgmGqyCSpaA9lT3QWlLDIkgq9kFmg00KYg7KNKfQVEFuFiT6fFIoJgW0t7lkEsQsP7pIlLRprTNiYgG9FsjGBXK4MKBARp4QCiDhqqLgMCkNlMHXridpSPy18KqFsvZ01mrROWrb+oxUGebjBQ07MjdMP5A4HPFpfK00MW3Frml3bb+ef6gHyonp0kK+ph0EeQQW5zlmZNhjkVZCVSZJEiWVlkiRRYlmZJEmUWFYmSRKlKitTM4kSy8okSaLEsjJJkiixrMzBIc1e1j/wzH8dn8vrazd7ikbKGxReUukjpl/qIeUtkor/zcKKPO5vtwhab8yPv/HCFs//esrFfrZIIofuIrKBo+mUm1DMtmZBQtiyJxn2uFEOgISUMM5E0xC0294nppyW+4ga4JB9SFuvHISKHy3BJLtFtnYN20EqLHVau3ZU7rYhp0EkkDUAD/ALdV7Qw4DfrzhnT/OfspAXd/r4+XUV2Wur3GXsSwCr15ao2S3ROGAPwuoCS1I/nAqr+qqUCHWsSFG6bZ4/6eG9ZpxJ3NF/p7zbztBjWsT43hGfzqxLC9oomRYyNSD9uB5QUtCi1NlSc/GBzk9zj8LmFTLZEMywKQdDPSz3jHqrZPKP/V15goecJc4pp22XK25X434ubL+ICBHphtxREAYXWermxrqqdg8hRAlqNSugBcLpJvLEStbLk38u3RIyiXfsis3YkrkGsGsJQVpKC5LCUrd93ZaBQuWbq5aqykQG2VikVlCWv04fuj7iz9DFi4L/uspcja+4Z4aNq7mLqKJUBjpcWnRaWGKOURSDwjC+6hPBNfb6xl6w+nzQysjQ/poL8ZqW0JgCXGf8fq4q1W2kRKeyccQDFtruDWib/Q0Uk7cVgO082dlHBoDtVu1K2KZNb9u3nkn6zoADM413XXWdcxy/2Insx1KYdRyxPC1OVHEVzQQHetoFghVFJmN5sC6clU62zhoBSwBmGjVUPxueu5ZtX+C/8Fm98CXdRfjG7OYccC85UGqkKnYJIExAamhgKqitm7ErfwuNuNdcbVtoUNMgMgK30DQ6CUs9EWhQPdSTSg+xW5/38p34kJsXtPKdwrdhE+I6dApPylSu05Csl1O55q2V92G7Pci5FB5TLBgJLwlkwgTUQGqlloiHu2iekGylXI2sJa7+rTmMg8xTsGoSiU+eAXOemDopKmtkG0q5uAseh/QtR7nln75yamto3trW5xat7+SNd5GQATRdJOXl8uYc8ZxbBecczEzeBeHZQlXRYSZTp2wSK+Xz0BX6Grtk8vbL5xawDmRwTl2MrdkPv/unvF9z9w+9Xh4+1zacHSdYNC3oUJMXHac+FYv0gA+fFh8gPtWRYWCGJG6MUALRjUH8o1slcKsYnixJoKBjWodlDXO791wdvte+zqqRnAOEtBDl/ZpMQ6/rfc0WcMWOliuvmxoSV0qOYFzRyXzZIApPKuCjypeUMa4X/e7u/rY0ZJZD1HLHzB5L8YwJR+7XZAx6Xd+M8fdE1QlcZtSIVzNgfWambgGZowoDJLAQCcvD48yJpv0j340OnOBgLpU+qzkCn1XLVg6gmVWLESoDkW60iDCYmF3vxaCw6wXzwj4O6NoldPLHnwqzE3c+4Hms/Ebtk2G6qSIMvAFnjkwWJiQDtxKeLeTJ5bCigSorBjX/2gUfxHPaZM+rKZPK67rkiTZF80Q1sl/8QVTXrWlFd8Abo64GNPZCZZEaeIRJ+STk3V6XBVlO+qc0MK+f1/lDm6bjDb8plWOjIlSx8UdSSSGG3mQ5GkxXBEOdNFa3CFSilGU5cQe1YD6QXLk+AEsBwp/LfErm6IixpIgS7Xm1VgWFcS0CmAMZYLAWEwAMnczRVJPZYDauiNKkpx7XxG0OPexcFTrR7VzlOGGYx1BhHrE36OJZRhE7o3/DrsKXPergq0Yh/eSlImECcixMU5FSIe0YDvwBYJ4U4E4RMwU3ilZ6kliZgu6xNItZ4enaLtzAILs5gHMm2cIN3KPIaH7KSrUaiXlOmD2xCIW6FMdL+E2myOVQPiYD/fhnZhsdMQ/c/499uJVbvUsY3YiCbhmJqBcNGTFTXqceWPk8yOPCj9AFbk2ChDKgc2B2ApLMhOcXKX+e5gy6Gv3paOik5aHxw579jm/+Z8TSnB0sjdlhRJgdnWvHdjvh3SV0Y5eh85KetVJUdM0EzI5LkJ3eZNkLMEFnQ/NTaiCVt7LkFC1IkAANrQtK/VymH/7+OTVwU8j3D3mbF1/BoxSgiVJAuSi9KCne/9F1mX92/42NzH4W9dcDShm0KMU2P4XKoEqWaLNdlPUCoWOkBUDErHe8DVMOpWnD0OuVseCNSMxXsoUmFw8EKVSf9v4v06fEcj5VpE/dm9Hp02vO/9OnKH/qmh3fN73JtIhVn3t2W3YjqVgP+pRYpkkPmqJFMzpN8cO5svXpSu66iQ2vvWKt+DtnYeGRfkv1oE+JiwR6QAmINQ1KW5wrUZ8SbWi161NEYij1KUAK1ad9qPSpwcQExOmkn2S2DkYN381iSwP3fPJPLrg2q5ceQgIXZ7qQwEwFeV8qyHVOZrPGIK+CZDaSGniYqiepgYcls5HUwMOS2Uhq4GHJbCQ18LBkNpIaeFgyG9FD08hYg1qRVMSI1fP0kLEWqzcmW1Yhk/+zOpIkRRUxJhP3/DV4YkzFE2LZQj3wpB8VT3ILH/Wb8vRr6P7C3fu3D3uMP+dXK4onFog0C7RSKTYXFlMK71CrMs0USxQCZXEhhSBNwVQWZyV9bWLdRZJH0UbbWUYnyCQiUS9oseBF9YasBE245+6EG7x+QwOO/HHSt/ePGt+pNKFZb7lAFgMeH/valoGS1HgRzNWClWBh4R++UIG+O/Aw4C7Hk4x1BJZgpXo1FqVbcRgljYAC9WUzMqawLcJ5siShmCtIxBlAS+XlXrBnh/p1c+X1GIlU/SqhBGyPVpzMfxqdskFAjJLBc4MKofKpTLGnIptQMt7IUDEflt3C4DUyhxfh1ovaJcRXF6FlhZUBAewEIuSJ2LAWlJohUsgEvBTV78Z9ZTyp6h5UVPtTiarBmGViFVA9LdUR5V8PdjnTkc4u8x0xuzzA4DEnllc13OXRODs6zP3tMMwHUmGus5m0YlSdmSSpm4uZSZK6uZiZJKmbi5lJkrq5mC/0qnad3PjflofMbsiLbdpn+DU1X4i7MDunWUyzkNVfBvRmL3Lx1TCuUOuTChKxGK8ejOsgKk4aaMsxYtHhKms5JmpN13JsaavKbjkW7XZy6vGnbuG5I+q33r03E19otXpajvFb0zVw6dbaAPomFRcXV0HLsRdvdsbPzW8UvKjz3CGHS3ZsN4iWY3a03HndygC4UyUtx6RXYn5r+sOdlWuSy/Ny+nneIFqOFbWiY85SQ2AOozpbju37MPtFpvwVu3DocIfP2efxOcfV3XJMQcs8bvUwzzBbjh3r3a7Vg3OL2dsabjuYFDoDv6NX9S3HWtBy7kfL6uYcvKnSWo5139PweaPTo9gH1x+1a9FhK74yXXW1HEN8CMqWY0ARon7qYAaFn/rf1HKM2BajmluOTXWhaznm7VJFLcc+Lejmdftb6GpOhsUps6mf9d5yjFjcTA9ttDJc6NpoxbpUVsuxMe/2BsxrODw8c1nq3biFTZ/rveUYUUfoAStvWqzMXP5PtRwbQqXG/leE/z8qwk/sJlRlRfiL29AV4U9uUxlF+PfUkTfusmlK2PSkls2uTaoboMfT5nrWkbBm+aM2dDXLC9tUSRF+8/kzA1dseNBjE2PCtTsjkjyrvQh/Fi0qQG4MJnbQ7eCP/orw//OjyaGGTn+Fz7jq57HA8uxpgynC70/LOofqYV2VF+G3vyesKz+0K3h2/C+nJle736zmIvyIlqGsog60TJUV4Q92tM69e6xn8BbRuH3XrL/htXP1FOHPogUnuU0VFuE3sr5faicJDZvZLD/tvNOA3QZQzgIi5E+LEJjTqN8Wx6Dw2zgsV7dSv2usDQ+cNl5Z/rYdvo4AcohPKhEBi67ps5lR4NyhbItEWHY/WgsDIC6TpCYlM1VNY3Wp5UDssEj5tJpVD9SI2ub2teQwZroBfHlsuOhCwPcSwPepa0UPVtmVPRa4imJB+uq1L18IGxp4KKhg0ErehaUL7Cveu4vgQhEVYwVdKCZALxOi15RNIp0OrhzGQDedXKjayunLFyTJBOT+5a1//1z06bsoPH/Otp1Tl3YVE05IITeSnJBSXtd72V/w/u1p37+2W3U7SyrJ1MFRgo8slPCFCTS1bUbvWDzR5blV+KLMD9eH7i8W4GUVG0BTVlWUymAGmKw0zDjoahDuD0OXHQvPMLFEAcwXLwGunbp4+4GQFUQWKe5MH7+EZImM785s6ycfLlMgv5B7q7n5my4t93oRub5d0b6WSW6b8XYNfkG0Il1E0v+yjFQZzMqmZZaoephFmDlwKJ281fplC93iVFm8nGYG3WEsNrF+ZhRx+M0R9z1fXaZXJFSuIDuyvFFFDo96XtKoC+XD2RzhppuXimpyGm/rDPeAqEHXVcHr1tUafVscPbpaw14IQGMMgFskAEDVopMnipky6iIT2+52tb9yxys4++eg8NwxitYEU1a1h30hAAWuNAD0SXfFHE0e478rH4fYmLvK8nGmetDl4xS6V3Y+zpdn8YP/Le4esddmhBH38OyeBpCPk+FBt7sZ62EASQV//vlnFeTjZN3ctXhAUELouqh+HezOn480iHwcb1rumBkCd6okH6fFlwV9xUuN/OfneZ0OskrcbhD5OI/c6ZgDtEn1M4dRnfk4dSS7eyaZW4dsPBuSbHz+t0EGlY+TRcu85OphnmHm4zxc0MvN6cjBoDlbd/y2YNS1TtWcj+NPyzmHaudcpebjTOvEP5DW7Ql3g6VX0uTJ0zYaRD4O4kNQ5uMARYj6qfGM/w/ycba0tX914nqtgKxm7cX2n871qeZ8nCxPunyczp5Vk49Tb7PZ9dgH4WFL/F7bb3jYYq7e83GIsbkeckymetLlmMR5VlY+jvfiSTdj5+QErtiRu2zADof3es/HIeoIPWDVmRYrW8//U/k4CVRqbPgRoZswYhN77+FI0fOnA97id0p6psKzk8EynjRZ84SpDtsXLQKFcik8PabazUn3UJ4yZfJgzbwk+A2kklfMLrIrPrkwYEuXoc9q1D8ko3w+zZ0cdaKG/JlHAxUWqX4Ui0QqieeetJRK1Wgk+TTGsDBXAzb8Szj/ObQ1Z1INp1NW0QIRYJiAHwr0eho2HMJWJSv5VKzU+Uyai0q2K/9MWoMsp8stP/3NnXCnVZT71wnv1c6kNZ0TMaSNl1WPjfXa27zZ0PKX2pm0G6U/3/m33cFZLzNKWBKddVjtTJq8D+9iHdOisAM9I+OXF48cpXYmbeeNEEn//e3Dlw+9ncTuHMFTO5P2cN2s4K/ubyInPgxmpq94/FrtfP4IhmTvZ+v+3F0zajjU+mPlTrVmM10WnG3594bJ/lv/NtlYPy07DJDMUFJ25G+3k6++CFqw71JhQuTxWYBkjpKu1VvEWTEwkLN032CrnsMvvwQkC5QUfnD++6EPIiPWfZbdX3MuyhmQLFFSiEWpjOfN48xaLXPzHfZ+JSDVRkkWdQdl/1sQF7breOCEopTb6wHJCiVljr07bljP7ICNOxoUjc58Ao/hWWNPmDDLJLbO3sDVojq1337PsAIkG5TkOrXfwKTmO8LWpJ2cHbKi7WhAssUUcj/F/TD5vMgZfzv1sj7jCTGsg5LuLukyPHFT/7C19gM9piyxyAGkuijp+JmhB1oV9gtdJ09j+opuQy7XQ0l9R3Zo/oPbOCSjfrDx7GDb5oBkh92153H0yp99glbejxmw4YoCIl8fJd33jDO9sZgROH911+n/tlyQCUgNUNKcOYse+HxpGLbN2nuaqHjYSECyR0l7v06b/uRMt+CV+2PCJwzYPAWQHFDSZbdpTWWNjrP3P3nJjTh3JguQGqKk0X4Z9icFnQMORrY5u0Z+vzsgNUJJk19GuXQc+iFwep5X1632/9wDJEeUdCFQ0uvOr/1BC20d1+XtC2oJSI1RUn6fVUuvTH/tv3Scc0zxwgtQ2JpgEmUimvPkntw/s0HPH51/uaYBkhNKWlW8zK9DZvPQrXW/BIwelykFpKYo6dnK28lpnG8Re10T/OaumgCrSzBRkpXvxjHu965z9qc3SDo8+MVbjcOWzgyKw5abpi95c885LWLCoMVzHj7OfqiHw5YCKhVVP3Fffu7Js5ylW56MOtd4TB5+MZGTJhVJ+CQZBFSNSVuhd6hyPpFS6/IUnkgElBBaxV7LlAGigiJ9NM11TpSgbe0reKrG5xTUryTeb5Q7h9HYR7cmEGUZlcoHIX03E78X+z2Xu7NXX9za1tnpgD4TKvXs5DJggVUIEJ/McTsD3LpAH52yATr0Ag6TDFm74wtgmV6JXIikUIDnE4pg02WVnDCBB8XkwZArgRRFl74F/R+ceBhQuDC5yehWNT/it0BV36O5BVpG0nt5VRdEYmjg+uhtEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+VjmlwoXjSh27hBZNb1Hs2INCOsFqODkuyWo5R9M09Ww9U2APJuJfjiQi7xo6pjsA5Y4k92KK1gAgkKVgbf33tvy32D+6MHec5ZwubF1Q8jUgPYDWmBQuIOmp/EhkU9ud/pw/+o9MHRA+9yk4fHG1Ld/rAv21lnD7wSK//NEAxN7Tweuu6Lh+DQvVoLIkaSA+nDwrb0iVrZ7WtktMHDvOCuhxsnOm/b0LsP6HZP6Oq/fRBMi0qQG4MdKfk/7F3HVBNZF8/uqgogg0QxBI7IsXeCyGEGoqAvUYSIBoIhiioqIgNBRU7Iir2hl0RUcG1YFd2bdh7XxXbrq7te28yEzKVZBmS7PdfzvEcmctMJr/73n33vfu79+ov+2DqA4evO1sfcMtWNGixsEH/3kaTfWDDqLritkbqzrCcfSD2zWpTLeGy9yzF012tXoqnGjj7ALEytPRxYGX0ln1weeAEn/S/G/pkFux/dqJD0yNGkH0QwQiOazs9Zh84D6jWXnxprueWuYP2fHUqxvc2Nlz2gQ0jQmBOo35bOIfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PA9AW7uQXCVXOEYDyqG35Ka1M05+S33uPz2hy415uRffEoLs8G6KIDtyuTRPiWj/WOjbch8CFE01CLmtgYUL0Cl2ZoMAhI0Le7FUAYYvkFMvtiHDehcfaN/BZ379v5r+Nb5+On5aumM3k6dliag0wHZf/DwhflFTj6S7L5M+5jewZQGwVEbAwIgyiBOlWjPg37Tn0P2QUzpNGXRphuiSwaoKC+NHvXO4FbD8TeHZKZmPXtRGknGAMgRx0QqJOnSHOLU8t2D7Aa3K5gATVLvuVv7slccO+yX+kWU96WfIbhZU68qoWhsDqZbKP07VrQFc6f1LX6RW9Nxu9cHj4LaB3V+9UFgYrH8pxxm1SbB/aTRpf+uMTDF0YYzg0CyMblfq3hnXea/r9sHDbJL7HcGXBraEJTeV8OgTsnElMD4s0aHrmQtfHgkgVxX+RB4jLnkMsjksaXYmBoNEqxWRGLYr/YVJ6qD8K229EXhg2gWA/tyNognaCDD4H3cua64eT6gBCjxugKV8obchj+LaYw28AHqqJD74P5VNi4Gn0fJYCU0GzoPJM9aN7pQjyE2oPursbylFeBuD9EKlaBGHXi/NxjSr8an18G+d3dbfmNvw8IF1NmW0MakAZksIs4kbRduvtFYIzGU9Em6uoX716VaoPCpGEjoWGR6whQT16ebWPotrHX1Uw3O2Sea8vi84+IrqZiXPJW9/cULWM5ocUdiGUMFW5ITAhpoEKZ1JOGfR9EPbTnK/me/f+jpfniIgNgyOlolCJVz/sTIZhS2gc5idsPui4H1wzEqjxolkUrFqkMdKlRFcOdimKLS3BMQoPcN7UjU21hBrSz1rKeD06AzQNaMKvmVCdDuVde5bw0UNaX+ohO36oJGEiNH0fLwQ2PF2Vd6MRv4jO6/yf413n5EHkd1n1eXSpjORlVBWOhVArgNEbi2VywC7l1TvTOs+a4mcnRo5BW6owaFFCV/idadqSUG/+2+9Y9s/tm77RXiqNjpAqEM6eCnbsxiiBUYSA1qHO+nVwcJe1DRkfLREE4emGpwdZ1/g0kpkzvBvYpw9vYZDJzdcoiCwhOFPWQ23NbJAQsWCR4BN9XiVqqmzKAgLU1kmSVl7KDujs6CYR0UqdEFmgU4HYTaqNqbQV0DWKmzoiymhMDVfGvPD/4XwkGRv4C3LFw8IgQn4rSgCE8jl8oACGeK0UIAhji5Uozg0C5XR1K0nWkt2WviUQ9l6105MZeu5ashHGz3kRG4cO5A3Oz/lS1TtH/yp96ZmPngY34gFyIu7M0Fe2B2DXEYHuc6szBoY5HpgZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKDFW5qxfZnmKtl51z9tRWMvq8cWhJMobHLyUo49Iv2SB8hZJp/8mviec7uyu5rHJRDzy2ouaeP3XUR3282XyGOguIgEcslNemWa2NfGQwpY9EbDHjeoByJYS7jNRGoJ24X0i5bTUVySBQ/VH2nrlYKvI7QAmWRHV2TVsB5nZXqezaztVtA3JBpFD1QA8wC/0vCBbRb+tyUNiXPc8PzHZerBLj7LE2sr3GLsQYGXTAV12i0kJ9mBbfbs9pR9Oh5WVmhKhiRUlSmaXvgaa9BvAX5Rde/6qSun1WaRFTO3r/+n0xjiPLfLZXklu44+xgBIYMwwoidvr1qTdMRCbV8hkQzDDphzc6mHcM4ZQybcO434k5nlnu7dPnMWVnjBgPBe2X0QGEWVA7ijYBhe3182NdVBHDyFEoRo1K+AKhLNNlODMn9ytefqr9byFUssmXLs6w40gaglBOt2eCaTM9rrFdZu7S1XfXH1UVTJkkMAivYGKrfe03wqz28Kk0AG/zft1+UV8FBF7LjmKqJaUBzpxjOgEtsccoygOzcL4qp+/0MTlC3/JuvMeawK8B5EP4skroQkNuI3x8Vw11S1WrlPZOGKChbaxAW3Z38AwDekIYDtPlfvIAbCZdCyHMO3FrjMC8pz7+y+7+qR2d5PmhNJ9SDyWZlnHCUuz4kQTV1YmOLDTIRCsQKoxlglcc8eOOq11FghYEjDT6KFyrbokcpDXKeF64aVxuc5r++ItkQDcSw2UhkjPLgGEyYQRptsddFvsSg+hEWPNBguhQUuDjBEYQiN1Eo52RqBB7ZCczg7xW5536TrtnjDTY807ZVfbBsRz6EhRNFd1TkNxXk7nmrdU3YdFe5C8FBE3ShILL0kU0lB0gdTKLBGTuxjekOqkXEOsJa6usIyLbwGsmkThkycA1Hf56GSoLJAwlOpwF7wOdZmAnlaLTb5348+qFb7Pq9dg/LeshDyA7CKpLpc254h5bmWcc5CZbA/hyaKr6MDx1YlNYq56H6ZCXw79fmY9e9GQt7hwdN/mfdeuxEf/VPeTo3/o9dLwqVOvrmnPxxeEG3K/Da4xq1cbFvAp8mHCBwwfQzAMTBHixjgVED04xB/dKoGbh4gU4RIlk9Jkrie3dyv66Zpj8uH75sqtCNXZVPeTlYZeZ/3MFhYTY9TKCKPSSnE+phWdlq8aiMGLlohR40upGOUSq/wJlnO8j3x7sOZa5kg7vGL8kPvJikGvs60YV2fUnMBjRtJ+NcFFwPnDR7cNmZ0aA2RjIZOWhodFRNjFMUvP87I4opOvBfPH41m1fNUDyKxaTFAeiOzyYUJE6YOt69EcmnV910Lfj4O7d/Oe+fG70vT4zQ94Has+UXsyTA/1DgO/gHNjI6ShEcCthLmFopgYWNFAzYpBl3/tNh/EPG2q9yWPSdV1XXii3ihPlMR+cQW7ul3eZY2A10ddDbjYS1VFamAKk+pNKL/4ZM9JCT7e3p6bbB/cHHzLBh/IrULn2KgFel78ESopxLANFUeD64BgqJPF6uGPjihVWU5cohbkA8WozgdgKUD4/xKfkjvRfxJ1aRvCem7QqqBwX4sAZkMFGKzFBABDJ/MYuslsNIEr4mhiqcc1MczBQuTK0ZspclVdjbmCDnP/Ax4Xz3BO8BMG2XaXvvSpha8ahfSTj5ZJQ5G0MLIhpUPazg/4A2B5UoI7ZdxI3FO0spPEyhRMr0UuZoWXa3twAzbZQn8AZwrVwQ2MUXz0KzBXn0ZinhO2nlTzhrYUp0v4SVWQy95ibAwMFJ+eVyG/qnvum7p+5q3rFGLyCjRyswDEvJDGiKnqOv2DVe+DvC78E6aNWwMPqQLYHMhOQMhMeH1R6ufIySYXjn8I8tioWLjaxmYinpJagUeeHTzS7KhAmB2dsq37pPp09ZtTv8lMr6Od4st6ZgJmhztUZxsq9gIk6NT3L9AAqbSTpYbBklA5sNC6oNRm+/pMs27Wbll5M3y7X9raC4+SGxklt1JRetVXsXF9mJPbjkJf8YXFv0ezgBIY1gwonfcrQMegeiwxsl1U9QKhY6QFQETWO34NUz2KvIah18vjwBsZMZ+pDprsnRCkUHsa8y+zp8RyPvqyp0JGe+r7nz1F9dP2QNUXue0u8LamD1w7u6h+YxbsKbFMExv2VMhoT4XlbU/T6jyevm3PQq8DCtvKozZXaMWCPSUeErBhT30Z7alvOdpT4hpqeHsqZLSnvpg9VdLZU6PZExCnEztkto4VbN/N5Ue7Z39yjdh1ZW4QC1uCDF+mLUG8GvKxdJDrTGazwCDXA5mNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKyNY03JZnpU8j+rI0lRVBFTMjHmT9KJCZ1OiGULWdBJLJ1O0nPuD5z1+LN3bs7+3N2jH+A3VZUCRVESGblAK51hs+dxo+EdGlWmuVFypURVXEgpiVNyVcVZqdk6hLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJltDxasME+9tdPJOS3k7z7b+aNrfZtG+MRBECXh/72Obu8rEjZZCrBSvBwsI/YqkS/e7Aw4BRjocJGwkqwUr1kg6lWwg4AwTAgHblcxJm8av5iRTh0iihJAy3AJqpLgfBnh2a16uqrofIozWvEkrA+rQQePUXFNRAQAxUwLxBpVT1VlWwt6KaUApRrHeUGJbdwuCtUBVehKEXjUuIry5DywqrNgSwE4hUJOPDWlAaC5FSIRFFqn836a8QRavvQYdqHN1QNZplmVgFlKWjOuL4Z2Fd/ixgWpeLBNi6PN7oMSeWVzXe49GUHkyYy3pgmE+gw1znZdKco79lkqJuLrZMUtTNxZZJirq52DJJUTcX84WKMpf3/Dhrr9uOlDomkaIqXTR8oQ7FilpmZlvcDxXvHJ1jd70iaXGFVp+6NSShGC8Li+tEOk0aacsxYtFhvbUcu9+HqeVYzT7l3XLsw0qLj53P7AtI6TDk69bEQWuNoOVYUR+mBi67+hhB36T79+/roeXYisV+Q0/MT+NleL4am/sk7qtRtBxLYtTOCGPQjl5ajh38u07C27Adfvuqv7zWp1crPH3VUC3HujAqp6YxKIdjyJZjV3sJju47UJGXPmPuz53hXvuMquXY80Am5R0NNJ5CQQZvOfYtL/JSkysz/TbtCWybeTEs0cAtx9IYNRdtcM3Bm8qt5djOoU2W/3rhT++9Ixo82/9hl4lRtBxDfAjalmPAEKJ+ajyHxk/9N7UcI7bFMHDLsW9BTC3H1gfpp+VY2yVng+TVAwS503O6zbsSdZP1lmPE4mYstNH6GMTURut8UHm1HBu0Itu8z8Y6AbNMHYdZbVi7kfWWY0QbwQJW6xmxig/6n2o5NonOjP1XhP8fFeEndhPSWxH+ISFMRfhvB5dHEf6CBa3uuVWO9Djwx+jPa0Lm49utly3bnGUbCWuWh4Qw1Sx3DNFLEf5+sx3OWG+o7TW7j7ha7eQeNQxehN+EERUwboxm76Bb4g97Rfhrm83d3MfbR5AVudV29PoI/LG9IYvw7wtmUl2KYVSn9yL87UPqC8IHB/olVl31sfaRkXwDF+FHrAxtFXVgZfRWhH9ButAu/nG6V+6gyl+W1rqCL5hlmCL8JozgAGOjvyL8ljObfKnZd4X/3MDfPrVXPMeX0zFcEX5kTtMiBOY06rdN5tD4bQKeQ+ufPa/wNt9tuOX3VW8JdQSQJL5ouQys6GSfzZQG544lIRJpyf1oLQyAuEI+NjyCq24aq0stB2KHRdq3JVc90BBqy+1rLgALMMBXxIeHLgR8CwG+A/qWNbHKsuS1wFUUC8qv/mXd6jo1pN29l7yIOHSlsC+e0fuPencRXCiiYSyjC8UF6H3uC9BrxKcYnTYOAk5hX51cqOqq6SuWhCsk1P7lmcRux94VPeGvTbLKu7mu2JOQIYXcSJEhpbrOetlf8P03M37/hL6GdpbUI1MHRwm+slQuloYy1Lbptdl72mz/YJ/Flkq/hG2Lk/FjFXsAeayqJeWhjAGMymhjGGUQ3R+OLhELZ98ouRIsX6JQeHZq36Yn2LKCnUWkI7dtz9AIuULsyG3XM2aMQon8Qu2tBk+7WlRwpqlgwcBnL4pvnJHj1zX4AcHK8TKK/pclovJQlimjsu6HGMPMgY/SyVu1KjnojhqrGBnDMIMS75hZuYwM4E8/lLko8H2n5mXZKpdRHaltUEMOUz0LSXWh2gq2Heurm5eKWnIGb+uY9WyxadWHvAMpM7K7e32eYdBtLwQgFQOgiAIAaFp08kSxpYy+yIR7/uOaMw8FuCfvvTFoT4M+9Qya7AsBaMYEQL/XIZijOYXz7+LjEBtz642P860/Ex/HsX9583G422In7s8vclv35Nc/3hZNOm4EfJyP/Zmim+f7GwGp4NSpU3rg49wcXiGnU99h7ttvKfdWD38TZxR8nPWM2ok3Bu3ohY+TH8AZ0SLA3Cu5UcKuxsuHDjIKPk4Io3IcjUE5HEPycfr8lvrk6Cm+b0Jm++SDu3aYGhUfx4RRebf7GdrZNSI+jkt1u6c1sgqE0x49aTzncNduBubj7OvHpLkUg2uuXPk4jhvF1/jXV3ku2TpvZerQvRlGwcdBfAhaPg4whKifmsD5f8DHebrmRkSc4Iv/AYfQngvWJsYbmI9jMpCJj5M1QD98nIRLGZMXn8r0TIlbPFB2oN0W1vk4xL05CxyTbwOYOCZXBpQXH2feCd8VD8cO8cheH97yxy9HN7POxyHaCBawymLEavqA/yk+zlQ6MzYmX9pa6r+VfyAvQPbs8WB8G1+zPmNh7qSnQhQdQc4w1SF80cxdGhMNs8fU0ZzxTqosU64I1swLh59AOfLMu26Jd7x9VZA73jo8b9gL+vcjR3I0haTxVzUYmLAAzVQsilFJzHvSclSqn0bBp4nwAqPSmg//EfI/R7UUeIV7FZgHS2RAYRKxN7DrcdjjELWqVJlIp0qdc9Ls1WO7/HPSFo35O/aXBv38V6Ss6jV1yqneGjlppzsuPHyviidveyert527b3mjkZNWI2y2henZ87zZ3VxSX7RvlqCRk+bR7eevf/y93W9l7QPz7kztHaORk3a/7rkRkfsceFt/bWb/efniPRo5ac3l3d9VnDaFl7kgRxqa/+ilRn5+s51PTS7/edZz7qy8b4VXuq3TaDZjlX45YOrV4T6zDvn+2Jr3pR0QmaKiQ9XHFef0PCPY1/uRvTB2fAcgqoqKXk2xdFnUoJNr0qy/pvI+bVsPRNVQ0ddpn795dVrMX3TQ6enBv7xCgcgMFdU+2bB4avYmYbLJVc/efW/sAKLqqOhs+qIqX9uLveZJqhx5ndnhFyAyR0VffG779J+y1Wd3ld1bzp7adw6ILFBRaubzopOKq15rk8T3/zDffg+IaqCiqtL1qxLzvgWs3rf3yd7Ld+Br1ERFb+p5bJx3NNEnc9jtyo+WO8LPqoWKWj4zzaqRt9VnUfvpkmWpdyOAqDYqOhlscb24w1nXLbVkzwcVLo8EojqoaHjKhjmcnk5uh/Pfzr0bZH8diCxRkcLz/N3t/jPcdvvWWBr0pU5NILJCRWfOH8tQnm3unfowv/Wr1ZkjgcgaFVWK7J5fnLrLc7NNw9xxed3DgKguKhpiP3vFsKUrAtYsuxlV9+TH00Bkg4o+LVvX5/P7TwGrsrycggbXfw5EtqjI837/Y75XN3vPvNf51Keu+7oDUT1UtKnYZeru2es9p678sbxNq1B4lx0qmp9jZtou65L/tCejugwbctoCiOqjonfSg29fdT8rSJzTvt2G77M9gagBKnpkZ9Hw5tVit5mtG+/t/ar2USBqiH2vttO6fTqRyNvnMt3KYUD4UiBqhIo6t7nT3y7Wxn/BxO6vbt65uQyIuKjI7UlkgmLF+YAZU7Y5HLrV6AIp2bIxhybZMqO43T2rufd5C0IbtXu+5IMjhdnQNdlyGp2Jsgo7uDP95BlBRtbDCefqx2fiDxMFcdEyuZiCQUDXmLQFeoea84mUWo+JFMlkwAihVey1pAwQDRTlq5HPOVGBtrWvwAoQN6wA2lcK7zcQ9nEbplsTiBJGpepFqPn4qUuqbcjt6r/j0qXI9LUvs1kkVLLs5HLsBZxoCJCYynE7Ddw6r2E6sQE6BgGHSYGc3YklsEyvPEaKUCjA+0llsOmyepxwgQfFFcEtVyglitt4XTestFP453aokpt2I/4WPgSq/hxyCLRExHp5VXtkxDDA9XmoUcSryXQ9HduGOqETTVyiLmWESAn2L6MlXOCAqNsw0cdKC2YIz/xqv5a386lb5js392WE03L0sRSn5ZiEbe3VdEIHuzuV9tKckcFOipjqCFxjjNiDHVpLiEBSglVxQU3HW5Uq+y0P4ORcuyCqVHYaEQtgcRnBAkMdXX+mc2jWn/+yD/5R9gHRQ9db9sGJ4UzZB+7DyyP74MKTYptbVZv4rfq7R+cG1c9ZsLhYEi0QC9kHh4czkbUXD9dL9kFR/Yvjn3eQea5wkPU/9jrymMGzD2SMqIBxY6SREv1lHyzdsODPj58GeSx+lH5U/jUWf65iyOyD+oyq+zjMSN0ZlrMPBqVbx8g8KwlnNx1ULTnrWRcDZx8gVoaWPg6sjN6yD5o3FNZKiRG6Hhl362f1fqYyI8g+kDGC4z5cj9kH1rEubSfdvu25oMP+82YLTI4YSfZBfUaEwJxG/bYZHBq/7cwKkfB717qeiRsbVnnZdGIe3htFetYFuwu1Pzhww7eMRD1hsEMMA78Cv2u8Zl9FYGzR8Qp9L9R1m6SV40Q8v6R+b7IXjUl0aO2SNhFt7UJylVyBBmwmlkNvyYduU2RXx2zzn1Hp9Iphue9tCEF2eDdFkB25XJqnRLR/LPRtSYUARVMNQm5rASdiok6xMxsEIGxc2IulCjB8gZx6sd16SpA9ddIk/oxffX9bd+vmJPy0dMduJk/LElFpgB25FHz7ayW+78quDfcMb+NgyQJgroyAgRFlECdKtWbAv2nPofshp3SaMujSDNElg1WNsVIOT3rq7LZzjV3Rt9+evq2NJOMAZQjiohUSdegOcWp5bsH2A1qVzQEmqDbYawtnaI9c373XPByiZvq5sqDa4glMqj09wXj841TdGsCV3r/0Q5XgxRlm7p7TXV2aLK9+IMBg/Us5zqhNgv1Lo0n7W2dkiqEL40wOzcLodqXunXGd97puHzzMJrnfEXxpYEtYclMJjz4hG1cC48MSHbqeufDlkQByVeFP5DHikscgm8OSZmdiMEi0WhGJYbvSX5ikDsq/0tYbgQemEgD6czeKJmgjwOB/Li5rrh5PqAEKPG6ApXyhtyGP4tpjDbwAeqokPvg/lU2LgafR8lgJTQbO2eMb4rlnUnxW/CZZ3dp3+BO8jUF6oVK0iEOvl2Zjqnz7YSL5e5D7fN67Hg8fCMrKv0gFMNtAmE3cKNp+pbVCYC7rkXBzDfWrT7dC5VExktCxyPCALSSoTzd967w4bsVf77O6pljgnDSkDp5VUPJc8vYXJ2Q9o8kRhW0IFWxFTghsqEmYRWcSzlk0/dC2k9xv5vu3vs6XpwiIDYOjZaJQCdd/rExGYQvoHGYn7L4oeB8cs9KocSKZVKwa5LFSZQRXDrYpCu0tATFKz/CeVI2NNcTaUs9aAp9GDNA1owq+ZUJ0Q8s6963hooa0P1TCdn3QSELEqElVAStd/1g3kLe0ws+jXxtKn+LdZ+RBZPdZdbm06UxkJZSVTgUrOULk1lK5DLB7SU0xrfusJXJ2auQUuKEGhxZ1n8Npjx4+uTrNc+Ht4E+8n7l/46na6AChDungpWzPYogWGEkMaB0N1auDhb2oacj4aIkmDk01ODvOvsCllcic4d/EOHt6DYdObrhEQWAJw5+yGm5rZIGEigWPAJvq8SpVU2qZuDCVZZKUtYeyMzoLinlUpEIXZBbodBBmo2pjCn0FZK3Chr6YEopWmSaRG+QzvJdn5wRPiVu9kxCYgN+KIjCBXC4PKJAhTgsFGOLoQpXEoVmojKZuPdFastPCpxzK1ruHMpWtb6aGfLbRQ07kxrED+VvZ4lVVTQfy9z38e0RLl8EfWYD8YwQT5FciMMjn0EGuMyuzBga5HliZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGiVHdNIpMoMVam8/3ePeeOKfLYNXhmgm0fPx6J8gYHL+XoI9IvWaC8JdPpv4nvCac7u6t5bDIRj7z2oiZe/3VUh/18mTwGuotIAIfslFemmW1NPKSwZU8E7HGjegCypYT7TJSGoF14n0g5LfUVSeBQ/ZG2XjnYKjYTgUlWRHV2DdtBrh+h09m1nSrahmSDyKFqAB7gF3pe0JR9Dc4OP2Hhn+i1s9Hew9sWlyXWVr7H2IUAq/oidNktJiXYg231/RGUfjgdVlZqSoQmVtQckLW7s1v7bvKYc3rCO+9uVaewSIuY2tf/0+mNcR5b5LO9ktzGH2MBJTBmGFCKGKFbk3bHQGxeIZMNwQybcnCrh3HP6EMl/VLPrrrQcr7n9rtjvO1ePHhrwHgubL+IDCLKgNxR2H5xhG5urIM6egghCtWoWQFXIJxtogRnZWfh9ffdj/qnXU2YK1jdZZYRRC0hSOdHMIG0foRucd3m7lLVN1cfVZUMGSSwSG+gji6XPshpE+md8+dhy5SLFyfjo4jYc8lRRLWkPNCJZ0QnZATmGKVwaBbGV/38hSYuX/hL1p33WBPgPYh8EE9eCU1owG2Mj+eqqW6xcp3KxhETLLSNDWjL/gaGacRIANt5qtxHDoDNdGQ5hGmTO/lsPD9aLFxzKfBKV3fuKvxhJxKPpVnWccLSrDjRxJWVCQ7s9AAIViDVGMuEpbhG6rTWWSBgScBMo4dqQHrjHnMD+rkn3h+xP7VpZzzrtaoA3EsNlIZIzy4BhMmUEab7It0Wu9JDaMRYs8FCaNDSIGMEhtBInYSjnRFoUDs0l84O8Vued+k67Z4w02PNO2VX2wbEc+hIUTRXdU5DcV5O55q3VN2HRXuQvBQRN0oSCy9JFNJQdIHUyiwRk7sY3pDqpFxDrCWurrAP2LgCWDWJwidPAKiPGKeTobJAwlCqw13wOtSFhj5POh++/E+3dRbnZEvW96yNd5GQB5BdJNXl0uYcMc+tjHMOMpOLIDxZdBUddo3TiU1irnofpkJfzg8+ztzU6oH7phX7TEZn1b6Ej/6p7idH/9DrpeGzd/g77+Iuv3klCMcPm7VI8hcL+CQx4gOGjyEYBqYIcWOcCogeHOKPbpXAzUNEinCJkklpnlWlMX4TrvHy70W7dLywoBCvNNX9ZKWh11k/s4VBHEat1DQqrRTnY1rRafmqgRi8aIkYNb7U27HG+RWbja7KWz3i2u2Fyyrj47+V/ZD7yYpBr7OtGFdn1JzAY0bSfjXBRcDJGKfbhsxOjQGysZBJS8PjacEI+cE/agmTLF5VbdG5Cz61rQpf9QAyqxYTlAciIxgRaTYOW9fncWjW9V0LfT8O7t7Ne+bH70rT4zc/4HWs+kTtyTA91DsM/ALOjY2QhkYAtxLmFopiYmBFAzUrBl3+tdt8EPO0qd6XPCZV13XhiY5FeaIk9osr2NWNGFvWCHh91NWAi71UVaQGpjCp3oTyi9vNvtHswIY1wqSf0Z+zq6/Dc92r0Dk2aoGeF3+ESgoxbEPF0eA6IBjqZLF6+KMjSlWWE5eoBflAMarzAVgKEP6/xKfkTvSfRIkocT03aFVQuK9FALOhAgzWYgKAoZN5Pt1kNprAFXE0sdTjmhjmYCFydVvJFLk6rMQwT6XD3P+Ax8UznBP8hEG23aUvfWrhq0Yh/eSjZdJQJC2MbEjpkLbzA/4AWJ6U4E4ZNxL3FK3sJLEyBdNrkYtZ4eXaHtzA0kvjAZwpVAc3SIxifIG5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj8bRdU2VVv11GP/psKqU51lnXD6qcAjzw4eaXZUIMyOk95/Pak+z8Qtb+8c092tClLKemYC47pQnW2o2AuQoHN+fIEGSKWdLDUMloTKgYXWBaW2G1wTZ05Z5r191K4lGaIZI/EouZFRcisVpT8tujflf77mvvzbqktVJtnFsYDSekaU4scXoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD1d8C+zp8RyPnqyp4FxTPb0c+x/9hTVz5yj3quLL/b13rXazsPq09XmbNhTQpkmFiyFVxyTpeDGlbc9nS5d97pH2ymeSx7ZWll5te3Kgj0lHhKwgBIY1gwoFcaWoz0lrqEGt6fIiKG1pwAp1J4upLOnRrMnIE4ndshsHSvYvpvLj3bP/uQasevK3CAWtgTCWKYtgaMa8kV0kOtMZrPAINcDmY2iBh5m6ilq4GFkNooaeBiZjaIGHkZmo6iBh5HZKGrgYWQ2oodGYqxBq0g5xIjV81hgrC1mTclmelTyP6sjSVFUEVMyMeZP0okJnU6IZQtZ0MkSOp2k59wfOOvxZ+/cnP25u0c/wOf5VQoURUlk5AKtdIbNnseNhndoVJnmRsmVElVxIaUkTslVFWel/NrEuosUr6KNtTMLDlXIZbIguGLBi5oNWQmW8M2ZOueb3fd1X7zg929tzjrSMqlN+8ZIFCHg9bGPbe4uHztSBrlasBIsLPwjlirR7w48DBjleJiwkaASrFQvqRlLCwHHZAwwoF35nIRZ/Gp+IkW4NEooCcMtgGaqy0GwZ4fm9aqq6yHyaM2reCtsEtRCsKPimIIaCIiBCpg3qJSq3qoK9lZUE0ohivWOEsOyWxi8FarCizD0onEJ8dVlaFlh1YYAdgKRimR8WAtKYyFSKiSiSPXvJv0Vomj1PehQXUo3VI1mWSZWAWXpqI44/llYlzePYVqXk8Zg6/Iyo8ecWF7VeI9HM6RMmMdLMczT6DDXeZk05+hvmaSom4stkxR1c7FlkqJuLrZMUtTNxXwh04X5L9OX7HWb8+7TxfaPb9TT8IUcRiVn/1rwxifncVCfqMK3zUiLK7T61KFzQjFeFhbX5XSaNNKWY8Siw3prOZY6ianl2NH48m45ltbiqumgTTO89nQKHj3vcaOVRtByLGkSUwOXEZOMoG/SjRs39NByLCA26Hpj2fuA6b+unD1BPtPMKFqOdWHUTk1j0I5eWo4tqZgz4LfJF33zvnW8FBF8c7RRtBx7Hs+kHGBNDK8cjiFbjkVWKM4IFuf65b9YOCFi0cFpRtVyLI1RedGGUZ5xthy7fOeh17evXgHZspt/Xlo3cbWBW455MWqOa3DNwZvKreUYLzTTLKS10jPpZ7fWlrb9+EbRcgzxIWhbjgFDiPqp6RwaP/Xf1HKM2BbDwC3HsiYztRwLmayflmPcWkFj/oo7KNj5N8cjSDh8Oestx4jFzVhoo7V+MlMbrfjJ5dVyLP/HvWaeL5t7LC/eNKTQq+8K1luOEW0EC1iFMGLlOPl/quXYCjoz9l8R/n9UhJ/YTUhvRfgrJzAV4U+ZUh5F+MfY/zz4zSrEb07r6ydfhG3Bk8jKlm3Oso2ENcsrJjDVLL89RS9F+B9+bxWW7Wjpt9d82lS/GhtbGrwI/74pTKiAcWM0ewfdEn/YK8I/+NFqW06vCJ/sQXv2NKnk2NpoivCLGVXXwzCq03sR/qi0mHpV5lZ3XTD41sFVHQ6lGbgIP2JlaKuoAyujtyL8LgWrW97/fYDbwsVTNiwcl13ZCIrwI8aGFpyUKXoswv+mmuWQBdIi17zYnnmbJl3ebgTlLCBCYkaEwJxG/bYMDo3fJuA5tP7Z8wpv892GW35f9bY9vo4AksQXLZeBFZ3ss5nS4NyxJEQiLbkfrYUBEFfIx4ZHcNVNY3Wp5UDssEj7tuSqBxpCbbl9zQWcIjg9RXx46ELAtxDgOz2hrIlVliWvBa6iWFB+9V/bf67c+tQj/sJRF/3aVtmG77L4j3p3EVwoomEsowvFBehdgeg14lOMTht4SpygkwtVXTV9xZJwhYTav7Ryunn/qSDTbZbZxl9znyWvJWRIITdSZEiprrNe9hd8/yzG75+WYGhnST0ydXCU4CtL5WJpKENtm2VbnwhzEz77ZUh8HzZ6368xfqxiDyCPVbWkPJQxnVEZ0YZRBtH94egSsXD2jZIrwfIlCoVnp/ZteoItK9hZRDpy2/YMjZArxI7cdj1jxiiUyC/U3mrV7dk3fMbNcZ0+vPUskwneffDrGvyAYOV4GUX/yxJReShrCKOyvIxi5sBH6eStWpUcdEeNVYyMYZhBY380aj1s5hr/QxWqvvz1etf7Zdkql1EdqW1QQw5TPQtJdaHaCvoeTNDNS0UtOYO3dURqMmFDi43eR6xuNGqckdDPoNteCEAmBkARBQDQtOjkiWJLGX2RiSZRy6eEW1dyTW5T+4RY6PDYoMm+EIBRTABs9U/AHM2VnH8XH4fYmFtvfJxrU5n4OFFTy5uPc+NVwcjtN4O8Ml832G+9a0JtI+Dj/D6VKbqZN9UISAX5+fl64OOMbnIkfcnEUGHuSw6n9avMAqPg42xl1M5SY9COXvg4ifWT6twIOO2+10O6eq/woKlR8HESGZUTZQzK4RiSj8N5/FfE9c/D/Fa9ul1BWmPIfKPi4wxiVJ6HYZRnnHycfm26JM44pPTMzjeP+97d+aWB+TjtGDXX0OCaK1c+jlVkhx5jCnJdVw8Y1+uSpIfIKPg4iA9By8cBhhD1U1dx/h/wcTq3udPfLtbGf8HE7q9u3rm5zMB8nEGJTHwc50T98HEuWe+4675ht3dSfm7K7P6K86zzcYh7cxY4Jv0SmTgmbonlxccZdPhaXceNc7xX1b9xvfP9T2dY5+MQbQQLWDkzYlUv8X+Kj7OazoyNyZe2lvpv5R/IC5A9ezwYX5verM9YmDvpqRBFR5AzTHUIXzRzl8ZEw+wxdTRnvJMqy5QrgjXzwuEnUI48tyeRCYoV5wNmTNnmcOhWowu070eO5GgKSeOvajAwYQGaqVgUo5KY96TlqFQ/jYJP4woLc1nz4T/8qBw0qqXAsoeywDxYIgMKk4i9gV2Pwx6HqFWlykw6Veqck2avHtvln5M2JLRWj2dhJwUL7n84t67dOpFGThr36+XAux9re662bbvV++u8Axo5aeZmU2Ov/VDyVg8Z1cliej2lRk7ajuNWt39kFHktWrur4eRjA4I0ctJshx/qMqZHhuesbvGHpLIm+Ro5abwB0c/vrBH4zH3ovH9y55Phmvn5jtGbEsbGuy9u2LnSqIXjBBrNZvpbvHqd1e6lz/L+A3JuLJx4DYhMUZHpzm/n91WQ+ubaJjTYlDfgKxBVRUWVB/b9i78mT7Dv6amkUSE7o4CoGipqdcd/1ZPZsQEbMn98G/ym9SkgMkNFDVr9/eH9u5Ee01e6Dje3ePsaiKqjorsP32+I+StUsCzYbNjuu+1gcQFzVCR88mzIlvXT/bPObVha8XzELSCyQEWzAiza3PIs4OUuMYla8bHSZSCqgYomVD65NLHDUY+MBRe4+wfvdQCimqio84uC8aOCQ/037nn+d6uuLj5AVAsVVaghyLpTb7vnVM+6RVcebikAotqoqLnXwIc1PeYEpEe19PHPrXUDiOqgoludxue37xfLnzkiKNmx6cqzQGSJip4cTJ9xcr6599TXjY+/W1VpPxBZoaLdl/bPrJfUQbB86avEHpWfw69sjYr6nNn6fLqysc/+uPWvTsYLnYCoLip61Glcd9frfoI9drMsq7baPwWIbFDRq0shXiN/6eOWu7rlD9fzcjjYbFFR9fj3L9L6TPGbc9Rh1PnsmRuAqB4q2rW09piYS5t8pw83WfMh0RqK7FBRo4jb3XqZt/Nf03bpjGNXT8LPqo+KPKcfbLH3ppffPDurvVUrrTUBogaoyGZn+Jttx9b5bt31+Uw9q+5pQNQQFfEfzY7bMD2Lv8HGqeeBWr13A1EjVLRRaV3r07J5PqnK5U3qVNwMX4OLirbseXn7h2CAcO3cZPtea7udICVbNubQJFuKLW3M21y657dwxNAtF/q5RFCYDV2TLdfQmSirsIM700+eEWRkPZxwrn48PjhdRRAXLZOLKRgEdI1JW6B3qDmfSKn1mEiRTAaMEFrFXkvKANFAUb4a+ZwTFWhb+wqsAN2mF0D7SuH9BjoKOBbTdWsCUcKoVL0I5Xcb5iYMqiuuyFt/z61Oy57NX7FIqGTZyeXYCzidIEBiKsftNHDrmkzXiQ3QMQg4TArk7E4sgWV65TFShEIB3k8qg02X1eOECzworghuuUIpUQx99Ml110lT/7SCoc9db38LxIdA1Z9DDoGWiFgvr2qPjBgGuP6eZhTxajJdT8e2oU7oRBOXqEsZIVKC/ctoCRc4IOo2TPSx0uBW6459syrw3VF4dcCih8d6EU7L0cdSnJZjEra1V9MJHezuVNpLc0YGOyliqiNwjTFiD3ZoLSECSV1zqGb8wsob/+JlX0znDOj3NLXsNCIWwLJgBAsMdXT9Wcv5L/uAzewDooeut+yD+9OZsg8ydVsrtcw+KL6rHLXi53uvQ3aba1eJGRzB4mJJtEAsZB/cns5E1j6t22L5T7MPvB++X9Bn5XX3fXMnNj8+QbzMoDQMJPuAERUwbow0UqK/7IOZ0x9v7WOzxy+h78feeyLfHzOa7IMURtXFGUZ1es8+aBnw5cOkDFuP3PYr7Arfrh5q4OwDxMrQ0sdPU3gp5ZV9sO57ZJOPm3bw5zawyKh/Nx5/Hmig7ANGcDKn6zH7oF29L3PPdF7veWiqjWVl/9E/jCT7IIURITCnUb9tHYfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PF6ItnYhuUqusEL5wnLoLfki1P7njo5Lvab5/NFxfrW/zxKC7PBuiiA7crk0T4lo/1jo23IfAhRNNQi5rQWc8wt1ip3ZIABh48JeLFWA4Qvk1Ivtfbcb1/Z9vC7cLBRNqzw94g1+WrpjN5OnZYmoNMAOHL+W1v5yst+MCgfbvDlaT8YCYDmMgIERZRAnSrVmwL9pz6H7Iad0mjLo0gzRJYNVPb3y1GTh9OMBe6ddWTS7ujy/NpKMA5QhiItWSNShO8Sp5bkF2w9oVTYHmKDa/tPv1Kkf9kyQ4X6s97Snzz+z0cOIUbXxBlItlX+cqlsDuNL7l76c0iKtZYeb3rOHKoN2zo1MMFj/Uo4zapNg/9Jo0v7WGZli6MK4nkOzMLpdqXtnXOe9rtsHD7NJ7ncEXxrYEpbcVMKjT8jGlcD4sESHrmcufHkkgFxV+BN5jLjkMcjmsKTZmRgMEq1WRGLYrvQXJqmD8q+09UbA4J83C4D+3I2iCdoIMPgVs8qaq8cTaoACjxtgKV/obcijuPZYAy+AniqJD/5PZdNi4Gm0PFZCk4FjF+NydHfbw26Lq+V/H2HST4q3MUgvVIoWcej10mxMsvDGx2/j2vHWPnp3Z9m2XoPLaGNSAcxzIMwmbhRtv9JaITCX9Ui4uYb61adbofKoGEnoWGR4wBYS1Kebmcd/MX9TONtjy6FDcwunD++IZxWUPJe8/cUJWc9ockRhG0IFW5ETAhtqEjbQmYRzFk0/tO0k95v5/q2v8+UpAmLD4GiZKFTC9R8rk1HYAjqH2Qm7LwreB8esNGqcSCYVqwZ5rFQZwZWDbYpCe0tAjNIzvCdVY2MNsbbUs5YCTkOIrhlV8C0ToPt+ZlnnvjVc1JD2h0rYrg8aSYgYNdfY7fT6tB8dhEvufD51v00vHt59Rh5Edp9Vl0ubzkRWQlnpVAC5ehC5tVQuA+xeUnkWrfusJXJ2auQUuKEGhxYlfAOn2bWp92BPQPLIlDXxM1vE4qna6AChDungpWzPYogWGEkMaN2dqVcHC3tR05Dx0RJNHJpqcHacfYFLK5E5w7+Jcfb0Gg6d3HCJgsAShj9lNdzWyAIJFQseATbV41WqptQycWEqyyQpaw9lZ3QWFPOoSIUuyCzQ6SDMRtXGFPoKyFqFDX0x9aL1JPt9wvZrHqlmGxqeuP8kmRCYgN+KIjCBXC4PKJAhTgsFGOLoQrWRQ7NQGU3deqK1ZKeFTzmUrc+cyVS2PlUN+Sajh5zIjWMHcknFYfvq/F3smWhSWNAmu+IeFiCPm80EecRsDPLNdJDrzMqsgUGuB1YmBYkSY2VSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2Uuyjh3NU041HPHhM9+suAxtUiUNzh4KUcfkX7JAuVtC53+m/iecLqzu5rHJhPxyGsvauL1X0d12M+XyWOgu4gEcMhOeWWa2dbEQwpb9kTAHjeqByBbSrjPRGkI2oX3iZTTUl+RBA7VH2nrlcPjqBlgkhVRnV3DdpCBM3Q6u7ZTRduQbBA5VA3AA/xCzwvqX6t4cpCbm9+2WwejAjL/LCpLrK18j7ELAVYpM9Blt5iUYA+21VEzKP1wOqys1JQITawoUTphIpt6z3lhwNbv22qGtXtYn0VaxNS+/p9Ob4zz2CKf7ZXkNv4YCygFMqLUboZuTdodA7F5hUw2BDNsysGtHsY9ow+VJEcecVjiwxcm3h4riY+a7mzAeC5sv4gMIsqA3FGwDY6boZsb66COHkKIQjVqVsAVCGebKMGpMf1Mt14JP/kbM+/WXVHXx8wIopYQJDEjSIEzdIvrNneXqr65+qiqZMgggUV6A+UYvqZnYFFvz/W1+q/c5SAwwUcRseeSo4hqSXmg04MRHfsZmGO0lUOzML7q5y80cfnCX7LuvMeaAO9B5IN48kpoQgNuY3w8V011i5XrVDaOmGChbWxAW/Y3MEzO0IU/T5X7yIFVHskHUGUP094RnehTwUPmsTfuD+Xw7KQ6+MNOJB5Ls6zjhKUeIRNMXFmZ4MBOO0CwAqnGWCZwza1n6rTWWSBgScBMo4cqzreiV/zz1YL8lpta1Ww1cTjeEgnAvdRAaYj07BJAmCoywvRGx8Wu9BAaMdZssBAatDTIGIEhNFIn4WhnBBrUDm2js0P8ludduk67J8z0WPNO2dW2AfEcOlIUzVWd01Ccl9O55i1V92HRHiQvRcSNksTCSxKFNBRdILUyS8TkLoY3pDop1xBriasrbHqVWgCrJlH45AkAda9UnQyVBRKGUh3ugteh/JZ/v+iatMk2xnPpAue293b/IHRsRB5AdpFUl0ubc8Q8tzLOOchMng7hyaKr6BCdqhObxFz1PkyFvkZnjJm6OXm9z+JLUaZ5ya3H4KN/qvvJ0T/0emn4zPrp/GzD5h/ui248Xup/s99GFvAZwogPGD6GYBiYIsSNcSogenCIP7pVAjcPESnCJUompd2q/2akw4MMv8WbXA7wXzfdjFea6n6y0tDrrJ/ZAq10YNQK16i0UpyPaUWn5asGYvCiJWLU+FIqZsHU+9ebhQ8XbluybOjmefXG4hXjh9xPVgx6nW3FuDqj5gQeM5L2qwkuAk5Yqm4bMjs1BsjGQiYtDY/nYY87e7zOd5tR4FbkMvZ3Vzyrlq96AJlViwnKAxEvRkQcUrF1PYtDs67vWuj7cXD3bt4zP35Xmh6/+QGvY9Unak+G6aHeYeAXcG5shDQ0AriVMLdQFBMDKxqoWTHo8q/d5oOYp031vuQxqbquC090PsoTJbFfXMGu7vT8skbA66OuBlzspaoiNTCFSfUm1N2iHjS3HfvD3CN9yuNFG3ZZHsEPPjrHRi3Q8+KPUEkhhm2oOBpcBwRDnSxWD390RKnKcuIStSAfKEZ1PgBLAcL/l/iU3In+k6iHEmE9N2hVULivRQCzoQIM1mICgKGTeTvdZDaawBVxNLHU45oY5mAhcjVzPlPkapwa8x10mPsf8Lh4hnOCnzDItrv0pU8tfNUopJ98tEwaiqSFkQ0pHdJ2fsAfAMuTEtwp40binqKVnSRWpmB6LXIxK7xc24MbsMm2hlTNFKqDGxijeLmgwFx9Gol5Tth6Us0b2lKcLuEnVUEue4uxMTBQfHpehfyq7rlv6vqZt65TiMkr0MjNAhDzQhojpqrr9A9WvQ/yuvBPmDZuDTykCmBzIDsBITPh9UWpn5CF7puXVljhO/3AidMTw+zww6YCjzw7eKTZUYEwO1bNe2J7+KxDQO7gKw0Hmowoa9cmDpgdtaE621CxFyBB58eCAg2QSjtZahgsCZUDC60LSg9bjvqUZ7fdfd6KRdkvC1+a41FyI6PkVipKn8133SmWBHqsOzX7ZOSm4tEsoASGNQNK1xYUoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD3d+S+zp8RyPnqyp64LmOyp5X/2FNNP/Ib+O7w/7PFdcnv4xG8O8Y9ZsKfEMk0sWIoejJbCvtztaeSYphlN83q5Lb0WHVXU02kHC/aUeEjAAkqWjChxytOeEtdQg9tTZMTQ2lNLtT3dRWdPjWZPQJxO7JDZOlawfTeXH+2e/ck1YteVuUEsbAnyUpm2BDvUZyq76SDXmcxmgUGuBzIbRQ08zNRT1MDDyGwUNfAwMhtFDTyMzEZRAw8js1HUwMPIbEQPjcRYg1aR+iSZUD2PBcbaHtaUbKZHJf+zOpIURRUxJRNj/iSdmNDphFi2kAWd7KXTydLnn1Y69U0RHjwb8Kvnz8wm+HIdJXmoeMUwxZysS0oWRcGaUOgDqpFzWmt5BAT58ULsm0xs0y1oUhPHgFZa+ZXE0o2VhfLQ0RKx+ia6r0CuOFIi0zbU0ULASUwGtq4Tn+acMyyZwr80QeGi8C8Rl4XgX6Z9T8hds2CAd/amLf6uT1rfYst/ZKx2XYIFd5xIIRWNlFFzhvpEdzy7bGGua/YqvlnHZ2dymdHvhz6KG0B2lAJKdZSINTXLWtYIaG9yMuookbPgWiDaIzpKTP6kZYmjVDLQKVG7Otq2yYexHPc9k1rcvrb7z/eMqNE5TVTHfWUNiLRFITnqSgFJdFsEEtSG7KOzIek59wfOevzZOzdnf+7u0Q/wucKVAkVREhm5yDOd+bDncaPhHRqV6rlRcqVEVaBMKYlTclUFnqlHJ6F2K8WraOMxmQWHKuQyWRD0euHFkrTx4t6EMervYvWb7d5Q110L1rp1nbhvL90YNe0bI1GEgNfHPra5u3wsnBmhMlhNGhYPE0uV6HcHuxQYKX2YsJGgR6zcN0mPYPCmzgV67MrnJMziV/MTKcKlUUJJGG5QmKkuB8G+P5rXq6quh8ijNa8Sykj7tBBcnz+3oAYCYqAC5h4rpaq3qoK9FdWirBDFekeJYek+9WivCi/C8K3GJWS/L0NLk6uMP+wmJBXJ+LCenFo1lYOVCokoUv27SX+FKLrEgKiG6n66oWo0rj2xkjBLx/3E8c+Cb//HXCbf/vZczDxkGz3mxOXEeEMs5xmTgw6rk4MO0GGus6ttztGfq01RextztSlqb2OuNkXtbczVpqi9je2nrBNGt+vYx94rO31t/boN61XW2E9N+PJy68N104SH7nf47cwm7y0kBx1afcqBRCzozYKDnkOnSSNtW0gsXK63toX3FzG1LYxbVN5tC8XNbTpMO/U2IKtdlZDbHX+RGEHbwtuLmJpAnV5kBL3XfvvtNz20LWw5aEW2eHodvwzLAe/r26TPMoq2hfsYtZNpDNrRS9vC6h+f9Pzl3nHBjN+T7x1cboJv9GyotoUpjMqJMwblcAzZtjDxbOMO34dy/PNOOq+tlbEBXx/R0G0LxYzKCzSM8oyzbaH88oU1xYU1+Hl1JZ8Cm9m0NHDbwh6MmrM3uObgTeXWtvDx9eRzH+Y/8NvvkzJ18rhRV4yibSHiQ9C2LQSGEPVTD3Jo/NR/U9tCYmsdA7ctjFrM1LbQbbF+2ha2thLyW/t8FWxODrXpmMnF9+Nmo20hsUAiC634Ri1masXXb3F5tS08sH/t/dAbC90Pn+pSbNpQblL2KUzAimgjWMDKjREr58X/U20Lc+nM2H+NPP5RIw9iRzK9NfJouISpkcddsu1koZHHqwdHz7z/u4tvdljvlLPvVj1ksWIFyzYS9j2ot4Sp70HlJXpp5CHweRPw9x/zXY+8zrqRV7sZvn68IRp5vF/MhMpd/VpDxr2DbsmD7DXyyPiccnbuuQr+KVPjvxyqN3iC0TTyOMuoumzDqE7vjTwmnqrd1vzrJWFig2HRZrPiLQzcyAOxMrSdGICV0Vsjj6mpNS7vPDDVe6PJc4dqF3i3jaCRB2JsaMEBxkZ/jTw4o/q8+TJ7i/vqXtleqRPrZhtBSRyI0FlGhMCcRv22Qxwav03Ac2j9s+cV3ua7Dbf8vupte3wtEiQROFouAys62WczpcG5Y0mIRFpyP1pPByCukI8Nj+CqG0/rUg+G2KWV9m3JlVM0hNryg5sLOMVweor48NCFgG8hwDdjSVmTMy1LXgsyiFRYUH717kfCnFYm3uPnrY0taif/FV9s9B/1/yO4UETDWEYXigvQ+wOi14hPMTptHAScIt1cqOqq6SuWhCsk1P5l4LO2SQ//+EWQ8bV4UA/nNycJWZbIjRRZlqrrrJcOB9//BOP337XE0M6SemTq4CjBV5bKxdJQhvpYh50ubMtrkxQwzWvd+/Hjh9rixyr2APJYVUvKQxkZjMpIMowyiO4PR5eIhbNvlFwJli9RKDw7tW/TE2xZwc4i0pHbtmdohFwhduS26xkzRqFEfqH2Vu+k9Ap/PHK/YPvA5LE+26sfwq9r8AOCleNlFD10S0TloSwlo7JGGMXMgY/SyVu1KjnojhqrGBnDMINeZL97NjR+oc/U3ut2vkzec6QsW+UyqiO1DWrIYbp4Iam2XFtB39909FJRS87gbRVzfT2P2WcFzDk7SbDpQfAMg257IQA5GABFFABA06KTJ4otZfSFarJ2flt7qfFuQXr9iDeFLd7UISxl+i0YAAFIZAJga9gSzNE8zPl38XH4j2bHbZiexd9g49TzQK3eu/XGx3mzlImPM3NpefNxNv3we+llUcl3oY9zu3c1P4QaAR/n5VKm6Oa1pUZAKsjJydEDH+dhvy+KQcuL/FfG9X2W8cWvhlHwcY4xameHMWhHL3yc9sX8lMA3h303LDlWFPnn3vFGwcdJZ1TOTGNQDseQfJz1wRe37fCP917QYG2aa+TaB0bFx1EwKm+YYZRnnHyc1zmH5JWGtXJNfHjsdVann5kG5uP4MGquk8E1V658HG6KPPHJaKHbylqN84f52KYZBR8H8SFo+TjAEKJ+6hHO/wM+zkalda1Py+b5pCqXN6lTcfMGA/NxFMuY+Dgey/TDx+lzt9qvi3vfEWweU9C7X09hf9b5OMS9OQsck6hlTByTQcvKi4/ziddwinX/s35zl7xdHPotYyvrfByijWABKw9GrNot+5/i4+TRmbEx+dLWUv+t/AN5AbJnjwe/xUdK+oyFuZOeClF0BDnDVIfwRTN3aUw0zB5TR3PGO6myTLkiWHczHH4C5cjbsufl7R+CAcK1c5Pte63tdoL2/ciRHE0hafxVDQYmLEAzFYtiVP7D/Gj10yj4NDawuJ81H/4j5H+Oaim4Xnd+gXmwRAYUJhF7A7sehz0OUatKlfl0qtQ5J81ePbbLPydtk6CDnaXzFf6S6EmhByq4Z2jkpF1Ly94d/7tCsG+/W9xDcdJDjZy0qzXnyubYvnY//E6i6JVxoqdGTppf20fBmQ6LBcsPTN8+6GFOA42ctKTxq6YMnMb1SzntPLz9xx5fNXLSGrw4uVRaYCfIP1T11tSXWYUaNT46LVnCETbd673lyIC5he893TQaVs3NGzSBe9bTf/vEZeETDt38CESm2APD1nVpumWt5676jd8nVvvlHhBVxUTyFbn1G05zXZB+tTbvSCMZEFXDXt52WGHkkyi/TW1Ctihn3aoJRGaoaEfwHx6ffh3vn7Rh+Ndefw9OBqLqqKj/MPm8z9mxvLUiYZcN8n2wGIY5KlqzstntKev6uU9b2rqlX73aEUBkgYpu+6XGHuh5RDhjxLW7NTvO7wVENVBR3b2nryQE3vBKHpx1t93RzXWAqCYqkldPP3K8Zxfe+lbhTT/trm8NRLVQ0buonjVXjh3ksW7vG5/aNW9sA6LaqIiTZu9XFFLZY8PxE8kB/WcOBaI6qGhbhcUTo6t8DNht18JrZ/aTZkBkiYq6ra51cr5Div/c22EX/57k9wiIrLDXeNCbG/u6ofu+pCqht3oe2gVE1qjoZ5j92+ajNvNmzoz3eT1M5gVEdVHRERFn2dpzHb3mBDV66t814TMQ2aCi0VPiR+88ONZ31q6UofefXO0GRLaoqOOT1zsTfPL95gya2W7NsecvgKgeKkoeo/QfMq2WcMagsVkLE9MCgMgOFf1a+eWlKgmWwj0dvppWyxlTBET1UZHlCJ8m7btu9Tj8/b6isdR9MRA1QEWT8yfnLE2V+Sw6fsL27P2zEPmGmL6k9dc3XX/d+/Avp37y7vvCAdAIFV3wCjwu+/iXf1KTMbbykKRlQMRFRY+mvYib/LIqb+Xp83lNkm96kJItG3Noki0zLq4wc0qc6rPt5tchl36av6cwG7omWx6lM1FWYQd3pp88I8jIejjhXP14/LasiiAuWiYXUzAI6Jobt0DvUHM+kXYNMZEimQwYIbQThpaUAaKBonw18jknKtC2fh5YAb6lFUD7SuH9BjoKOIVpujWSKWFUql6E2v93WDTsu6i234w07nDugeu9WCRUsuzkcuwFnM8QIDGV43YauHWP03RiA3QMAg6TAjm7E0tgqW95jBShUID3k8pg43b1OOECD4orgluuUEoURRkvjgm2fOKnye7KK92svxwfAlV/DjkEWiJivUSzPTJiGOA6nGYU8WoyXU/H1sNO6EQTl6hLGSFSgv3LaAkXOCDqVm4M3bgOWgb1/3rL/UiHvq07P74tIJyWo4+lOC3HJGxrr6YTOtjdqbSX5owMdlLEVEfgGmPEHuzQWkIEkrpncb+GnKxOq/xT7tW4163xS17ZaUQsgFXICBYY6uj68yvnv+wDNrMPiB663rIPNi5nyj4IW14e2Qcf/hwR9+HKVf8FVy97Hmpa+zmLiyXRArGQfbB2ORNZe95yvWQfKPjVvZOf+gvm36oStihwdlODZx9MYEQFjBsjjZToL/vgx5qxC0f1tuBnW9zZ/2DF/GZGk30QxKi6XoZRnd6zDy73rT/QNGac1+FUF4dt5+ZNN3D2AWJlaOnjwMroLftg3jK+ycqBs9zyuINlHZeuwhdMMEz2wQRGcMKW6zH7oEfDcf7JV/d4zDEZWOVNv7ghRpJ9EMSIEJjTqN92jEPjt51ZIRJ+71rXM3Fjwyovm07Ea90U6XsZ7C7U/uDADd92FvWEwQ4xDPwK/K7xmr1ZgbFFxyv0vVDXbZJWjhPx/JL6vcleNCbRoT3U7U1oeyiSq+QKNJCxqRz609au4nhOGrXLbd3p1UtyKwXWIgTZ4d0UQXbkcmmeEtH+sdD7qQgCFE01CLmtBZwTm3SKndkgAGHjwl4sVYDhC+TUi633ySO9XqzfxVvZ/nn+WfeMY/hp6Y7dTJ6WJaLSANv7a4u6kSHdAxaY7jpr3im/rDXvIWC7GAEDI8ogTpRqzYB/055D90NO6TRl0KUZoksGq8p7eitgSL8Tnmnejgsbxj/8WBtJxgHKIJdcrsxzC7Yf0KpsDjBBtfu+/Vj95inPIz2vV8LVCc0usKDaJEbVKg2kWir/OFW3JpKl90BWNnk0alATW8/VpkEbm7jm5husBzLHGbVJsAdyNGl/64xMMXRhPM6hWRjdrtS9M67zXtftg4fZJPc7gi8NbAlLbirh0Sdk40pgfFiiQ+dEF748EkCuKvyJPEZc8hhkc1jSMFEMBolWKyIxbFf6C5PUQflX2nojYPCHZADQn7tRFBgfAQZ/l4yy5urxhBqgwOMGWMoXehvyKK491gQQoKdK4oP/U9m0GHgaLY+V0GTgePtcF7SOjOMttY1Tfmj/Ft9muTLST5mizSR6vTQb8+f4Ixciv83kL+7ZZmTLb8s/lNHGpAKYAyHMJm4UZa/TWiEwl/VIuLmG+tWnW6HyqBhJ6FhkeMA2NNSnm2E9unZuZPl3wMrVKyaZFeThW9GZlTyXvP3FCVnPaHJEYRtCBVuREwIbahJO0JmEcxZNP7TtJPeb+f6tr/PlKfhjbvMgSbRMFCrh+o+VyShsAZ3D7ITdFwXvg2NWGjVOJJOKVYM8VqqM4MrBNkWhvSUgRukZ3pOqObqGWFvqWUsB5/EKgK4ZVfAtE6Cbs6Ksc98aLmpIC1UlbPkJjSREjDqlxMzm7OOPFYUHP98ImykZ1w7vPiMPIrvPqsulTWciK6GsdCpYFxYit5bKZYAdkM6voHWftUTOTo2cAjfU4NCihG9pbc9M69RKvsu2HgzpOWjrUDxVGx0g1CEdvJTtWQzRymFEa/0KvTpY2IuahoyPlmji0FSDs+PsC1xaicwZ/k2Ms6fXcOjkhksUBJYw/Cmr4bZGFkioWPAIsKker1I1pZaJC1NZJklZ+7A7o7OgmEdFKnRBZoFOB2E2qlbI0FdA1ips6IspoXibN3NJlN8brwPv7r+oX/O3RoTABPxWFIEJ5HJ5QJHDCAUY4uhCdZJDs1AZTd16orVkpw1YOZStD1vBVLa+nxryAuOHnMCNYwfyDu9GZkw8WNtn5ereH8/WkJT11AhC3msVE+TOqzDIT9FBrjMrswYGuR5YmRQkSoyVSUGixFiZFCRKjJVJQaLEWJkUJEo1K5NMosRYmRQkSoyVKQs8XVi1Wj3+Gp+omfU+Cz+SKG9w8FJvQgn0SxYob6fp9N/E94TTnd3VPDaZiEdee1ETr/86qsN+vkweA91FJIBDdsor08y2Jh5S2LInAva4UT0A2VLCfSZKQ9AuvE+knJb6iiRwqP5IW68cbBX7pYNJVkR1dg1bylqn63R2baeKtiHZIHKoGoAH+IWeF/R3WOXjq+XN3HMOj+xyLKp4UFlibeV7jF0IsApKR5fdYlKCPdhWd0in9MPpsLJSUyI0saJEafDHCfmXKih4uY8yWgQcOFSRRVrE1L7+n05vjPPYIp/tleQ2/hgLKFkzovR5OfnwgclPcwzE5hUy2RDMsCkHt3oY94w+VBL+vWXvvIyWgsRLHVeY+TarYcB4LmzhigwiyoDcUbAN7pWumxvroI4eQohCNWpWwBUIZ5uokzX9XTp//X2PT06LbasrCMfNN4KoJQTJgREk63Td4rrN3aWqb64+qioZMkhgkd5AjavTZ/TA3xf5bWt3IPmbwAnfzM4Uey45iqiWlAc6FRnReaOO6Z7h0CyMr/r5C01cvvCXrDvvsSbAexD5IJ68EprQgNsYH89VU91i5TqVjSMmWGgbG9CW/Q0M00cI23mq3EcOgO20bkuddmHavOTBl6/deOqx17lvjM1ix+r4w04kHkuzrOOEpVlxookrKxMc2OliCFYg1RjLBK75bd3WOgsELAmYafRQ3Ru1b0QVywLvVSeHP9rxZ0Eq3hIJwL3UQGmI9OwSQJhOM8K0L123xa70EBox1mywEBq0NMgYgSE0UjfyaGcEGtQOnaWzQ/yW5126TrsnzPRY807Z1bYB8Rw6UhTNVZ3TUJyX07nmLVX3YdEeJC9FxI2SxMJLEoU0FF0gtTJLxOQuhjekOinXEGvbtbSlgJOwoQBWTaLwyRMA6q4bdDJUFkgYSnW4C16H8ltOuORi7VG0znXumAorc7fvHIN3kZAHkF0k1eXS5hwxz62Mcw4yk+MhPFl0FR0iNujEJjFXvQ9ToS/BpEBR4aI1wrzQcRKPJkm/4KN/qvvJ0T/0emn4dPUb8/B7xie/gz1vn0s79uodC/iEMOIDho8hGAamCHFjnAqIHhzij26VwM1DRIpwiZJJaX+PXxSwM8fDb0HQZ/OMtOd4Knll1f1kpaHXWT+zBVpxZNSKjVFppTgf04pOy1cNxOBFS8So8aUuSZI2fkCnSB+3aWsrDzDvwDmMV4wfcj9ZMeh11ntEO6PmBB4zkvarCS4CzrANum3I7NQYIBsLmbQ0PL586mQ+gGfhm/Tjk1NDlw6N8axavuoBZFYtJigPRFwZEWmyAVvXz3Fo1vVdC30/Du7ezXvmx+9K0+M38ZEj9BO1J8P0UO8w8As4NzZCGhoB3EqYWyiKiYEVDdSsGHT5127zQczTpnpf8phUXdeFJ7oe5YmS2C+uYFd3dH1ZI+D1UVcDLvZSVZEamMKkehPq7e2TL5Wc31T33BrM+3x7+Xr8aWwVOsdGLdDz4o9QSSGGbag4GlwHBEOdLFYPf3REqcpy4hK1IB8oRnU+AEsBwv+X+JTcif6TKBElrucGrQoK97UIYDZUgMFaTAAwdDKfp5vMRhO4Io4mlnpcE8McLESuJq9nilxFqTG/QIe5/wGPi2c4J/gJg2y7S1/64OndFkg/+WiZNBRJCyMbUjqk7fyAPwCWJyW4U8aNxD1FKztJrEzB9FrkYlZ4ubYHN2CTbQGpmilUBzcwRvFwY4G5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj+jO9UtqPTbU2Fq31u2T/dnTMXppwKPPDt4pNlRgTA7WlZb85bTaIzfqju9Q/MvFR8v65kJmB3VoDrbULEXIEHnz40FGiCVdrLUMFgSKgcWWheUQtY5WnYK+NN//uJrme1jfnPHo+RGRsmtVJRmv3N8d3Vlsm+ik9PmwVkTyppdClECw5oBpYsbC9AxqB5LjGwXVb1A6BhpARCR9Y5fw1SPIq9h6PXyOPBGRsxnqoMmeycEKdSeXvyX2VNiOR892dMuG5nsafX/7Cmmn74eJ0bNaNjF44DHuJqXhg9UsGBPiWWaWLAUHRgtBbfc7Wk3s5VOqdcn+aZHDN7cfZVJFAv2lHhIwAJK1RlR+ryhHO0pcQ01uD1FRgytPa2utqeX6Oyp0ewJiNOJHTJbxwq27+byo92zP7lG7LoyN4iFLUH2BqYtwUb1mUohHeQ6k9ksMMj1QGajqIGHmXqKGngYmY2iBh5GZqOogYeR2Shq4GFkNooaeBiZjeihkRhr0CpSDjFi9TwWGGu/saZkMz0q+Z/VkaQoqogpmRjzJ+nEhE4nxLKFLOjkdzqdpOfcHzjr8Wfv3Jz9ubtHP8Dn+VUKFEVJZOQCrXSGzZ7HjYZ3aFSZ5kbJlRJVcSGlJE7JVRVnpfzaxLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJlnB6q6X+D5od909ZOHfhkfvvntFZQtO+MRJFCHh97GObu8vHjpRBrhasBAsL/4ilSvS7Aw8DRjkeJmwkqAQr1Us6lG4BdjxrgQHtyuckzOJX8xMpwqVRQkkYbgE0U10Ogj07NK9XVV0PkUdrXsVb4cq+LQTjzq8tqIGAGKiAeYNKqeqtqmBvRTWhFKJY7ygxLLuFwVuhKrwIQy8alxBfXYaWFVZtCGAnEKlIxoe1oDQWIqVCIopU/27SXyGKVt+DDtXLdEPVaJZlYhVQlo7qiOOfhXX58VqmdfnKWmxdvmL0mBPLqxrv8ehCRmJ/oprYf5UOc52XSXOO/pZJirq52DJJUTcXWyYp6uZiyyRF3VzMF1rq8aVe93gef98h3uBFQ/bxNHyh3p6u3sWDkj1yrzysm746fB1pcYVWn3IgEYvxsrC4XqPTpJG2HCMWHdZby7GizUwtx6I3l3fLsf0tU48Uxvt7LQo6rZT3T+EaQcuxK5uZGrgc3WwEfZPOnDmjh5ZjL/7gV6ux/g+f3DN90g5MamdvFC3Hshi1k2YM2tFLy7FvT/Z6u5yw8Nhdo7i3JC0XT2U0VMux6YzKiTYG5XAM2XJs7bmr8UGr+/gtr3h5acRfSW2NquXYEEbleRlGecbZcmzKi+SUygPvCab9GPis6coCjoFbjnVg1BzX4JqDN5Vby7GjJz2b2dlV8M7PHLOikfCPrkbRcgzxIWhbjgFDiPqp1zk0fuq/qeUYsS2GgVuOhW1hajnWbYt+Wo6ZuFg/nrPpOC/ResuBdVlP8XxgNlqOEYubsdBGa+QWpjZa/lvKq+XYy5r9kms8kvtsumnxcMGWPbNYbzlGtBEsYNWNEasWW/6nWo4V0Zmx/4rw/6Mi/MRuQnorwm+9lakI/zWy7WShCH90L+/WZ1te8s0+0Fq+K997D4vZ5izbSFizvPZWpprlP8g2sjyK8B/5XD+vGq+579YanRyWH8zGF5k1RBH+l1uYULmmX2vIuHfQLfGHvSL8Y+9NeD1U5ihc/du0wW2b9scX3jBkEf5jjKrbYRjV6b0If/sVb+r0rzbbY1G+KDwsqZuNgYvwI1aGtoo6sDJ6K8KfvKnKTesKNYSrr6Xer5rT08oIivAjxoYWnGtb9FiEf6p8/YPFFRt4Jhzcub53zZhTRlDOAiJ0jBEhMKdRv+0Gh8ZvE/AcWv/seYW3+W7DLb+vetseX0cASeKLlsvAik722UxpcO5YEiKRltyP1sIAiCvkY8MjuOqmsbrUciB2WKR9W3LVAw2htty+5gLOczg9RXx46ELAtxDgu3hrWROrLEteC1xFsaD86oXvwjqE+2wO2H/qTLPY07/hG9X9o95dBBeKaBjL6EJxAXqPIXqN+BSj08ZBwCncqpMLVV01fcWScIWE2r+MqdexW+Wwe6655+4dHL2xCv4opbI7ciNFhpTqOutlf8H3P8z4/TdvNbSzpB6ZOjhK8JWlcrE0lKG2jemxYbGOUZ/911n+9sfZic3u4Mcq9gDyWFVLykMZixmVkWAYZRDdH44uEQtn3yi5EixfolB4dmrfpifYsoKdRaQjt23P0Ai5QuzIbdczZoxCifxC7a1WfJVbs/K4TV47lb/cVDw5wseva/ADgpXjZRT9L0tE5aEsGaOyBhjFzIGP0slbtSo56I4aqxgZwzCDks02/8j5UNH3QMeajivdjjcpy1a5jOpIbYMacpjqWUiqC9VW0PfMVt28VNSSM3hbF5xfPaud4xuQEjoo+phlo6oG3fZCAHZhABRRAABNi06eKLaU0ReZuJB/qH3jm2d8cqZV/trkU95ywlKm32RfCMAEJgC2DtuKOZo3Of8uPg6xMbfe+DhPtzHxcSZvK28+zl2TCxfrze/qsWnz241t9o0LMwI+zsNtTNHNi9uMgFSwa9cuPfBxavzZ7MbbGt38Nn1J8ggNG/XUKPg4uYza2WgM2tELHydm4luX9SfWBGRs7Di4x1+mDkbBx1nIqJzJxqAcjiH5OLm3VuWMcH7jOquOWc3i57sSjYqPM4pRef0Mozzj5OP8YRLwNcGstvuMDOtv5zZU/WhgPo4bo+acDa65cuXjvPYZHHEy7qxPsuXBh2kfe7Y3Cj4O4kPQ8nGAIUT91Fuc/wd8nAtegcdlH//yT2oyxlYekrTMwHycUVlMfJxeWfrh47RYXhDsOGW4YOm11o9P7Pklm3U+DnFvzgLHJCyLiWMSlFVefJw+Zi1eD3zTzSfPNqnrgaq8j6zzcYg2ggWsejFi5ZD1P8XHuU1nxsbkS1tL/bfyD+QFyJ49HvwWHynpMxbmTnoqRNER5AxTHcIXzdylMdEwe0wdzRnvpMoy5Ypgzbxw+AmUI+/RtBdxk19W5a08fT6vSfJND9r3I0dyNIWk8Vc1GJiwAM1ULIpRScx70nJUqp9GwaepDgtzWfPhP/yoHDSqpWBGtfUF5sESGVCYROwN7Hoc9jhErSpV3qFTpc45afbqsV3+OWnZl+0bf7862WON89Lzn94uGa2Rk7a61wnHuqm/uB0SNcl6VN/XRiMnbfK4RG7nyt28Z7u125ErDJFp5KS9fGZ20GHxV8+9r8Q+Ez+2KNbISRuyukVNru0W3znff3nof+EPqUZOmuePU8ulE4oDUopqb/WzfDRKIz//RueligUvqwiTBwVlZfDHpms0m9n6aPYa/117eDv7x7VpERNwBIhMUVHPyM3TJr9/6bk2/veTzWuapAFRVVS0ZFzmyZDGFm75igzHb0MCNgJRNVTkUXfTFpfMrx5pM5N/y7q7JACIzFBRA6VNh3fXFbykO79Y7fPtBBPZq6OiLnUvV6jzu0K4p06vaKunqZZAZI6K+sz1KB4WfUKQ03/Z35t+9kkCIgvsezX8fbmX913/LWcrNrN8ad0eiGqgori79hsEk+vych4s/vp0wf4TQFQTFf2+YtJP8wNJHknmopA6A9vMBKJaqKhmUY+JktSKAfn7w8Yqq594BES1UdHbt08tnq835S/oWGz9blWj70BUBxX5+0RkTtkW47/mauTz+ZcPXwQiS1Tk2kIQ8LTtMt7OoUM7mYSF3AAiK1T0qtaT+e1rz/fe/Ndlvyt/1v0JRNaoqHbh1JcpL34NWNj/znTpYd9fgKguKlq8qdvJg10dhGustlccZl5hNRDZoCLn6SnrRh7/6TXnbY5bl++/bwAiW1Q0sPfrdsom7T2WpNz+PveIFdRyPVQ0LciiXe09ll5bBy+zv1xN+QWI7FCR1yLF6dNPV3vOfG0663b9s2eAqD4qCmlWw0L+wYd34PrBw9YcG4hhA1S0zKKgV5eZHTxzPs0/JAuvFw5EDVGRd2a3P5bldQhYUJwXNG7YjgVA1AgVPaxcY7JlhDcvXVlxcMvDkROAiIuKLvw+fEmfSo/9tvEOee5dtkVMSrZszKFJtmwmufZsm/MF/4ShRy4PzH89h4Vky7t0Jsoq7ODO9JNnBBlZDyecqx+fiT9MFMRFy+RiCgYBXWPSFugdas4nUmo9JlIkkwEjhFax15IyQDRQlK9GPudEBdrWvoLFw7cXQPtK4f0Gwg6w23VrAlHCqFS9COV3Wzn+zTBFhVGuSyMXxbeYaFOzLFGi8nVyOfYCThwESEzluJ0Gbp14u05sgI5BwGFSIGd3Ygks0yuPkSIUCvB+UhlsuqweJ1zgQXFFcMsVSp3jsyH66HnhG7eVk38VNe0x+iY+BKr+HHIItETEenlVe2TEMMDVY7tRxKvJdD0d24Y6oRNNXKIuZYRICfYvoyVc4ICo2zDRx0rPVr4xdoywtfeeV82s6/V14RJOy9HHUpyWYxK2tVfTCR3s7lTaS3NGBjspYqojcI0xYg92aC0hAkndevX+vrp1phxwPzLg/9i7DrgmkrcdFBXFgmCvsYIKiL0rSQi9KYi9RAgQDQkmYC9YDrti7wp20BO7goqcCtZTzt4r9oaKZ9dvZrMb2N3ZJZElyef//P28kx12s3nemfd5Z+ad5126yXxr33WFTyPiACx/VrBAV8f55y6PgX/+O33wS6cPqBG6wU4f1N/OdvrggX5cqePpA7Ppk66M25Mg2LPaO7WX3cadHJIl1QNxcPqgzna2ZO0y2w1y+iB9qU2jAe+qiKcEbe7S88fsUUY/ffDvn2yoPDAOJ+qwU2K40wdZ+8TDL4XP9Dp069vKF/Ou7zCZ0wfnWE2XaqrhDMenDzb3Cs1NmTRanDzh0cLpS+Mo9ZAMfvoA8zKM6ePAyxjs9EEnnmzIvskdvCfl7Ilp1eAMeVfdOKcPMGfDCM6DPw14+mBhhTf8UGGY156KFcae961kbiKnD86xIpSqjdvu8RjitlMrJd7fO1R1m7ypTqnnDcamkaNRrGZdgIu37gsHQnLJSDwSBjPEUPAjiLtG56+rCJwt3l9h7IWHbuN1O4dAWb9Evzc9iiZa9CjtUuYQXtqFFio5AwucPlgEtSVPPe1e16bZDeeZZiUuNJZUbUfZZId3IzbZscsFRUpU/8dB3ZaSEKBIVCfkNxPz3h3Ua++sGgYQ0S/sQmQq0H1BO5psnURdz1Z6H+15aEHdF/5de8wlD0sX4mb6sMxrKggw/zHXpJMHZwiTytdcXl34biEHgN05yAYY6FFGCaI0nAF/pxWP6Q/9SKcFiy0tMVuyeNVLfhfqZP1s6DJftS76Y906T6yxwzjAGOJRkSqpdusOC2oFwgC73k0KFwBTTCsYbtVqeN/a4riPa2dHDXnky4Fp97Gadp2RTIuKj+P0KwBXcP3S9wNOjowdlSPe1rLpvBL+Di2NVr+U54j7JFi/NJI2v3XEhhhOjPd5DMQovFT19oh2u53/7Dew2qygw2Rp4EpQcjMKLn3CbFwp3B+W6lH1rLlIGQEg1wh/Yo8JyXsMNjnMK3YWAjqJToxI3bYr+IVp5kD+lq7RCOj8WTsA6E+FiCJog0Hn37OjsGf1BN75QIHLDVDKF0YbSgXfjijgBdDTHOKD/9L4NDVcjVaOlDKcwOn7pdHCz9UTBfOLfcvode7GLbKPwWqhIkrE4dcL9DFX/nj0aste560HbpWdVGdUUiF9TByA+SyE2VyIKPu1rAkGc2GXhBvlM792dStYqVBLg6Ox7gFLSDBUnWt8JaBYu/Y+WzKldx/cHdqGnFWQ91z69JfUyPmJJnsctv4o2K45YLDhLuEBk0s4U77B+xZtlT6x7954OV6cKKYWDI6US4KlfN9ouRzhC5gCZgfiPgW8D/ZZmWKERC4L0XTykbKocL4STFNUunsC6i49y3uiChvna9Y19cxWzBsM0bVEbb7FA3RbF3rsV4GkhpU/jILl+qCThIghAWh/3a1X6a4LBEkVrfb6lq/TgBw+Yw+ih8+aywUNZ2pWQmHTqaAYIERuHSpkgNVL3Hcwhs86IldTi5yK1NVg10LvWye9HXZ/Nd83ttiooY65/hPJqdp4B0Fv6ZBbuR7FEK3WrGjxdxg0wCJe1CJwdKQ0Pw4N8uXsOHqBkFYqd4S/o3Z0cx8Eg9wwqYqSJQz/FNZxV8EIEhoWPAJMqkdrTI20MpWYCjNICltD2REfBTkCVFJhc2wU6LUQVk1TxhTGChhXEV0/BAnF+Wrly0+8qRIsmHbNpefJEj8oGxPwWyE2JrDLRQFFa1Yo+FqieshjICqT0a2nektuSvgUgWz9g2Q22foLyQTk2SYPOTU3jhvIJfV++tQdNtFtq3vJajVbOF/mAPLUXWyQJ+0iIH/EBLneWZkVCMgNkJWJSKIksjIRSZREViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiazMByvrfm25q6nPhn5hZ2bu9XGkpbzBzovsfdT0Sw5S3h4z2b++13GH2zvLuG42Dxly5ZkV2f42msV+kVyphuEitoFDD8pLMoy2+q4yWLInHNa40TwAm1LCeSaehqDb9j415bTAV6SBg/olXaNyMFW8ALeXrqHWrmE5yAXb9Vq7rqnZbcNOgyihaQAe4AfmvKAvp9SevbdUc990z2nsI8+MAYXZayvaZewsgNW57Tjt5tAO2INp9Q76hj8bVpW1KRH5sUKiFHHQ/fmrbX+KDti42bTvnliPw7SIST19P5zcNMo1UTnDfbpw9FEOUFrAilLUdv2KtNv7E+MKG2wYZsSQg1M9IveMeask8OLx5S5vh7ovGxga2/vlrbFG3M+F5RfPMe7npoNpcKqe+7lNtbuHEKLgfJoVkIFIvgm9a+kV4HLnj9Lek5q4zDvXKfGHCexaQpA2sYK0YLt++7qNXGSab65dqsrrMtjGIrODetT9S9Nhj5r6JNu4//NtzZoY8i4i8Vz6LqK2pSjQmcCKztDtRGD0hMdAjC+CfL3Nm38WLV5/1jXBz6MvfSGezoTmDODWI+/nalPdRir1ko2jHrDQdW9A1+xv4JgiYQh/FnX2kQdgc0kugm3aJcdzomLbTnFbs6Jvde+LV+6QFzux/VgGWic1FuTFqS6usJngwE/LIVj+qD4WD9WdkvXiuvIYWFIw0pih6pmxvOKhNb1dD0dtc+efsiOTXGkxuBcNVL4mA4cEECYXVpickvUju4K30Kh7zUbbQoOeBusjcAuNVkk40hGDBvdDT5n8kMj2bPMOU+56x7smvI3qUL02dR06QhLJ16zTINbLmUJzW819xG4Pdi5FwldIR8JLUpUsGCdIndwS9XAXyxuiVsrzNeuIq7OtmLc9JROqJiFi8hiAuiJFL0dVHtuG0izugtdBfss6ddf2X+jw0SM24Kjy6uCbq8ghEvYAeoikuVzQmKOecyvkmIOZyUkQnm1Mig5LUvTKJimneR82oa/ZxWcErXs2wWt3j+ctXO+PMSPv/mnup+/+4dcLwiey25h/1rTe7zLLxnPl3nr3IzjAZzIrPqD7GCPDwAJL3BihAaIzj/pHPyXwcoESVZg0is1oHY+Osr15rKRP4oVo1eqeE1+Rjaa5n240/Drna7bAKn1ZreJqUlbJOUJYRS/6qoA5vEhpCO58kYZpO3PrI3HxBcL9lqmb76UPlZAN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW82Sn6TchqajHAJhZyWUF4nDp498sSl+euhz9nDLdu8qM5OatWpHkAPauWaCgKRBSsiPinELz+jMfA6zsWeOX269TRIzb3e5TFsRvvyTbWfKLuyTCdtTMMMoHzR4bLgsNBWAnPFkrUaqhooM2Kwelft8kH9Zw26n3pfVJzXZ880RQ8T5SW/eIMZnWvDxR2B7wWHmpAspdpRGrgESbNmyC/uPjWw1tDQ146x72ucbVE1RRyKfVSTIGNtsHA5I+lkkIMnVA5GvymGIZ6eazOvniP0shykg5qwXwgtWZ9AEoBwn/nxZT8sb7j0QVUKHxuVFVQOK/FAKuGAgxqMQHA8MH8nGkwm8zGFbU3cVTjmrrNwcHO1bYDbDtXq7SYv2DC3He/67lTvOOimL7VO8mee1Ykq0Zh9eQj5bJg7FgY3ZEyIV3TB8QDgJ6iwJ1yfgTpKTr5SaoyBdtr0cWsyO26LtzAg9QwZXY2auEG7lFYHcwsp12NJCIngk/KeEBfSrIl/KRS2GWPEKIP9Ak5OdfsSGmX1NdVfco1s8ki2s0Y2i39MPdC6yMWmuvMD9a8D/a68FfYJm61XWUq4HNgdgKWzES2F9I+wV+c42tWaueT4N39Yab/jhkk+5gJ6KNDQBsdZpTR0WdqsVbb51p47a8UHeQxYOarwq6ZgNHRHprTCZW9ABN0Gh7MzAdSQStLdQKkwUrgofVB6dDCNbvqvfvpHDel4bjzonhyBqKZkI6SsECU6t9/ebBcmc+iw3X2PR76xOUuByhZsaL0LTUT74PavsSa7aLRC4SBkQ4AUbPeyRymeRSdw/DrRbHgjfWYT6iFJjsHDCncn778f+ZPqXI+BvKnoals/rRj6n/+FLfPxhEN57ey43vPPNO5kVL2cigH/pQq08SBpxiSyuYpfFOL2p8+WyGWzR0/3XtByykjq2ckzeDAn1IXCThAqSMrSo2L0p9SOdTo/hTrMYz+FCCF+9NXTP7UZOYE1OHETTJbG7Pqb+eIIl32fXAO33FpTg8OpgTZKWxTgkvaNZXXTJDrncxWnoDcAMlsCA08wtUjNPCIZDaEBh6RzIbQwCOS2RAaeEQyG0IDj0hmo0ZotIw16BWRXYyqnsdBxtobzoxsaUAj/5qOJEJUkTAydc+fZhNzJptQZQs5sEkOk01WHLjXZ1r2J4/UA3tTdw67Tz7nV8JfopDK6QKtTI7NTsCPhHfkU5nmK5RRUo24UJR0VBRfI86K/NpU3UXEq+ji7SwDglVKubwHZCx4MX9BVoon9Lrm7GBRarJw3rbRD446dbdh8oQWPdVSVSB4feJjG7koo4fIYa4WVIKFwj8hsij8u4MIA+5yPIjZRDEJIdVLW5RuDFzkPuBAO4h4MdNEZXwkqjCZwlsaSiJAS83lHrBmR/7rpTXXA5WR+a9SJGA9G4uPXdiXWQED0V8Fzw1GyTRvVYp4K9SAUklGeihCoOwWAa9ZaXgRbr3ku4TF6nJcVlgzIYCVQGQSuQhqQeUjoiiVVBKh/dm8l0oSqb0H76pvmbqqydAyVQWUo6U6av/ngJet97PxcrH9BC+/M3nMqfKqprs8+oM1sf+1NrH/PRPmetNkOZ7haBKhm0vQJEI3l6BJhG4uQZMI3VwiFjroePrGmca57tP/sJ0g4ldYkC8W2rCkbnP1aqFrSnBZf4v54Tk0coVeHz1doYjxckCuuUyWNNGSY1TRYYOVHCt5mK3k2JpDRV1yzPPHM5v7WUGCNatnO9ZzWBttAiXHih1mK+Dy+pAJ1E06evSoAUqOuW2tfnTZJ2vhthNJmV2Hu1GKuRip5NiNQ2zWyTQF6xik5NiESMcde3OvuG5zGpec8SMlxCRKju1iNc4aUzAOz5glxyrPXX7i21/7XNM2HDp9seW3QSZVcmwmq/FGGMd4pllyrMO0jCsWL90E87Ku2ueqL6cbueTYEFbL+RrdcvCmIis5NqZV55k513r5bpg37kndR2GlTKLkGBZDMJYcA44Qj1M/8Bji1P9PJceoZTGMXHJs0WG2kmPhhw1TcqxN689rhcdCfBfPW7p1/esL5D1tLkqOUcXNOCijFXeYrYzWuMNFVXIso0oj74a5sa4bIoqV+Kv4to2FH8IUrKg+ggOswlmxCjz8P1Vy7F8mN/afCP8vifBTqwkZTITfJY1NhN88rShE+HcdPTl6WmA750l/u92bODljMYenzTn2kVCz3DmNTbPcPs0gIvw37R0CJ43ycE6pPXTNj5njyMqKxhDhr8aKCug3JjN30O/gD3ci/LWjD6/p77beZ4ZqWROvyRdHmowIf85hNtPdMiyREaYzuAj/owrZ9SeN7SucfbTk6nW7enQ1sgg/5mUYVdSBlzGYCP+Pl+r+4wI+uy1+YF/9aNbVIyYgwl+NFRzzNAOK8Bd3rbfs1UBXv4QF3eIrzlekmICcBUQIG9OMCIExjcdtH3kMcZtY0LTZzy6XBFvu1Em8sOYNeenXEjvEF6mUA0anx2wWDDi3ydsikeXdj2thAMRVyuiwcL62aKw+Wg7UCouMb0tXPcjXqGtuXyMxr8oRgK9EBBddKPhmAXyP0sMkPQ9WVcp7LXAVxwL51WfsqvZ3hb9fC2PPWiSbPS/9uvC1uyghFNUxFjKE4gP0rCF6dUWI3lkNbtbqF0KV1QzfEGmYSoqOL39szjDzshN4re+ojl/50ekM5YQUdiPihJTmOueyv+D7P09j+/5XjB4saXumHoESfGWZMkQWzKJtcy2Af3RjppnPYc9px+0ONO9P7qvEA+h9VdtSFMY4ymqM7cYxBjX84emzY+HopVBGAfqSBMO1UzunLmDKCmYWEfb8Fl2Cw5WqEHt+yy7q4aoo7Ad0tCpZunTQ2/ZlfJdN9HtY9+S1ADKvwQ8IiBotR9S/zGsqCmOtYDVWrEmMHPgovaLVynkL3Ypo1RA1ywjanzHducSb827JL9fVOnb/3/KFmSoX0hxxTrgjh0c9s2i6UC3EPT/qGaXinpwl2losrfrmtFOC8EjKIf/u7bvcNOq0FwJwJw0H4BoCAOha9IpECSpjFpnwvnwx+cLYZb57k0pkn3x0Icioh30hAFvYAEianUYEmp94/7/ycaiFuQ2Wj1MpnS0fZ9uRos7HWXT+SsYZawePPU5uw/w8htU1gXwcq3S23c1vR0wgqWDLli0GyMdZu9RqZUD3Hu4HL6/y2XS/yzGTyMd5eoTNOpdMwToGycfxGzu6ZfKo2x67+3+cmf6u016TyMdJZzXONlMwDs+Y+Tg3jqbUXc5LdZ+Rmf4g2i8xyKTycZaxGm+qcYxnmvk4Lv/O+5i2Ksh5/5Derpm3Zi42cj5OJKvl+hvdckWajxMw7dUDWa/lzksa1Tg40KrvD5PIx8FiCMZ8HOAI8Tj1M+83yMd5ULLChErhHoIVUcX62R6KGGPkfJxl6Wz5OPJ0w+TjNOuXE9RxUrL3qv6pNuOqFxvNeT4OdW7OQY7JonS2HJOY9KLKx5mRkHXrwPXFgrgLGwYc/jj/KOf5OFQfwQFWclaseqf/T+XjfGFyY8OPyJrJfJNE+9P85E+y+70h75R0j4ZnJ91Ukshw+glTPbYvGrrI1JHw9Jh2N2e0g+aUKV8CNfPC4Ccge97fFwYt7l4i22er4KDb7qWJIYzvR9/Jyd9I63+lA4AL88t/FAvRK6nnnnTsldqnIfJp2kNhrioi+Jdy/nOordin7YHMcgFSOTCYNMQD+PVRxOMws2pM+ZXJlK32+Ao7NuvjnpYc4zMzJ/kqxcsD86mUco1QtR7F/9qKR4H+FazZAsWXI/FH4TUsYT7UMIUSVrMM5etVe2S9w46F1xxnOM/hB8b6H593g+2NEbxEatdDMjumYgaPd1yIyGlKh160QkYR5DQFXt5U5+E6uehg0g/FEF6PMA5zmjiuoMEHCA2GCMEKGrTStDBeBQgVtgpcPRG5D+ETal/Yvxzg3oQjEsVa48Z+qmr7Wrjnxf47TxdXJhcdL8nQUYjrnOfK2ONA8VEkA+XJ060yaAveegJVo5cULv9gCJHHHRqhH1U3HM5scc9jvvhInLjk9Gvk5Tr8YfTlOqKhKDDiW7FhRO1MxX4BI2x/C09lATgV2Ismd1ucvOqmS+Ly1xPK+mz5Rh6L8GGIsoKay0WBz73ybPg4l8/AHf83Jsff5HvVatv5xcV7hTlfpXXCyI7fEqu3yJRPyzQPqe0jlaijVZp8Vs0GjMa7Q3Vb3Zx7nfVdTp+JCHfds3779dW8NiLGt6Izd75Gfdx6JYDjUSFC3NYKuPV4G5pb1zMHo7QQ1myBACC/76x6gUemLzzju1F92GOdupkLtTCCmp4UpblakH+nOj0u/DuEapkAIckKU/wAVIz+HZmcQq1kKVPwvZEYHZ40Jf7rOBfPGSlPdy1pGL7LGktrAd9dPApM3bRBMBY+93ZoYdTtvKxmOE4wbYqG0z17DCd8aH7HhxJtaJq3yBWUP5Hlvr5t2xtmyQ2OFfeWDSHaEp6urjWoRZB3csl5sh9Py5Bn5fjWnybpRPdxy3eTaiI1TfqLRspF77gs0ax7w5PeAaLYCysGlepseYr5zeiroPlb9eiRzmUB0odQg/cetIOlXjEZXxuThaHhQOugt7sz5thYB/HGvbm17HJ4NqYbojkDwPhl8RCNrqrcFANMr7W86i6U/qKtdYYumlr6740nvW8Lksa49z+76K8wyrazYTOo4u1xNKxQAxVyKEADH6g/eAwcuuTph9UOPWd7p5z2+8vtZ3x9cjZ2nnuiL+UxLa9UyTuRouBLtQ8oQ3d1JQQOwmYtdBqZZWLXZZYt98ZzU3dHq96e9WsyvSY9aTyvTY/ajDHVMjS1GZE6nfyqGYXW6Vz2PSY1YX5vj32bE32dHzW7SdXppLYbQqfTJg8rMCBUMskQOXoYXHoy2ffbGLHP3PmO5xuWerWNbI0g/Fb+L8l0UqmSg7qIg6E1kQKUdsChpFfN0EOmU2eMeM1LLh/wwd0zdkrSP4ruwvYMGP2SSCfVDXGAEejTLBjFVMnQR6SzUp5IZ54DQKK0+f7y6uOvt/dNOT8h3KdZ1h9GFegc7ID3FaRAZ29HDCXcof5kcqhVHsxxse54XpTQ5uGR5JMjXRBsil5SrKjZb0DAySujaSLJ/uDbEzQ5IHRmv+YD4ZJjsFIO19lg/wXmCZMqsCoMGOWhE6sftDK3KX37oM/ctYuG2vm5tzVAqp12p466gQUYfkeJDLg8AxkPNwVET39TmAkNboZfkfg9bX+sypnic32OzPhQ74WF9cpfkPgtLOqDAerOK6mom/3OqE9rk8WfnvJAtMDnijRQsPGpEVCHff1TDhX1Yr8z6s9ynqbmNl3tvKhvYg2L78f7Ggn1e/UzKagX/51Rf9FTtWlDqINwe5ZXyN+LLkQaCfXOPlTUzX9n1P8t36mB6NMVl+Xf1pwvNb7mKCOhzh9NRb3E74z6p3I7budI/V3Xn5iREbE5Z5iRUI+fT0W95O+M+oy39m8vr57lNdnBYUu/bWPERkI9bhMV9VK/M+pU3XUjoX4glYq6xS+hrsk6MTjy1nlr/Hh1aPQs6Wv1NhsGtuztfDjh40PvU/ZKxLsjZknY5SLx622pkWNpJtR//LFrg42juXBf/2orNkX6oNSLyaiXKXrUdZZe/vgpe/PftXLcY7sq/omrfwGlAf0r0stlfNr++8/q+u7Jnte6DWx46W8dF1jYLOIfQbVImd/SIjF77e+ebHBGnJS59Fwnx/qVOLJIaOWAz2ax41ynme1XKep5TefAIjGXqRax/C0t8qJsxRVDuq5xn1td0rtu0PBLHFlkdu9KM9OWlxLs33nucWb30EccWIRfmcoVZX9Li1yLX94ld9pu4fbZNuYRklLtObLIP81m1FXVOCpKffDc2/fMyTgOLNK7C9Ui5X5Li1gsOPJ8xeLdwplvP5xrlX29BkcW+bB0ffdP7z74rdnm7tCjX62nHFgkfCjVIuV/S4tUiRnWsk13O/d9K9bVqlqnRkmOLPLifKD7kOLdhalrbX84n1Xu58AibWdSLVLht7TIEtfPNTqNE4j2HBT0W9h/j4AjiwybOG5Yckq017Qdswfce3S5IwcWyV1DtYjVb2kRahEKjizyi+nfbBbpu5tqkYpMFun+8K5fKfk5t7UpacUm7qtHlnwsExAuC43iw/wxslngWTumVO6afqGhMP1eIpfnJWrhKX1IXJfVVjjdmRLuPq3aNgez7Et3mF4BAa6uW40Ak5PnQfwZiErHjrQHrecKm7dXDksnjFLC44Kh6A5kc2ly920zInz2nP/LouvBGuTEM3Tung79Z+RtO953z2bCNYcDPPrHLO1cWLFJuIpwHk/co+udNAOceD5DL6UkjQWVWK9A4rItuvyCjsODRZuqJFs2fzn2Cu0YZahuwBQ2SxZ882qs3xz0EhM4Qon1QD3OlVvC2lps5daafuz0cbNVV/d1kw90sG1+jrwngVXmMhT8o86xwW9nHPhpqkiFPZagGRFQ4Y8py3fst8a+LW6N8znUy+yQf1LVp7/oKQp7gtUBdwXpzogzGjB/AwwInGCsTZhgBrrXf1754GPnTSHekl6V5k4rGoJpaJ3JQjAbKhZWnE8HgimxeolNjZ+eonltLv456p8a9bghmOJJEaN6DDzmlnxZ1HO+5O9gDgimFsSKcZznVtRPiq9AgpnRL8xzWJDKM7lEz0VpTxYcMCLBnK3I9s1BL/kdCcbt1fUSq+5U9Zk9SKQ8vrBUU+MRzDhW+AONA78RCKbaQQfbSz9DvdZem1Gp5eez2cYjGMwVMBIMGBA4wdiYMMFMKz7NTZJ02SVte1bFytnnBhQNwczuyEYwZTsagGD2Nq5d7sHeNs5zWo52Kr4+4io3BJPUfVHF9IcV3GaYx8/t+YyXwgHBTO3INs77d+SYYF7/7NZpWt+vgp2e5058TAl9bUSCac36zUEv+R0Jpowk1v6+63TfFCfFkAqtEo1IMNkd2OA/1OF/hWAanp34WWH9QzTp7qT4+w/G1TUewWCugJFgwIDACaYSE8HEz58T/dLzk9uS4VXUK2bak717SVdYJiFK9wM77TQ38NXKCCk/BPQAfrQaihtFyiXB0nClPAR0D0zsIBT7PUz4KEoSptbp4M7PTrY3316uKthq/SS2WPbflUp6K4OHSUO0N6FenZ7wr7mu65lYOzHPyQdMEouJUFIHAGInL8QBHggR5GDEAR74l3qAx/ePO10DTrxwnnpmT4zFW79L1AM8U3olTLwR2d99WXr88sfLZncl2ovx0Od0dD7gQ/1gxAEfRq8F68TjZkRvFR8oF+HdvItL2r+LG75qtnZ4YazFve4xsKsVtOsq1JnxOODqIr0NuhxDvKilIlouH6QG30ERpv2yJfN+xih3rFPHHuMRB42YbGXtmjfagqPlUdEq9DmjQ347c87tnusWGzPz4mK/SwmsJisl0jyJLoRANBSF0bK82IwGBqMxGMjcW6RxqPCWidpxj9mGGKNMZFMfviWMS2UKtVSF1VcBH0FymEhbjesd8IJ3Nk28+M9BXpcqVGtJtVUpn+goeCpMCz7lfCn8VCc6SzkVeGCsxOsZ0YI+M92ndxf0+1vp7lzYo/TAqHGebEbN8aAdGGM7VVce7+yAv6OAi0KCJ9gZ3rhMtVreUwZFbOp9OWQta0c3h56OrjuAXeU8yHLE/VK6AEHpzs2xLo5TeuXfgNI3/tHOfk2/68JddaKsTte5NN1AlM6fwEbp/HH/UTr6hGWNjWPm75/sEls33S2j676uJkfpvAlsjmTw+P89So8RZC+eMobvve5EsbijG297myClp49jMxoYjP8rlF7yZVRd5/b2okkOY2Yu27f2ksEo3Ttwav+tq8xdlw/5d1PVg2O6cUDpMWPZjHpvDOeUfrzTrQFLJZuEOyKH3ev5+ryDSVE65pcYKR10cZzSq/wGlL47UTgz2feO9/bwj01Wbmo9y0CUbnGNjdItrv5H6eiaHF9+ikV9pH4bJRfTTi7ZM9/kKP3TVTZHsuXq/x6l9x+1aWLFWuNdt14okT6nv3dFE6T03qxGszCs0YxJ6WNn9F2TmtHCa/oLvxdNeZb9DUbpv3jGhc2oB66wGTX8CueUvq5eRGzIjZmCxc7ZMe0TRm83KUrH/BIjpYMujlN61d+A0r2XLFpWP7C++/qP/XqKltp1MBClO1fJZKH09MqZ/1E6ylqx6nIPr02x8V3f7UncxchB3UyO0ttDuzI6EqsqBt1FNAlKv9EyYeg5m8nCdZ/Np/mIrzcyQUp/WpnNaGAw/q9QevDIDwr7ksW8py6+1uxaRNxlg1H6Lx6SZDPqMlajRlbO5JrS992cfEXSZ6jwyOmMDj2/FftiUpSO+SVGSgddHKf0ar8BpbfOUVW0tEx0OZiTPOxAzavFDETp37qyUfq4rv9ROtJaOVsOHx5674TXsh5e4zLGt7U2OUrP7crmSM52/d+j9Cuz1S7i9JKu8894qpbfOfPBBCl9A6vRxhnWaMak9KqNjiUnH7juHisZ0utf+arrBqP0Xzxlz2bUQFaj2nflnNLtL9eJsbvV3m369DdTvHqtrW5SlI75JUZKB10cp/TqvwGlNx06a99fma89D2T36K7IetPQQJReVs5G6bOH/UfpSGtVaKTcMTrH1nteiwOVQ6tcWGlylG4uZ3Mkt4b971G61aSWnS32NRJOk94ZXq6bfwMTpPQ9w9iMNtuwRjMmpbdLXzyp3jOl3847sk87/+hXw2CU/osyLWxGDWE1audhnFP661M2Zxve83JZNP/CN6fT9s9NitIxv8RI6aCL45Re4zeg9DGfnyc9WD/F++C91v+c2uyRaCBKfz2TjdK3z/yP0tEB2PLBt77M3yhcaFPFpfgJFTs/GIPSn89kcyRXZv7vUbrjNf/6P75Mdd/Qz37gV5fn3U2Q0o+yGm27YY1mTEoffitxwg/eA5/YdorNBxZ3rW8wSv9FnS82o65gNWrsTM4p3bd55X+q7w523jF/nbDD2D27TYrSMb/ESOmgi+OUXvM3oPRubs4eOX1nuaZeelB1xdqw9Qai9Dtr2Sh9zdr/KB1prf0Hj7/L7tjW+Y+hdv07jb55yOQo/cZaNkeSufZ/j9IlLc49nyxxEc4aN26+4Ghj9lOixqH0XaxGW2NYoxmT0le2HHN7w7utvqmegjqXglNnGIzSf1Eoks2oM1mNOmIt55Q+tckS3/sNj/nOXjBnweF7b5+YFKVjfomR0kEXxym91m9A6RuW1G2uXi10TQku628xPzzHQJTedA8bpT/f/R+lI60lldcJ3Jy1zz3N7a8Wb2qnzDE5Sm+8h82RWO/536P0KHn3Nna9/nLZPdOx5HeH/v1MkNJ/7GYzGhiM/yuU/k/aC5vDT+I9Zh2++vp074flDEbpv6g0zGbUK6xGPbqbc0r3uubsYFFqsnDettEPjjp1tzEpSsf8EiOlgy6OU3ptJkpvsaFHRr/kRNctGyqcOTrhwxKyjpSbShkdSWZ0O+1wUKpCyAJLJUVKOfhG8FJD8CP8P7LYkYAfBp8La+64qSRqdbgyMhKW4MHeVF3Mw4XoPrYpE7cPy+jjMmV+FfODTW4NBE0Eze1qNSFmyYWD3vtayz1qZv5wB03E6Nmt6Jjt/aiRaN3CMhOXJHxpBpqK401PT31+b/E+zH3qwSz7tn/nykGTOd60ruGATuLYty4JL98PG/v1RF3QVAJvejzWb/rBlk084zo+tNnQsV48aCqJN82vPrlT4t7iXjvVnqUCux07AppK4U39/6rZ4sZdB8/49WlVHskGNAdNFnjTsaE3hu/Z+1V4+JPVk7POw/4BTaXxpkk1Ol/ofPSLaGezYor78eL+oKkM3pRyofmi8Rl9XafdU8bUWjsDomGJNx2o/Hz+E8l+5zjrCmfnNbpuAZrK4k0ds1S7BIdUoqVBnyxThpw6BZrK4U13hx5/d8t9lPOGEovu/LG20RjQVB5vEp24bV/8T0vf9QmbZ7U/Zl0VNFXAmzbP3fr5cfVvfgmnFpyXxC/fD5qs8CbXFcUyGx/y8En5tmvjnwkj4VeuiDed3DL7zWr5Sec98jZ/t1/T8yVossabzvzlu+TZsEt+0/o12vxI1LwnaLLBmzzm1Kye6trPbVFum7t3/n18ATRVwpv+Fk9LvlrM1nvmW/nBOrZHbEFTZbzpRcVH81pZz/PY8vGiz6V/q/4ETVXwJrc/Du+e9NRNsKh1ibq773yCpqyKNy2oJbv3sccY8ay+QQfkjfzPg6ZqeNPaeY9GpNbc47xzWo0fpZMsA0BTdbyp7oWbI2LKevnO6d/l9uj+5yeDphp40+JOj4d0rPKv964BszolVb90GjTVxJsuPFzrPPBIkufcMNHrU9nb4QNr4U2vkuJrfB9VwiV13pEOFZ1OTQFNtfGmTfe7j9zzp69w36USk/kuXWDvrYM3jT8zWLrybm/hFGGTKstkW9+Bprp40/vHPzdV75wo2FK249mXSzMSQBMfb3p2Zkn3i3vFgsWXkg72SQuysPBwGUTyRvXAX6RTrNXy3G5pG3ev2UsqeYclH6yAcBs0L0j1azzCr2lcVB0mF1U5NCV5RcYp8aptD8acqTUunhxZiEdFypUhlJrLcOQyaS02xu/gSzRVkQGZQgXCCIlcDpwQUQTMUadZBtVBIV+NHvTgDTr6+Xu2Yp7T0UzoXxEF6/3txTzzozQlRjbWs8KqN8M4Qqp5EeR3O2KzOKjK4K4+S7wOf82oerVQdaEpYcH+jOnOJd6cd0t+ua7Wsfv/li9kWAAnXvYQoBBUWHCyiZhX7ahe8ottekhB11DLAEgh0mBlRKRSLYPtfPB+Mjmm0kn0E75EBXpSlDJCFoxEcVjW2mfyvkd8t9neOe88aDBZCLi09nNoSOZr4jpugHCZs8KV85dJiAaaFVY00AEfaCF55ooKB0FzhGSYlA8CkKhwKX+IRC3VOAKk/VI25lrUiL0hXrWx3Pxbwr86kexnEYA/lma+vBaurWflgHd2F5T1ljlinZ0EnJn+wNULAtMLGfhNGKNBlKRUIJFgvV/7Mndjn+2i2e0Xx06U/tWQDBbxTDpY2paiAMucFSzQ1XH+qcvEP0F1iw1btNNKmJIgf9NpvIU76VtVEEORUEmUlO8tVYRFhdN5qBQDxilm2lsJJgJdE/wTgAEewA+VBEcpVcDZKMFMXAa6rhz7AEf8g/B2NT9YouAPkfLV0ZGRchmw0BAlaAT3ax4ZrYC3wlU0BZzqyGVjwK9gFx35onCJIkyK2bef7wB+JLEyBZkhShkWJgejQxo1UipVYL8TNVLJjwCdQEdupEborLDR+gT1F3RVLQZceQUavDJqDW4H4Mol+nFlxTyuxF8IXTvpeOaqiFpTXA+vS1hj1rx4AodkSfVAhdUqBghdgAjNRQ2JA8D7p+lHlvVJ/RGrXqvpejhgMob6tcJNxYQua5MEMZ8Ot0w1W8QnrzkwdAviOudzaYBKEisqoN8YWce4JI/4c6+bPlrGrT1C+YGqaKk9NorJ1pKp8/sFOydHJ/4EfgtHpyZIk2WG17i9/ly4x6qt84ZPGNigMVl13Ff7IJrZ8rcVhekms5pOYRzTFRzOlGRxPLX9lWBiAikBWk0dKQ2WhUL3rmEBpHlGNV4VerPFCrfDf5awXjv+aBmyE8KeR3dCmstcGyXSAfcy7iij8JpjXoYWpbDh0TgQkhVAZIRUw4t6AHN8SsnXRxfd9EtpNfL70hk3VpGnafiD6dM0oqEowEliBWcJBZxiBYBjq2GpPAbXB52G1mVyd8lOuse0/Ox7s/PPueQpina/ij5FyWsqCoQmsyIExjQet/GZ4rZTKyXe3ztUdZu8qU6p5w3GppGjUW8Qo/EDXLx1XzgQilRSTbQmh/fikTCYIYaCH0HcNZoPsFVF8SPhiALOFu+vMPbCQ7fxuol1UdYv0e9Nj6KJFh0xjgfTwLQsgPEtISJUcgYWmJCl37IC9gL5MEB+u3mt/5lzLbm/e0xgn6XzTtwkl0YqEQDvpjspzeWCIiWq/ytkpJQOAErNwusa0johv5mYtymLFimxba1VwwAi+oVdiEwFui9oR5Nt+F7V0ucRk303z27bdGPY5VDysHQhbqYPy7ymAussVTtwadfR98LVudWLB7VcV1j1AgjYAlbAQI8yShCl4Qz4O614TH9yaEGVBYstLTFbsnjVS2V3W34/6OCR2vPNuPN/BF629lAATwmMIR4VqQJT8HzPKikQBtj1blK4AJhi2s0Z40YvXPlWuDfVOnBUreaPOTDtUFbTBhnJtKj4OK6bXqFWWe98/hxpzFczcybGpbn7xKSvdzsnuZ5FrS2hoM/uNFc5X7tzxH3SDtSe3w5HbIjhxFiPiRiFl6reHtFut/Of/QZWmxV02Jv0bSrBsrJRcOnTRRYaKlVJARRqOkkWZ8CyuUgZASDXFLfFHhOS9xhscqgpawQXlmDOj06MSN22K/iFaeZA/pau0Qjo/FMzAOhPQee/R+38g2GB0ozClkISeOcDBS43KCOlKhhtKBV8O00fV/MBehixYv/S+DQ1XI1WjpSGoElk++IBVYMtcnwPhdZOSJy4vgHZxwRh9W3oPga/XpCPafriTfEKh767T3VtOPj1X7MvF9LHxEGJWgizuRDuaVMX65pgMBd2SbhRPvNrV7eClQq1NDga6x5Y+S0klgujtyY7HfVzXXh8eM0DT9xukbC0zHsuffpLauQ808Ueh60/CrZrDhhsuEuoz+QSzpRv8L5FW6VP7Ls3Xo4XJ4pJ361cDymWYsL3jZbLEb6AKWB2IO6DeUpYn5UpRkjkshBNJx8piwrnK8E0RaW7J6Du0rO8J80K5GYd0d1hK+ZVguhaojbf4gG6T48XduxX8cBKvsFVV6kay5PDEEMCsHP3t+9jNu7xjInwuxv4WkHOPimBPYgePmsuFzScqVkJhRzOWQA5K4jcOlTI0LupmPftOGP4rCNyNbXIqUhdDXYtJHzmf5vv6XXtkfhgzWIlUpQb00nwlcU7CHpLh9zK9SiGaIGexILWpeNGSTK0CBwdKc2PQ4N8OTuOXiCklcod4e+oHd3cB8EgN0yqolRfg38K67irYAQJDQseASbVozWmRh/6pBBTYQZJIe062BEfBTkChF39m2OjQK+FsGq+GLYwVtCUisS7fgi6PESFfkuOrdztsaXBhM11HRsOoWxMwG+F2JjALhcFFFgXZ4QCdHGcqBowERU/rMG+6XNmCBce2+a9/HPKWPL3gUHeaDJBMfhipnmdjQD0MZUmfB2Np6QhgaV6S8SL0DNgCvTBi0fEZwTWKy88olpl/62/36bC+mDgN5ZAyPlwjYcKuRWIHGK1kDc0ecipuXHcQO5hvvFH1/HxgnVHgz4sLbX4LgeQK06wQT7wBAF5I86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZnXS9VyTN0hcZlyvcvD7SUONKOlvMHOi84EoaRfcpDy1pjJ/vW9jjvc3lnGdbN5yJArz6zI9rfRLPaL5Eo1DBexDRx6UF6SYbTVd5UpQrDNgWD8AdiUEs4z8TQE3bb3qSmnBb4iDRzUL+kalYOpYuwxMMiuodauI8GM3PWYXmvXNTW7bSCQjFQpsV0FJcwKZM4LaretXr/wR6UEaQ1f368hid1RmL22ol3GzgJYTT6G024O1SGlg2l1yDFkHM6EVWVtSkR+rJAoZb8tU6zVEz+/1TOuewSfOJvIYVrEpJ6+H05uGuWaqJzhPl04+igHKLmyomR3jL74wBan2fsT4wobbBhmxJCDUz0i94x5q6Tbm5Z2H4q/dF6ctXX8eatjdkbcz3WyxzsRckMOnm1THNMvjG2q3T2EEGngCVFGwMwnwEAk34QOBl7v/+dqheGea0+fqLjx3bhvJrBrCUHqywqS6zH99nUbucg031y7VJXXZbCNRWYHJTjZcvvgT9vddh1bsstV8JW8u2BBPJe+i6htKQp0WrKiU+cYERjZMhHjiyBfb/Pmn0WL1591TfDz6EtfiKczoTkDuPXI+7naVLeRSnyVVTcipB6w0HVvQNfsb+CYGsIQ/qwQsQDFA7B90o/qdNumfbUs1ubUxZ4ei/sMvOm/7OxM8mInth/LQOukxoK8ONXFFTYTHPhpPgTLH9XH4kFoXha95sQEVnkMLCkYacxQnY//5jvnwCv3DeOXjuzXL5o8EywtBveigcrXZOCQAML06RgbTNl6kl3BW2jUvWajbaFh1USP41tofFrs6IhBg/shOyY/JLI927zDlLve8a4Jb6M6VK9NXYeOkETyNes0iPVyptDcVnMfsduDnUuR8BXSkfCSVCULxglSJ7dEPdzF8oaolfJ8zTri6mwr5g05B3CtgUq9jQGo1z+nl6Mqj21DaRZ3wesgv2W5XerviyXdffck9a7t+TXSnBwiYQ+gh0iaywXuoFPOuRVyzMHM5IEQnm2oMWcFxpznOb2yScpp3gfvE0h0/rBsOGBaWiO/FMm721NHxm0h7/5p7qfv/uHXC8LnSuUGrfeku/mlVdvf6sK90ML6JIhPW1Z8QPcxRoaBBZa4MUIDRGce9Q89bYQtF7dcoEQVJo1iM5q1Inl/qeWDfOI6l2l14X0C+dxVSc39dKPh1zlfswVWKc9qlS9/m5JVco4QVtGLvipgDi9SGoI7X6RhBp+yvTOqfnWfPTPfn+l7oF8K2TA+2P10w+DXuTaMsyPuTuAyI22+GtNczHM+p9+ErKYWA2xiIZcVhEfCibjlrXvbeG/cUulHn04ralIUHzQPQCg+4A1FgUh9VkTMzxG83oSJ13cs8Mrt16mjR2zu9yiLYzfek22s+UTdk2E6a2cYZALnjwyXBYeDsBKeLZSowUw3X1YMTv+6TT6o57RR70vvk5rr+uSJ/o3nidKyX5zBrG7d34XdAa+FhxoabYtgeXQIPJbL17wJ8ot/HGk/wdbjtPPU6efvbrvxLpPc+ZgCG22DgckfSyWFGDqhcjT4TTEM9fJYnX3xHuWi6VH5D2rBfCC1Zn0gXBYWDv+dF1Pyx/qORxdHofA5RQME+xh6V8Kvc57n5oADVg0FmJMjBhg+mJua/MYVtTfpsnFlxi94CZSyzcHBztXgv9l2rvy1mDdjwtx3v+u5U7zjopi+1TvJnntWJH3V8j7R8ihZpFwWjB0LoztSJqRr+oB4ANBTFLhTzo8gPUUnP0lVpmB7LZopKO26LtzAg9TnAZyzUQs3cI/i+HmEHBjBJwg5MPhJVDkwqpwXVQ7sl+W+qDci5L6YfFNtV5kK+ByYnYAlM5HthbTPqsZ/nvxxfKzHjg4pzTa1tx5Mso+ZgD46BAVqD60LPXBk8ZuqwtQbtVOHdvzbrbBrJmB0vITmdEJlL8AEnWvnMxE6W0wg1QmQBiuBh9YHpStVWpUPbjFZuCjyeeTISgPJYgJmQjpKwgJRGj8ore3CLoN9V/Z2jLcOP/aTA5SOs6K04zxNoYk126WHVA2AgYGRDgBRs97JHKZ5FJ3D8OtFseCN9ZhPqIUmOwcMKdyf2v8/86dUOR8D+dMarP709bn//Clun6eHvPcErdrvOm1wB8m1h3XncuBPqTJNHHiKKqyeoliR+9NWNYqVa7iyn9vyzYlLD306X4YDf0pdJOAApdfn2FC6ca4I/SmVQ43uT6uw+tPX2gm+g8nPCajDiZtktjZm1d/OEUW67PvgHL7j0pweHEwJlp1jmxJM10LuyFkyW3kCcgMksyE08AhXj9DAI5LZEBp4RDIbQgOPSGZDaOARyWwIDTwimY0aodEy1qBXRHYxqnoeBxlrzTkzsqUBjfxrOpIIUUXCyNQ9f5pNzJlsQpUt5MAmTkw2WXHgXp9p2Z88Ug/sTd057D75nF8Jf4lCKifbpDSLY7MT8CPhHbjAizpKGcFXKKOkGnEhqJ7KH4EdG0N+baruIuJVdPF2lgHBKqVc3gMyFryYd+QzpxvFEyZ+cDmauGSb+5Kk4G9JXS9nM3lCi55qqQrqsxIf28hFGT1EDnO1wPtgwj8hsij8u4MIA+5yPIjZRDFJCQYH6t9YzIs5AxxoBxEvZpqojI9EFSZTeEtDSQRoqbncQxYWTrpeWnM9UBmZ/yrZC5/o3licOPFMZgUMRH8VPDcYJdO8VSnirVADSiUZ6aEIgbJbBLxmpeFFuPWS7xIWq8MEGe2lsgFQVUIiF0EtqHxEFKWSSiK0P5v3UkkitffgXbWFydMyVQWUo6U6av/ngJczz7Dx8r4zBC+3NHnMqfKqprs8uos1sX+dNrG/FWc0WY5nOJpE6OYSNInQzSVoEqGbS9AkQjeXiIWWLbw5PfY0X/jH7n/aR7qaVcgXC32fGPRhko296xaraZbZgyMu0sgVen1kR6KK8XJArq2ZLFk6YOmITdFDXZJffZK24ye+I8vb4Rt/PuA/KuAqdVcFrEFsGSr4fpFShZs3PwJ/hm4bglTRYdbXoqvuUX5Bx6Hhbyvmpf4Dd2tEYJzQlmbAzKzHP7QtQrY0idqark2oT0IJgWgo0xkuUQCSQ37xuV2ONCnWb4Rwcb8rT5a1mj6cvCHoonkCfUOQaOBcwQhAsg9CsoUpcWLdP0ZJnCgRDKDVOo3U1NSf+oj98cmGgfpS0XKJCttnlMPwBZ05Ydu2jdewwe6rey0Z0PPAU/IygkUA/hCEiCrRUhTWmctqnTGmYB3gjX7qk11UVxwhU2OyxcEkMxEuBGmcStNX9JZ3bOqVutPjxb7pL13IxtE8EbGIm9dSFMYJZTVOD1MwDrRPfuMQzMRknHaCCPiRmE3A66jBrVJF8GiN6GIXvjJSMhxqNLbAfsr7DfSIamf/ZWtihauClDaP5uyedXUn+Rx7YL7n08+xk1qLwnhdWY3X1DjG00FI07wAC3bJs6A6XKYYrQBBMDAfMJdCqYCmA/+SK0dijfBHJ9gUIRmluYC04/NztVSRvsWF+08GnVk57Z+rFDW0cFRaNH65KCxXhdVyxYxuOXgT3FHRK1XGWrMeDQsasTrC8cECu13P1nmsf3YqZGVa0h6yI2SMmfJaOF/wdsRjCDjjOEkLq5pjjhCPU9swxanVzccGHD2Y63fEIvlR47Zj7ck7dSLNQo6/SjpCJh1Jr93GlNlmK4CqQ+p8i0GYgGyYVBkhjVKN5kdqHqiu4KHJ5vJQ9JAq8PkLc/BKLYvB9q70XUVye/kg8J9IpSrKVSaP0nwwKtxnPGHaRMxzvwCwX4babYwDIW2tC4xZb8jZsBuBDXZwEntHnSL6pCXPLljta+0RF1XZ7uAw61xytySeSu+W2paC5slUcbPCzpMBci4QOWeUH/FvJuY5XdAr0b1yYL4Qhq8cIVWpZAw1Ky67VVvZxPe+MDF78tmPM5xuFH4IU9MlKD6CA6xqsWJlccGgPpdYxyyFT7ngL8Fg53b87Z8WUjziIy4KnYQ/S2DcRmVVC2JiQPwq/H/Z/GEP+Q7tdLstkxv7T4T/l0T4qdWEDCbC/+kCmwj/Abrv5ECE/22V7OVHvg91/tOjwp6xzyeSj7sU7rQ5xz4SapbnXmDTLL9H95FFIcJv1/XdWYcEO58Vz6s2MMuWOBtdhP8sKyoHDOsNWecO+h384U6EPz3WukOpld3cDp2YO6tJqfXkHQpjivBvYDVdnHFMZ3AR/nqSyzv/npMljnt4dtZIxyvzjCzCj3kZRhV14GUMJsJ/4q3HFdHLUn4z4qZatHuWu9IERPjPsoJz4IIBRfi9x/b/UzncXHiglGV5UfJmsp6M8UT4N7AiBMY0Hre1Y4rbxIKmzX52uSTYcqdO4oU1b1qRdQSwQ3yRSjlgdHrMZsGAc5u8LRJZ3v24FgZAXKWMDgsHMZxaii3V6KPlQK2wyPi2dNWDfI265vY1EvNOXwT4SkRw0YWCbxbAd8TFwh6sqpT3WuAqjgXyq5eIm/7+Up/HbnODmg45ZhWuLnztLkoIRXWMha0FDNDLhOjVFSF6ZzW4WXtRrxCqrGb4hkjDVFJ0fGk7N65nw8m1xVOzT9woXS/Tg3JCCrsRcUJKc51z2V/w/dewfv+ZF40dLGl7ph6BEnxlmTJEFsyibfMo522FF/GbxLHlnGd12rKenH1uQTyA3le1LUVhjBGsxhhiHGNQwx+ePjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerozo7vPnrdar3yrbX3o7ceXoDmdfgBwREjZYj6l/mNRWFsXxZjdXRJEYOfJRe0WrlvIVuRbRqiJplBNW8HTBHcnebx5Qzizyen7jRtDBT5UKaI84Jd+TwqGcWTReqhbjn1ov6Ram4J2eJtkJtWvWs+Km+cEvq+F7B38fXNOq0FwKwgADgGgIA6Fr0ikQJKmMWmVi1YLxiW6kXbn9uftr5mjTFhUJlhj3sCwHozwZAkvNFItBs//8sH4damNtg+TgnL7Hl4wy+VNT5OJVXuB3cW9XRb1HPOo5relwrbwL5OMcvse1u7rhkAkkFCQkJBsjHab9ylcfswefEexZaqdun8v1NIh9nFat1ppuCdQySj5PVqUST4sceuy8sN6Z4wrw1rUwiHyeK1TiDTcE4PGPm4xy/lLDZLsTVc1+WJChxwY6DJpWP481qvPbGMZ5p5uPcjdwaVvxlB989kz/739zaZZGR83EaslrOyuiWK9J8nH/iHTzOvm/iPPdioOIBL7OPSeTjYDEEYz4OcIR4nNrhd8jHef/456bqnRMFW8p2PPtyaUaCkfNxvC+z5ePwLxsmH4dfYvSyx172wj+ffSsbkfFKzXk+DnVuzkGOiftlthyT1peLKh/nYYiA92xOVZ+5nSpfXWP+6AHn+ThUH8EBVnxWrMpe/p/Kx+nI5MaGH5E1k/kmifan+cmfZPd7Q94p6R4Nz066qSSR4fQTpnpsXzR0kakj4ekx7W7OaAfNKVO+BGrmhcFPQPa8Z2eWdL+4VyxYfCnpYJ+0IAvG96Pv5ORvpPW/0gHAhfnlP4qF6JXUc0869krt0xD5NNlnQa+sIoJ/Kec/JbbiVg/PZpYLkMqBwaQhHsCvjyIeh5lVY8pOTKas8mCOi3XH86KENg+PJJ8cSV4LMhOiDVhR490RNuOV0TSRDlnhZEA7fMWVkgf1kPwvKHnoGh2YMVjJCURkcihPAUvkpgtw1Dszof7jj10bbBzNhfv6V1uxKdJnY4GnL8sUPfI6n9iknt7j6MTmL44bNouUP0m1SBcmi8TPnxP90vOT25LhVdQrZtoPIK+JusLkmSh6RMY4vdTcwFcD1tfUu4xWw5AXq9UWrpSHQDlGmBIYiv0eFg5HScLUOsUg1COSJb2VwcOkIdqbUK9OX87VXNd1t9pOzLsDwSyGSuqDouprTiLklyBEcB6HkF+Cf6nyS75/3OkacOKF89Qze2Is3vpdosovTemVMPFGZH/3Zenxyx8vm92VaCcOo/6yPBP1gxHyTEyWtoTqAbgZkdaatftYh+FbQ71jfMdmlckMdCiMtbjfDQN2vQHtugoV8sTBg+YnjVJ40hLWdxykBt9BEZbnMPJ+xlzNWKeOPcYjVKKYbGXtmjfaQEAUFa1iCFwfjGrUaNQI39SyWwXNBmStYTVZKZHmSQitY7yhKIy2i9VoawxrNMIFm3uLNA4V3jJRO+4x2xBjlCnYq++Cl76WKdRSFZZ1Bz6C5DCRtlrRveWrAbYXPRfmWDx7/jJkFtVWpXyioyRD5FoBCx5lswt+qhOdrpwK1Pr6RbpiM+pMVqOOOEnT+mItoIB3dqlGnwUJHlUmhbWjm0NPRy/TgV3lPKPUEfdL6QJEpXvn5lgXxym9KxOld39416+U/Jzb2pS0YhP31Ysl58oGhMtCo/iwriyZ1iFfMdW0rukXGgqnIhK5HC+/KoOF86B4tyMSYMd73brMGX7NdUe/2Jjq3X0ETK+AiJd0TbcHPaN/GEAqUIgqhmcv5t0KLWweWTms+i4Ym2r4wmjxhameB3oUb+obc6H60utfq9WjFnhBfsUCQ0Ivm2fHKos2eK61ChE7Tu9vU9jEe4BVIMRqmQCV+wEm+PZh+mWNaSyoxHoFEhcvdatGPuXu+eyUbT+6ObPhXdqScqhuwBR2PIFvbs76zUEvMYHlZKwH6rHHZgl1htikp446ShxFH4U+s1b37/Oz2J0X5H4J7zYU/HtC2eCfbRz4aRlihS3UrRkRMNsZfBOkRd7IF60pbdFHtOfBl8G2zfvl/qKnKOxqvgPuCtKdEQQz2AEbEDjBdDNhglm46szlZd4D3LaP+eQjDxhesWgIZsV0NoLpO90ABHP+uDrE/OQj9ylTSz6ase+rIzcEE3+seLnXWTNcEw8enJM1dVAbDghmyXS2cT55OscEM2dFlbU/vwa5zfDxOjNu0CAvIxKMgvWbg17yOxJMjRUfSvz770236U6dbnc9cX+g8QjGlRX+lsaB3wgEIy02cI/Nlxy3yeZZmU77iu0yHsFgroCRYMCAwAnG2YQJRu5/Mqt0mRqiBE9FbI1P3rlFQzCxq9kIxnW1AQjGek/rI3Z19ngmnQ8c9s3BO4Ebggnt3KFd3Upf/FavXTneMjPNkwOCmbyabZwrVnNMMDMqtRbdu7jdbenavltL+l5YYUSC6cv6zUEv+R0JZrGk6pA16a88tnTf3Wh+TunnxiOYlqzw1zEO/EYgmNZvh6wam2LtuXptt9zTFaRTjUcwmCtgJBgwIHCCEZgwwTxYWfdry11NfTb0Czszc6+PY9EQTO5ONoLZs9MABJPqkxFQZ4y9x+KRxec03fl0DzcEM6LxlYBi7dr7bMmU3n1wdygXM5icnawLRTs5Jpiuw4KOd+5w1ndFiTGv1/r1zzUiwZxk/eagl/yOBNN9U5PZq65Zio+06NZxa6VZ/Y1HMPGs8M82DvxGIBhJvZ8+dYdNdNvqXrJazRbOl41HMJgrYCQYMCBwghGaMMFcL1XLMXWHxGXK9S4Pt5c40KxoCGZTJhvBhGYagGC2jrcPPDlhqteCNa93fnmx7DY3BLMwemuy01E/14XHh9c88MTtFgcEsy6TbZzPzeSYYAZHfuz1r9cfzttq5d63vrPAxYgEM4b1m4Ne8jsSzJh3DRuZfTojXn979ZPrP1e5GY9gerDC39U48BuBYDzMN/7oOj5esO5o0IelpRbfNR7BYK6AkWDAgMAJRsREMHrXVLDTWq/oayrUvFPn7V+jJnkv+fbu49LotLR8NRUcjyU/FFep5z1L4FBnbkvBzHw1FaZN2F3rijrIc0nQ9p7Vk2/OzldT4U54i2cDVt7zSuUVj8+sGLIgX02FJm73Q17wrF3mPl4fXUkW9ClfTYXHY/2mH2zZxDOu40ObDR3rxeerLzW/+uROiXuLe+1Ue5YK7HbsCGgqhTf1/6tmixt3HTzj16dVeSQbAGtZWeBNLn3sFvZrPsRj/YHUyOBba2EFrNJ4U6snSZPir/k4p2ap5jvluvmCpjJ406fZRw8OGNBC+OekATWDts2CtSIs8SZ+n58NxU0veyzdPXHilWdTt4GmsniTvTwx5c6CEx5JWx/uWXjYJxM0lcObpi5fszFjQXFR3JaKLdztXbNBU3m8KWteywXFnq72m755i4N/7a5tQVMFvOn2xua+38xOue39ZN7n6/nNPNBkhTcFdXk798b7Vj4xfq2syn3p+hdoqog3LbL+N+mu5J3bevuKzT5nFR8CmqwJeIOKLau4X+23ZGbinS1OrSDyNsQD40onj5m/3DPxisfzbweTG4CmSnjTgiZVZ329X1G8rFf2rMYn65UGTZV5jKU4qhAPnDAx8riPnTD50vc6JRrnTARNVfEmpffnlesW3fRc8c/PR40sSkwCTdUIo9h96j5o8XW/Jb2fm/XZfbkDaKqON4VWW1im1TR795mu8ZtGzAosA5pq4E2v6r8pF1F9neuO9hueJD1aMQI01cSbqqrvpbdvs8krZogkef23kpVBUy28Kcki6+sFv2Euu32/5Nr2CQsCTbXxph7lzCKjLTeL1/5r38L8mmg0aKqDN23/GpjQxOmM8/YOZ/a9LP73LNBUF29aM97RN/d2qPfGf1+cCvvYdBRo4uNNG+qeTTv9b7xgZfmFkiXJK9/SioXU4zEUCzkszZxd4dxa0QbztFU1e1zfiXAb+hYLcWFyUZVDU5JXZJwSr9r2YMyZWuPI5a9KiUdFypUhCAUspgC4MX4Hn9AslSlgWBgBAmLghNTSsAipzpJXVAeFfDV6ZiPeoGvtVlsx7861TOhfEae3/EF4vOuaXoqgVnmKoJoXQX63mFOZ30bwu/tN2msmeCJ4u5BDQVCOD2nB7OobEKAQVO7fySZiXuY1vWLiNj2koGtgZ89DpMHKiEilWoZJgIH3k8mxqRPRT/gSFVS9VUbIgtE95MGqn522+Hrt/Tnvr9Hy8YFkCR/t59AlfPKauI4bIFy7WOFac80kIjm63KSekZwDPtBC8swVFS6J4kdIhkn5IACBcgJDJFCLg1Hrp9mTazd6Hn0n3NzVYuTpFZ3+oag94I9FqD0QLVxbz8oB7+wuKOstc8Q6O03xR0/g6hHCdITogpQKJLokcKkKx+52sBbtfDo4qH6viU8LL4PHAVi7WMECXR3nHzET//ynnv1L6tnUCN1g6tlTr7OpZ7tcLwr17BOfm52TO1sJd1UMvbutV3owh2RJ9UAcqGfHXGcTG5ZfN4h6dsq1ex992wW47ZuygNc716uv0dWze7OiAvqNiSp9FLTAxJ169oLrztZD+XddD14aeuT6znX7TEY924nVdLWMYzqDq2c3kiUdE1z44jYnPe1R9O15fCOrZ2NehlH+GHgZg6lnf1xnV0Ua6yVYO0We3vFvc/IWhnHUs3uzguNy3YDq2eVzvy1tE//KL3HeuR4uq32Gmoh6thMrQmBM43GbK1PcdmqlxPt7h6pukzfVKfW8wVjy5NzCG8Ro/AAXb90XDoSEmiEfVnQmImEwQwwFP4K4azQfYKuK0uhEA2eL91cYe+Gh23idAifq+iX6velRNNGiI8bxYBoofwIwvoXadXMGFrB/ot+yAvYC+TBAR0otKz4o3k/gsj95ZaBs4OxWlN0keDdCJAq7XFCkRPV/hYyU0gFA4U/wE/C0TshvJuYFPtFL+6UaBhDRL+xCZCrQfUE7mmwjFJXrBa1s7rk4/cm3iDsnZeRh6ULcTB+WeU0FFmS6csP7lfVSt8Wv4p/MP3ntPQeAObMCBnqUUYIoDWfA32nFY/pDL0liwWJLS8yWLF71eYJ7z5gHSo9dfabX3+CWWccaE5MHxhCPilRJtdIzWFArEAbY9W5SuACYYtryS2dsnOB2Wrh86KW0jpejfDgwbTVW05obybSo+Dium16hVlnvfP4cacyKHvNvh14t6bXKbfrpEVMahVA3/BDCdpqrnK/dOeI+aYcAsee3wxEbYjgxujERo/BS1dsj2u12/rPfwGqzgg57k75NJShAEgWXPqGarBTqG0nVdJIszoBlc5EyAkCukUHBHhOS9xhscqjJNYELS1DYQydGpG7bFfzCNHMgf0vXaAR0/pa3AOhPQee/R+38g0Hnr3KrsPkpAu98oMDlBmWkVAWjDaWCb6fp42o+QE9ThAL+S+PT1HA1WjlSyqAgX3ZlhoPAra9rXFDpnqIhPS3JPiYISzqg+xj8ekE+5kaldP8FLx95bYzxEyzz3RBVSB8TB2B2hDCbC+HBdepiXRMM5sIuCTfKZ37t6lawUqGWBkdj3QPLiULPIj51Ge57Y5Z46oChgsRRdmR5S8u859Knv6RGzuUs7HHY+qNgu+aAwYa7BHcml3CmfIP3LdoqfWLfvfFyvDhRTPpu5XpIMR0Jvm+0XI7wBUwBswNxHxQjwfqsTDFCIpeFaDr5SFlUOF8Jpikq3T0BdZee5T1pViA36yqdaCvmHb0J0LVEbb7Fw1NKNws79qt4YHl4cNVVqsbEcDDEkAD4lqhv5lOymefcL0Ne/Zw7pQs5fMYeRA+fNZcLGs7UrITCygEC5NIgcutQIUPvpmJe0k3G8FlH5GpqkVORuhrsWkj4rnZe4FkiONvtjwoPdr76+IZS+hvvIOgtHXIr16MYorWEFa3JN42iJGQRODpSmh+HBvlydhy9QEgrlTvC31E7urkPgkFumFRFSYmDfwrruKtgBAkNCx4BJtWjNaZGWplKTIUZJIW062BHfBTkoNLm/Jtjo0CvhbBqvhi2MFbQ5O/iXT8ECUXtid9KXG/0Rbg/MEVxwb5XW8rGBPxWiI0J7HJRQLGEFQrQxXGi8mAiKn5Yg33T58wQLjy2zXv555SxBSr/Mfhipnmdzip+VG+pi4ofr0AfPKlG5wudj34R7WxWTHE/Xty/sD4Y+A2Xm7jocgxNBhtEDq21kHuaPOTU3DhuIM/cFhvV48Upl7jvtXLHVJ93hQPIa91hg7zsHQJyL86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZlty9+PeXdlqevKTItXD70aWdJS3mDnRfY+avolBylv3kz2r+913OH2zjKum81Dhlx5ZkW2v41msV8kV6phuIht4NCD8pIMo62+q0wRgm0OBOMPwKaUcJ6JpyHotr1PTTkt8BVp4KB+SdeoHEwVW98Ag+wa8sQImJHn6rfNX1Oz24apmSuhaQAe4AfmvKCmgYoUUa2ZngmqjIebg5d1LMxeW9EuY2cBrJxu4LSbQysQBabV1jeQcTgTVpW1KRH5sUKiVEea1Lp2486+B69UuvK91vvzHKZFTOrp++HkplGuicoZ7tOFo49ygFLudTaUrlynLz6wxWn2/sS4wgYbhhkx5OBUj8g9Y94q+SN3Y+4AuaMwzsFfXmfUNG8j7uc62eOdCLkhBwVsa93QL4xtqt09hBAF56u5BhmI5JuQ4PxckPhh6r6awn0rrcJDQreKTGDXEoJkwQpSrp77uo1cZJpvrl2qyusy2MYis4NSf+ieeOfBU5+l+/dkf3J3OETeRSSeS99F1LYUBTr3GPd0ITpntXu6PkzE+CLI19u8+WfR4vVnXRP8PPrSF+LpTGjOAG498n6uNtVtpFKvssfUAxa67g3omv0NHNMF2KnOChELUDwA26YbRbBNK34+aqN0zRbnVXzesNNeXckV6Cyx/VgGWic1FuTFqS6usJngwE+fg2D5o/pYPAjNU/XjuvIYWFIw0pihathV2nLw6kDRhhpjHi+sU6YN2ROJwb1ooPI1GTgkgDBtYoVpwQ39yK7gLTTqXrPRttCgp8H6CNxC49NiR0cMGtwP+TL5IZHt2eYdptz1jndNeBvVoXpt6jp0hCSSr1mnQayXM4Xmtpr7iN0e7FyKhK+QjoSXpCpZME6QOrkl6uEuljdErZTna9YRV2dbMc/qUSas+omIyWMA6lnZejmq8tg2lGZxF7wO8lt6/+j2+WzV2YK0uj+k+w8PppxDwh5AD5E0lwsac9RzboUcczAzuSyEZxtqzMGKZJ+y9comKad5H7ZCteu7Rjv5THovWHz9YJsNGXOTybt/mvvpu3/49YLwOX+i7s6IUw4uC4btTlsor9iNA3yys9nwAd3HGBkGFljixggNEJ151D/0tBG2XNxygRJVmDSKzWhvru+t4eq1zn3ysKGhi9qfakg2muZ+utHw65yv2QKrHGK1yhaTskrOEcIqetFXBczhRUpDcOeLNMzobiNqJ9rO8Ni0Z9bzvR7ri5EN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW819n6TchqajHAJhZyWUF4TLFbUrv5DCv3IynDWlWr8Kw5payD5gGIsg54Q1EgkpXNhsiubILX/Zh4fccCr9x+nTp6xOZ+j7I4doMcpeCfqHsyTGftDINM4PyR4bLgcBBWwrOFErUaVuTSZsXg9K/b5IN6Thv1vvQ+qbmuT55oNp4nSst+cQazOn86r+u5A14LDzU0BSywIovwCJPmTZBffNfBF9Nu7zzsm/jqltfEiddXkjsfU2CjbTAw+WOppBBDJ1SOBr8phqFeHquzL96jNGXlSQe1YD6QWrM+AEtZw3/nxZT8sb7j0QrRFD43alV7OK/FAKuGAgzWEvXXDmZ/k9+4ovYmjip+Ubc5ONi5Kp/NtnP14yGBeXcmzH33u547xTsuiulbvZPsuSdZUL28D6kYHd2RMiFd0wfEA4CeosCdckpJO538JFWZgu216MVYye26LtzAg9SPAZyzUQs3cI9C9RhR84vgE0TNL/hJ1Jpf1Jpd1Jpfv1zTi3ojoqYXk2+q7SpTAZ+jTwnCBc03D6731Mp3seTIxq1LLSeQSxAK6KNDUGCBoW+HVk7vMKGz54KHxU5sLiN7V9g1E6jjD83phMpegAk6sY8zEcW0mED6lUKNqxrHHoqyLe58xFHy/EdpCXmpUbdCjVSUpjx/2Odr9y+us24snHN/1jguUFKxojTwMa0ME2u2i6beNQyMdACImvVO5jDNo+gchl8vigVvrMd8Qi002TlgSOH+tMf/M39KlfMxkD89+YjNn6569J8/xe3TZKvI0WH9Tt+EG7NC/3qZeo4Df0qVaeLAUxx/xOYpdjwqan/aobLnovFNGzjHbrbeNLbt+gwO/Cl1kYADlFaxojT9URH6UyqHGt2fYj2G0Z8CpHB/GmDycwLqcOImma2NWfW3c0SRLvs+OIfvuDSnBwdTAtdHbFOCtlrIAzlLZitPQG6AZDaEBh7h6hEaeEQyG0IDj0hmQ2jgEclsCA08rcQgXQOPSGajRmi0jDXoFdGTHop6HgcZaz05M7KlAY38azqSCFFFwsjUPX+aTcyZbEKVLeTAJkFMNllx4F6fadmfPFIP7E3dOew+NX9IopDK6fXpmRybnYAfCe/ABV5gWXS+Qhkl1YgLwRKpbBq2VN1FxKvo4u0sA4JVSrm8B2QseDHvyGdON4onXG/5+naNyCYuqa5S9cZi81RMntCip1qqgkVYiY9t5KKMHiKHuVrgfTDhnxBZFP7dQYQBdzkexGyimKQEgwP1byzmNX0AHGgHES9mmqiMj0QVJlN4S0NJBGipudxDFhZOul5acz1QGZn/KtkL1wtsLP7a5EFmBQxEfxU8Nxgl07xVKeKtUANKJRnpoQiBslsEvGal4UW49ZLvEharwwQZ7aWyAVBVQiIXQS2ofEQUpZJKIrQ/Y8LE2nvwrtrL5GmZqgLK0VIdtf9zwMtRD9h4OeQBwcu9TR5zqryq6S6PDmZN7PfXJvb34Ywmy/EMR5MI3VyCJhG6uQRNInRzCZpE6OYSsdCDlMFP292r5r1sZocuvEXXsvPFQoMW/HUu0SvDc//Qh7aNvMeH0MgVen1kR6KK8XJArn2ZLFk6YOmITdFDXZJffZK24yeSp0YV8I0/H/AfFXCVuqsC1iC2DBV8v0ipws2bH4E/Q7cNQaroMOtr0VX3KL+g49DwtxXzwp/C3RoRGCe0pRkwM+M9pW0RsqVJ1NZ0bUJ9EkoIREOZznCJApAc8otn1ojet/6Kg2DNgi5ntj61KU7eEHTRPIG+IUg0cK5gBCAJgZBsYUqc8H9qlMSJEsEAWq3T2LVr1099xP74ZMNAfalouUSF7TPKYfiCtE3AG8+HB7zG+ixeVMXi0wbJLYqIKv4QhIgq0VIU1unMah07U7AO8EY/9ckuqiuOkKkx2eJgkpkIF4JOpD8iut5s32nPHQ9l63J3ridvjVlonohYxM1rKQrjVGI1Ds8UjAOhy28cgpmYjNNOEAE/ErMJeB01uFWqCB6tEV3swldGSoZDjcYW2E95v8GQnn1V0tl7W1fBn8s/J9nMXxxBPscemO/59HPspNaiMN7LJ2zGu2ZCQkFkIU3zAizYJc+C6nCZYrQCBMHAfMBcCqUCmg78S64ciTXCH51gU4RklOYCWlMkS2277VVpj3V/mO2omb5+JK22DiItGr9cFJY7zmq5HUa3HLwJ7qjolSpjrVmPlinC2B3hnZCPTvtPtvHbUnbgGLOUSeTo0YIxZspr4XzB2xGPIeCM4yQtrGqOOUI8Tu3HFKdWNx8bcPRgrt8Ri+RHjduOtSfv1Ik0Czn+KukImXQkOUyFmDJlttkKoOqQOt9iECYgGyZVRkijVKP5kZoHqit4aLK5PBQ9pAp8/sIcvFLLYrC9K31XkdxePgj8J1KpinKVyaM0H4wK9xlPmDYR8/6F2C9D7TbGgZD2ND2kJSbIyNmwG4ENdnASe0edIvoKnXc1a1C7o8fm+k6ZI0+ZkbXHLIin0rultqWgeTJV3Kyw82SA3DuInDPKj/g3E/PuPNUr0b1yYL4Qhq8cIVWpZAw1K3h7PUYrpWPcFsYN+rfirPctCj+EKVhRfQQHWJ1mxWqfYUMdYh2zFD7lgr8Eg53b8bd/WkjxiI+4KHQS/iyBcRuVVS2IiQHxq/D/ZfOHPeQ7tNPt/kxu7D8R/l8S4adWEzKYCP+mZ2wi/KHPikKEf1J8j6eVFCPc97VYmubfe8tGDk+bc+wjoWb5umdsmuVznxlEhH/+qyD/Xu+2iBfwsx69XT7ulNFF+MewogL6jcnMHfQ7+MOdCH+5quq3K8bwnNe3Hrqtf6jjMpMR4e/BarquxjGdwUX4l10NvT9vbU+/rQGb43I9Z3wzsgg/5mUYVdSBlzGYCH/p9QnltncLd5s62yu07VXviyYgwj+GFZzQZwYU4V9dfUqpWndruE6zeV1vZWy40gTkLCBCPVgRAmMaj9sGMMVtYkHTZj+7XBJsuVMn8cKaN2S5d0vsEF+kUg4YnR6zWTDg3CZvi0SWdz+uhQEQVymjw8JBDAerXCtD9dJyoFZYZHxbuupBvkZdc/saiXmjngN8JSK46ELBNwvg2/B5YQ9WVcp7LXAVxwL51U+OGiBdOFngvvSk3/ZP7lnmha/dRQmhqI6xkCEUH6AXBdGrK0LVI4abtc/1K4StGb4h0jCVFB1ferZ2KZvwcL9PzLpKJw7Z/lhKOSGF3Yg4IaW5zrnsL/j+3qzfv/1zYwdL2p6pR6AEX1mmDJEFs2jbLL7PS7fiLfTao3zQr/nOfyl15ogH0PuqtqUojNGQ1RhWxjEGrTi2PjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerj7tX873qeV+8efrtXUc6Rn0l8xr8gICo0XJE/cu8pqIw1rdnbMZ6avRpBpFXo1e0WjlvoVsRrRqiZhlBSR/8e+6ZHe+Z5h8yU53bt2thpsqFNEecE+7I4VHPLJouVAtxzz7P9YtScU/OEm1Fv5y/+OWcWL+FFb6GW6Y6eRt12gsBcCYAuIYAALoWvSJRgsqYRSb+uD03qaTDN/G6pNNNpgS9aUGhMsMe9oUAlGEDIOm1NtAc+P8sH4damNtg+TgjXrDl45R/UdT5ODturh56v1yO14GF/QZmZedkmEA+juoF2+7mwBcmkFSwfPlyA+TjPOq3WW3e0sVzw+1/2tVb8CTbJPJxPFmt09YUrGOQfJxZfnW83u+299g5IfvD6kequSaRj1Of1TjlTcE4PGPm45SPsIqt/c8b52Vlc6ZstrCOMal8nC/P2Yz32OjTRBPKxwlrYsazmdDQZ1123By7iGm3jJyPc4HVcmlGt1yR5uM4f2/3ZmqDjm6Jd2we2379P/a+A6yJ5P0/eihNRFERRTFWsIDYFcsBIfQmWO7skQSJBoJJEBEL9or1VCyn2FBUFLtiw947p553NixnO3uv/5ktgd2dXRJYknx//+N5fB7Zl91sPu/MO+/MfObz7r1mEnwcLIdg5eOAQEjkqf3/L/Bxlo1yC317Mzp4zfunpwZ9aDLcyHycz0+5+DjnmSltqfBx9krsrp2sUsVv888Hcp9MWCvnnY9Dn5vzwDF5/5SLY5L/tLT4OJrr/4RXGRPqudBsUKcvHx/H8s7HoccIHrA6z4lVjmFTHWPzcQawhbGhB+VN5aHrRbsOhCn+ud/7BXWnpGsCPDvpp5LExzBPmOqxfdHAR66Oh6fHtLs5Sa74KVOhBGrmDYKfgGx5q+ucPXD6fbrXkorzJAs2L3nF+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg08y8B1qlvQj+o53/lDqLJ6beO24TKVMAh8mkASCuDycfh7kVd6WEzZX2+ak+dh4XRCva3Du4+WSiD00FA+3Aynh0R/hMYIWbKIesiMGAcfiKLyUP+iH5Yih56JodlGHxkjvIyGpCuR9YIjfXi0B9IBvq3yduXV3Fzcx7Zx+HxRnxITSyEuL0pVXpI6/ziU366T2+TmwWr99weWTfLbpHotg8kj4nNeFZ4Ee/BUPt1YunNetLXRP1heQZDTMjY51e4jcI1WDUx+tdJqhhyovVaotRKqRQjhFSAqOxv8PSYY1kkFqnHIR+RLJ8sDJqiEyqvQn16szlXPy6rrvVLmLBjNsAzLIoUh8UVQ++jZBfghDBeRxCfgn+o8svhU681SXyxFPPCWe2p1i8Csujyy+N77lizI34Pv5puemLHqbN6ELaycOoxZZnon8wQp6JzdPWUD2AcCN6D8zyw+oOc5cE7lB6tb+1+0C7kniL/90w4Ncp0K9LUSnPbHjQ/LZRCk9aw/qO/dXgO8QNKggYBb9joSbZ3SNiFEIlis1Xdr4FvQ0kRJoEFTpxfeJ3qnW3Cmc8p8RMOOxWq8s1TpeZi/AnIbSOCUNpOG0Ap9OCDes0MgSbBYvwgApvGaPt95hvyD7KluzV8yFKX8vj1DIVxroDH0EJmEhfDem6vd/IR8u89tXe3zIwqPoauq/MQxI0koEKrYCFgLbZBT/VnTlcuRep9VXM4YrLqe05ndrgNkPri7OAAtHYZbg+C7pEAE0mhbOhm8FIxyzTgV3lnVHqRsSlXC9EpXvP5lgTJ4Z0KduQ3vXe7TBzxXm/5XsOlB2zs+4kKlc2MkYerRHCurLUYR2OV2w1rR3DoqPhVESiUBDlV+WwcB4U73ZDAkwvOMj2Coh8SVe6PWgZ3W4CpLp5o4rhNRMLqt4sKY/MBqu+C/qmGr4wWh6/7uatXw7nBs4Zk/nkH/OXWfQCL8ivWGRKSC+6XlLiPTx4D7FK80JxP8AEv9NN/VhjuAeVWKtA4tLbP6397cmbRal/h0dNnLWhMWNJOVo3YEran+Chds5vDlqJCSwnYy1Qjz02a6gzxCU91T1sS0rNnyaIxvdV1jy540Y2tV3Cuw0Fv4AT/md/mwZDrKSFuvEeAdnO4JugpTpoFXeLGSlKuprvSoSCXE/EADPAFesQxAAjYxtg9NbzcdF6r/T1fDRzckcPPNnea3+t1KRFiXWTC+n5tFhyzvO3pTVC0o5OePTv9il2hfR8TrlN/uVE9JqwOW1mDjnT3zqkkJ7P0Ur7Ggx1kIetKyOa/Pq2eEkhPZ89juX84mvle+3avGJKXN8/ZhXWNmRW/iW1DRGVf8lCvYjKvxaEaVH1fn365aR7p3T/K+DhHx+gMKMlYSq/v+Iau7huwb/XO/vmQ2hQRWCyIkz1KvhufL5/XtCeMbHjJLY144DJmjD5dD0WOcr5pNfsWus/e0/e8A2YKhCm7DsjGtt3uuybGfnzXcX8vp2ByYYw3c2bWD3F+l3A8ua/nZ5Q46k/MFUkTC19le+b7/vd+/cRibl+R/y2AZMtYVobM7pm6onqQavs1o5pMLtXJWCqRJh+it1xrLbtM/GyL/3Sex8y9wamyoTp9d/bL6+LHiz6/d/YF2XXbd8ATHaE6f2zid12Onb23yWJGDIx2lIFTFUIU50uz3esPZkmWv1+dovkvPRUYKpKfq9hC2qPmKQJW2GZ12rR9MdRwFRNwCoDZU+YNnweEdNwdqBofeWfT/0lmeoATNUJ052E/V2i+/j6zn7sMPbggK+1gMmBMI29k1vmTpO2nst7NGp7otqwocBUgzB9W7Khyfpmwz33Djz+540vr9YDU03CdP+1JuOux5TAiQtqvuk14o/fgcmRMLVyOLz73otXwUumDp4XmXUEAlWLMMXc+b5swsiDXpkLOzX4s9mzxsBUmzDJ2tWf96a7d8iW5F52q5rubwhMTqS/dnQwv37zi/eaS1Gv69WKh6KddQjTPbFz4IiHKvGS5TlZnd4vmgFMQrI7RL5ZkhTpH7LLvfb4jb1GOzOEquoKWISq7it+ldQ5X8F//qe/XTxmWV3kQagqmi1EVYves3nxsVPipRvzR5ypNTKdOnUVD49XKKWI0xdsCXAj4g4heV4WK1OnjgUJMQhCRAVAHY9b0AMU8tWYs2rCoKtuuDOYVj0/DuMrYucwHBZkf65fAc2C06j4iyC/2z+1Fnd8/CDGf8XFz0fshtfZxONhVJ43COHKXmsIkBQ17zzZWCwQPtcrJ24TIQNNA+M9SWWwxJFSLceOn4D3kyuwqRPZToQSFTxxrYyVR6GZaiOSm5SpOypw7dL2d2S5O1dQ6ePaz2HSxwtMvJemccFaDAdcH/81iUyOedRRz0zOleho0gJ3aWIkGmGsZIhMCBIQbQlrdp65Rbby0Kg6W/w27zc7FhWiqENjGhKPRTANSQvf3qvkSjR2H5T30tywxs5gm+sJXF3yUBRJ+JPRgUSC5d62r1jl2Cx4WhOfkye7zaFG6mIdweIBrAqcYIGmTow/g9jGn/+UG4ql3EDP0A2m3HDrOZdywzL9xkodlRtedP7lL9vcKgE586Ujarw/d4/HwZIegXhQbrjxnOug+3H9BsviKjd0d1rfdOelwSETPtU1a2q/NsHoyg1bOVEB7cZEWaaGU27wvl+uzdy4e54rXcsFS+97DDIZ5YZpnK4bZhzXGVy5QVgmY6NyWm/RZodvUcrDU58bWbkBizKsR++PI7KU0lJuODFcaDts/s7QiTtr+q+amb/eBJQbtnKCs+y5AZUbGk20vOOySho44/2bqFsfDlGLshlPuWEaJ0KgTxN5Wwxb3nZqiST4W4fqfuMynMyf1E8+QM1Gg0GOJoz0CdZ94cBbWwwXVhMgM2EwQ4wGv4K8K0kIsFVpcI0CEGyJ9gpzLyJ1G6VT4kRfv0S/NzOLJi16lMU9/pUoi8tIlTyBByZ91W9ZAXuBQhggv12G4Eq/Q2dv+k76d77H9hFvBtJ2k+DdiAMK2OWiMiV6/OOh5u3hrwT7itEIhU3Fgk1f9eIdO2AAke3CRSpXgeYL7OjB1qK5tXDbqkchq6s/U1k5jqTKGlv6kDczu2WBqSjAxtmeW365wlPxtuz35ge7tWvIA2CLOQEDLcooSRQ+ZsC/aSVg+2HKYVlw+NIa8yVHVG1ufmb+E0nZgE1pW1an3Lz2ww4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa/eGp9UXD4kI2tz+1dvxa7NdeHCtitO1/YzkWlR+PPtnvVKtCsGF4jnSmaPv9Ljlf2q4Z1qdCxHJmdf30Tf8EIeq8Ku8r925ETEpG0UqyXbDuhgxMMrZBkbvvOo3h7Xb5pnVu5/D9B77qeIBVSH5VQOXPuFJZhnk1sv0qBjfXKSMBZDjFFzsMdKCx2CTw4JC8ZBUqtOISN+2K/qFGe5A/pWu2Qhkjr4CoD/yRhSQHwAaf/yrkvJTvIILgQKXG2AZJJhtKOOELmTxc4AeLoAE/4fHNDVcjVYmyljUS/7I7J7atslT0bJjdn/Xcl9KHW3L98BIB8wYQ1wvKsbU/HirceIH39Dtiz0aWbfovqWEMWY2JHJCmM28ESXT0xpjMJd0SbhhIfdrV7eilHFqWVQC1jwwThRaW0t45++dl4/47x5v7xnw/i614KF1wXOZ01+KkXcqZTMCtj4o2K67YrARIWEwW0g4U7H+mxZtlSGTXr8IcrsyRkz5bjYRMozDKAxNUCgQsYAtYXYl74NEWKzNyuOGSRRyKd7IE+WaGKESTFNUukcC+i49x3syvEA163psz1ksqAXRtUZtvqUDdF++LGnftw/AeHhw1VWmxojYGGJIAIa7Tfrm0W1s2IwdT8rUO3m9FzV9xh7ETJ/xy0V1ZzoroaRH0QByDhC5laiUAVZ+NXvFmj7riJyjFjkVpanBpoWE7/3mYbbz1lTxHt/++S+ffTyoSXUFooGgt3SoVr57MUQLtCQOtP5+aRQWu0W3pHhZYRzqF+LsuAWBlFamcIN/o3bz8+8Pk9xBMhWNEgd/Shq47bEBEjoWPAJMqpNwVyO9TB+YStJJSujXAW5EL3iJos2FN8d6gV4LYQ6hGLYwV8D5u0TTlyKhaDJ6yYg1N9aHjW9nVf7gsLAbtI0J+K0QGxPY5dKAAmvirFCAJk4MVEPYBiqTqflHj5b8lD8uhZJ/y15ylfybqYVcYfKQ07lx/EA+1qx8q7ke0QFLNB1X7nvq+DMPkA97wwV59BsS8ljeWJm2JOQGYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszM6psvdmS0W+C2Yc0hyxtvidQXmDjRfZ+uj0Sx4ob3Fs/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHHmC9DJriNPjIAZeegLvdauHfHdNkxJQwldA/AAv7DzgrrN/D7iYddnwWmxLhl1puRvL8leW+kuY18EWE17QQy7LxnihGBarXiBzMPZsKqmpUQUxgqJ0ryFPaL/uersub7xm/nrB03w55EWMbZ76LuTGcN9M5VT/ad4Jx3mAaVQTpTcXzAXH7jytGbhZL/COhuGGdnl4FSP5J6xb5U0mf6xzKYu/waPsz5bW9XP5rUR93PdmxGNCLkhBw9PD3uhXxrbRLt7CCGKKqT3CUcgSmxCgnMs2Sdn4JNq/nPCt81JuTq+twnsWkKQBnKCFPpCv33dhj5y/Jtrl6oKmgy2scgeoF70W9/GxTcrcK2n9WqX0O404iL5XOYuotZSGuh4cKLT6AWZGCnZBsanPUKDzZp/Es1fddZ3RVhAL+ZCPHMkNGMBty51P1dLdUtU6iW5Tz9goevegK7sbxCYmsEU/qw3YgFKAEsTMxegSr5N29rRtvefAxZ7TWgSXTmw5TNqGWZrbD+WZVinGIuK4vQQV1ImOIjTLhCscFQbSwepedWXeo11FTGwZKCnsUOl+bXB2nI71X4z/my3tadtvbPUSCQG96KBKmQycEoAYRJwwvRMz8Gu6C00+l6z0bbQYKTB2gjcQhMyckc3DBoiDsWzxSGR89nmHcbfDk73XfFK06FGbfo6dKwkXoiv0yDWy9lSc2f8PnK3BzuXIhHGyRLhJZlKHkUMkDqFJfrhLo43RK2UFzLriKuns1gw+PNxqDiNyMlTAOpNPusVqCpi21D44i54HfRy+I9RKeu83nnvfuXhJPa4RS15Wg57ADNFwi8X1efo59xK2OcgMzkawrMR1eegGmbEZ73YJDb4+3CJpP/8/MYEV4f2ASmNjv0VuKhSJnX3D7+fuftHXC8Knxp5+U+GtdocMtaviUXvfr0H84BPF058QPMxBsPAAiNuDMOB6CSg/+hXRc2mm0Q1SKbhctqTrdJ6n9dmhmV3GZLnpOwVQXUafj/TacR13tdsgVfsOb1S1qS88vIg6RW9hi9bLODFy6RE8EU65mbi0qn72m0SLXNoOSyo3ZgLVMeEYPczHUNc59sxnm5EOIHLjIz5akpzscD/s34TMkctBtjEQiEvCo/wdXVOug6dHpy5I2TrPjO7vTRJIfwBCEkhwlAaiDThRKTCZ3JcH8o2rmfPDXrbu6NHwKS33zQWR268ofoY/0TdyTCdtDMM6gAuTIyRR8WAtBKeLZSo1VANUsuKIYZ/3SYf9HPaqPdltkn8uj480U8ET5TBfvEEs7r1n0q6A16LSDVw8SRM4BceYcLfBPnF3Z7NDo9V3g2Z77TxnZ95tzbUxseW2GgNBh78MSopxNAdxdEQNsEw1CtidQolWhRe0oRyUAvygdT4+gAsowD/X5BTCpNDRyERpY/nRq2oAue1GGAOKMCgjjUAjOjMKpPfuKK3Jp7UJunbHDzsXMV84tq5+kWLuZoN89BdvudPCY6KUnrV6Ch/EliZqrgdQhFCZQZSNqQdQ0A+AIYnDbhTQZNT1SlO0pUpuF6LKQROteu6cAMPUn8BcM5ALdzAPYqzXxB6k+R4gtCbhJ9E15uk60XS9SaLrSdJvxGhJ8kWm2r7ylUg5ugjf/us8jenRpZuXjP7NT7WOafhn1T5Wy9m7/AqUtzuc5eYck3aPQtb+nJk/t1cp+UlXTMBveMtdKc7ir0ACTp3vhxHCDmygVQckeBvp25nda5XO2TGbZuVQdPrUc9X6yYSTEfpTvv6ox98lQbknHiiaNDke0k5nBCls5wo7f7CkADkZLvgtRZgYqQDQHTWO3UMwx/FHMOI66Wx4I21mI+ohSYXVwwpIp5q/sfiKV3Ox0DxtB5nPH3/+b94SvhH5i2pNlHzLHDuhujMxuXdlvEQT+kyTTxECifOSGFV6vH0uc1c8aJXwUHLW3R9UzHz8mge4il9kYAHlN5/5kIp/3MpxlP6GGr0eOrEGU/fayf4CSY/J6B3J37IbG3K1HiVKor32fnOMyY7LzWChylB+meuKcFsLeTDeCOzVSQhNwCZDaGBR4Z6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYajIrIJkZXz+OBsZbIm5OtDejk4ulIIkQVSSfT9/wZPjFj8wldtpAHnwxn88ni3Xd+nXz/Y0DO7h05W4bcpZ7zKxcuiZMpmLVR2AKbi5cwHt5RqEKXME6pkeHiQlCem0vDlq67iHgVXaKddWSUSqlQRMARC14sOPL58mdaJNzR+/ur25nlw+aoTw99PrkGK5PaortapoIC4OTHNvRRJgxUQK4WrKIDhX+kcg3x3UGGAXc58lMyaC4hyxwxCtk2EgvGfQABtINIkDJZZBUiUQ2SxwXLoikDoDV+OQLWOy183RK/3k0ZX/gqNQpX7dFIfHnsh+O2GIjhKnhuUCPH38qcfCtUh1JJEgPipFB2i4S3jCW8CLdeCl3CcnUFUZIJnxDAKqpyiUIEtaAKDUQalUwSq/0dEybW3kM01SSTH5bpKqA8LdXR2z8P4/L5D1zj8oEP5Lg8wuQxp8urmu7yaA4nsX+9ltifzNswaSMw3DCJ0M0lh0mEbi45TCJ0c8lhEqGbS+ZC0V2qRN6dVE+0d+KIr2sO1wkrlAsdHp908PrO8V4Te53vZzvy0S3G4AqjPnp9jCbGy8PgOpLNkyZarp0uOmywcu2Hv3GVa+/1rbTLtR8fsvhdWodQ3zlHzJscH/hrtAmUaz/wjav47fpvJlBzesOGDQYo1x5wzsnj2a9pYcv2318Z2WEJreKokcq1L+D0zjhT8I5ByrX/FH4pX701xvN3Qez0HYkZS02iXHscp3N6mYJzBMYs13427HxezuneXruiH5aPGHKMWpfW2OXafTmd19I4zjPNcu0HKmTVc3Bf6jVt3zrZn5ctqNWqDF+u3YnTc1ZG9xy8qdTKtXeQfai20s0xeMe8VeO7hG+makMYq1w7lkOwlmsHgZDIU0ex5an/S+Xa6WUxjFyuPfw7V7n2Bt8NU669yvuQFYfmhATse+8X67y63BDey7XTxc14KEEe/J2rBHn776VVrr3S+Ozq8yctDl3dtX2rJKfBu3kv106PETxg1YATq0rf/78q1z6aLYz9J8JfLBF+ejUhg4nwC35wifDnMmMnDyL8f3Txcp9Tr73vitGO8bI1aVR58pKdNuc5RkLN8q/fuTTLHzFjZGmI8K96eTbz+vWm/qvcnnZwWyXuYHQR/jxOVHINGw055w76HfzhT4Q/2ibv5zf7W4RMrL90T6PtTtTS9cYU4d/I6bo047jO4CL8XeYO/eVTrao+GxMnPYuocJW2q2JwEX4syrCqqIMoYzAR/uyTV09LOouCsms1/nrxQiPqzppxRPjzOMHJ/W5AEX6PYz8O7v9jjs/Gj8t622S6U6dpxhPh38iJEOjTRN42hi1vE3s1afqjc57XultOmZeXvWhF1RHADvHFKxVgRGfmbBYsOLcp2CKRF9xPaGEAxFXKhEExIIeDVa6V0XppOdArLLK+LVP1oJBRV25fQ7HgMkyTJCK46ELD9yLAd/SPkh6sqlrwWuAqgQXyqy9V966Xlv1StOywbfNq/eKpEtfFqt1FS6HogbGkxeYBeuchenVEqHrEcLP2h36FsPHuK5UNUsnQ+WXDtYsFXqMqB8+4vtFhy5FoIe2EFHYj4oQUfp132V/w/TM4v//cH8ZOlrQtU49ECb6yXCmVR3Fo24S3MVuUdHG7z/bLle9psi60o7ZV8gHMtqq1lIYzRnM6Y7BxnMEojq3PjoVbUJxSA4YvSRRcO3Vx7wymrGBmEdtM2KJzVIxSJW0mbNlZPVSlwX5BZ6s3oi4+qREa5r/k0e7AWbmtVlPHNfgBkZokBaL+ZYGpNJzVg9NZ3ibRc+Cj9MpWqxUsdMclqAaqOXrQ+KmazID8hYG7m9wakf6h8v6STJVL6I7Z7kQgh0c9LzJ0oVqIu2/7oV+WSkRyjmxrbbs7GSeOKUSrVp4+EfCsy0KjTnshAItJAK4jAIChRa9MlBzK2EUmGrb0P2rZZoPnXsu+w2aM0eyjDWWGPewLAZByAbDe/weZaKb8j/Fx6IW5DcbHiRGc4ODjtBacKGU+zsot4XU/T34UOnnsnG1r2qSsNQE+TjSEhHV3s4/ghPFJBXPmzDEAH+d62sstdk0zvSfXKNPyW4XUZSbBx4ng9I6/KXjHIHycjnVmnH6XJwzbtfuPUx0+db1oEnycLpzOaW0KzhEYk48TE3M1o4PfqtB5WwOnnukcet6k+DhNOJ0nNI7zTJOPs2i7W/uVjd/5bow+tHTYlzYNjczHsef0XAWje65U+Tgr5/VsccpOGLJg185jHr+tvGoSfBwsh2Dl44BASOSpY/8v8HHuiZ0DRzxUiZcsz8nq9H7RDCPzcdZD7Fn5OL8xU9pS4eN8SR1/qooqICTj4qaTr6qfFfHOx6HPzXngmKyDyLFyTJZRkeORj/Oumvq9v9my0O3dFrUo3+j3JN75OPQYwQNWv3FiNc2wMdfYfJxxbGFs6EF5U3noetGuA2GKf+73fkHdKemaAM9O+qkk8THME6Z6bF808JGr4+HpMe1uTpIrfspUKIGaeYPgJ6BLRka+WZIU6R+yy732+I29Rjuzvh9zJ6ewkdH+LCNBCAsrfBQL0Srp5550bJXapyH4NA8/HhcI7EXwH+38Z7SzuM+Dj8dtImUK4DCZNADE9eHk4zC34q4cz+ZK+/xUHzuPC6IVbe4d3Hwy0YemgoF2YGU8uiN8JrDCTZRDVsRgwDh8xZeSB/2QfDGUPHTNDsqweMkdZGSaL0SJ3FwvAvUJbKh/n7h1dRU3M++dfRwWZ8SHrCny9KVV6SOv84lN+uk9nk5sFrPfcHnE/i3dIxPZPJI+JzXhWeBHvwVD7dWLpzXrS10T9YXkGQ0zI2OdXuI3CNVg1MfrXSaoYcqL1WqLUSqkUI4RUgKjsb/D0mGNZJBapxyEfkSyfLAyaohMqr0J9erM5Vz8uq671S4gCEEwy6JIfVBUPeMtQn4JQgTncQj5JfiPLr8UOvFWl8gTTz0nnNmeYvEqLI8uvzS+54oxN+L7+Kflpi96mDajC2knD6MWW56J/sEIeSY2T1tD9QDCjUhvWT3tlPp3ZvPQ/TEvE/OGVM4vibf43w0Dfs2Hfl2KSnlmw4Pmb41SeNIa1nfsrwbfIW5QQcAo+B0LNcnuHhGjECpRbL6y8y3obSAh0iSo0Ilru8sN2p7rlBK0Lq9G9Qqyl/c5XWYuwp+E0DomDKXhtBxOp2UY1mlkCDYLFuEBFd4yRtvvMd+QfZQt2avnQ5S+lsepZSqMdQc+ghIwkb5aHiZz7TpqcVBG7DPzwUtuDaD7yjwkQSMZqNAKWAhom13wU92Zw5V7kVpfxRyuuJw6l9Opo98ytL44CygQjV2G67MgwaPLpHA2dDMY6ZhlOrCrvDNK3Yi4lOuFqHTv2Rxr4sSQPoltSO9673aYueK83/I9B8qO2Vl3EpUrGxkjj9YIYV1Z6rAOxyu2mtaOYdHRcCoiUSiI8qtyWDgPine7IQGmFxxkewVEvqQr3R60jE2vAVLdvFHF8JqJBXGvS8ojs8Gq74K+qYYvjPyi3rZ2z5fcehI4c8a+oXbHP4fTC7wgv2KRKSG96HpJiffw4D3EKs0Lxf0AE/wFr/VjjeEeVGKtAomLvcvbpyN72gbtHbRS2uTXr98ZS8rRugFT0v4ED7VzfnPQSkxgORlrgXrssVlDnSEu6al2it1pnnlzRfP8Z//Y0S6kD7VdwrsNBX8vTvh9jQM/gyFW0kLdeI+AbGfwTdB6P7SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigJnMNsDorefjovVe6ev59HTq1jTp8B6vFf+O6Vrtzc/BhfR88r5e/euLy1BxjrRxhR0BVg8L6fmMzr66YNn6XwJnaypPfd7i5dBCej5RTQX9H3//22tZXp58e/8+Vwrp+czNauo8O/5S4MKz/hUP3W30qpCeD6LyL6ltiKj8SxbqRVT+tSBMt4/WbGHbY0bw2E8b/q1x+sERYLIkTBbJ5Va8lz8LyVwzQJ65SwHRsCJMdzscqtHppxueqRU1/pFDHrcBJmvCdGXI09//7pEvSh0a2Hf/NafzwFSBMN3cMu90s+UXAjf4tRa0+ivvNjDZEKas5B8LPMPk3mObtTrzY55/EjBVJEz+4e2k7ufVogPSJ5nTrnVZC0y2hCm5uYUi8fZM/5xOX++lZcvnAFMlwtRum/TKP282BqfciVt059iZ2sBUmTBNe3XO6bGsfHD6qTN/5w+8bgNMdoTpbOcdF7/kVAtNa9XmYtyLAa2BqQoJb8PRZVYduxR44MyCBu+2PzoKTFUJU/kXdx60yRwi2lH9+paPV1v2AqZqAlYZKHvCNGXdgxdbIqYFbO57pN91ae0BwFSdMPnOyRv88515AZNclic7Lup4CpgcCNOEVPXRNXe6eE255D9AdeTEXmCqQZjcpm2JDk0f7LPGtezGvr2drwJTTcIk3rrj3DvF4+DJdT0qiKb2gApRjoQpoorZ+vN/XxLNPtP4zI22jZ4AUy3CVNWpvbtGecp7efOZ1XZ9fQzbRm3C9HnZyC6v+n31Tt31SLjTLHslMDkRpg7Z8og7jUf4TJeOrragvX0uMNUhTBXKNhZvrjjCd9L0uBu5i6rAzxISpk9OHmfmzmnou3ZWBf/POy+EM4Sq6gpYhKqsljc817NHc88V/TWzFuzPUfIgVDWFLURVi96zefGxU+KlG/NHnKk1kioaby4eHq9QShGnL9gS4EbEHULyvCxWpk4dCxJiEISICoA6HregByjkqzFn1YRBV91wZ7HgZZkTML4idg7DQXp8owxj55CzgGbBaVT8RZDfrcwbP/XCnm6ida+6De26ZFI5Hg+j8rxBCFf2nkOApKh558nGYsH9MowNQq6UrE2EDDQNjPcklcESR0q1HDt+At5PrsCmTmQ7EUpU8MS1MlYeha5g57Dz8LQ1+WETj4bdG7xUQi1Daqn9HCZ9vMDEe2kaF6zFcMB1sYxReBlFH3XUM5NzJTqatMBdmhiJRhgrGSITggREW8KanWfe4V7sq8pLP4RsfH46Z7GZkFrMziKSeCyCaUha+PZeJVeisfugvJfmhjV2BttcT+DqkoeiSMKfjA4kEqwZK6f8bPdcFDq3zIOJ232aUk9IFusIFg9g3eAECzR1YvyZyjb+/KfcUCzlBnqGbjDlBlHZExzKDfXL6jVW6qjc4Pgu5dsA1zOinDVnek0/ZOHC42BJj0A8KDd4QYRYD7q3K6vXYFlc5QZB/eTt80ff9Fx1qOm4zP4rrxhducGVExXQbkyUZWo45YZK//Z6d/T6u7CNWQtcBe+7Ubf8jancUIPTdbbGcZ3BlRuq98tybR6f5bXolvnVVv1ox3sNr9yARRnWo/cgyhhMueFCxsHsOYPahWV9fxB0fY2QqqtjHOUGV05w6tPAKVXlhji3T773Uw+HLfPY/aXa+DLvTUS5oQYnQqBPE3nbNLa87dQSSfC3DtX9xmU4mT+pn3yAmo0GgxxNGOkTrPvCgbe2GC6sJkBmwmCGGA1+BXlXkhBgq9LgGgUg2BLtFeZeROo2SqfEib5+iX5vZhZNWvQoi9vO8gReFpeRKnkCD1S31G9ZAXuBQhggv92/9oPape7tEpYesWjrpK9mA2i7SfBuxAEF7HJRmRI9/vFQ87YNBCge1QiFTcWCppZ68Y4dMIDIduEilatA8wV29GA79d2OF/e/HvPcVkVetck2P6oOj6UPeTOzWxaYigIsx/na7L8G9PHJvvvTlPanjuTyAFhdTsBAizJKEoWPGfBvWgnYfphyWBYcvrTGfMkRVW2f399a+5SH//oJ3du82vkwyw4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa09tSjl9d8hfITmnXV2aDbHx5sG1Npyu/clIrkXlx7N/1ivVqhBcKJ4jnbnA502ixbMOfr9LNt57HbrLm77hhzhUhV/lfe3OjYhJ2ShSSbYb1sWIgXE628DonVf95rB22zyzevdzmN5jP3XVuiokv2rg0ic8ySyD3HqZHhXjm4uUsQBynIKLPUZa8BhsclhQKB6SSnUaEenbdkW/MMMdyL/SNRsBjX/xTwD0R96IAvIDQOOf8RPr0R0dV9y8gguBApcbYBkkmG0o44QuZPFzgB4ugAT/h8c0NVyNVibKWNRLqtfO+v5Z80Q8TXn1090Z76h7J+V7YKQDZowhrhcVY2r73bQdvGmTaE3cs+fSJrOWlTDGzAYwp0GYzbwRJdPTGmMwl3RJuGEh92tXt6KUcWpZVALWPDBOFBLLFm9z86Y/3+63paKgTq+Lba9RT2QUPJc5/aUYeadSNiNg64OC7borBhsREmawhYQzFeu/adFWGTLp9YsgtytjxJTvZhMhwziMwtAEhQIRC9gSZlfyPkiExdqsPG6YRCGX4o08Ua6JESrBNEWleySg79JzvCfDC1Szrsf2nMWCgRBda9TmWzpAN7jEfd8+AOPhwVVXmRojYmOIoRuhJLyzKKO27/y8SQl+i2fWpqbP2IOY6TN+uajuTGcllPQoGkBuAERuJSplgJVfe/zEmj7riJyjFjkVpanBpoWE7830VTm1G23y3z3v5aCq38v/Sj3mTjQQ9JYO1cp3L4ZoBXOi5f2TQRMs8kUtuiXFywrjUL8QZ8ctCKS0MoUb/Bu1m59/f5jkDpKpaJQ4+FPSwG2PDZDQseARYFKdhLsa6WX6wFSSTlJCvw5wI3rBSxRtLrw51gv0WghzCMWwhbkCzt8lmr4ULcuZazm1/Zvm3nMq3frz24dqF2gbE/BbITYmsMulAUUwJxTe2oEqlW2gMpmaf/RoyU/541Io+Vf/J+LAP7Lkn6MW8pkmDzmdG8cP5NG/OfaUT9vnmdrlw8NH5uIPPEA+y4wL8slmJOSzeGNl2pKQG4CViSBRkqxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIn7w+ubzu1me/cBX+2DP+0exmD8gYbL7L10emXPFDeZrP5v17QUdebW6x815pJB159XInq/yr4Yr9IoVTDdBHbwGEm5eVZels9XzksdxwD6wPjD8CmlHCeSdAQdNvep1NOi3xFBjioP9I1KwdTxSVwf+A68sQImJEn67fN74jvtmFKGkroGoAH+IWdF3Q0sJt9/Oy5oTOeNe7cfELH0yXZayvdZeyLAKtFZYlh9yVDnBBMq6cxN/y5sKqmpUQUxgqJUtoRl6n7ct6F7Ci7oFXNa+PO8EiLGNs99N3JjOG+mcqp/lO8kw7zgFIyJ0qKsszFB648rVk42a+wzoZhRnY5ONUjuWfsWyU/7NJrLNw8IHiPi/rquWwPjRH3c92bEY0IuSEHD0/P0nM/t4l29xBCFFVI7xOOQJTYhARn45tZuaEff/LLKdds0dVh49xNYNcSgjSRE6RkPfd1G/rI8W+uXaoqaDLYxiJ7gPqY5fybIj7fPyPzqWeg7980Lh75XOYuotZSGugM5URnkHZPdw7bwPi0R2iwWfNPovmrzvquCAvoxVyIZ46EZizg1qXu52qpbolKvST36QcsdN0b0JX9DQLTEwjbWW/EApQAFoHQb6jTbZt2zo1djx+VXxU6/tuvkS2GH9xFXezE9mNZhnWKsagoTg9xJWWCw8JDEKxwVBtLB6n5Lf3GuooYWDLQ09ihepLwMLh6mp//hBavkyedH0EVc7cUg3vRQBUyGTglgDDlccJ0Ws/BrugtNPpes9G20GCkwdoI3EITMnJHNwwaIg7NZYtDIuezzTuMvx2c7rvilaZDjdr0dehYSbwQX6dBrJezpebO+H3kbg92LkUijJMlwksylTyKGCB1Ckv0w10cb4haKS9k1hFXT2exwNLiBFScRuTkKQD1x+Z6BaqK2DYUvrgLXgf5LQPLzjox/ceWgEnb6u16E5PVhJoiYQ9gpkj45aL6HP2cWwn7HGQmm0N4NqL6HFTD/GauF5vEBn8fLpH0zUPyhZkNrL03brl0pOyUE/eou3/4/czdP+J6Ufg8PNGycXiVqZ57kzN9LP5tVdJ1E4jPG3MufEDzMQbDwAIjbgzDgegkoP/oV0XNpptENUim4XLavl7lphz7bbPf2rAl2UPbfA2iOg2/n+k04jrva7bAK7c5vfKHSXnl5UHSK3oNX7ZYwIuXSYngi6658DhLsKXzCu+ZOadmtK0W5kR1TAh2P9MxxHW+HePpRoQTuMzImK+mNBcLPprrNyFz1GKATSwU8qLwWJYs3tc+rXXAjOe96o3MXyilSQrhD0BIChGG0kDksTkXIjfMyXF9Htu4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51m3zQz2mj3pfZJvHrevBEd5kTPFEG+8UTzOoymeO6njvgtYhUAxdPwgR+4REm/E2QX9xyozpy8tvGXntjY1vWlQ+gDm3mbImN1mDgwR/S53ZADN1RHA1hEwxDvSJWp1CiReElTSgHtSAfSI2vD8AyCvD/BTmlMDl0FBJR+nhu1IoqcF6LAeaAAgzqWGdqO/NvJr9xRW9NPKlN0rc5eNi5mmLOtXOVosV8Phvmobt8z58SHBWl9KrRUf4ksDJVcTuEIoTKDKRsSDuGgHwADE8acKeCJqeqU5ykK1NwvRZTCJxq13XhBh6khiP0DNTCDdyjyLE4wdSbJMcThN4k/CS63iRdL5KuN1lsPUn6jQg9SbbYVNtXrgIxRx/5226TD+XcPH5YtDjmzd6jP22sRpW/9WL2Dq8ixe1eqp1Gm4UMDlv2r/m3sGMPTpR0zQQKSUJ3uqPYC5Cgc9TiBELIkQ2k4ogE3ww+Lhs4N8R/juXpiGZO7dcXQySYjlLSr3dTK1ReHXBw6KdmfarJSsrhhCjlcKKUbXGCLgHIyXbBay3AxEgHgOisd+oYhj+KOYYR10tjwRtrMR9RC00urhhSRDxd8D8WT+lyPgaKpzLOeBr2Xzwl/TN994agFq3+9V4xq5KZ+s97N3iIp3SZJh4iRRRnpPi11ONp8uw+XV5NdQ1e4XcvZ/TqvQ15iKf0RQIeUArjRElcmvGUPoYaPZ5GccbTMG08XWjycwJ6d+KHzNamTI1XqaJ4n53vPGOy81JLKhYBpwQNLLimBLW0kKfxRmarSEJuADIbQgOPDPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDUYFdF7uDT1PB4Ya4t4c7K1AZ1cPB1JhKgi6WT6nj/DJ2ZsPqHLFvLgk8VsPlm8+86vk+9/DMjZvSNny5C71HN+5cIlcTIFszYKW2Bz8RLGwzsKVegSxik1MlxcCMpzc2nY0nUXEa+iS7SzjoxSKRWKCDhiwYsFRz5f/kyLhB2b1zhZc0pdz9n1YgSPaiaw6i5bdFfLVFAAnPzYhj7KhIEKyNWCVXSg8I9UriG+O8gw4C5HfkoGzSVkmSPGonQjsWBeeRBAO4gEKZNFViES1SB5XLAsmjIAWuOXI2C908LXLfHr3ZTxha9So3DFgEZim7nlT9hiIIar4LlBjRx/K3PyrVAdSiVJDIiTQtktEt4ylvAi3HopdAnL1RVESSZ8QgCrqMolChHUgio0EGlUMkms9ndMmFh7D9FUl5j8sExXAeVpqY7e/nkYl/eW5xqXt5Unx+WlJo85XV7VdJdHt3AS+zO1xP7feRsmbQSGGyYRurnkMInQzSWHSYRuLjlMInRzyVwo56z7md/WnRFv+WPCiGuCrg0L5UJL/ty+yOtx+4A5FeNarQkaNZoxuMKoj2xIdDFeHgbXZWyeNNFy7XTRYYOVa99hyVWufSxTSobncu0PelUqWzZlVEhaUvPU+bv6dTGBcu3bLLmK32YaRzCDWnN61apVBijX3t+1YWT0tNPixZMn9hxWW7zQJMq1L+f0znxT8I5ByrVfOl5r/WLNNM+p36LNIl5bPDCJcu3TOZ0z1hScIzBmufZVFjcVe3fleG6TXT98W1HJ1qTKtSdyOi/WhISCjF6u3f5GL2G5obdE82//dPpQ4DhHI5drj+L03K9G9xy8qdTKtQtlv1Zqst/Vd3GneLO1Fe9dMoly7VgOwVqufaxW7Gk5W576v1SunV4Ww8jl2r9acpVrf8hMaUulXLvS50KfaUv+8JleLzroX8u1O3kv104XN+OhBPlnS64S5C/1k03Uo1z7X5VblV3Rf5vP1g5pZRq3kU0qeRemYUWPETxg9ZATq78NG3ONXa49nS2M/SfCXywRfno1IYOJ8Hez4hLhb21VGiL8HYVjGh0WrhHNP3T3206zrrd4PG3Oc4yEmuURVlya5f5WBhHh/+foDY/B2V/D1pb7mnDkSL8Ao4vwd+FEBbQbk5k76Hfwhz8R/sDTZ24me57zPDjfwtGt7uezJiPC34TTdULjuM7gIvw1O/6uyNn/LmBqy777h167+p6202loEX4syrCqqIMoYzAR/uGKFX9+epQbtvJHlNXYsKgpJiDC34UTnNZWBhTh/7t5b8vtrb8HLrlYPv3zoSTq1Md4IvxNOBECfZrI21aw5W1iryZNf3TO81p3yynz8rIXrag6AtghvnilAozozJzNggXnNgVbJPKC+wktDIC4SpkwKAbkcLDKtTJaLy0HeoVF1rdlqh4UMurK7WsoFuyH+EpEcNGFhu9FgO88Zpqk58GqqgWvBa4SWKDJQv3mf7jUsmrQ+iM3uyWftqAVOitO7S5aCkUPjCUtNg/Q2wvRqyNC1SOGm7X6pVAV8O4rlQ1SydD5pXSUm+rrl7reO38/8jRhU04c7YQUdiPihBR+nXfZX/D913J+/9+NnixpW6YeiRJ8ZblSKo/i0LYZXbve+k1XBL5To3Ltl3Ub1YDaVskHMNuq1lIazpjH6YypppH+CPTZsXALilNqwPAliYJrpy7uncGUFcwsYpsJW3SOilGqpM2ELTurh6o02C/obHXch9GCldELglYMSfP9bUX/5dRxDX5ApCZJgah/WWAqDWeN4XRWgkn0HPgovbLVagUL3XEJqoFqjh7kOHP2lJH2fwfsXTD093lVJyaWZKpcQnfMdicCOTzqeZGhC9VCvCFLzyyViOQc2dYOdXh8EycHv5Tle/18WlY6ZdRpLwRgBQnAdQQAMLTolYmSQxm7yMSxF3fSUqVm/nP/qH+336w7SbShzLCHfSEAk7gA6DFcm2iu/B/j49ALcxuMj9PJmouPY2Fd2nycv553Ew/t9S14nmxj35i+zioT4ON4WHPtbrpbmwCpYNq0aQbg41jN2DvFu9MN7+WTnBP+riM5ZxJ8nEac3qllCt4xCB/nwGBxbL97PQKm9n8rqvteHWsSfBw7TudYmIJzBMbk4yyLiXRaWy8+OHXGtLONbZ0+mBQf57sVl/PeGj3ZNSE+Tv6VNe7JXjO9t0zziht6vEZTI/NxnnB67o7RPVeqfJwfHw74NW7UzmueXfukadK8zSbBx8FyCFY+DgiERJ666v8CH6dC2cbizRVH+E6aHncjd1EVY/NxRltz8XFimCltqfBxxo05FPPhRbJo71zPFhNsnV/zzsehz8154JiMtObimKisS4uPU3nHa6VZa5n34jXnPWw7Ro7lnY9DjxE8YBXDiVU/w6Y6xubjrGYLY0MPypvKQ9eLdh0IU/xzv/cL6k5J1wR4dtJPJYmPYZ4w1WP7ooGPXB0PT49pd3OSXPFTpkIJ1MwbBD8B2fI+OXmcmTunoe/aWRX8P++8EM76fsydnMJGRvuzjAQhLKzwUSxEq6Sfe9KxVWqfhuDT+EBhLnsR/Ec7/yl3Fl8WmZ+wiZQpgMNk0gAQ14eTj8PcirtyDZsr7fNTfew8LohWtLl3cPPJRB+aCgbagZXx6I7wmcAKN1EOWRGDAePwFV9KHvRD8sVQ8tA1OyjD4iV3kJHNtCBK5OZ6EahnsKH+feLW1VXczLx39nFYnBEfsqbI05dWpY+8zic26af3eDqxWcx+w+WR22Z0j6xl80j6nNSEZ4Ef/RYMtVcvntasL3VN1BeSZzTMjIx1eonfIFSDUR+vd5mghikvVqstRqmQQjlGSAmMxv4OS4c1kkFqnXIQ+hHJ8sHKqCEyqfYm1Kszl3Px67ruVruIBX7lAJhlUaQ+KKruXA4hvwQhgvM4hPwS/EeXXwqdeKtL5ImnnhPObE+xeBWWR5dfGt9zxZgb8X3803LTFz1Mm9GFtJOHUYstz0T/YIQ8E5unraF6AOFGtPjg5ycjnF9uFs9/k3vuc/e9u0riLf53w4BfxdCvS1Epz2zQhTqWM0rhSWtY37G/GnyHuEEFAaPgdyzUJLt7RIxCqESx+crOt6C3gYRIk6BCJ64nm4iXrLxXOST79R+KIe0z/+V0mbkIfxJC65gwlIbTWnA6zdmwTiNDsFmwCA+o8JYx2n6P+Ybso2zJXj0fovS1PE4tU2GsO/ARlICJ9FXiq0/Px699Hzq9dYOM7KWjBXRfmYckaCQDFVoBCwFtswt+qjtzuHIvUuurmMMVl1Nrczq1SjmG1hdnAQWisctwfRY0Z5omk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+jq2Ib3rvdth5orzfsv3HCg7Zmdd6nkQq8gYebRGCOvKUod1OF6x1bR2DIuOhlMRiUJBlF+Vw8J5ULzbDQkwveAg2ysg8iVd6fagZTSFaU43b1QxvGZigbVZSXlkNlj1XdA31fCFkV80yH3fooylB0Mnds1pMLH7BKrakBnLVywyJaQXXS8p8R5g1RhileaF4n6ACX4dM/1YY7gHlVirQOKS7d70TmOns96Tqmxssz7/sy1jSTlaN2BK2p/AN6/G+c1BKzGB5WSsBeqxx2YNdYa4pKdyd/QbXmWKzH9uK+Gw29s7HaO2S3i3oeAvwwn/B8PW9ybhZzDESlqoG+8RkO0MvgnSI/SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigMlkG2D01vNx0Xqv9PV8RKnbenm6fAvc1dB/bM/z5dWF9HxcnzcUJKWuC111wfZvzQL7zEJ6Pm0bdRodu+Kg57aLjo9y1zmXK6TncyokeXrmw8qBc5++WCnZGf53IT2f1edWPnIcPTto3Y4W4+9VOd62kJ4PovIvqW2IqPxLFupFVP61IEwtF1YN2LDtu2ha7e+HPO+mrAYmS8K00Nw3ob23PGCmz2/1T384Pw+YrAiT1cw1oeH9vUIWTth3L3zMNE9gsiZM+cNDlyd8WBKyyzatb6cX76H6YgXCNHvtyoPJYTY+B2ZMix/Yq2UAMNkQJo+frvlWfv8saGq5cxcyWg44AUwVyQeuuXdxStyN0PVrqrV/IW1nCUy2hCmm2a/dXVUtAhddLfsmtvfkEcBUiTA1jreq1l94wC9L/M1i9O24KcBUmTCpWniGC1wv+x0oe85vtPedVGCyI0ztvo4d61NeHDRuebDn53FtFwJTFcL0eL3CRhrfOyR96sdzZv/2eAtMVQlT9NHH5nuHfPaZEH/r7fW+c/4BpmoCVhkoe8J0pXeTbxVe/eaZvXpl1IJ1D7YBU3XC9Orp0SNBVmOCFg70XmrbYh4UUnQgTCN3zogJtunqt+VwnLSnh9QCmGoQpu0O5R42vJUQsjDraq3RFxceAqaahMl69F/dhiy6FrTFudHeVr5TVcDkSJjsHzxufGbOi7B5aqvKEZ6VZgNTLcI0uZdF8MSkn8XzU4e+ihv9yQyYahOmepGup/Y+Ge69vO/73fMc2kOTE2H6RTTz15Euf4ZsHyGsVCnHYREw1SFM/o01v90dXtP7tyGXWmVVSXoMTEKyE+05ePRKxsiQrHZ53rEeDmcYQlV1BSxCVTGvlPva1Dwbtkw2reHGyfVPIcKGvkJV69lCVLXoPZsXHzslXroxf8SZWiPTqVNX8fB4hVKKOH3BlgA3Iu4QkudlsTJ16liQEIMgRFQA1PG4BT1AIV+NOasmDLrqhsMSVhVOwPiK2DkMB+nxqQr6FdAsOI2Kvwi6WH2Fu1Ovtw73XTq29Yfmp+5RpehLdhiV5w1CuLJ3EwIkRc07TzYWC65U0CsnbhMhA00D4z1JZbDEkVItx46fgPeTK7CpE9lOhBIVPHGtjJVHIVHs9/jlxkkhwoAlDX5/3Tky/iGVPq79HCZ9vMDEe2kaF6zFcMB1sIJJZHLMo456ZnKuREeTFrhLEyPRCGMlQ2RCkIBoS1iz88ytruw4PN/3vCgt5tXm1629qtOYhsRjEUxD0sK39yq5Eo3dB+W9NDessTPY5noCV5c8FEUS/mR0IJFgLQ2tOXj/i6U+83+3vH/y521UHcxiHcHiAaxTnGCBpk6MPxvYxp//lBuKpdxAz9ANptzQ0oZLucHOpjSUGxwsLi4/fiw2dPnSLXXfLMttxeNgSY9APCg3uNtwHXRvZGMQ5YZl5pfXTTxpL8rJanSnajPLtkZXbqjFiQpoNybKMjWccsOFoAoBbb/EBa6rsitl1cTpvU1GucGC03XfTTWd4Vm5wWrUml6nLeaHpX8/+vn3227UGnGGV27Aogzr0XsQZQym3NDWcV7K829fxAvnS8z/zRz7wwSUG2pxgmNnY0DlhiW/VMwfvbyJ3+8OGfvqR6x/ZiLKDRacCH3X5m0b2fK2U0skwd86VPcbl+Fk/qR+8gFqNhoMcjRhpE+w7gsH3tpiuLCaAJkJgxliNPgV5F1JQoCtSoNrFIBgS7RXmHsRqdsonRIn+vol+r2ZWTRp0aMsbqOqRFlcRqrkCTxQvqp+ywrYCxTCAE2K/23b37dlY/y2L6mR02lwzCvabhK8G3FAAbtcZKZEi3881LxtUJVgXzEaobCpWFCzql68YwcMILJduEjlKtB8gR092B6J3JPZ6NQvwSsTek/JTH74ndotfcibmd2ywFQUYI9O3GlQN35O6LSHwqd7uu5owgNglTgBAy3KKEkUPmbAv2klYPthymFZcPjSGvMlR1Sd8OztxUoT/UL2V+v+MmPl1t52mJAJcIZ4eLxKpqU9Y0mtl3ekyy+NS5YA01w7UJXU4Nvsd/7bnk6tcVtlH8yDa79W4XLt6yqmkx/P/lmvVKtCcKF4jpYsW2lhN9VznueOiUtH/rns/R76hh/iUBV+lfe1OzciJmWjSCXZblgXIwbGLLaB0Tuv+s1h7bZ5ZvXu5zC9x34q0aEqJL9q4NInPMksg9x6mR4V45uLlLEAcpyCiz1GWvAYbHJYUCgekkp1GhHp23ZFvzDDHci/0jUbAY1/akUA+iNvRAH5AaDxJ1csKT/FK7gQKHC5AZZBgtmGMk7oQhY/B+jhAkjwf3hMU8PVaGWijEW9ZOAG98NVJuzxzp54aGHY8TrUssTle2CkA2aMIa4XFWNGBf95IvWcp/+0YZuCWgpu7SlhjJkNYJ4MYTbzRpRMT2uMwVzSJeGGhdyvXd2KUsapZVEJWPPAOFFILPf8tfIP7zGfPGd4Xnx6eeP4mtQTGQXPZU5/KUbeqZTNCNj6oGC77orBRoSETWwh4UzF+m9atFWGTHr9Isjtyhgx5bvZRMgwDqMwNEGhQMQCtoTZlbwPEmGxNiuPGyZRyKV4I0+Ua2KESjBNUekeCei79BzvyfAC1azrsT1nsaArRNcatfmWDtDtWOK+bx+A8fDgqqtMjRGxMcSQADQc827KWfFA39//nWIxJaY/jYyFPYiZPuOXi+rOdFZCSY+iAeTCIHIrUSkDVvm1Imv6rCNyjlrkVJSmBpsWupCL84gFoT5DA9Y8rTn5s3JJf+oxd6KBoLd0qFa+ezFEqyMnWi0qGoXFbtEtKV5WGIf6hTg7bkEgpZUp3ODfqN38/PvDJHeQTEWjxMGfkgZue2yAhI4FjwCT6iTc1Ugv0wemknSSEvp1gBvRC16iaHPhzbFeoNdCmEMohi3MFXD+LtH0pUgoBuVPcOp36ZLn+uYtN4d/TT9P25iA3wqxMYFdLg0oOnJC0UI7UG1mG6hMpuYfPVryU/64FEr+2VXkKvlnpYU82+Qhp3Pj+IH8q/zKY6tGXX3WPVQu9BeOyuUB8tG2XJAPsyUh38IbK9OWhNwArEwEiZJkZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKVueB4Vm1nxSffne0UWebZ2ZsZlDfYeNG7KzT6JQ+Ut61s/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHEa3B+4jjwxAmbkg/Xb5nfEd9swJQ0ldA3AA/zCzgsav+jql5nmqaLMn/46+bL52skl2Wsr3WXsiwCrKTbEsPuSIU4IptVJzA1/LqyqaSkRhbFCb2XctXWfEvDVc3x7x6xrDy4s4JEWMbZ76LuTGcN9M5VT/ad4Jx3mAaXBnCj1tmEuPnDlac3CyX6FdTYMM7LLwakeyT1j3yoJPHXzry5tHoTtHfPP+nsZ1f4x4n6uezOiESE35ODh6dF67uc20e4eQoiiCul9whGIEpuQ4GQ1DG/Q2mlPcOoUdYZqfLrSBHYtIUgaTpAG67mv29BHjn9z7VJVQZPBNhbZA1TbZ6lW/2z+03dmapOjbarvaU/dRSSfy9xF1FpKA50BnOj0sCETo21sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMf0LYznojFqAEALYj+g11um3Tzmh73npD6l++Oy5teHDpo98A6mInth/LMqxTjEVFcXqIKykTHMTpaxCscFQbSwep+Tn9xrqKGFgy0NPYoRo99Oq4G1a3/NbbHe6a1svJgxqJxOBeNFCFTAZOCSBMRzhh2qPnYFf0Fhp9r9loW2gw0mBtBG6hCRm5oxsGDRGHtrPFIZHz2eYdxt8OTvdd8UrToUZt+jp0rCReiK/TINbL2VJzZ/w+crcHO5ciEcbJEuElmUoeRQyQOoUl+uEujjdErZQXMuuIq6ezWPDR7gRUnEbk5CkA9et2egWqitg2FL64C14H+S2vPet/vcHh4QFZA9of+3IhfxQ1RcIewEyR8MtF9Tn6ObcS9jnITH4P4dmI6nNQDfOZnV5sEhv8fbhE0rM2pO49Mr2WaJNj5tnvccFUlSPi6zJ3/4jrReEzZNtn+cVLtr6pNy4k5NuYC3nAJ58TH9B8jMEwsMCIG8NwIDoJ6D/6VVGz6SZRDZJpuJz2cXKr/a3++dUvZYD9nciqN1tSnYbfz3QacZ33NVvglfOcXjlqUl55eZD0il7Dly0W8OJlUiL4opXw/Q9V8H3jFLZgyMaDIzKHlqc6JgS7n+kY4jrfjvF0I8IJXGZkzFdTmosF/9jpNyFz1GKATSwU8qLwGFb2+tlxc2/5bPx50aHqnzv2pEkK4Q9ASAoRhtJA5DonIqfsyHF9B9u4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51XIWjndNGvS+zTeLX9eCJZtgRPFEG+8UTzOrSmOO6njvgtYhUAxdPwgR+4REm/E2QX/yniTWmBC74HjS2/NOVPmU71qI2PrbERmsw8OAP6XOrIYbuKI6GsAmGoV4Rq1Mo0aLwkiaUg1qQD6TG1wdgGQX4/4KcUpgcOgqJKH08N2pFFTivxQBzQAEGdazTtJ15p8lvXNFbE09qk/RtDh52rhLtuHaulFrMd7FhHrrL9/wpwVFRSq8aHeVPAitTFbdDKEKozEDKhrRjCMgHwPCkAXcqaHKqOsVJujIF12sxhcCpdl0XbuBBakiZnYFauIF7FJlVEHqT5HiC0JuEn0TXm6TrRdL1JoutJ0m/EaEnyRabavvKVSDm6CN/6+WWl791hNRvbJ37sz9s//SYKn/rxewdXkWK24U3Cbo++OFZrxy/lId1L7VpXtI1E9A79kN3uqPYC5Cgs63KCYSQIxtIxREJdu2rHLPMwzkg/UDq6hkL644shkgwHaUGmX3Va++dFs+Xtj3UcOBIKx5QyuREaXkVhgQgJ9sFr7UAEyMdAKKz3qljGP4o5hhGXC+NBW+sxXxELTS5uGJIEfF09/9YPKXL+RgonnbjjKdd/ounpH8y341Pr3rtZuj+fSf61khUneQhntJlmniIFBGckcK/1ONp7ajD7Resu+27Rv7038BfN7XhIZ7SFwl4QKkLJ0qtSzOe0sdQo8fTCM542kUbT/eY/JyA3p34IbO1KVPjVaoo3mfnO8+Y7LzUCB6mBFWqcE0JrLWQ5/BGZqtIQm4AMhtCA48M9QgNPJLMhtDAI8lsCA08ksyG0MAjyWwIDTySzEbP0BiMNRgVkU2Mrp7HA2NtL29Otjagk4unI4kQVSSdTN/zZ/jEjM0ndNlCHnyyj80ni3ff+XXy/Y8BObt35GwZcpeaDZcLl8TJFMzaKGyBzcVLGA/vKFShSxin1MhwcSEoz82lYUvXXUS8ii7RzjoySqVUKCLgiAUvFhz5fPkzLRJW7H4hUNr8dVjWlzr118xsV5ktElp0V8tUUACc/NiGPsqEgQrI1YJVdKDwj1SuIb47yDDgLkd+SgbNJWSZI8aidCOxIKUyCKAdRIKUySKrEIlqkDwuWBZNGQCt8csRsN5p4euW+PVuyvjCV6lReJZ/I/GbMZVP2GIghqvguUGNHH8rc/KtUB1KJUkMiJNC2S0S3jKW8CLceil0CcvVFURJJnxCAKuoyiUKEdSCKjQQaVQySaz2d0yYWHsP0VT3m/ywTFcB5Wmpjt7+eRiX11fmGpdXVibH5QMmjzldXtV0l0fTOYn9aVpi/0HehkkbgeGGSYRuLjlMInRzyWESoZtLDpMI3VwyF9qyz7nxiXULArZfcLJWf1c1K5QLXT5y/XDDWS+CUxPDr8YeVBxiDK4w6iMbEl2Ml4fBNZfNkyZarp0uOmywcu2rq3KVa49nSsnwXK7d1mHnb8fkz0JWXf5jXKuMw6ZQrn1lVa7it2nG0UKh1pxeunSpAcq1T5s3xDIwJTZ4sXvElUl/nEo0iXLtMzm9M8EUvGOQcu2fFY0i7RquFG9X1b7XuUY4dSfdWOXaR3A6J94UnCMwZrn2udbZ8ZrNEv/FL/9yTv5wnCpLbOxy7dGczutjJA0okyzXfsS+e0pvj7nBaUGTdrgeTMgwcrn2CE7P+Rvdc/CmUivXnlzTvF5KvbiQub42Z5PsplELmxurXDuWQ7CWa4/Xij0dYstT/5fKtdPLYhi5XPvTqlzl2v9gprSlUq5dMP7PjutO3/Db1W/hX7UUUzfzXq6dLm7GQwnyx1W5SpDf1k82UY9y7R+XJ2ert1cN2zwmf0qtv/pX4L1cOz1G8IDVH5xYnTFszDV2ufbDbGHsPxH+Yonw06sJGUyEX1SNS4S/frXSEOHvOa225vnE1r4b1w2+fPic5z0eT5vzHCOhZrlXNS7N8nbVDCLCn3XpUezZi7V85wcdst03Vr3D6CL8rpyogHZjMnMH/Q7+8CfCX35S1Hb7sDz/7HOrR0YNcuhjMiL8NThdZ2sc1xlchP/qwy45Qe9CAhcMvZjxaFDaTiOL8GNRhlVFHUQZg4nwP5SmrLzS2NdrSs/4cLOG1WeZgAi/Kyc49asZUIR/5xOLzrm53fy3Hdp9vFX9P1+YgJwFRKgGJ0KgTxN52xG2vE3s1aTpj855XutuOWVeXvaCWhjHGjvEF69UgBGdmbNZsODcpmCLRF5wP6GFARBXKRMGxYAcDla5VkbrpeVAr7DI+rZM1YNCRl25fQ3Fgo0QX4kILrrQ8L0I8B3HTJP0PFhVteC1wFUCC/TUaYzUe+OOtX5ZFl3G36mylFrTtli1u2gpFD0wlrTYPEBvPUSvjghVjxhu1uqXQlXAu69UNkglQ+eXG+/MyP5+dr7fhhoBzf/ulEHVUizvg92IOCGFX+dd9hd8/wWc33+G0ZMlbcvUI1GCryxXSuVRHNo2TT7Osc+SVfLJbBIe33H9WlpbJR/AbKtaS2k4YxynM4abRvoj0GfHwi0oTqkBw5ckCq6durh3BlNWMLOIbSZs0TkqRqmSNhO27KweqtJgv6Cz1Qed7Hd3Gd/TK+P1ns2dYytTl/Qs4QdEapIUiPqXBabScFYcp7OkJtFz4KP0ylarFSx0xyWoBqo5etDxOW5n+nU76j9+c9WtvSzNnpRkqlxCd8x2JwI5POp5kaEL1UK8YameWSoRyTmyrYTHs7x2vXbxz/Q5s1yQ+3mCUae9EIDZJADXEQDA0KJXJkoOZewiEx3Kfd/4d8om35zurZ3al+s11qiHfSEACVwA9BikTTSP/o/xceiFuQ3Gx2lqz8XH+cDMLHnm4/i2DZvyzKJr0IbesoEXV5//wwT4OI3tuXY369ibAKlg3LhxBuDjjOow5sf8OauDlu/xvpIuzn9iEnycapzesTYF7xiEj7PEYf4zRd4y7x1b+33zTDhRxST4OGU4nfPBOPmSCfFxok533nU0uJFnlveDCrWyyj4xKT7Ov9W4nHfP6MmuCfFxnHJW93qW19Mv5cyXWjt8zjUwMh/nT07PXTC650qVj1Otw8EdK5TjAyY/XbOobdmpk02Cj4PlEKx8nA/aPPXY/wU+jn9jzW93h9f0/m3IpVZZVZIeG5mPE2vPxcfpaW8YPk7lO+Nk6munvFa9HO4ya5/rMt75OPS5OQ8ckyH2XBwTiX1p8XHOpS7u6e62JWTTi3YPzl2/eo53Pg49RvCAVU9OrEIMm4cam49znC2MDT0obyoPXS/adSBM8c/93tT9KuuuCfDspJ9KEh/DPGGqx/ZFAx+5Oh6eHtPu5iS54qdMhRKomTcIfgJaKmfPwaNXMkaGZLXL8471cDjD+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg07SEwlz2IviPdv4zxlm8s4XdCZtImQI4TCYNAHF9OPk4zK24K0+wudI+P9XHzuOCaEWbewc3n0z0oalgoB1YGY/uCJ8JrHAT5ZAVMRgwDl/xpeRBPyRfDCUPXbODMixecgcZ2SiyRG6uF4H6STbUv0/curqKm5n3zj4OizPiQ9YUefrSqvSR1/nEJv30Hk8nNovZb7g8ct6W7pFTbB5Jn5Oa8Czwo9+CofbqxdOa9aWuifpC8oyGmZGxTi/xG4RqMOrj9S4T1DDlxWq1xSgVUijHCCmB0djfYemwRjJIrVMOQj8iWT5YGTVEJtXehHp15nIufl3X3WoXsaBtJQBmWRSpD4qq21dCyC9BiOA8DiG/BP/R5ZdCJ97qEnniqeeEM9tTLF6F5dHll8b3XDHmRnwf/7Tc9EUP02Z0Ie3kYdRiyzPRPxghz8TmaWuoHkC4EV0goLXT1hVl8v1+88gYvHby8TYl8Rb/u2HAr62hX5eiUp7ZoAs1qWSUwpPWsL5jfzX4DnGDCgJGwe9YqEl294gYhVCJYvOVnW9BbwMJkSZBhU5czX8X/nj762nR8uibhxKc7NI5XWYuwp+E0DomDKXhNCGn0+wN6zQyBJsFi/CACm8Zo+33mG/IPsqW7NXzIUpfy+PUMhXGugMfQQmYSF/dGD7izDx5tnhbhU3fR/3T14XuK/OQBI1koEIrYCGgbXbBT3VnDlfuRWp9FXO44nJqBU6nlq3E0PriLKBANHYZrs+CBI8uk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+mm2Ib3rvdth5orzfsv3HCg7ZmfdSVSubGSMPFojhHVlqcM6HK/Yalo7hkVHw6mIRKEgyq/KYeE8KN7thgSYXnCQ7RUQ+ZKudHvQMmrCNKebN6oYXjOx4HOJS1TbYNV3Qd9UwxdGftGhv797/Gfsz+LZ/1TtOihrK1U5xYzlKxaZEtKLrpeUeA+wcoBYpXmhuB9ggl/RVj/WGO5BJdYqkLh0HFDtJ7uFcaEbY8o/bWF99jxjSTlaN2BK2p/ANzfj/OafDVtgmmU5GWuBeuyxWUOdIS7pqQPrq9ZUTLLynVzu9r/PFD2oa1CYSpGh4H9ZkQv+h8aBn8EQK2mhbrxHQLYz+CZIj9Ar7hYzUpR0Nd+VCAW5nogBZoAr1iGIAeYM2wCjt56Pi9Z7pa/ns/+lyqzDyIv+2/OnhY1Y0EBYSM/HrqeFV9djWwNWVFpoP2Gt4l4hPZ8jiZtunO5wISBdfv1pWlRAi0J6PkfuDZ7Td4kqaM/id5b1RrS6VUjP5/3dtat3qYZ6zg+0ia42wO54IT0fROVfUtsQUfmXLNSLqPxrQZgmWbYP3DO6dmj62APJ9zo9tgYmS8L0fM+fyfE+fwRumx6829WlzThgsiJM1+cuyNj1MsJz8eqVC/uMbPszMFkTJosGd3seudo7aOfIuZqE5N0iYKpAmDqOrdBMuu8Xn5QLZ2SNN9/fC0w2hOlRmfC1XyMeBW5veHXh0K1VvYCpIonGz5bdB4cN81z8vU+PiL+2/gZMtoTJ9WgP+w+TrnivuHW1x5w9Ej9gqkSYyow0DykrFPgsy2+Q/3D2sZXAVJkwlW3vF330H3fP/X/UtJkwotkkYLIjTDtHVuiQef6O1/ajYSuXPWg1AJiqEKaxbqH7I375GpCVcuttt0p75wJTVcKUGFhLXmbn8aCDV3s8sv34VwVgqiZglYGyJ0zbN//ZTKACD3y0y3Hak+hrwFSdMA0e8bRs0uv8gFl31n8coXq6G5gcCNO4hBq/Ln4ywX9TmShNxqckd2CqQZhmjz9Soeu7vLBllxb/NMu56ShgqkmYfHacE5i96Bg22f214+G83AbA5EiYfFOfXZ/yZVPgWE8fdfvcpdDLtQiTx9UF+bUffg3ZKV6eFPhTeagrVZswVW+w8Z6ojNp3p6+qyl672lHA5ESYnJ33vl6y+R/Rby8ez/9lSkU5MNUhTJ1TLisTfRt5bh/1dOzNXguhQKiQMNUbt6PPpx8OYQd/vfVhqmvgYoZQVV0Bi1BVh0crh7Vau9Zzz8wN15bvfZ/Og1DVWbYQVS16z+bFx06Jl27MH3Gm1kjqZ5mLh8crlFLE6Qu2BLgRcYeQPC+LlalTx4KEGAQhogKgjsct6AEK+WrMWTVh0FU33FksOF39BIyviJ3DcJAeb6+uXwHNgtOo+Iug6+9Vjgo906FL0LqTT6/N95syg8fDqDxvEMKVvZMQIClq3nmysVhwoLpeOXGbCBloGhjvSSqDJY6Uajl2/AS8n1yBTZ3IdiKUqOCJa2WsPAqJ4unHcTU6WC4MnBNwYuPC0RXnU+nj2s9h0scLTLyXpnHBWgwHXOurm0QmxzzqqGcm50p0NGmBuzQxEo0wVjJEJgQJiLaENTvPXNBo0tXJnYd6r734245Lj7r3pjENiccimIakhW/vVXIlGrsPyntpblhjZ7DN9QSuLnkoiiT8yehAIsFanBhUp22lg0FTLfZaB/r3pc4Ui3UEiwewtnOCBZo6Mf6cYxt//lNuKJZyAz1DN5hyQ20HLuWGb/qNlToqN2hetJk39cF1z3W3Bl345dms6TwOlvQIxINyg6MD10H3yg4GUW6oF2G3O7PxatGS23+1N7vffrnRlRvMOVH5ZpwxUQeWqeGUG9zO3b94Lf2MeIGy8eqyR1ZtMhnlhjfVuVz32FTTGZ6VG8Ysi7vzdvEAvzWrO/ed8fjaWSMrN2BRhvXoPYgyBlNumNPs1k/W7sdDMltUvug5pyGVFG0c5QZzTnC+VTegcsOP7jk/en/b7jPff/lgy2X/UCUcjafcgPVpVoQea/O282x526klkuBvHar7jctwMn9SP/kANRsNBjmaMNInWPeFA29tMVxYTYDMhMEMMRr8CvKuJCHAVqXBNQpAsCXaK8y9iNRtlE6JE339Ev3ezCyatOhRFrdyHaIsLiNV8gQeeOWk37IC9gKFMEAfUHgeP9dnoJvncqeAGp2vBF2h7SbBuxEHFLDLRWVK9PjHQ81b2zoE+4rRCIVNxYJydfTiHTtgAJHtwkUqV4HmC+zowVbdYv7Ek5deh06fO1r575jGnand0oe8mdktC0xFARag8H/cP79N0CzFqcCeY85U4wGwL05cgIEWZZQkCh8z4N+0ErD9MOWwLDh8aY35kmvMObbofnqX957ZbRs+/SfBtrIdJmQCnCEeHq+SaWnPWFLr5R3p8kvjkiXANNcee/0j36dfV98DzjfnfBrT1oMH1/7D6dqbRnItKj+e/bNeqVaF4ELxHOnMTjPWr+0w8+fALM2TrNEDhZ70DT/EoSr8Ku9rd25ETMpGkUqy3bAuRgyMF9gGRu+86jeHtdvmmdW7n8P0HvupZZWqQvKrBi59wpPMMsitl+lRMb65SBkLIMcpuNhjpAWPwSaHBYXiIalUtxGRtm1X9Asz3IH8K12zEdD4NTUA6I+8EQXkB4DGH12jpPwUr+BCoMDlBlgGCWYbyjihC1n8HKCHCyDB/+ExTQ1Xo5WJMhb1krW9lRXrCTNCtq5t9YdEPJ56iL18D4x0wIwxxPWiYoz3ovPxG49YeW512DZryC9L65QwxswGMKsgzGbeiJLpaY0xmEu6JNywkPu1q1tRyji1LCoBax4YJwpN01v74Oacz37BS8b2mPfs/qQl1BMZBc9lTn8pRt6plM0I2PqgYLvuisFGhISLbCHhTMX6b1q0VYZMev0iyO3KGDHlu9lEyDAOozA0QaFAxAK2hNmVvA8SYbE2K48bJlHIpXgjT5RrYoRKME1R6R4J6Lv0HO/J8ALVrOuxPWexoBNE1xq1+ZYO0G1U4r5vH4Dx8OCqq0yNEbExxJAAXFh/Zs7z/HI+27p07r/73Mld1PQZexAzfcYvF9Wd6ayEkh5FA8h5QORWolIGWPnVvQZr+qwjco5a5FSUpgabFhK+1xsbT1nwaVLI+lt7ag9bL7GhHnMnGgh6S4dq5bsXQ7QacaJVq4ZRWOwW3ZLiZYVxqF+Is+MWBFJamcIN/o3azc+/P0xyB8lUNEoc/Clp4LbHBkjoWPAIMKlOwl2N9DJ9YCpJJymhXwe4Eb3gJYo2F94c6wV6LYQ5hGLYwlwB5+8STV+KhMJRPqzmtfRnPjnzb92bG7mlHW1jAn4rxMYEdrk0oGjECUUt7UB1iW2gMpmaf/RoyU/541Io+ffNgavk3zsHEvLLJg85nRvHD+RWg97nNdwcF7RwR6i4ztvsVzxALq/JBbmkJgn5Fd5YmbYk5AZgZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKViSBRkqzMod5BI/vX6xo4e/ewC8le+acZlDfYeJGtj06/5IHylsfm/3pBR11vbrHyXWsmHXj1cSWq/6vgi/0ihVIN00VsA4eZlJdn6W31fOWw3HEMrA+MPwCbUsJ5JkFD0G17n045LfIVGeCg/kjXrBxMFRNgXLuOPDECZuTdHfRau3bEd9swJQ0ldA3AA/zCzgu6fGtSskWnCj6T41/td13hNrEke22lu4x9EWCldiCG3ZcMcUIwrZYyN/y5sKqmpUQUxgqJ0sKfbj8I2hnp9fuX0c+3mX+pxyMtYmz30HcnM4b7Ziqn+k/xTjrMA0rdOVHydWAuPnDlac3CyX6FdTYMM7LLwakeyT1j3yqJ6bDljMuv30PHrk3/o07faYONuJ/r3oxoRMgNOXh4Wq7nfm4T7e4hhCiqkN4nHIEosQkJzjDP27fqBDwVZwZE/xp8oXqACexaQpD6c4LU3UG/fd2GPnL8m2uXqgqaDLaxyB6goq7/SDhxr4HPxNYeG5ocs5hK3UUkn8vcRdRaSgOdIE50vLS56B9sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMRyFsZ70RC1ACANsm/YY63bZpa2T7nsoTpgcvGHYnufnqMdTNKWtsP5ZlWKcYi4ri9BBXUiY4iNOHIVjhqDaWDlLz3fqNdRUxsGSgp7FD9dJxmvTlinr+m1JqXHrWa9Y2aiQSg3vRQBUyGTglgDBt4oRptZ6DXdFbaPS9ZqNtocFIg7URuIUmZOSObhg0RBy6yhaHRM5nm3cYfzs43XfFK02HGrXp69Cxknghvk6DWC9nS82d8fvI3R7sXIpEGCdLhJdkKnkUMUDqFJboh7s43hC1Ul7IrCOuns5iwb3aJ6DiNCInTwGoH6mtV6CqiG1D4Yu74HWQ33LN9BmzW43c679D/NOe20kRrakpEvYAZoqEXy6qz9HPuZWwz0Fm8l0Iz0ZUn4NqmNdq68UmscHfh0sk/XCZB7077OnmueKL+RbrH6Ig6u4ffj9z94+4XhQ+luu6XXph7R+8s0n9s5LAdfY84HOOEx/QfIzBMLDAiBvDcCA6Ceg/+lVRs+kmUQ2Sabicdv/zywFlTmwLntE2slPm8ZttqU7D72c6jbjO+5ot8MoeTq9sNimvvDxIekWv4csWC3jxMikRfJGOGTe9XcTwo7dDsu+5Palr1YK6KFM+BLuf6RjiOt+O8XQjwglcZmTMV1OaiwWXa+s3IXPUYoBNLBTyovC4U6bsq10f9vgd9CrTrGFUMnU51lyEPwAhKUQYSgORI5yIbK9NjuvX2Mb17LlBb3t39AiY9PabxuLIjTdUH+OfqDsZppN2hkEdwP9fe98B1kTy/h+VUxSxiygqwQpKs2DBlpCEXhQsZzk1QoBoIJgEEcuJYlfsKGLF3nvvZ2/n2XsD29n1PO/UO/U/syWwu7NLQpYk9/t/eR6fR3bYZPfzzrzvOzOf+bzClHhldDxIK+HZQrlWC9Ug9awYIvwbNvmgn9NGPS+zT+LXjeCJzqxD8EQZ7BcRmNWlM+O6kTvgtYlUAxdPwgR+4REm/EnQ9V+qTg3o0Px8yHZ5nwnuh07LqZ2PLbHRN5g5+EP63HSIoTeKoyFsgmFolMdqH070KLykCeWgFuQDafH1AVhGAf4/P6cUDg8fiUSUHs8tWlEFzmsxwBxRgEEd63T9YL5p9RtX9N7Ek9okfZuDh52rAXW4dq566TG/xYZ5+G7/C2cExyVpvWq2U74IrkxV3A6jCKEyHSkb0k5hIB8A4UkH7lTR5FQN8pN0ZQqux2IKgVPbDV24gQepIWV2KmrhBu5RzKmL0Jsk4wlCbxJ+E11vkq4XSdebLLKeJP1GhJ4km2+q46/UAJ9jjPytPHCt95kBqsB9tZoEhMnbZVDlb8XM0SEuVNxu4G93Pv5Ywls0s8TceW0H925h6poJGB1roDm9UewFSNBZXPcUQsiRDaSiiASf7bNjQ6XL+2RZN1K7Jg15FlkEkWA6SlHpK7edea4IXytI/BIbOK8BDyjN4URpcl2GBCAn2wWvtQATIwMAorPeqTEM/yhmDCOuF8eCN9ZjPqEWmlw9MKQIf3r7P+ZP6XI+ZvKnnTj9qdv//Clpn1bpR/eV+DlEunXfsb+7v+gu58Gf0mWaePAUHTg9RYti96dXf57a5lj/xJDdNVq2PfzoXhQP/pS+SMADSm6cKDkXpz+lx1CL+9MOnP7UTe9P71j9nIA+nPghs/mUqPk+Q5Ik3fVRFL/lakYkD1OCb5xTgr/0U4K7vJHZKpCQm4HMhtDA05PZmBp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxto93oxsZ0YjF01HEiGqSBqZvufPsIkNm03osoU82OQ+m02y9zzsOeHxp6B9e3bu2zool3rO74fO8kSFilkbhc2xuYqFSfCOAhW6hIlqnQIXF4Ly3FwatnTdRcSjGOLt7KKiNWqVKhJGLHgx/8jnu040T7h8WFju+LeHwvZ2XyBLldoPZfOEtt20Cg0UACe/tqFUnTxABblasIoOFP6JUeqIdwcZBtzlyEtbRTMJWeaIsSjdSCZQ1gYOtK1EkDZBUi5MrolTJoYqYikB0A6/HAnrnRa8Xha/3lWdVPAq1QsvDmskWxtf+1RFDMTOGnhuUKfEn6oM+VSoAaWRpwQlxkDZLRLeEmXhRbj1UuASlquriJJM+IQAVlFVylUSqAVVIBDpNAp5gv53TJhYfw/RVR9YfVimq4DytFRH7/88xOXM2lxxOaM2GZcfWj3mdHlV610encJJ7E/XE/tzeQuT9gLzhUmEbi4ZJhG6uWSYROjmkmESoZtL5kK/Zn0dvfzMT6LxCa//+HeZ/6gCuVDnp+8rLcko55++afzJ3l0eJzOCK/T6yI5EF+PlIbjmsVnSSsu100WHzVaufbozV7n23s7FXa79nG532Joy0bIVwff2B835hTqfsky59gxnruK36c5WUHN6zpw5ZijXPvB0ZpO+v1YJ2Lph9Za0H//Osopy7amc1lFbg3XMUq797JvfSs6r4yTK+PZLsvxgTaq2iaXKtSs4jdPbGowjsGS59iZrXs+J3isNPtxljm3N0IPXrapcexdO4wVYxnjWWa69077fv+cELg5aUlbVsNSCtz9YuFx7B07LtbC45eBNxVaufXEF3yDh4RVBa55uH1PmTcd/rKJcO5ZDsJZrB46QyFMfseWp/6Vy7fSyGBYu137dmatc+xFmSlss5dodorbZKN3dAtb/nbvo4ve+w3gv104XN+OhBPlVZ64S5GeNk000oly7LvT4uLUp+yTbo5d3k49aV930IUzDiu4jeMDqCCdWu8zrcy1drv0xmxv7nwh/kUT46dWEzCbC7ynkEuGvICwOEf6d++5Ne/BlhDTnxgH/PudbleHxtDnPPhJqlrsLuTTL6wnNIsLfYnJYx0M7q0Ws8pk7YsSEClKLi/A7cqIC+o3VzB2MO/jDnwj/XM3TKmV2tgmY2r9Osq5mdaoYpiVF+G04TffFMpMHs4vwV+6oq1n2gE6yut/0DzO+PzplYRF+zMuwqqgDL2M2Ef57yxYNsq2+OOjgma4r25953cMKRPgdOcGpIDSjCP+sD83np5brELawWUhD59F/jbYCOQuIkA0nQl/0088nbHmbTNyk6fcOV8Vr7tdde3nxWyqDzA47xJekVoGIzszZbFlw9snfIlHm309oYQDENerkuHiQw8Eq1+pYo7Qc6BUWWZ+WqXpQoNFQbl9DmWAexFcugYsuNHwvAnwTmGmSkQerquU/FrhKYIGWm3f3bbXmVE7oRPm5RgsWLVhteu0uWgpFd4ymFpsH6GVC9JwlqHrEcLPWuBSqPD58YxRxGgU6v7w4s/49+wPPxbPm1hZPdT+8mHZCCrsRcUIKv8677C94/9Gc759i8WRJ3zONSJTgIyvVMcpoDm2bXhu+fI9vFSHO3Hzm0eGPoRWpfZX8AGZf1bcUhzESOI0RbRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbSDNTrsF3S2WuZIQoy7/LN0Q7/Fu6r45FK35MvCL4jSpaoQ9S/zm4rDWD05jRVhFSMHfpRR2Wr1/IXuxGTNAC3HCPotq/JhB3X1wJXOA8dc3p9215SpsonmmOFNOHJ41PMiQxeqmWz9BCOzVMKTc2RbF0SKT5ouW0P21/QJe/Bszx6LTnshAMNJAG4iAICuxahMlAxl7CITlR+dDLXP7h4yp261nZXkj79Y9LAvBKA/FwDdI4Vkovn0P8bHoRfmNhsfx8GFi4+Tx8wseebj/PBO7NpLmBWU2eSXDfceOP1kBXycai5cu5vlXKyAVDBs2DAz8HEeLh4Z9zUlQTRvVau+1Za9eWoVfBwBp3X+skxItgAfZ/RxF0l8i/r++6tM+rWW98sAq+DjvBJyGSfPGowjsCQfJz1QO7/PwjOhCw43mvNg6JlNVsXHuclpvAsWT3atiI9jP29kXc+jN4KnlHo80Tdh8WsL83GOc1pun8UtV6x8nG07xHUXLfKK2LG918PMa8GJVsHHwXIIVj5Onj5PffZ/gY/TIe2yOsW/kWjHyJej7/Wad8rCfJwfXbj4OH4u5uHjtHNL/VAi8UZYWky3lv90WLGKdz4OfW7OA8ekuwsXxyTUpbj4OKd7v7syzv20NCvU47FdvWsJvPNx6D6CB6z8OLFqY95ZgqX5OL+zubHBh5VNleHrJLsPRaiePe79lrpT0iUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAbkD2v3pidfT5/d4w43PP+35M8grNZn4+5k1OwkdH/ykYBFxZR8CgWolfSzz0Z2Cv1n4bg0zjBU/gOEviPdv4zobFMVavOKfsohQoYTBETBPz6UPLjMLPipnzOZkqHvAxpFd/fJDk+jw5vPp1C5YCU8EMbsDLu3RE2E5TDmyiHrIhgwDh8xZeSB/2QfBGUPAzNDkqwWMkbZGTxZIncI2IC9RdsqH8bt21FVU8bv119HLNXJYWtLPT0ZbniR97gE5v003s8ndgs4rjhssjeWnSLvGSzyNKZGcmvgj8FzB3soM2e7E5dsSrtD8kzOmZGxjq9xG8QakHUx+tdJmthyovVaotXq2KgHCOkBMZif4elwzp5nNagHIR+RLJ0qDp6kCJGfxPq0ZnLufh1Q3erXWUCFycAZkkUqQ+KqpdwQsgvQYjgPA4hvwT/0eWXwsfd7xh16qVo7LkdabbvI67S5ZfSe+SMup3UJzDryNL5T7OmdiTbycOoRZZnon8xQp6JzdJ2UD2AMCO6Ck6O84ySKTclm1zjP+69H93QFGvxvxsG7OoM7boQlfLMAEOoupNFCk/awfqO/bTgHRLj8h1G/u+Yqxnu7Rs5EqESxWarKv75ow0kRLpkDTpx3exeLm7BrXV++0fevlQ9obKQ02RlJPgnIbSOiYbiMJodp9FKmNdopAu2CZXgDhXeMko/7jHbkGOULdmrJyVKXysTtQoNxroDX0FxmEhbdX/0qXTptekhY7dsH7wiZ+A5uq3KhCXr5ANUegELAW2zC36rNzNceReu9VW0cMVl1L9rcRn1dS2G1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0L6K7aQ3uXRg4gyqgsBS/YeKjlqlwtVprBcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3siAaYXHGR7BES+ZCjdHvSMH2C/6eqHKobnLhM8MblEtT1WfReMTS18YDS/89SwF8syT4myh//mEOUZTi2IasPyioWmhPSi66YS7wFWpSBWWWIU9wNM8D8zi1JzssZwC6qxXoEuG39meYths/+Q7FixsOFy5S9yxpJyrGHAmDqewJu/rcn15k/MW2CaZTkZ64FG7LHZQZ0hLump+fUdRl94PdF/TvqbOqczWoRT+yW821zw3+GE/5Jl4GcwxEwt1I2PCMh2Bm+CtAi94m4RPYWpq/kehCs4IkIEmP4e2IAgAsxrtgBjtJ6Pq956xa/nU/2il9uS366LN94+1eDIm8xTBfR82vw1v38V8QDxQtVnyd/R3s8L6Pn4/nrl8sHaS8XTZ/f89PeJ3dcK6PloHl5dFHN0lXRfqdvn5+ZO/6GAns+Rr7Y3cvcdDDwc/XtY2K34twX0fBCVf0ltQ0TlX7JQL6Lyry3RtG55w1vl20cGTLZL2ORZzeF30FSWaGr7ceqwR8+PitN7Hf9y02ZhKdBUjmia0fmZy5UpL4O39Qz/+r7ThxOgyY5oqhvcaMeT2d/8M9o30X5daf8UNJUnmu5lja2yuE2ngJzggcdr1xZoQJM9CVR0u1HtW63yT98y+Kdrv64YDJoqEE3CvBVHl04qJ9u4o7Oy+S5pKmiqSDRNFtUr59ba2X/XtuvPSrin+oCmSkRT58yjx2r+czdwaxff0T1ajHQGTZWJpoP2n7KOKiaJpg63OV3RaT9UUqpCNMXFPxkoDKwUlPblacXAst3jQFNVomlNldy/mjaeLEqrlZs7/kwA/MBqRNP6LJ9FS3vcCt09JMd/x2PNMNBUXcAqA+VANH0+6TDizJG10uVZMxpm+h5tBZpqEE3yl227uvuG+GfVu1f18rywi6DJkWj6npR+3MXTV7pRUrbygQZxItBUk2hyr+p3qqNkld9Ue9syX39++hI01SKaLkyqsvN2tWi/KcuTfu00p3l30ORENJVq2jpCcHtk2HbvUi2rzNdAPcfaRFPmmi/nm/iWCjnUdtikXle3LgJNdcgO8Mvsb6ebO4ZvfbTnXu0bTiGgqS7RlHE6pEOlR+v9py8Kmlyt5asjoMmZaOryvnzjEBeNaLrX0chmHyR1QJOQaGq1fc+6slFBQYtWnSh9LLeMLUOoykXAIlTVrvbV6k+X2YeuzHK68aTXwWiE2zBWqOoNm4uqHrt3c/aJM7KFG/KGnas9Yil16iobmqRSxyBOX7AlwI2IO4TkeVmsTJ02ASTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeo/inoXxE7h51BevyinnEFNPNPo+IPgny3/vemt9e9HhK+/kRNl5mS4BweD6PyvEEIV/a+1QMAxaDmnafdZII/6xmVE/tEKkDXwHhPMQpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vicoo9EK3RsdSw2uZRex73r5Rd0PjO9GpY/rv4dJH89v4r00jSvWYzjgeljPKjI55lFHIzM5D2KgxeSbSxcv1wkT5IMUQpCA6EtYs/PMvx0aNKR27QjJHMGVE107rOhIYxoSH4tgGpItfFuvkgfR2aUo62V5Yp2dwTY3EjgX8lAUSfhT0IFEgqWp0X1t1IOx0plTxT3eCPw7mH4EiwewXnCCBbo6EX/essWf/yk3FEm5gZ6hm025Iao+l3JDi/rFodzgseNEUvPXEwPXNanWfdTMeat5DJZ0D8SDckOX+lwH3QPqm0W5YcKoWcmbI3YHzG2T1n1/17sXLK7c0IETFdBvrJRlaj7lhjPrdCW2fejoN3vgpmvldxy4ZjXKDW6cpnO2jOnMrtzwolrNFxUm3Q9b43/y+alKs1wtrNyAeRnWo/fAy5hNuUHjO6T1+Eqp/pOUq5b/8rgGbQZpEeWGDpzgtKhvRuWG5D2zbwapzwaPWXds84UevR5aiXKDGydCYEwTeds7trztzAJ56Ne2NQLGrKpb5kX94Yeo2WgoyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRhkle0dYv0c/NzKLJFiPK4gY0IcriMlIlEbBA4ybGLStgD1AAA+TbtZZEB8/4+q80/UKNq//+2ZKWKUXBuxEHFLDLhWVKdP/HQ81bWROCfcXohMKmMkG7Jkbxjh0xgMh+4Rqj1IDuC9rRwbbzlchSB6+VFk3cu8S/yxolteJnWSl5M3NY5jcVBtjAWpva1H3oJF3tIJQ36X1DyQNgzTgBAz3KIkkUHjPg37QQsP0w5bBsOWxph9mSw6tOPX785KxLw6Xb4q73O6p9nV0FEzIBxpANTdIo9LRnLKkV+0W5/uhmWgJML4vZuXXl/qd+D5yYPtHtwsPJP/Jg2jqcpq1qIdOi8uMZnYxKtcqHFvDnaHbui6nlBkR89N88r96H2Y+6OdM3/BCHqvCrvK/deRI+aQuKVLLFExtiRGB8zxYY/a7WuDek9XbRxt59Had0P0gtq1QNkl91cOkTnmRWQG69woiK8V4SdQKAHKfgYh8Tk/8x2OQwv1A8JJUaFBHp23aFPzDDHMi/MjQbAZ1/XQMA+u9+iALy/UHnX9jAVH6KOLQAKHC5AZZBgtmGOlHoShY/B+jhAkjwf7hP08LVaHWKgkW9ZMBdr1tPMtdJt3f3KjtQuUdB9THdMdIB08cQ1wvzMT9J+i/wyGsomqvL6Tq+f49dJvqYGQDmNRBmGz9EyfQsNwxmU5eEGxYwv351K1qdqFVEJ2PdA+NEIbFMHKC7VG/QVP9Vn5ruvvXymyP1REb+5zKnv5RG3qmU7gRsfVCw3fTAYCNcwh9sLuFchfofmrVSh43/422I55VRMsq72UcqMA6jMDxZpUL4AraE2YO8DxJhsT6rTBwiVylj8E6eotTFC9VgmqIx3BPQd+k5npNhBWqzocf2GssEGoiuHWrzbSlAt4/JY98hCOPhwVVXhRYjYmOIIQHIuzdy08vKt8VpvW+s+D664TFq+ox9EDN9xi8XNpzprARTj6IB5JIgcstQKQOs/BrbgDV9NhA5Jz1yGkpXg10LCd+ic2MG/23zJHDNoDqKxC61N1CPuRMdBL2lQ23lexRDtPpwohXZwCIsdtuuqUmKgjjUL8DZ8QwBKa1C5Qn/RusZENgPJrlxCg2NEgd/THXcDliAhIYFHwEm1am4qZFWpgcmUwaJiXbt70mMgnco2lxnL2wUGLUQ5hiOYQtzBZy/S3T9GCQUpUY3uTD89OGAdQcrTQuaOYrmL7C3QmxMYJeLA4o+nFBE6gPVB7ZAZTU1/+jekp/yx8VQ8q9FA66Sf031kP9p9ZDTuXH8QC7s+E9Y5eYzpRkOm90r7I9cxgPkSxpyQT6vIQn5R95YmRVJyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZn2yqfWgz4lTAin41Ssg7P/uVQXmDnRddm5FGv+SB8vYXm/3rhRz3uLe1nP9qm5gB159Xotq/Kr7YL1GptTBdxDZwmEl5aZbRVs9fCcsdx8P6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6nierg/cBN5YgTMyKcYt83vhO+2YUoaamgagAf4hZ0X1KT3mzt37lcO3Lxw6Pda4+/4m7LXVrzL2BcBVmvrE2H3HUOcEEyrs5kb/lxYVddTIgpihT5S4+q++fGnhsEzex7Jq/VSq+ORFjG6W/jH06uG+q9VTwqc6Jd6lAeUpnCiNKI+c/GBK09z70yOK2ywYZiRQw5O9UjuGftWiX/v6BVl/gmULbT1mTxGMTrVgvu53u5EJ0JuyMHD00uM3M9tot89hBBFF9D7hBGI4pvQKwFDmkScLhkh23ArcVLjs6/PWMGuJQQpkxOkKUbu6zaUKvE31y9V5XcZbGOR3UE5Dlba2jV4ErqgkuM/OQP+rkXdRSQ/l7mLqG8pDnRGc6KTot/T/ZstML7sHh5q4/VZkrn8vH9ORFAv5kI8MxLasIDrQt3P1VPdUtRGSe7TD1gYujdgKPsbOKYvELbzfogFKAGA7bFxoc6wbdpX5Wrtm5i9JHjn2vIpT9++aE1d7MT2Y1nCOqWxMC9Od3GmMsGBn/4EweqM6mNLQWr+xrhYVwEDSwFGGjtUO0ecv/4sdUHguvEJO373+Zta9K+sDNyLBqpAk5lTAgjTY06YbhsZ7ArfQqPvNVtsCw16GqyPwC00ISN39MSgIfzQJzY/JGl83qtt+oPQpf4573Vta9ahr0MnyJOE+DoNYr2cLTVvjN9H7vZg51LkwkRFCryk0CijiQBpGIuEdriL4wlRK+UFmg3EVdRYJqjpdgoqTiNy8jSA+mdXoxxVBWwbCl/cBY+DfMtmB174qsqOD9j8wXlo0LZrjakpEvYBzBQJv1zYmKOfczNxzEFmcg0IzwbUmINqmPZuRrFJ7PHn4RJJD0/t1/Zblw7B65//OKb1q5vUSQrxuszdP+J6oQfb23496ZZaJ3TT5ujX/46r3oMHfEpx4gO6jyUYBrYYcWMIDkR7Af3HuCpq9l3lmjiFjstop0seHt3yl17i2SeHf2/48Rfq0brS+P1MoxHXeV+zBVZ568pllSdWZZV3h0mrGBW+KmIOL0kRQzhfdM2FwVFBCv/+QaPDxfN71Fpwj2qYMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQS2bsZNyJz0GGATC5WyMDzm9e3yjzS0Q/gy4fLay/4a258mKYR/AEJSiGgoDkQ+u3Ih8sKVjOuf2eL6llkhf/Zu5xs0/s+vOttjtz9QbYx/o+FkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vMw+iV83gid6ypXgiTLYLyIwq9vLjOtG7oDXJlINXDwJE/iFR5jwJ0G++F9zPqTk/fs1eM38x665fzenkufKsCU2+gYzB39InzsBMfRGcTSETTAMjfJY7cOJHoWXNKEc1IJ8IC2+PgDLKMD/5+eUwuHhI9EyL7R4btGKKnBeiwHmiAIM6ljv1Q/mL1a/cUXvTTypTdK3OXjYucpy5dq5mqHH/B82zMN3+184IzguSetVs53yRXBlquJ2GEUIlelI2ZB2CgP5AAhPOnCniianapjeJE2ZguuxmELg1HZDF27gQWoYoaeiFm7gHsVZN4TeJBlPEHqT8JvoepN0vUi63mSR9STpNyL0JNl8Ux1/pQb4HGPkb9fJfr0wesvzwFmvt/2j2R4zmyp/K2aODnGh4nYzzkRVKvlkSeCm2ydlzdNnmHpuUgBGx31oTm8UewESdK66nUIIObKBVBSR4OSJY0R5G53F8w7PmjPcdm2rIogE01Ha/aHG8t/HvfA/vHbP3+VXHjOVcABROsuJ0hE3hgQgJ9sFr7UAEyNDVJRprHdqDMM/ihnDiOvFseCN9ZhPqIUmVw8MKcKf/vsf86d0OR8z+dNkTn/a73/+lLTP/N6KyEc2G0Qr7vZ7c77rkp08+FO6TBMPnkLL6SmUxe5PD+546ruvVvfg2aF5G9OWDnzFgz+lLxLwgFI/TpS6Fac/pcdQi/tTLac/7af3p1+tfk5AH078kNl8StR8nyFJku76KIrfcjUjkocpQUs3rimBux7yb7yR2SqQkJuBzIbQwCNdPUIDjySzITTwSDIbQgOPJLMhNPBIMhtCA48ks9EzNAZjDXpFZBejq+fxwFj7zpuR7cxo5KLpSCJEFUkj0/f8GTaxYbMJXbaQB5tAgyBtkr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChU7zM6v1HhmQWXJ8taBZrmfYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIsSjeSCRY2Bg60rUSQNkFSLkyuiVMmhipiKQHQDr8cCeudFrxeFr/eVZ1U8CrVC3cPbiRrsaDxqYoYiJ018NygTok/VRnyqVADSiNPCUqMgbJbJLwlysKLcOulwCUsV1cRJZnwCQGsoqqUqyRQC6pAINJpFPIE/e+YMLH+HqKrlmDrqlYTlukqoDwt1dH7Pw9x+Vxjrrh8rDEZl0taPeZ0eVXrXR79hZPYv1dP7C/FhrnRYdJeYL4widDNJcMkQjeXDJMI3VwyTCJ0c8lcaGzLeQurPpohXZ3WfkPM2D+OFciFbqzvfnDAb/XCl6elyLpcTVnDCK7Q6yM7El2Ml4fgasNmSSst104XHTZbufYTTbjKtc9kSsnwXK79qm7f4I/SPMnhKXOnPHvq8s4KyrUfa8JV/HavZQQzqDWnp06daoZy7U/+yKhcLny63+64oC07dKnU1UJLlWvfzGmdldZgHbOUa4+uXOd7h5B2kunX2wQfaxNKXWG2VLn2BZzGmWkNxhFYslx75WulXva8Pyh4XkTrdpUPdy9jVeXaJ3Aab6QVCQVZvFz7tHoTPcZIK/rvr3Llz/67FCMsXK5dy2k5pcUtB28qtnLtZT7vnhN7Xy1ePir7k3DZ549WUa4dyyFYy7XP1Is9/cCWp/6XyrXTy2JYuFx7+aZc5dr/Yqa0xVKufWDU3UHh85cGLFb+9HzZT7tocpA8lGuni5vxUIK8XFOuEuSCpsVVrv3lAXHJf/0uhW240G9El6lvTvJerp3uI3jA6q8mXFi9Mq/PtXS59tJsbux/IvxFEuGnVxMymwh/TFMuEX5p0+IQ4X/5Z+Keg68dgxa82fltlnudejyeNufZR0LN8gFNuTTLf2T6yOIQ4a8wdnNa0M6W4Ztqlb/w5VFAlsVF+MM5UQH9xmrmDsYd/OFPhL/qHMdNQbGlJHs6Vu7Vq9aXilYjwu/LaTpvy5jO7CL8v9548G/i1jai6aO7Rm5fV74ibafT3CL8mJdhVVEHXsZsIvwZBxw/J/8yVzxDlPUt1/1ODSsQ4Q/nBEfa1Iwi/Hc3eF4YW3+53/LyOz4eW1N3uhXIWUCEfDkRAmOayNvKsOVtMnGTpt87XBWvuV937eXFb1tQdQSwQ3xJahWI6MyczZYFZ5/8LRJl/v2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVpmaoHBRoN5fY1lAl+hfjKJXDRhYbvRYDvcmaaZOTBqmr5jwWuElggX33o+8vSytW6S+dOa79glX8vqp5KkWp30VIoumM0tdg8QO8cRM9ZgqpHDDdrjUuhyuPDN0YRp1Gg88ugKqX9yvq2C8u6n91i0/X1j2knpLAbESek8Ou8y/6C99/N+f4bLZ4s6XumEYkSfGSlOkYZzaFtE97ucbnzvzz0m/+1qSb330gVta+SH8Dsq/qW4jDGck5jzLeO9EdgzI6FZ0iiWgfClzwarp26encAU1Yws0hwFzbrEB2v1sS4C5t30A7W6LBf0NmqqNPSq38JjwWMdeyy8+v6mVRuR1n4BVG6VBWi/mV+U3EYazqnscZZxciBH2VUtlo9f6E7MVkzQMsxgtbtFPWcOrFM6Mz71aoHXR/z2JSpsonmmOFNOHJ41PMiQxeqmWz9QSOzVMKTc2RbpZRf6+95Pjxwvaq0eFMj560WnfZCALaSANxEAABdi1GZKBnK2EUmbuZ+Dm2gbi8+MGnStmYvg8dZ9LAvBGAuFwDdJ+oTTdv/GB+HXpjbbHycUHcuPo6je3HzcUbEDYr+2T43bN6OzInXq6b3twI+TrA71+6myN0KSAVakNIXPx/nXo9fp63uMiw4c2+6yz3bm2Wtgo/TitM67tZgHbPwcZLSN9famnbef96dng9XfUk/aRV8nHqcxnG0BuMILMnHya1179v95XbhK3Mj1n3ZM+WIVfFxKnAaz8YyxrNOPs7EUktdA0v8LJm39Kp72vWHfhbm43xpymW5d1YxTSk2Ps6EDz1vzLk2V7x2we5Hr8o2k1oFHwfLIVj5OMAREnlq2f8LfJwu78s3DnHRiKZ7HY1s9kFSx8J8nGnuXHycocyUtlj4OM1edd4zaOLLwC1Rn52bbrsVwDsfhz4354FjMtWdi2Myxr24+Dj28V6Jg1Z/kqRnB7e1qZl4hHc+Dt1H8IDVUE6sEs0bLS3NxynH5sYGH1Y2VYavk+w+FKF69rg3tRCbXZdkeHYyQCNPimeeMDVi+6KBVKlNgqfH9Ls5qR74KVOhHGrmxcFvQPa8Vtv3rCsbFRS0aNWJ0sdyy9iyPh9zJ6dgI6P/lY0CLiyi4FEsRK+kn3sysFfqPw3BpwmDwlwOEviPdv5zYGPZX6Gup+yjFCpgMEVMEPDrQ8mPw8yKm9KOzZQOeRnSKr6/SXJ8Hh3efDqFGmdL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrLFbkSJ3CNiAvXybKh/G7dtRVVPG79dfRyzVyWFrSz09GW54kfe4BOb9NN7PJ3YLOK44bLI24Z0i9izWWTpzIzkV8GfAuYOdtBmT3b/ibom6g/JMzpmRsY6vcRvEGpB1MfrXSZrYcqL1WqLV6tioBwjpATGYn+HpcM6eZzWoByEfkSydKg6epAiRn8T6tGZy7n4dUN3q11lgh6NAJglUaQ+KKreuhFCfglCBOdxCPkl+I8uvxQ+7n7HqFMvRWPP7UizfR9xlS6/lN4jZ9TtpD6BWUeWzn+aNbUj2U4eRi2yPBP9ixHyTGyWtoPqAYQZ0ZoP7rsPqKpqQuc8HfIlqeKF86ZYi//dMGDXbtCuC1EpzwwwhEIaWaTwpB2s79hPC94hMS7fYeT/jrma4d6+kSMRKlFstqrinz/aQEKkS9agE9fBcYc+LOy8OTAr9ajgxrqEJZwmKyPBPwmhdUw0FIfRxJxGa21eo5Eu2CZUgjtUeMso/bjHbEOOUbZkr56UKH2tTNQqNBjrDnwFxWGiBdN3594YevOteNv+lK01W92dQLdVmbBknXyASi9gIaBtdsFv9WaGK+9Ctb6KGK64jOrBadT6jRhaX5wFFIjOrsD1WZDg0WVSODu6DfR0zDId2FXeGaWehF86IkZUuhd5YV2cCOkV2EJ6l0cPIsqoLgQs2Xuo5KhdLuOpXNmoeGWsTgjrylLDOoxXbDWtnSJiY+FURK5SEeVXlbBwHhTv9kQCTC84yPYIiHzJULo96BntYJrT1Q9VDM9dJnBqaCqPzB6rvgvGphY+MPJFI17eH7OlcaZkedbF8muGxR+kF3hBvmKhKSG96LqpxHuAVVuIVZYYxf0AE3yvhsaxxnALqrFegcTFbmhEiex1iyI2i1XdO/4kL81YUo41DBhTxxN484acbw56iRUsJ2M90Ig9NjuoM8QlPdUjWuYydJpENL1svxr3s+evo/ZLeLe54K/MCX8Zy8DPYIiZWqgbHxGQ7QzeBF20gFZxt4iewtTVfA/CFRwRIQJMfw9sQBABpiJbgDFaz8dVb73i1/OJdxoffn9m68CJBzJrpqxuVVDb8FPmufPvI5TS6Vf2TTjyRbClgJ5PH1mD3BJ9B4q2xB9uHHu3pWMBPZ+xSW9nNz1dPXzW9UlfAk4OaVVAz6dExJOV1eL2Sw5UuzxE2FDct4CeD6LyL6ltiKj8SxbqRVT+tSWaSi21n3lxVU7EgQP7xH65ufVAU1miaWlyyvA5G677zVgy/GsLxchaoKkc0bR9bUVRr4GDpYdfjzr/yfsb/EA7omnIEM/hSx6rRFkfBtdM+5peAzSVJ5o6/7z2uOM/ZaUZecMn/OKfkwya7Ikmz7cOl6dFHY2YdebOsqdxfjNAUwWiqZ/XsbDbNU+Hbty93rFZ0AMxaKpIGuXLipnbf7kVeKB56NpjuwfCx6hENJWv5z/Cc4+TdFOLMlu75fRzA02ViaYzS4SPvmVr/NNSNmf8PkL0E2iqQjTZ3vvzQC+72oFbI/w7uiV16wSaqhJNDh0+9tw/rmHIHP++I34dp9gMmqoRTSvTYl81O3hFdLhNv9ZBgaeqgqbqAlYZKAei6cHxbHHN+UtFB0v16PteF+0LmmoQTfapZfdXmFNZlu2x7Ilb7bOwAzgSTSEfFmhSms0KyOx2oPelN4nwu2qSVu65JySwVrJofKvwVZOz4rqBplpE08XsXoerSOeI9pQKudWu7rTpoMmJaNof0LBJ9XIrAhZnXs9cGe8hB021iabffr309H7N8MCcHy+Pi7dfshM01SGatg3KdBJOOSlbdjekp/LbuTzQVJdosrHr4l11/QjZjMu3BonfV7gDmpyJJv+WO7ydb8SE5axM7xp1wucmaBISTXkXPOT/vpkjHn334rF3FW+dYQhVuQhYhKriNj/xLd/zr4gDD5LPV477bM+DUFUlNhdVPXbv5uwTZ2QLN+QNO1d7xFLq1FU2NEmljkGcvmBLgBsRdwjJ87JYmTptAkiIgRMiKgAaeNyC7qCQj8acVRMNhuqGN5YJFnuegv4VsXPYGaTHEz2NK6CZfxoVfxDku/VMCOwRs7qi/7ijqw//NFl1g8fDqDxvEMKVvYUQoBjUvPO0m0wwy9OonNgnUgG6BsZ7ilHAEkdqrRI7fgKeT6nCpk5kPxHKNfDEtTpBGY1EsfebSuVr1XMImbWi+YOmU7fPpNLH9d/DpI/nN/FemsYV6zEccP3saRWZHPOoo5GZnAcx0GLyzaWLl+uECfJBCiFIQPQlrNl55mvqdg5wz+4k2Tb3nz5Tl1W8SWMaEh+LYBqSLXxbr5IH0dmlKOtleWKdncE2NxI4F/JQFEn4U9CBRIL1zq7jv+Nm+Ug2ry03IutS+RjTj2DxANZETrBAVyfiT2W2+PM/5YYiKTfQM3SzKTe89+RSbrhkXKw0ULkheXJJjeTgUfGEe67yq74fHvAYLOkeiAflhreeXAfdnxgXLIuq3FBtXKl6u+a0DTq8Kv7wuKNzqf3DEsoNdzhRuWSZmGgAy7SwBSb+lBvOfn1Wpf/4x2ErWxyZ6eF3tJ3VKDec4jTdQWtNZ3hWbki2r+r9surysEnrP2adrFzyi4WVGzAvw3r0/gkiSyku5YY6J7M2VtsiiNiTUfZj5TqfqAQhyyg33OEE55KnGZUbJpZxmrI+o3NEWtzwklJp55ZWotxwihOhg/q8rQpb3nZmgTz0a9saAWNW1S3zov7wQ9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6uZlZNNliRFncJz5EWVxGqiSC9Ut9jFtWwB6gAAbIt2sQV2pi0vTL4ftGeoVW8p1GO7gbBe9GHFDALheWKdH9Hw81bx/5EOwrRicUNpUJbvkYxTt2xAAi+4VrjFIDui9oRwfbXj1sW0+63li05+7jx9OGCyZQh6WUvJk5LPObCgPs2bWYpuOy/pJkKGqnbq+nOsADYL9xAgZ6lEWSKDxmwL9pIWD7Ycph2XLY0g6zJYdXDVvpnhbWbn/Q3skz3/QoPcWzCiZkAowhG5qkUehpz1hSK/aLcv3RzbQEmGbas3U+/N5+2jBJZo7bm5dzckzVe4Om3c9p2q0WMi0qP57RyahUq3xoAX+OPtLo/PvOuNEPpYvPOw2M9vG7St/wQxyqwq/yvnbnSfikLShSyRZPbIgRgbEqW2D0u1rj3pDW20Ube/d1nNL9ILWsUjVIftXBpU94klkBufUKIyrGe0nUCQBynIKLfUxM/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/K0GwEdP5AbwD6736IAvL9Qef39TaVnyIOLQAKXG6AZZBgtqFOFLqSxc8BergAEvwf7tO0cDVanaJgUS/J05as+HmWd0T2wGM5iyWtqEX6SnfHSAdMH0NcL8zHKHKv5fQRrfAfl+SqGf81Mt1EHzMDwOwPYbbxQ5RMz3LDYDZ1SbhhAfPrV7ei1YlaRXQy1j0wThQSy3kTPb9JckTSXem5g+JnBt2hnsjI/1zm9JfSyDuV0p2ArQ8KtpseGGyES6jG5hLOVaj/oVkrddj4P96GeF4ZJaO8m32kAuMwCsOTVSqEL2BLmD3I+yARFuuzysQhcpUyBu/kKUpdvFANpikawz0BfZee4zkZVqA2G3psr7FMUAmia4fafFsK0P3iZerYdwjCeHhw1VWhxYjYGGJIAM713b45NU8QmPPwvTDd/1xbavqMfRAzfcYvFzac6awEU4+iwYPbELllqJQBVn618WZNnw1EzkmPnIbS1WDXQsIn6zxlW5W7ZUOmOL872jyjP1V4qzzRQdBbOtRWvkcxRAv0JA603nlZhMVu2zU1SVEQh/oFODueISClVag84d9oPQMC+8EkN06hoVHi4I+pjtsBC5DQsOAjwKQ6FTc10sr0wGTKIDHRrv09iVHwDkWb6+yFjQKjFsIcwzFsYa6A83eJrh+DhEI7LeLotWVdg8Y+63Ppw1sVjd+FvRViYwK7XBxQYF2cFQrQxYlAVZ0tUFlNzT+6t+Sn/HExlPy75MVV8u+MHnIHq4eczo3jB/JjJ+7KG453CFkx8NLDeUc+xvIAeYdmXJD7NCMhr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+wFn65vKm6RZDUqnTlm6t5kBuUNdl5k76PTL3mgvDmy2b9eyHGPe1vL+a+2iRlw/Xklqv2r4ov9EpVaC9NFbAOHmZSXZhlt9fyVsNxxPKwPjH8ANqWE80yChmDY9j6dclroIzLAQf2RoVk5mCoGQb92E3liBMzI3ZhZOdfatRO+24YpaaihaQAe4Bd2XlDd5rXGPpkzI2jaD4vCAprUSTRlr614l7EvAqwCyLD7jiFOCKbVbbyQeTgbVtX1lIiCWCFR+vefw32qd7sim7ti4IwDujFPeKRFjO4W/vH0qqH+a9WTAif6pR7lASU3TpRqeTEXH7jyNPfO5LjCBhuGGTnk4FSP5J6xb5UMOHIqt8WR7sGzRE/CBGtGKyy4n+vtTnQi5IYcPDzdwcu4NLaJfvcQQhRdQO8TRiCKb0LXiRWutn20MFc84cadFW/LxU+2gl1LCFILTpDcvIzb120oVeJvrl+qyu8y2MYih4M6PeLJ+4PHw8bOf/5Tqe+nN1F3EcnPZe4i6luKAx1nTnSq63PRmmyB8WX38FAbr8+SzOXn/XMignoxF+KZkdCGBVwX6n6unuqWojZKcp9+wMLQvQFD2d/AMWVB2M77IRagBAC2McaFOsO2aeOcBv7ldbeULE2U+nHr2ydnqYud2H4sS1inNBbmxekuzlQmOPDTcyFYnVF9bClIzacaF+sqYGApwEhjh2rmqNf7p3qVlU2KbuD2YsPe9lRPJAP3ooEq0GTmlADCNIYTpqFGBrvCt9Doe80W20KDngbrI3ALTcjIHT0xaAg/VIvND0kan/dqm/4gdKl/zntd25p16OvQCfIkIb5Og1gvZ0vNG+P3kbs92LkUuTBRkQIvKTTKaCJAGuSW6Ie7OJ4QtVJeoNlAXEWNZYLdLU9BxWlETp4GUJ/X0ihHVQHbhsIXd8HjIN/yQa9Dp+pdmChblzr8364n2zhQUyTsA5gpEn65sDFHP+dm4piDzOSdEJ4NqDEH1TDXtzSKTWKPPw+XSHrt5Ffyq/36SrI89kSsEi3fQN39w+9n7v4R1wvD58j0XbUTrs0LXzEw536z7A0XecAnhxMf0H0swTCwxYgbQ3Ag2gvoP8ZVUbPvKtfEKXRcRju49UralMhBkkUnB/lf2hAbTDUafj/TaMR13tdsgVUyOK2SblVWeXeYtIpR4asi5vCSFDGE80UapnXpbO2I+KsB03M23nnWaQ/1sF/pMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQSrWho3IXPSY4BNLFTKwvBY3lu5Y9Cr22GLMmpMSsw6702TFMI/ACEpRDQUByLzOBGZ2JKM605scX3LrJA/e7fzDRr/51ed7bHbH6g2xr/RcDJMe/0MgxrAhSnxyuh4kFbCs4VyrRaqQepZMUT4N2zyQT+njXpeZp/ErxvBE1W0JHiiDPaLCMzqejDjupE74LWJVAMXT8IEfuERJvxJkC/+ouGIE/4DW/ovv7Nsblj3lbTOx5bY6BvMHPwhfS4aYuiN4mgIm2AYGuWx2ocTPQovaUI5qAX5QFp8fQCWUYD/z88phcPDRyIRpcdzi1ZUgfNaDDBHFGBQx7qHfjDXtvqNK3pv4kltkr7NwcPOVauWXDtXnnrM67BhHr7b/8IZwXFJWq+a7ZQvgitTFbfDKEKoTEfKhrRTGMgHQHjSgTtVNDlVg/wkXZmC67GYQuDUdkMXbuBBakjVnIpauIF7FPE+CL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOv5KDfA5xsjftnaM+nRRKvHbc/75Mt3Oa2qq/K2YOTrEhYrbDavsNaVi+SvSXUGqDUM1LQeYumYCRscIaE5vFHsBEnQ0PqcQQo5sIBVFJHjL0B3v784f7zd/yuNd51wOXimCSDAdJUWPyOAHa9tFTN909JD36Is7eEApnhOlvj4MCUBOtgteawEmRgYARGe9U2MY/lHMGEZcL44Fb6zHfEItNLl6YEgR/rTuf8yf0uV8zORPq3L6068t/+dPCfu8LLk+pvbIn6RZBz0/KQNsyvHgT+kyTTx4isqcnqJMsfvTM5JDW2p5TgpbPPFATM3F4qKIrtNRoi8S8IDS15ZcKH1oWYz+lB5DLe5PK3P606/6/NTZ6ucE9OHED5nNp0TN9xmSJOmuj6L4LVczInmYElzmnBKc1UMu5I3MVoGE3AxkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8HxpoLb0a2M6ORi6YjiRBVJI1M3/Nn2MSGzSZ02UIebFKPzSbZex72nPD4U9C+PTv3bR2USz3n90NneaJCxayNwubYXMXCJHhHgQpdwkS1ToGLC0F5bi4NW7ruIuJRDPF2dlHRGrVKFQkjFryYf+TzXSeaJ/ytWcCWG4kjw2Y33vrQv/NDDzZPaNtNq9BAAXDyaxtK1ckDVJCrBavoQOGfGKWOeHeQYcBdjry0VTSTkGWOGIvSjWSCti2AA20rEaRNkJQLk2vilImhilhKALTDL0fCeqcFr5fFr3dVJxW8SvXC7yIayezbtDhVEQOxswaeG9Qp8acqQz4VakBp5ClBiTFQdouEt0RZeBFuvRS4hOXqKqIkEz4hgFVUlXKVBGpBFQhEOo1CnqD/HRMm1t9DdNX6Vh+W6SqgPC3V0fs/D3FZ2YIrLstbkHG5gdVjTpdXtd7l0X6cxP4eemJ/Q97CpL3AfGESoZtLhkmEbi4ZJhG6uWSYROjmkrlQ0w3DZ3daN0461md1yA9jPW4XyIVU92d1PFkhN3inyz13cfYaMSO4Qq+PVk6hifHyEFwbsVnSSsu100WHzVauPboVV7l2r1bFXa79WE3hyM3aM7K1s/zayBfWpp7stEy5dnkrruK3PVpZQc3pcePGmaFc+5oWM3T7l2aGb7uZPPpBVAx198VS5drDOK0jsQbrmKVce632mfYu4g9+E57N2V/iZsddVlGuvS2ncbyswTgCS5ZrPxp6VjmoVoh475R+fetXGkNV2rV0ufaGnMZzsozxrLNcu2TB6BpdquhkizP7nDxZPXSvhcu1V+a0XBmLWw7eVGzl2su973XcvuUg0WK7zNpnS26QWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1dK65y7XOYKW2xlGv/O63Zo1H9vgVsnpX8e5/N2VTBRD7KtdPFzXgoQb6mFVcJ8sWtiqtc+z2HK6H+K/sEjO5wSChSXMrlvVw73UfwgNUcTqwmm9fnWrpcuyubG/ufCH+RRPjp1YTMJsJfsjWXCH8e03fyIMJf+pe/xjhX6hg0+9HE/TvvH3vK42lznn0k1CwXtObSLP+L6SOLQ4Tfy6fXvdfTe/ktlIRv3+i9l1oH3RIi/K9acaGSZ/EMtOCOk2VE+GvUTlDZRu6TLqhRI33ryn4LrEaE/yan6S5YxnRmF+Ev89Ft1KPAbL8VW2Yln/Zq+8bCIvyYl2FVUQdexmwi/I8vvkh3+fQgKNPNu7EsQtbUCkT4MWfDCk5eKzOK8A9dtn1eepMnklmN1m4u2WDnPSuQs4AI3eRE6IJ++unGlrfJxE2afu9wVbzmft21lxe/bUHVEcAO8SWpVSCiM3M2WxacffK3SJT59xNaGABxjTo5Lh7kcLDKtTrWKC0HeoVF1qdlqh4UaDSU29dQJhgEh6dcAhddaPheBPiKW5t6sKpa/mOBqwQWyFdvU75ryNHk+RF7dk6dfaBW6nHTa3fRUii6YzS12DxATwnRc5ag6hHDzdrWxhXCxodvjCJOo0Dnl4Pnda7afP7biM0OzTSjkmtTCzGXlmI3Ik5I4dd5l/0F79+N8/1DWls6WdL3TCMSJfjISnWMMppD2+b3vUfXrq011W9M90NvBOmfqXrgtuQHMPuqvqU4jCHmNEZryxiDURzbmB0Lz5BEtQ6EL3k0XDt19e4ApqxgZpHgLmzWITperYlxFzbvoB2s0WG/oLPV+g9HKrd/niRaGPTIb1vQUGo6VBZ+QZQuVYWof5nfVBzG8uA0Vn2rGDnwo4zKVqvnL3QnJmsGaDlGUI7P0PITE1767Y0KHZZhl/vWlKmyieaY4U04cnjU8yJDF6qZbH3v1sZlqYQn58i2xk91GfRmbKWw+Y0TRzrUy7pi0WkvBCCCBOAmAgDoWozKRMlQxi4y0SqtxvoN9Z6ErbkbWWXYttA6tFBm3sO+EICWXAB0b9SaTDSb/Mf4OPTC3Gbj47xozcXH2cXMLHnm49geHTJ6W/jY0PlDV/88SPtmjBXwcX5vzbW7ed8yTp9KKhg0aJAZ+DgpNWaualyrkmRb3V7Nf415ILQKPs5VTuuctQbrmIWP0+vb6xqxzyJDDq8ecD9j/IaPVsHHOcJpnF3WYByBJfk4JUdNim+fnuI31/tT0pHvXyOsio+zgdN4yyye7FoRH+dT8siMVkmxkvRas6d+6LW+loX5OFmclptmccsVKx/H41enRXNT1oZvXHnup5m/qN5aBR8HyyFY+Ti79Hlq0/8LfBz/lju8nW/EhOWsTO8adcLnpoX5OO5tuPg4Dm3Mw8eppfy+/LBfL+mm05ubTRNcrsM7H4c+N+eBY9KkDRfHRNimuPg4LjHVHIPfLg2bfOTqsjxp5RW883HoPoIHrBw4sSrf5v8rPo47mxsbfFjZVBm+TrL7UITq2ePeVOds1yUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAb0IUPL3jI/30zRzz67sVj7yreOsP6fMydnIKNjP5XNgq4sIiCR7EQvZJ+7snAXqn/NASf5gU87ecggf9o5z/VjWW/PW9xyj5KoQIGU8QEAb8+lPw4zKy4KT3YTOmQlyGt4vubJMfn0eHNp1Oo1dFL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrL2ZIncI2ICdU821L+N27aiqqeN364+jtmrksJWFnr6slzxI2/wiU366T2eTmwWcdxwWSSjGd0iXmwWWTozI/lV8KeAuYMdtNmT3amaRqX9IXlGx8zIWKeX+A1CLYj6eL3LZC1MebFabfFqVQyUY4SUwFjs77B0WCeP0xqUg9CPSJYOVUcPUsTob0I9OnM5F79u6G61q0zwEYJZEkXqg6Lq15oh5JcgRHAeh5Bfgv/o8kvh4+53jDr1UjT23I402/cRV+nyS+k9ckbdTuoTmHVk6fynWVM7ku3kYdQiyzPRvxghz8RmaTuoHkCYEWmt/po/N26o7x02O/PQ8YfOe8NMsRb/u2HArh+gXReiUp4ZYAg9b2aRwpN2sL5jPy14h8S4fIeR/zvmaoZ7+0aORKhEsdmqin/+aAMJkS5Zg05cLzg+71QvtFforHVdzjx9Vrk+p8nKSPBPQmgdEw3FYbQHnEa7Zl6jkS7YJlSCO1R4yyj9uMdsQ45RtmSvnpQofa1M1Co0GOsOfAXFYaKPPHtFO3ttLBmye0bJPJcl4xvRbVUmLFknH6DSC1gIaJtd8Fu9meHKu1CtryKGKy6jnuM06i/NGFpfnAUUiM6uwPVZ0ARxmkwKZ0e3gZ6OWaYDu8o7o9ST8EtHxIhK9yIvrIsTId2bLaR3efQgoozqQsCSvYdKjtrlMp7KlY2KV8bqhLCuLDWsw3jFVtPaKSI2Fk5F5CoVUX5VCQvnQfFuTyTA9IKDbI+AyJcMpduDnnELlpjt6ocqhucuE+w1uTy9PVZ9F4xNLXxg5It2319/w5ojC8L3zqnQf+yy5Up6gRfkKxaaEtKLrptKvAdY3YBYZYlR3A8wwf+VWZSakzWGW1CN9QokLlPHTfxyPOcH2fZhPj4bPFxKM5aUYw0DxtTxBN78GOebg15iBcvJWA80Yo/NDuoMcUlPBXm+e3nwbrXg/avu32nx/sJEar+Ed5sL/s2c8K+0DPwMhpiphbrxEQHZzuBN0FIdtIq7RfQUpq7mexCu4IgIEWD6e2ADgggwzdgCjNF6Pq566xW/ns9tYbXdq7U20oNtn9iUan8ppICez4en5cIOZw8MXbirVxkH2X51AT2fcF34rZCwZSGr/xQlBwRnrCmg59O9anTeYNdzfjOjptyxOVsnrICez/322R/tOw+QHWr1ya6S12JFAT0fROVfUtsQUfmXLNSLqPxrSzQ1amnXrI9DTtCiH17nqLbH/AWayhJNz0vmNjixPUk258fo6x2P1vUDTeWIpsa1Xq2NapkasSQzZE6bwN9agiY7ounOxrXxtz0GinPkNy8NvXynJmgqTzTNKqs9Mf/xLvG2xGsO8XtXJ4Ame6Jp6pgOT7Pb3wqd5t8/+1/tvO6gqQLRdH2gS3RgLV3wgpTaTic0VW6BpookUHbj6vzxKsRvu9PeWntthN1AUyWiyfeO7eWqdknBa/yPSkbatDgEmioTTRW6+uR2dUj22zVmaP+Xw6f3Bk1ViKYWEen/vtg6RjJpb4vcK30a2IOmqkTTyWsXIvf98Nxv41ZR/W+tfzwNmqoRTT3KfXjv9DkoYNUgjxLDQ0Nbg6bqAlYZKAeiKeDQ8ZvtwsaFZe64mjku68Ye0FSDaEp4/6NTztrb0g1dfJycfce6gyZHokm5e1ngvKslxOM3uPY87zjjDWiqSTQN9VB1+SpzCdr+e7PaQ67YLwZNtYimYZNPXh0gl/jNEt38uOji4QGgyYlo2vssr2X2sn8Cp0+Ovjr47oDnoKk20dTMJn7rmi03xBkfHJ412Tb9PWiqQzSN/XHN9J/t2oUuUVVt2qxkX2ivukRT7OEz1d2PnBCN3n6yW4r7hDzQ5Ewif+JGeMZkUcCkL/fO7pMOnw+ahORdczteWra4hXh9qFvlaXV2VWAIVbkIWISq5uwRLuvtODF07d7aHVMlTod4EKpqzuaiqsfu3Zx94oxs4Ya8Yedqj1hKnbrKhiap1DGI0xdsCXAj4g4heV4WK1OnTQAJMXBCRAVAA49b0B0U8tGYs2qiwVDd8MYyga/vKehfETuHnUF63MDXuAKa+adR8QdBvtvINhN8c91WB02tMCzr0NJeZXk8jMrzBiFc2WsDAYpBzTtPu8kEnr5G5cQ+kQrQNTDeU4wCljhSa5XY8RPwfEoVNnUi+4lQroEnrtUJymi0hG3utjXXS22TjM1c8mZV7ME1VPq4/nuY9PH8Jt5L07hiPYYDrlq+VpHJMY86GpnJeRADLSbfXLp4uU6YIB+kEIIERF/Cmp1nHtm+fv2w7h8l03o8Gu8ZKv2HxjQkPhbBNCRb+LZeJQ+is0tR1svyxDo7g21uJHAu5KEokvCnoAOJBGtn16UOJ8d2lU67MrNL5pW/B5p+BIsHsBpwggW6OhF/WrDFn/8pNxRJuYGeoZtNuSHDl0u5IcG4WGmgcoPt+GvyMatcApaO3uOo2brZk8dgSfdAPCg3TPHlOug+2rhgWVTlht1/DL546c6l0NV9L94LnJxLKxNqAeWGFE5UEiwTEw1gmRa2wMSfcsMToSQ5bnht6cyWg8vfXfqCeurIksoN0Zym62mt6QzPyg25Le9P9/SJDp79T+9DD2v2sbGwcgPmZViP3o9GZCnFpdww8XXjbzunb5Ks93z6KuRzqUFWoNyQwglOgq8ZlRsm/lz6wHpHkXTi1jiPk3dfPbcS5YZoToR66vO2lmx525kF8tCvbWsEjFlVt8yL+sOpaxS2oSBHE0ZJQw1fOPDTF8OF1QTITBjMEGPBryDvShUCbDU6XKMAOFuiv8Lci0jdRhqUONHXL9HPzcyiyRYjyuKOFhNlcRmpkghYQC42blkBe4ACGKCPvi+OnRfxVCnaNy/57ABVqTzabhK8G3FAAbtcWKZE93881LwdJSbYV4xOKGwqEySLjeIdO2IAkf3CNUapAd0XtKOD7bgFVTUCzfnwFTeaZ7/0mPaAOiyl5M3MYZnfVBhgV/uWDZ+SZxuyynvZuPvO95vzANggTsBAj7JIEoXHDPg3LQRsP0w5LFsOW9phtuTwqi1LHn83YtW1wKnZwYcWzL7UvAomZAKMIRuapFHoac9YUiv2i3L90c20BJhm2nN9d9RNWj9PlO7y923l0+rteDBtD07ThlnItKj8eEYno1Kt8qEF/DnSmBtXDAxsFP6DeMGc2BOu8Vvq0jf8EIeq8Ku8r915Ej5pC4pUssUTG2JEYPRhC4x+V2vcG9J6u2hj776OU7ofpJZVqgbJrzq49AlPMisgt15hRMV4L4k6AUCOU3Cxj4nJ/xhscphfKB6SSg2KiPRtu8IfmGEO5F8Zmo2Azv+4HQD9dz9EAfn+oPNfb2cqP0UcWgAUuNwAyyDBbEOdKHQli58D9HABJPg/3Kdp4Wq0OkXBol5y13n49s0LSwfv/ePNnib+a6jqVaW7Y6QDpo8hrhfmY/aVzK0XcVMmmaB173TptmuOiT5mBoA5D8Js44comZ7lhsFs6pJwwwLm169uRasTtYroZKx7YJwotBOo+2n5siHbwsZ8mbnmt7c/X6CeyMj/XOb0l9LIO5XSnYCtDwq2mx4YbIRLaMXmEs5VqP+hWSt12Pg/3oZ4Xhklo7ybfaQC4zAKw5NVKoQvYEuYPcj7IBEW67PKxCFylTIG7+QpSl28UA2mKRrDPQF9l57jORlWoDYbemwPHj+G6NqhNt+WAnTnmjz2HYIwHh5cdVVoMSI2hhgSAO0X3ZYN96eEr7y79P3OkBFXqekz9kHM9Bm/XNhwprMSTD2KBpBbB5FbhkoZYOXXpe1Y02cDkXPSI6ehdDXYtZDw9f5rz+i4dvaSeXev5bwZadebesyd6CDoLR1qK9+jGKI1lxOtqe0swmK37ZqapCiIQ/0CnB3PEJDSKlSe8G+0ngGB/WCSG6fQ0Chx8MdUx+2ABUhoWPARYFKdipsaaWV6YDJlkJho1/6exCh4h6LNdfbCRoFRC2GO4Ri2MFfA+btE149BQlEx3nfNs9QfxHNKrClzcJrzeNrGBHwrxMYEdrk4oJjLCcVUfaBqzRaorKbmH91b8lP+uBhK/iW04yr5p9BD3sbqIadz4/iB/E3UhzF9Ss7y29vL5diWjzvdeID8VnsuyC+1JyFvyxsrsyIJuRlYmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCszYWRZ8YGICwEz+lbo371/3jUG5Q12XmTvo9MveaC8+bLZv17IcY97W8v5r7aJGXD9eSWq/avii/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MfwA2pYTzTIKGYNj2Pp1yWugjMsBB/ZGhWTmYKj6B+wM3kSdGwIz8hHHb/E74bhumpKHGisGrISuQnRc0+FhFhax/hGRT6zkxy/bVWGfKXlvxLmNfBFg98iXC7juGOCGYVl9lbvhzYVVdT4koiBUSpT0H7+6ct8gnKHNipevzPWTLeKRFjO4W/vH0qqH+a9WTAif6pR7lAaUTnCjt8mUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdOXCzpPb9wcu3vqh5bqYL98suJ/r7U50IuSGHDw8fcvI/dwm+t1DCFF0Ab1PGIEovgkJzquVP0xMdH4QsSftdNqP+79vsoJdSwjSb5wgnTByX7ehVIm/uX6pKr/LYBuL7A4q5cGAIwt9qoTPePR3ZHKpqz2ou4jk5zJ3EfUtxYHOfk50tur3dNuxBcaX3cNDbbw+SzKXn/fPiQjqxVyIZ0ZCGxZwXaj7uXqqW4raKMl9+gELQ/cGDGV/A8fUEqbw5/0QC1ACAFtd5gKU6du0bn2ck75vmy9ZmfJB1XrF1tXUxU5sP5YlrFMaC/PidBdnKhMc+OnmEKzOqD62FKTmrug1JzawKmBgKcBIY4cqdlXt9JtPS4Xvcj07b3bOjH+pnkgG7kUDVaDJzCkBhKkuJ0zVECvtpm2h0feaLbaFBj0N1kfgFpqQkTt6YtAQfqg9mx+SND7v1Tb9QehS/5z3urY169DXoRPkSUJ8nQaxXs6WmjfG7yN3e7BzKXJhoiIFXlJolNFEgDTILdEPd3E8IWqlvECzgbiKGssEUaJTUHEakZOnAdRbiIxyVBWwbSh8cRc8DvItXXeNPnur+yjR8hulMjZ0vkiVLf0B+wBmioRfLmzM0c+5mTjmIDO5C4RnA2rMQTXMAJFRbBJ7/Hm4RNIX7F/WIGy1U+iGL9ofvR+GlqHu/uH3M3f/iOuF4ZPyaMm/LWrODtn9cpR75vB5a3nApwMnPqD7WIJhYIsRN4bgQLQX0H+Mq6Jm31WuiVPouIy2Ym2nWWs3/RIweeaF9ie3xt2lGg2/n2k04jrva7bAKm6cVnG2Kqu8O0xaxajwVRFzeEmKGML5Ig0zKfrfmPZ1ukr39u59aM7acw5Uw4Rh9zMNQ1zn2zAiT8KdwGVGxnw1zUsm8BMZNyFz0mOATSxUysLwKOU/OnbsgfcRB/5sNttp5qiSNEkh/AMQkkJEQ3Eg0oITkQYiMq53YIvrW2aF/Nm7nW/Q+D+/6myP3f5AtTH+jYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U8zL7JH7dCJ5oCRHBE2WwX0RgVvehk6k74LWJVAMXT8IEfuERJvxJkC8ecvV9Wt3VTwIO9J177e+tgzpQOx9bYqNvMHPwh/S5751OwQkcgqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+Pz+nFA4PH4leMKDFc4tWVIHzWgwwRxRgUMcaAEYM5o5Wv3FF7008qU3Stzl42Lm63Ilr5+qsHvNObJiH7/a/cEZwXJLWq2Y75YvgylTF7TCKECrTkbIh7RQG8gEQnnTgThVNTtUgP0lXpuB6LKYQOLXd0IUbeJAaUjWnohZu4B6FjRihN0nGE4TeJPwmut4kXS+SrjdZZD1J+o0IPUk231THX6kBPscY+dtNI/6sF3BoZ/CEB20q+fSeXYkqfytmjg5xoeJ2GyY/S2lbMVW8aWq/8/3OXDB5aQmMDkdoTm8UewESdCqITyGEHNlAKopI8JNS284lhPQLnzQyTOs58cWkIogE01E6OfYviVBZO3D0hcnecxtl1OcBJRtOlL6IGBKAnGwXvNYCTIwMAIjOeqfGMPyjmDGMuF4cC95Yj/mEWmhy9cCQIvyp6D/mT+lyPmbyp5tFXP50vuh//pSwz2WF4EjG4HaBC+WTFq+7HDiIB39Kl2niwVNsFHF5iuWi4vanHe02t8qbcSwi66fJnZ6NPt2eB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym0+Jmu8zJEnSXR9F8VuuZkTyMCVIFHFNCWL1kPvxRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChS3zLsjXRMnGduxZen37S2fYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIUsm0kE1zuCBxoW4kgbYKkXJhcE6dMDFXEUgKgHX45EtY7LXi9LH69qzqp4FWqF87q2kg27lLHUxUxEDtr4LlBnRJ/qjLkU6EGlEaeEpQYA2W3SHhLlIUX4dZLgUtYrq4iSjLhEwJYRVUpV0mgFlSBQKTTKOQJ+t8xYWL9PURXlVl9WKargPK0VEfv/zzE5R84l+q+diTjsr/VY06XV7Xe5dF/OIn9H/TE/gDewqS9wHxhEqGbS4ZJhG4uGSYRurlkmETo5pK50OxxTdY5fvCX7bulOzVvcrXNBXIhz54pswc+/xC2enApr1LSH4MYwRV6fWRHoovx8hBcA9ksaaXl2umiw2Yr1/5dzFWu/RxTSobncu1dbFxqdtl0UbrsVeVVbcZ5UnfnLVOu/auYq/jtB8sIZlBrTo8cOdIM5drPjqgvaXlssGxChY6j/2xQhXq63FLl2p9zWueBNVjHLOXa/3z761ufMz9K56y51GDf+r7HraJc+zVO45yzBuMILFmuvW1d/7+bl4wLmT4981TC2ZhZVlWu/RdO4+22IqEgi5drvzPgfckbITVCVix6dvbgRVk5C5dr38hpueUWtxy8qdjKtb8tu61O+VPvArY6T3j4MO/5K6so147lEKzl2s/pNxCD2PLU/1K5dnpZDAuXa/f34yrX7u1nnnLtPUbffTjt2eLgLS9q+OXV3SDivVw7XdyMhxLkUj+uEuS+fsVVrn3k7ZT5WcMy/Xfkqm0bHNz5lfdy7XQfwQNW3pxYNfL7/6pcezCbG/ufCH+RRPjp1YTMJsK/2I9LhP9npu/kQYQ/+kevj8eUnuFpDTSJx8r1mMLjaXOefSTULF/ox6VZPovpI4tDhP9K+YuDBTuayPaMejrv8kSJ2OIi/BM5UfnZvN6Qc+5g3MEf/kT4T2h3Ju14vz1spc2z3ya0e7zRakT4dZymG2gZ05ldhD+kljjy59SKwSucnv7TySfPkqINcOEV8zKsKurAy5hNhH+C+PPNF00qBm/8e9uONppj1H5rGRH+iZzg/OxnRhH+P/ptrxBUabtkVrt3PoNqVbxmBXIWECEdJ0JgTBN5Wwhb3iYTN2n6vcNV8Zr7dddeXvyWKkBrhx3iS1KrQERn5my2LDj75G+RKPPvJ7QwAOIadXJcPMjhYJVrdaxRWg70CousT8tUPSjQaCi3r6FMUEYC8JVL4KILDd+LAN977FNMAw9WVct/LHCVwAKdPPX9+KXf0BMBS6KubfH/XULTCylK7S56sXmaYzS12DxA7weInrMEVY8YbtYal0KVx4dvjCJOo0Dnl9cdf8qeWn9+YPblb/MDX7tSy/6WlmI3Ik5I4dd5l/0F7//ej+v9n1k8WdL3TCMSJfjISnWMMppD26a2+LRM5zdRmrWyQbelMyedovZV8gOYfVXfUhzGuMdpjCvWkf4IjNmx8AxJVOtA+JJHw7VTV+8OYMoKZhYJ7sJmHaLj1ZoYd2HzDtrBGh32Czpb/dXl3IApa8ODx03adfTHyl4LqHENfkGULlWFqH+Z31QcxjrDaazDVjFy4EcZla1Wz1/oTkzWDNByjKDwzjZB0oYvZDOkC5tO8Wnax5SpsonmmOFNOHJ41PMiQxeqmWz930ZmqYQn58i2fhyf2W3c/fCIhe9n57rNbORs0WkvBOClHwHATQQA0LUYlYmSoYxdZML3X3cv54VTg3akyqY8rB1w1KKHfSEAF7kA6H5Un2iG/sf4OPTC3Gbj44yXcPFxIiXFzcepeLv5897VkoLnHu6cbvtmyQsr4OOMlXDtbg6TWAGpIDo62gx8nEkVzo96fD8teMf9T9N/H/oh2Sr4OEmc1om1BuuYhY9zLGnLaceJy6TL67y6FNlpl6NV8HH6cBon0hqMI7AkH6du2p+fjz/rHTinZrVfXv4dNt2q+DiBnMbraBnjWScf5+7u2U9/+7Oi6OD8JgdP1Pn2wsJ8nJaclmticcsVKx9n7tWT3x33xgStabhzeblK/VOtgo+D5RCsfBzgCIk8Nez/Ah+nwokb4RmTRQGTvtw7u086fL6F+TinJVx8nG3MlLZY+DiSfj1LRk59K5o56e3Q1lsTVvLOx6HPzXngmJyUcHFMDkiKi48TV7Hfz6X7h4QvuL3p3cUWgY145+PQfQQPWG3jxGqNeX2upfk44WxubPBhZVNl+DrJ7kMRqmePe7+l7pR0SYZnJwM08qR45glTI7YvGkiV2iR4eky/m5PqgZ8yFcqhZl4c/Ab0vHtux0vLFrcQrw91qzytzq4KrM/H3Mkp2Mjof2WjgAuLKHgUC9Er6eeeDOyV+k9D8GnGwtN+DhL4j3b+M6axLDC90yn7KIUKGEwREwT8+lDy4zCz4qaMYDOlQ16GtIrvb5Icn0eHN59OkdJUMNAGrIx7d4TNBOXwJsohKyIYMA5f8aXkQT8kXwQlD0OzgxIsVvIGGdlNEVEi94iYQL0zG+rfxm1bUdXTxm9XH8fsVUlh1DCCOn1ZrviRN/jEJv30Hk8nNos4brgs4taBbpEubBZZOjMj+VXwp4C5gx202ZPdf6KuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6kiNHfhHp05nIuft3Q3WpXmWAmBLMkitQHRdUHd0DIL0GI4DwOIb8E/9Hll8LH3e8YdeqlaOy5HWm27yOu0uWX0nvkjLqd1Ccw68jS+U+zpnYk28nDqEWWZ6J/MUKeic3SdlA9gDAj0lq3z3z6mvzj1vDVY9stFHeVdzDFWvzvhgG7Tod2XYhKeWaAITSug0UKT9rB+o79tOAdEuPyHUb+75irGe7tGzkSoRLFZqsq/vmjDSREumQNOnFdVGNPztGED/57b21/8eanzy04TVZGgn8SQuuYaCgOow3nNNpg8xqNdME2oRLcocJbRunHPWYbcoyyJXv1pETpa2WiVqHBWHfgKygOE2mrM3O/RUYuGCnZXC3NP+hWO8bwKhOWrJMPUOkFLAS0zS74rd7McOVdqNZXEcMVl1HjOI36UweG1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0J6JFtI7/LoQUQZ1YWAJXsPlRy1y4Va/bRcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3uiBUVoBQfZHgGRLxlKtwc9IxkKU3T1QxXDc5cJurU3lUdmj1XfBWNTCx8Y+aK9OmQIfk4WSqZsr+ffTXvrIL3AC/IVCyfe04qum0q8B1hpIVZZYhT3A0zwle2NY43hFlRjvQKJS0yViRGbt98UZWo9f1L2y53HWFKONQwYU8cTePN+nG8OeokVLCdjPdCIPTY7qDPEJT2lqRFd88qMxv5bzh55/e10eRdqv4R3mwv+EE74xZaBn8EQM7VQNz4iINsZvAnSIvSKu0X0FKau5nsQruCICBFg+ntgA4IIMFFsAebMAnno17Y1AsasqlvmRf3hVF1xW6woVpQ0lEk3YQsvftSadERBLWGMIhb8GiMckFqwcJs7mDDidHw4jyROpo00aAK50DfpYavbqf47VLa7pz/d5oV+bubCLNliIMbvQEojmnVCIPgdFZreAYxFM0/wX7zOadriW58W1AnY2GPq9XLdP02iuVx4N2IXD7tcWDxadFdees2N++JlLX54IosJPmRiPKoED4BCgMaicj4hcAsPqQAVNsFxxAAi+4VrjFIDui9oR7MzxRW/dx/pnCs5VOF6n49DP1JrGpeVkjcz2Zn5TYUBtrO2Ys3ikCni9LAbEzP3BefyANiMmVyAgR5lkTCGH4mBf9NCwPZj3JkxO8yWHDTGY98yR8lPlgzJ/Jry6cW1kSctSmOElnk3g8syS2dYxjLI03uHea5v2GfrsAOH/DqKsgIbdvt7yf5wi9U33OJJuJQtqIlTfy9shBBxrStbXBPuu7FL99tM8eru9RyWJ3pTy3+WjlTrGCd2uCZNzvgNIKqR58Y08JkhqVI+VKlFT5y6Xm1Ur++xPgHTKm87F/LXLH/UIyC0p7Hrhs64oTOZewIvbcQIT5VAeJqRaVx46o6/H6xZiD0I8s2e7hn3pY78n6DRfaMej3+d24X6ZvhHMN+MuF6Yv43Jsy0dKpkSmhPUsc2K9xdfmuhvRQCiNAiRFDWqA8Go9p6LDFCsM0nMQvAwEjQ9Ep8d/Tquqb54nHT00ScbfvPPopYttBGD25hDCbtaGDb0McoDNg8zubChdR/4QbYCjrIM+dgkwoP/rspE4jySFh2//9lQt9P7LyND9r1vPHqO8+x+1ERHDD+EmejglwvDSlsyuUZ4nUrBs7b+uXXgh93tWbHqplXgR5zyRWONwE/Eid+7OdYTMYxkOVXAPVEM4fKQ5ut/+OAHp/19/MfmrelZ4V3rVaY5AhPjxkUPYqTb+CHixk1PrDcTcaNbkfaS8Z5n9v1ko0cVveubMqpM3FSGhJQ9s0+QW5j/Dw==
                    
- 
                      iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvgAADr4B6kKxwAAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
                    
- 314fd0aa-b899-4f85-bf12-5b9e9659f93e
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
- 37
- 098e7b9e-7b4d-4cef-bda0-50875a59b926
- 0fb027f2-bb77-4eca-a35d-796b227556fc
- 19507874-964b-46ac-a895-60e53f632f29
- 2adb01ba-7cd9-4c5f-a316-08243357a8cd
- 2d53c230-0155-47b8-be10-65af0a7e136e
- 3b356cfc-faae-4b8a-ad5f-521a9c4cc56e
- 3c447cd3-e651-430e-8806-4c598ead2225
- 4f8d7f4e-f77a-484d-900b-333bfe51ba19
- 5511ee1e-138a-45cb-b69e-9ea295492e11
- 5927aad1-90d6-4006-b966-f46d1465952b
- 5b40150d-e9eb-4ea3-8661-fb71b0a913f2
- 5f22b34f-4cbc-4347-a5be-30f64bdd9352
- 61dadb66-9f1f-481f-9353-6dd2584b5b6d
- 648205e6-512f-460d-8649-72b4e8c4d978
- 6484f3aa-0d26-42dd-912c-1d535fe27c98
- 66b0ed95-d3a5-4c74-8fa1-0b63e7386b14
- 76cd154e-bedf-48ef-8855-4e6107eba638
- 7b38907c-c7dc-4ebe-ae16-a3819d667992
- 7bdc141e-6a35-40d3-9584-5154c4315eda
- 87290722-834a-4c57-9a9b-e0dd5cb9b39e
- 9fa27823-77a0-4b75-bcd8-4f611d88e4dd
- a2801291-d228-47b3-8ae5-5c784851fd5f
- a2f18f21-fc41-4d19-b1aa-1d9a7c2c8690
- a6d64955-5e50-41a2-bee1-f25dc8986948
- b557f7b9-32f7-4d1b-b816-f247b02e448c
- b7326999-e8c5-453d-a50e-5d60958d0c4f
- c169fe0a-a0dc-4e54-808f-9ac11fd63248
- d1929846-c2c8-4d52-92c3-08ed69f640cb
- d5cad9cd-1030-4389-a33e-5a68c398ba17
- d774309a-3843-42ba-bb8d-21ce60b8e8ec
- dbde79e0-7764-4ce9-a54c-7dfbac0cbc8a
- dde5657d-1af7-439f-8363-65e4a0c6e86f
- df5def10-369b-46f8-ad3c-a280d4592df7
- e457f7af-00ba-475e-92b7-cd11adf29380
- e5295388-f02c-4451-a296-4ed151ef7c46
- e9642a8c-122c-4b43-8755-8dcef8132cac
- fda35d21-9073-4d87-928a-96c2feb7e0f8
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- e860b9e2-e037-4c18-988a-393d0094d8e4
- daca2ebb-26cb-48f4-8885-277e43200f92
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- 937bac2b-aa3f-4485-8435-a74b05842dda
- 17750273-1d4e-4a10-92b1-f4b16af3b73c
- 326b8016-5135-4828-b69a-a21c171e1a06
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- 735da924-e3a7-45ca-9564-36c125627c0a
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- 1af94696-7c3b-4341-b4bb-415b935cb441
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- 88db9398-ca86-4220-85b3-d1387046010f
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- 53133e66-86e1-4322-bb85-7afca5c21f4f
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- 8de15979-110c-49a4-bf71-f92c5c15659e
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
- cb30ccba-a894-45cb-b1d5-847ad7005125
- 43f684c6-6920-481c-81ce-8a3096268d23
- aa2a8593-f318-4546-bad9-74c7978a14af
- 9c973484-e313-4490-a780-3cac6484f2c3
- b2a58353-e9c9-4e65-a900-6efa66489724
- 20d03587-b988-43e2-924d-d6655441a5e8
- 
                          1631
                          5036
                          103
                          404
                        
- 
                          1692
                          5238
                        
- 20
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- df5def10-369b-46f8-ad3c-a280d4592df7
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5038
                                  47
                                  20
                                
- 
                                  1656.5
                                  5048
                                
- Second item for multiplication
- 0fb027f2-bb77-4eca-a35d-796b227556fc
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5058
                                  47
                                  20
                                
- 
                                  1656.5
                                  5068
                                
- Second item for multiplication
- dbde79e0-7764-4ce9-a54c-7dfbac0cbc8a
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5078
                                  47
                                  20
                                
- 
                                  1656.5
                                  5088
                                
- Second item for multiplication
- e9642a8c-122c-4b43-8755-8dcef8132cac
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5098
                                  47
                                  20
                                
- 
                                  1656.5
                                  5108
                                
- Second item for multiplication
- 61dadb66-9f1f-481f-9353-6dd2584b5b6d
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5118
                                  47
                                  20
                                
- 
                                  1656.5
                                  5128
                                
- Second item for multiplication
- c169fe0a-a0dc-4e54-808f-9ac11fd63248
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5138
                                  47
                                  20
                                
- 
                                  1656.5
                                  5148
                                
- Second item for multiplication
- 2adb01ba-7cd9-4c5f-a316-08243357a8cd
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5158
                                  47
                                  20
                                
- 
                                  1656.5
                                  5168
                                
- Second item for multiplication
- 7bdc141e-6a35-40d3-9584-5154c4315eda
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5178
                                  47
                                  20
                                
- 
                                  1656.5
                                  5188
                                
- Second item for multiplication
- 7b38907c-c7dc-4ebe-ae16-a3819d667992
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5198
                                  47
                                  20
                                
- 
                                  1656.5
                                  5208
                                
- Second item for multiplication
- 5f22b34f-4cbc-4347-a5be-30f64bdd9352
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5218
                                  47
                                  20
                                
- 
                                  1656.5
                                  5228
                                
- Second item for multiplication
- d5cad9cd-1030-4389-a33e-5a68c398ba17
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5238
                                  47
                                  20
                                
- 
                                  1656.5
                                  5248
                                
- Second item for multiplication
- 66b0ed95-d3a5-4c74-8fa1-0b63e7386b14
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5258
                                  47
                                  20
                                
- 
                                  1656.5
                                  5268
                                
- Second item for multiplication
- d774309a-3843-42ba-bb8d-21ce60b8e8ec
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5278
                                  47
                                  20
                                
- 
                                  1656.5
                                  5288
                                
- Second item for multiplication
- 648205e6-512f-460d-8649-72b4e8c4d978
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5298
                                  47
                                  20
                                
- 
                                  1656.5
                                  5308
                                
- Second item for multiplication
- d1929846-c2c8-4d52-92c3-08ed69f640cb
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5318
                                  47
                                  20
                                
- 
                                  1656.5
                                  5328
                                
- Second item for multiplication
- fda35d21-9073-4d87-928a-96c2feb7e0f8
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5338
                                  47
                                  20
                                
- 
                                  1656.5
                                  5348
                                
- Second item for multiplication
- 19507874-964b-46ac-a895-60e53f632f29
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1633
                                  5358
                                  47
                                  20
                                
- 
                                  1656.5
                                  5368
                                
- Rotation angle (in degrees)
- 5927aad1-90d6-4006-b966-f46d1465952b
- Angle
- Angle
- true
- 0
- 
                                  1633
                                  5378
                                  47
                                  20
                                
- 
                                  1656.5
                                  5388
                                
- 1
- 1
- {0}
- 0
- Contains a collection of generic curves
- 3c447cd3-e651-430e-8806-4c598ead2225
- Curve
- Curve
- true
- 1e4870d3-d88b-4e3b-a627-be71345d40a9
- 1
- 
                                  1633
                                  5398
                                  47
                                  20
                                
- 
                                  1656.5
                                  5408
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 256
- Contains a collection of generic curves
- true
- 6484f3aa-0d26-42dd-912c-1d535fe27c98
- Curve
- Curve
- true
- 0e0d5017-4f0f-4bab-986c-96ea91bffc65
- 1
- 
                                  1633
                                  5418
                                  47
                                  20
                                
- 
                                  1656.5
                                  5428
                                
- 2
- A wire relay object
- e457f7af-00ba-475e-92b7-cd11adf29380
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5038
                                  28
                                  23
                                
- 
                                  1718
                                  5049.765
                                
- 2
- A wire relay object
- 5511ee1e-138a-45cb-b69e-9ea295492e11
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5061
                                  28
                                  24
                                
- 
                                  1718
                                  5073.294
                                
- 2
- A wire relay object
- e5295388-f02c-4451-a296-4ed151ef7c46
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5085
                                  28
                                  23
                                
- 
                                  1718
                                  5096.823
                                
- 2
- A wire relay object
- 098e7b9e-7b4d-4cef-bda0-50875a59b926
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5108
                                  28
                                  24
                                
- 
                                  1718
                                  5120.353
                                
- 2
- A wire relay object
- 76cd154e-bedf-48ef-8855-4e6107eba638
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5132
                                  28
                                  23
                                
- 
                                  1718
                                  5143.882
                                
- 2
- A wire relay object
- dde5657d-1af7-439f-8363-65e4a0c6e86f
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5155
                                  28
                                  24
                                
- 
                                  1718
                                  5167.412
                                
- 2
- A wire relay object
- a6d64955-5e50-41a2-bee1-f25dc8986948
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5179
                                  28
                                  23
                                
- 
                                  1718
                                  5190.941
                                
- 2
- A wire relay object
- 2d53c230-0155-47b8-be10-65af0a7e136e
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5202
                                  28
                                  24
                                
- 
                                  1718
                                  5214.471
                                
- 2
- A wire relay object
- a2801291-d228-47b3-8ae5-5c784851fd5f
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5226
                                  28
                                  23
                                
- 
                                  1718
                                  5238
                                
- 2
- A wire relay object
- 3b356cfc-faae-4b8a-ad5f-521a9c4cc56e
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5249
                                  28
                                  24
                                
- 
                                  1718
                                  5261.529
                                
- 2
- A wire relay object
- 87290722-834a-4c57-9a9b-e0dd5cb9b39e
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5273
                                  28
                                  23
                                
- 
                                  1718
                                  5285.059
                                
- 2
- A wire relay object
- 5b40150d-e9eb-4ea3-8661-fb71b0a913f2
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5296
                                  28
                                  24
                                
- 
                                  1718
                                  5308.588
                                
- 2
- A wire relay object
- a2f18f21-fc41-4d19-b1aa-1d9a7c2c8690
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5320
                                  28
                                  23
                                
- 
                                  1718
                                  5332.118
                                
- 2
- A wire relay object
- b557f7b9-32f7-4d1b-b816-f247b02e448c
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5343
                                  28
                                  24
                                
- 
                                  1718
                                  5355.647
                                
- 2
- A wire relay object
- b7326999-e8c5-453d-a50e-5d60958d0c4f
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5367
                                  28
                                  23
                                
- 
                                  1718
                                  5379.176
                                
- 2
- A wire relay object
- 9fa27823-77a0-4b75-bcd8-4f611d88e4dd
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5390
                                  28
                                  24
                                
- 
                                  1718
                                  5402.706
                                
- 2
- A wire relay object
- 4f8d7f4e-f77a-484d-900b-333bfe51ba19
- Relay
- Relay
- false
- 0
- 
                                  1704
                                  5414
                                  28
                                  24
                                
- 
                                  1718
                                  5426.235
                                
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.0625000000
- 
                          1205
                          4937
                          250
                          20
                        
- 
                          1205.704
                          4937.567
                        
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
- 
                      7J0JIFTd+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpobKE7LSQ3jYtSrt2ad/1tv3uHXd0587cG6875vb+Xv//26/mzFx3vs85zznnOc/nuXJGno6+HiyOz0/gR4pEIkkD/3Xzcvd1YXMW+bG43mxPDthkDbwMNoM/suBb+J+js5hOLC74FmmoWYHfZGoEviwPvDTu0Yv4VaGHzOO/cBpdjJZ9lrXmsvzYrGVguwLQLmPrClzFqTv0sgXL29UuwIsFNneEfnFXqM3Sk+vBdAdbBgOvpqSk/OR/ypblznL0YTnx29hs9k9lI5Yzm8P2Ab6FNdfTi8X1YbO8+ZcF/+tkxPTh/R454B9H73uEx4TckutsxPJ25LK9fKAvD94iqZMl04PF/9fLjvZ0Ez29B7nbG3aGAX8+iMsA/rwfl3U/Lof3F94/c1LBP2M28v6Mvh8T2/zO6nhL8O9bgsArbAM/8iBpb/Pf72/dcn9rbPPb7scdbL5a09uaLtIQdxR8fftagV/N/yx0S1DrQcHb2/Hr94Yn8N4cifX3hLTmC0J/Qq9gfor3d+gb8X4j7AYONt8bdJ/82/71Hl5r03eEfinvu0Oq8q4A6cP/rLCSTQpDajf9Ir4hILtAVxMwHyQvz7J6eiZ0e3kboIeBQ8GbP0zAn678Vw09fZsGUEf+EAA6mxvQGaH+0wF6WcaOyXVh8d7ZH/jnDi0Saaoa0LPmenp68EeQ0tzz06VnAd1Z4FfJg68I/Rp5G0cvBjPA09cH/l4FE66nr5fQm7uY0KkMtgOXyYWGgBQ0sqQF3gq+Itv0vgDePUMfV6R6e7M8HNwDaL7u7vChQLX2dXZmcZ3Z3q7DyLOaPMbU0Xr64P8NIxv6uvv4cllTOSxfHy7TfRjZ2tfBne1ozgqw81zC4kzlAFfrzr/0rF/+BryyLHQVGaqvj6snl/9yVwu2oyuT5U625gZ4cjuYOvG9TEr9DvVFI2cxMmQ2sX/UKywXGLEKv25TFuX3KP1yFlYOoPmaZZIG/ujc9JqAWODrMk2vgxp1gPTrZDLzl+8budemYl7GQdqBvd3Pnlj9cZvAXUnzbCVv6MnxYbI5TX5UG7qKjIEnF3KtfMPIGHq6e/py+R4O/F9Rvqo/lewCXpfs6Uw24TK9vV09vQDfR/Zs+lYdTI14vQf478eiw8lHpjVYhOxPj1e29TUGmqSgJm6OkkNw3wrzfdpXnDTqPr4CmjpATX2PLkqqm8GiZ0ZmrTnUfYo50NQRapLtqZbnrKhoWXz2qwLHK8gAaOoENU27Vm/ZOz2ZkXr9ekjRzY4NQJM01BRuYBQuH2tC37qzfssqv7CtQJMM/w5der4qZV63Wnc3zu8Uhd4INMlCTXmPl52okKm0DHF4UBnyI7IT0CQHNaV7MPZ/UYqxyK/TfaaQm0YFmuShppeDPpydumqG8Ubja2fZCi5LgSYFqEmLNTBOeXYYLT9isSxJN3MJ0NQZavLrJncmP0aPsfb2rEN0vYZioKkL1LRz48ObXl0vG8faTWQHa0yKBJq6Qk3qEaGdRunestpf93rVjamxN4CmblDTi0CXz4vTUunHZOqMXGVipICm7lAT2+wE2dnyOWXz3nE/nqtQXgNNilBTJ2kVHaWhfozMT49ND4d8mwQ0KUFNx5xHnPKnTaPvmdnNZbW0wgegqQfUFPtj3ktTf6Z59oltDT0m3bMCmnpCTUs14u6eMDjB2LB50Or0mKUdgSZl/gW397t+PWkKNZQ6V8l6h8tkoEkFatqk0PUMKfuw5TF2wuq40oZSoEkVahq2d2B4r2W2xvv871PvX0/8G2jqBTXdyoi5onVaxixzSJcNWRYDpYEmNahp4SBlizrSMpNQywrtUWOcjgBNvaEmurebxpLujwxifko5JPUt0QOa+kBNpPSNjt5zfWmlnyxPzR51SRNo6gs1XU7IXvpi1nLjSGaIjrWhTBnQpM6/+T3dspkpGpT1l+aOzPccFgM09YOabg+06RV+OYR+9J15tt6lMtAo/aGm08fjPxt060bLOzvSZk5m2TqgaQDU9NfLsujvX2VN0+x0nw0Jzu4LNJGhJurz0FOLvDItNlb1sVhYVh8mZ2q0SMCDDAQ9synH24fJcWSZ+LKbnZmSvsqnPUY/zFJGb34Z/epWnQi3IWfJdlwCf5mkQPXx4bIdfH2aPDzkuvkuSgo3FzWgHV1USa/Fh1PmhVoWnv0UaqMTYAtzUbR9umWyr15a5b7oqF3P+lIJc1FH2NXyZjP7mqx7cqf7Kor5B5iLSj/kPf6EuSktuJc0g1Y1URnmooxXlydTQhvNNi5I4hg8z9OFuahL82XVi5buMsydrPpx1BxpDZiLKpvtcXXeR1/T4JG9/WlBmqdgLso/pGLFxqHjKCnDS1PlNGYGw1wUe9/qYtaYy6ap0aSJ0/XKk2AuSu3nSNIFF2mTCKXeR+InUIphLsrayXz/iwB3SvoxrZCI0Z0Pw1yU3RBd9StPSiwS5Dw4IZsv2cBc1OTs9wMnXquxTC5ZqVE9atBhmIvSCHAbGnovyiyuenulXcqg+TAXdSL8ZOzVCK5lxKrjN/etvjEf5qIYO2TV/PuwrA6eYN2o+KQ2BeaiHqaOezvoSX9qCneH/UvZsuUwF2W5/t1A09gi04IYi9kKZ1Q/wVxUYuH3Bwe3pxrkechsTEh7pwdzUaMvsxhTZ8ibBOWlhmqu7LMT5qK4N+IOFPaYaJX64fjXOcMPP4K5qLlrOXnDIhIt4w0cErJ/vpOFuSgjL02bPAVbs9gLtfUbLCdqw1wUtfE7R222jvHOa5FP9Lmqg4TGqxraeB1W/GBW3sL1RhkVdru/T66pxmG8dsBtvGq143gVsW7gj1cR6wb+eBWxbuCPVxHrBv54XXHDvefzHaZG+UFldnvPaF39b0nx35KiBUsK5KwMW1IEGXbMT9fwpKZfMVa/dDxFEbakWDT3S90C6mDjI/aTGIEBe6VgS4phWmPUTluo0ZJZJ+Z7XKUWw5YUV2aNY5PT9xofTIhMPfDl0DjYkmLRUYY0fcNTw7U6umWTlKZeFnI2A9CcDXLZjoOz6Yibs1FtR2cjwqPwnY0Ij8J3NiI8Ct/ZiPAofGcjwqPwnY1cgJrmq4Icy/CzHuk7ax4/gDmb9MZDMQsKvjCiDagfJ65aHQJzNiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZiPBDfGeTdOfgJLf7n2kR2xwHPndb/g3mbJDDS6jzdkfrvMgJAofO2wmt8+o9dRj4jdtovnXO1doRB9KUBX5XFyO2H9uJRTb05fqxBPswaFjQTKJ6pw70MSbZEfwgmc3x8SSzlvoy3cnuLI6LjyvZm+UCxj+9ZehsJycWpznYIlIOZBdGv0UhVQRaEQo1x5wMAKM48V7SAP9dd6yCVJtaQSJ9MiCRAg2krdl+nj78NT1JPw9o3VvR2YvJZXosYnO8fHmBDVlIW1FydOf9djKggRPvbkR+yRvrdhctSOhHSysYX1czO/S6oM1FfzvoZSveb2sK+fJCXDK2gAtxZPFdgId1iPPIruvNt1Zb35z8bUN056ZmoaBWC/WpBvSpAvUhA/okU5H6AK3+qQL6SEH6dEDRp4elr4cD6Lycm/uFSIl2d6F9C54+1HRHvLX77Fs1oxESgV9HhES8l38nEXICxUEibUyJgC7UzRoMsnn7AN/XiOnDbB4DJFEBRxkDLiCHKwk2jIXf1Mma6ePK/+YdV+iv6mTqw/IgkX4dTMhweFLzPwS+D24p8NIyGJbqZevlzvZpthKZ6UNewuYsEW2ukm+vy4b1O8/IKFj2qVhpn76guczBzwmbq+llIXOJsocIp4dlj9C9WPaYIBl7yDp4erqzmM0OkNSlyRqevj4IxyJDdXRkeXvDLy/S14AODwzdkr082WgD6WPQ956vLRdbJmyOYdO9aV8FLCNjzfugkGn4r+Num1zIncwXZZsPOTx3IiCLVOtlGWTH5LgAhiX7AXOhJ5fXc51aoFS9qcKlTp83mwSPNM9cyzlwUkApOeiiwlr9ahGHWtqYagGeRUCtDq1XS8Ma/DzLB/DJfkx3X1aL5Vry5H5j/Y1J9Kw5GWuvat0ejThf4F9VWDB4mzgk4w1+VMmAwQ8tk6RJKMukM4lMxveJvUzW7esv26CxolSwIzCAVRHZ1oghvESSRpHYwJDLYvqASyR38LOQRyU7gecrLCeyQwAZUJfr0yT2MLIP1H2ZHCdoCaW3qkVrJ+QaX/R9C3dgfksLNc7MryDp7wE01jEUsWYKBTTW3y20ZsKaaRR5NwDTQOS3S/vmd6+fZZhJ8vkTx2rKknMEpxhb8NPCU0zTy3j3smRAATKowCtRvewUsGqs3i2RKUbB0BPYZbI50Cn+aBL6D3LRhmUgNZ6B+P1S24nNbTrN1RFpKK9HlfHdWL3paXIvNROe9fhbwFDyRvwPCxkL1iQOgwXuxjKYvmQMJtM0Rwka6810LGP9bt3WmWesJsch0j6bumk+/5z9zqCoLltj5OSlRoIrAgbvg8IrAuh1cVimLgXLMtEpkl498w/9QcsIrdlkSOhzaxcGzN+LtAVyuyZgi07gx4Us0fQq3nbQzoFcWiYVGMFIp159lDdCoImT3/v+NRMnMgImxokzPx1r4sxPExlsaNvE+aTWnbViwHSTTeXmX24aylLaMnEittLIzUUbt9KgMziQjuUM7NP/f+fVSwbZ79+OMzE/etvFx/HQ3D0EmVflMA0G9GjCzKv8n1/zK3JexRpsv51XRxv4JMotybDcTQnMTH71PKRt8ypipKne6XPvZ+AWWmwexS/h9uYpOIw01zQsw6lJyHDtMu1Olro97bGdo0HmlQgpVekSc4lOuzyPhzrtAgMImnb5nVNo2rU8RrtwhnTKMHBu78nsBjMlgW/TzcLX3Yft5c52ZIK3Ljz5ovX3vhaArVgewKccme5kD4GrtGhWRZ4QYd2WkNyI9hbKqXgMEGw/IGck0K31kXLSgW4tt7+ia3P8gd+rQRl4IVJT0BEI2JLnFXgvmzrxx+Icp6qNUmXyRoWvell01e1ZzW+XQmnvbMXrtkKjQa7pdfQLN90P73ZJJOxzh340Ntfbh8wGhhPZ2ZOLsJdI+1T3l9cc16W/RWyXjbFfFsxzEbCPFFXIJMBLyO4vhfBSyCO3NnopEmDOA6A59akivNRVcD2wvwImktRvROpvy3L0BBaHrVFpgN5Hit3Frkbr99yLsrpQKCeokoGwSga/VSk6e398oOomRsw1SuDjoTc34aCSHKZK+fsqoD7Y3Jew/KeaDcsbEAY8o2mBQMiZSXDaa7qU8LQHvY63P63PhXpMIxU8AEBo4Z7LUwryp3Jo/nRb/ccdw2dGMgr+sjpu8jN5kGBk09jfi8vy9hbypVgLPVVjMLbK28pwyKzmC8CuxX+nEs3KxoJqpz1ohf4km1WDhlnptMjXIg/P0W5ZOBj7q62lIVYwlhIDSDwO2MXUIbtbHSCxYowIH8s/lBbhY6VE+Nj474GFKTH2pnn7D1pSHuveag8f2vOXFmQ/JpfNdHAXfX6r9qFY6txwKj35Tc/S+6fWVAiqPQv6KNlK2DlYtbcLLQes5RUDOYdypLW25vOs1RrnoPzLOfzqyCJVmp2ecIF2+4NJ6onem2nDfBNa5BikyLj7hMVHIQnKKSIkoB/lSQD5BHk0n5CQXzcn5FGjaWF+bmHWkvsMwU20NZPDchd0B/wridJQm0r2Aj/Bm4Mcfb19PD3IHE8f8OwFmJ18WP4+0FmMSF2R2TAibkU4Y0SUqo5cT3d3G9Cz8/1X08+b6Yg+ibQkWp+Um+nN4toBt8//tZpGnr7gSHAEZpAlYFIEy4ntA313YCYGdxYPAvch7Mgn55B2pBdUkLQTADvOMiQFhhgqWDC5LmwOg+Us0Ck6N71sw3ZxFaSDml638/SCvyrYGZKNCyo6kRMquvNEFETkZPl3JSppi8tcZspxYjvCUCJ58EVwuwN7ibemBUNZv5y5rRfLkc10N/R0+vVZYO/nw2UxPZr/3Wk2l+n1y2E0dVUFtK5KdtHIC40KM9hy8hBj+5eCFYL9w4blzgwQ7KpyJJEnhmi9tyeVvIzNZZG54JWgLDSRHRWZmyXiRlo0/hG9Edn/2+gh44EF0uJEKF8gEOkeGoH5jJzIdw+dCa85cvrASXNk7isOmstFY2letYmveRc0zVuditmZr3l7oGTC2Yz87aGIbEZ+KqaIbEZ+KibSsEIZhuACS2SXQCY74pBh2BXNJkvL2LpsyzTDY6VW7k8fzXst8Ls6z/AFpwFAOC9X4cmyFTkLg43Y3l7gQGCSvVm8pUjAcH7yAvD/gI2A3yBSC2R2J+r9CSki0Cg0XORtPbk+VvBeJWIQ/cOlXfPVkPMhuLRLBgaRqiH4n+AgqjHKr0jiJFd05XPgwPzE8he4XJMpu6GZsoS1L43z/SwjaljFUX1ujwWC4WYwG5EJsqzCASUZFKtNbt4E+biyeNmivAuA5uMnjzJ9QJOCU6Izm+VE9uJvIvRatAlCcgIodywcIG9uaukuE9hxZ3oAyv8tKmsU3INmLmlV1qhSc9YoC9JI5BccnrV6/I6zl8wOWswwWT5nzBkc80aRtEQbHXwtoFA0qBAdUOgN0sGDYbpkd5F5o2gKaf5KUwJ2Z029xcnTA+h4v1WNZPfde/JXRcbGYapJV1/WqAh2i+brCneLX02/U69zt7jY0lwdsygtlRvrXd/o4KAe0IMw1Ct3q2hVSFyFl9D3SzpgoK3wWSVSrji5CZVHs8cYrl2ot7xjxI2ziO0FeB3hTtb0Mt47t9BcqBdNEXVKcS6ngvTGXThdEEuHXs1DHcoOxFJiaHhHY5quGi1+ze1pu494ZbXen4hFEWt3LEWAfiOUEthCRRzZXEd3zL7h5WF2rMroLbWsTMdgrrHpPIIoorgESxEvN/5SEoQw/lQwAkm6tQMYEeiKBUYEOuMPRnxcXrxeyuYGY/3OmG8751OqiTvBgVnmi12xsszLXcQCRhSmmi/u+lyJHvrY4viKQws34whGIAk8HCQiu2BJBHShfzsYERi63d1B6odl0tvhNpROf12QMBhRx8KyB4X1fwRGrLn23NJnLI2aGr9LUWP8um8SByN47gQ1bx1wJ5ICI2xqh7p9UQ+wzJ/IeZL23O4KIcAInmdBVQvwLBIDI5CbAcKAEbzBjyoZMPihZZIiCWWZtGvFtppX9UsMDxzW+X7h4qgaEdOz6LiOKH2HQO8EAzaOnu7uTSlq4PwHdBoWl+3YtG5q2eoIObvLWjC9vNgcF75S4NfBcTGBxNjbOFOSwcWEdQWYMiN8QnU+P7fCK96KbxwlNOM4aAdrJHQqpeTaD1ZLO3tDVeDrdjcCMx+8fbi+jj5kKtex5Tm4k21YwFdg+TVFbRyY3iyylzuTwxpG5jKd2L5NR1bAQHdv3o+D8RwOmcl1bFnUBlmMAfO+hQyGfEMLFY8GF2hcQPFzopa3gcDyttyrVctbdeB3k4HtpGHTHgpc5v66MZHfOzN52jcfGzYtadb6YRYntwrG1zqK+q68F3/XNZFbtDZ2zUAwVAMKlSwqQY23zvVqXSiir0FzH+J1lSbdmvaeIoWizFc1/lS0wTRlEIs77VzjakF/yruaNXg1YX8Ka8Pbn5LzIF3sRflTOuBtSdxWhiZsmsZTizTZvb7xo6xWR6M9V33254Y/OY44W+ddSUTSTdPr4tBi8VIsLZB95HdBCTIV7lC0gf9AZ8PkeOtA8ogUxe7Jug0xlyqMymaTH+3oW9VD0OHzLins8JteFockZC8sSQI9+R69B5pHH7F5VUC/ST9oMTPHRpAS58QJdnwrYPxY+QGrE3thZ94RRdeehp4egPzAwAMHH/hh/5Y5aWRZHLRbER6Dv9paKJ09uG3cCKbEGojILyIBwmZGtco1d+ZlADUt4kR+uRMm97dxVmuYpmePu6jyplowUVV6Fvg54X7T9PLvvDGyjk8bvTEd0EYR1KZeVDbP1SZtWpcr3ZT6g6GO4VeZm4klfkaH4xuf9WU+WSbR/L7kXEiARlECDM7lCQCNq55o44owh/XIU3WcDuuRFsPjsH4T5mH9Rr7mymia/4E5lciiXmLOqdT3x8qptF72L8+prJQZ2vdYTiezPI9D6575bCnEM6cSZy8M5lQq+mPlVALWEk9Opb7dxR3zmJPMw5ZN1paLfK3aImcsppxKngSoOZWABJBPUEHzCQTKqURW6RN/TiXSkpLJqawFAb4NgB0niiunMuxqfoVZxw3EzqnkJ8OoonVV4iwZEDUjcVoyIPs/DksG+2CsJYNaMN899CK85sjpAyfNkXt4HDSv9sHS3NqHr7kamual+yKnHfieYZZbPsWuqshbcAst03REKSg61pnmCNQQr7O7J+AjOS5NcXRy04GcaNeMLNcm6paE9x/Q67+zwaiabcojjDUZ2802yGXaHS1p68oArFfBhBJ3kNOi3OfcCrXziyV95PlrToqmQN2hN1p3aHXAnz8ExR7wR5a6xTG4j4SDcegT9MMofeLWx9wK2uND/HHZB80Qrc51bvaF7ZDrjLSFUGoy+FtFWhFZNrUlqcnSotJY+F0a0rEvmo4X+z1/9mmzhUXQkW2Dhi/+KJgL3cnCU1SCD9rJyFA7YGh6u4M7UG0P4JM64Ea0SR0y090TcG5M6KS1ZTE25KMdhO9NGEoHX21hP3wDxuoLgX74TRQbDcbVFAtbFVfryguvu7A8gT0pN0DkVyroveTvjb0KDUsy38/fbnp3guDJsQn0UeGT4+aW3+3skF2vjWMVzHrKBDWiiArb8o7pCluX1cPvI7z9L68ziD4Euzp4YFqNnGV89Z4hRxv6Cp4Zy1h4imTk+a//zqHpnffn0Gz0zQOV7aQ7M0i7cBBJEVOk8gLiFf3g/wymtCo+2rN5kDthd3Xtd/r9NFnXreLV7UsGT8+60uaujkeolNeX6aLMVJvD68utOqFq0sIZfOQcrz87AYYV7cnMEpUXaj5mRAXcf2u2uucPwTTR5qsIp4n+ahJL4BhTDaDTQrOHOgll9kjXK5g18NJnw61X3Gvf3GmoRcSomhKK7efMbTkTodVc4QpKR3bmenqQV/gHLF8FrJE8vDw5YAJNy+YP5PN/0O5OOF75q62lp8L5FbyYJYlsKOL4nARoXX1MaC7h8/YiI2DQLazwh31vkd/SlLL0py0tlxHhVJyjovIluocpx4fFBXqKcNy3w3B7Qb7H/te1hfkeeOPvPOqpM9WxW4KPmie8WppZ672/bxs9qhcgJRhUJJ0S1TkPAFMz8A7CbBvelLVmBmy2bMDvLHv4Dikr4FUhJdePbNpz8rREQdvNwbLdnFbYzv5OQICFf6RBOnVAgtTZyW1NkABtR8a0HTAUCGO71mW6Nttu+e9s96F/b1V22UrGrpQnUsqcQeGCtpuLZbu5WLZro9cHjQNmsKAbR59QxmnV0kQRsg52mhFy8Se4smy6hPDKEnod91k4B3J0cqLAJjWglZ7fujVJV0gEjLps6drJmT/ktIwPXPl+t+BQnzeSrXeaw3MIGArYH+OvQ/qRUNYhWYsYT+YHZZmFKS0avUG1ULByk4wtC3ymacv3sX2b1yDevE+CG34oINeyhQfy6YKibkdY4KbXW0FcgtAJ6YOofD1w86qf26qa032a6mU1fU8ySBG6sqDvL/I7KrzrxVWb+cl4R9H23GXhuR8lWH0apAPB/CLRxJM60FqdSxyn9mZ6aypiDrb1YXmRvdnLWbxzPBbT0ZXs7csL57P9WJC5RBro1XDfNT/oziZba9Ypq/oXfBGMnoCXFY6e8F4Vh3kCc7HMo09Y8/DT5NHM0/8XpATlxP9+5Kw3dTVna60yPjrCbjfJ/iLi0Z1tApaQDyjFAbuty8GyXHSOpC3HB5aEVgooh19o86aSLdLXizQecqPz27z637h7sezrm52hUH4ymBAGjDZoPu1PQplPdb73UjtC7mica/DmK6u/i+DzmDozAGuTm5YDLc+07GfBYnqDUC04OiDek1fowB24WsumVeSTeVHvSnhNDWtsoY7+4KOcMgEdT4jKuvQCU8AyRe7oW9Hn5HkBY1AA0X3tS1rS7PndzfN0RwaMWOsjmA3XCfxKooqyev/eTeCMfroCUrmCUsWLSv8B3QQgFSrCJnKf9cutgqUpeV6VIVIjlfqvT2bZmjFi4t567KV49UGORymh8djO61vFPEgcUaddPFgbEAcajwPQxiOBEoOQUwzuiUFCvVUuNGv4gbsrLNMdcvcbRCl3kUxiUD5gR/+jzfFSMSQGheTlVSxcehSPxCCScGIQCd9ia2S0rjqww4Z5Q3KvmUc6PKO6nucIZid0tWB6e5OpToAdhFJbQeE7oXVZYI0BRsHJHuDnmdDnf80fzY6iRfMI8lntGLco1JUFm1txQOSaDdUOEDppBPNU8rPaOpcMgCX1ezfV8oVrpSc6ErB9R9qBqZNMMgw2WsSdqkKcovOuKLwUbXr5d3MM0jHjwM7bgxLWUknCdWydjvEkbFW0qBesqC9cKZFCIX2QRHP+J+RBWoSKWpZrg1NKdpvZ6F4MaFwB1/EBfASZy/syoieFHRvzB78ZkG5UMrzT3DHfX90XRBatoSs0ySG8FBZ6gzgEA7oHhmCuWfw5eCCaY2t1xkkPvuDtkHGCTJWAVddDnoLBqush41Sw6nrItTbsQcfIFQDsQcdIzwp70LHey61h4dvCzLf97PGl++ALi2APOl7xbMbbkZFaRgdIo19JF4YEwx50rNh//5kC8w/UDXVH0qYsvz0G9qDjcdEzKSFKr612yGcsZU4u6Ad70PGljJqwLSXnGYlx6h13OVz+KZR/AxY+FNmR/3pZFv39q6xpmp3usyHB2X1xKA04CK1DEb00IPIx6O1aGvAfEgrNVxNVGjACpTRgb1p+xWl2xO9LA2qgmfJPfc5TSa/Fh1PmhVoWnv0UaqMTYCvG5zx5vcJ6zpPXSzE85+nYxQ3B+xzSzXcPLVRXOFG5py0havE/52nxK6ynzyi++v99ztPlqTejv0zYQd+qeJpBU+n6liDPeSp/iWUwoEcTLuVLTM952kaaMslQwZ6W0sOvoeb0khO4PudJ8YJr5yuGymaHho/cfnC47BYcRhoZ03DVLyQd0hbjc572m06Jzuozw2o3q0vyYrerOyX6nCeex0N9zhMwgKBpdzAJZdr9Axla2j7dMtlXL61yX3TUrmd9qRQzQ0u/icXQ1t74lzO01xKr5saqPrEo6RG77dKNR5/xZGiNV5cnU0IbzTYuSOIYPM/TxYGhnXATi6EFrCUehjbb+kVKx94H6Imrnb5nyIbvkyRDy5MAlaEFJIB8giaaTyBQqPwIu1rebGZfk3VP7nRfRTH/gG+o/PSFDvVIhhZpSck9l6TugTifS7LBqKCiQ+0DYjO0/FC5FlpXJQzPmX7Ie/wJc1NacC9pBq1qorKIG/knPCey/+PAc2o/wuI56x/y3cMQwmuOnD5w0tw/pGLFxqHjKCnDS1PlNGYG48HQ1mJpHl3L11wbTXOiB7ouzZdVL1q6yzB3surHUXOkNdo10PUPlxFogS5rYKGg/Qwl0FVonl+RpPXs94EuHcIPnxPhJ2OvRnAtI1Ydv7lv9Y35xK0UpFaNNXxqL/KHz1A0zQ2u9rrjN/4o5fC8hWoRs0oEVzTK4Ff1AVMBjdjOziwuC9BJRKorWlbOCH79My7/Mk6/LsNb9fw6YAXpphbtccpme1yd99HXNHhkb39akOap39+wkKlEvquFolcdA/Y9NWBNMFGZO9aASWqvtvW0lcqAiQKul8AVCJNXR46sDeWPgRULm6rign9rLjHs7u65jOUkOtJV7aH+14j6RYaBiVpxa3U7pSJy03neTERuetPrv+vbSRTpE1cvTKLvj7r0uZL+7mUb+3Y+IPMEUOZOohJbxhzjydzWwtWaMPOTHVg+y1gsDi+/n+Xoy+sevFN/kVo+D73xeWjaE6vU43IWd27mChYG6fzruk7CXh3eiPcm500uJNt8UbIp5/Jkg1yCLuHdMHK50RI3LGKLg+ipSNPhUXzlGmbxlWt8yYcRXnL2vtXFrDGXTVOjSROn65Un4SM5cj7FQfI3l7Akz7zEl3w4muSEfp4dsufDTtyRFoKduCOnRtiJu7WT+f4XAe6U9GNaIRGjOx9u+fPs1H6OJF1wkTaJUOp9JH4CpRiHQ2s9NJuc7abxfuQ4T4vgd6/N9a6sMRbMnbJhAStwRxbZ0tfdvRXAzXD+5zjg58DZks0Blu5sp6bpdRkbzBX2cQXs0OI1CFJNjPsUzvESaG5pgVtg4V13BejxnQ1F5HiBOSb6V9q66lA15SXDAssN4GZ8eMszUDGRAmian1uypoe+ydrJyRZdrjk3IFK7wAuJSO3ivfw7X4Hs3230FYogOw0qt1vUkcw58Mk6V1BrTLRQub7NynEFuhrYtUTKN35AWY1KtxsGh6+XdV6QX14l+HQhqIN4iHzMg2Ar7vnE+byehKFW3eV2PcDi36icXYAXC66DBsyB6pmzuByWux74Hm89E/oiEFJ3YXERIAf409YloypvaQ4aFrgEmckJaDK1SCsjl8RtGSRttGtVDjQK3lBF2NU6hzcKWkWCqiGT6KGu7yRSijP5m1LT9udZpjlte6A6r1DwLK2VVBIOUuhjSgF0cWiiGkFCmagsj9EunCGdMgyc23syu8FMSeD7dOMFeL3c2Y5M0YnIaKu0vhbAMGCB5T4cme5kD4GrtGheshuiq37lSYlFgpwHJ2TzJRus2xLSG9HeUo8BPrGgAZAzUlT2MR1cqT0TcQ7IDxuIOAfkZQwgzgGRx3n8dimU9vY4J+zXxLSCvb8pI1pAPpH2SX3Zy3vA9LGmOQvlR82uTVMXsI8UVTimRG3vg0ISiN01QAeFQqMDLHlOaaiAiST1G5H624LP5XBqlUp1xeuctaMGWMQ4dJ9/Y+JlwbwxKQNhlQx+q1LWjc1bNYI2GOwdfDL29pqItj5BBlTpzTMslZKfteo4VQ2WLv57gZBZKxLNFwefv8vrMWCNeKHcefdcnlKQP9VH86dELhQ3Ofv9wInXaiyTS1ZqVI8adFj43tpcKE7uA1ahOPv3eBeKOxkXu3PFKD3zhE9Xrb7lWKfjXigOmQmEQw20xvdYNdAOvBdLobi5Cmu27qnLNEyduHrB8HJXbVwLxZ3rahk1/UeUaUSRh/G7k7FncRDJHlMkuffEyxrk/4irUBz5b8f370frmpa4PSmNeTL4eJu7Oh4INa8vo5ZGA/qyeArFxbx5YHCwB4cS+3rO2oW9lh0iSKE4e0w1gE4LzR4jSSizB7ELxWkEuA0NvRdlFle9vdIuZdB8tLvDqVCc4jusQnGKb8VUKK6039aNjfenG0XsdV6/3VIlQyKF4qiN3zlqs3WMd16LfKLPVR2EQ7Ex0juselaZbwmUziumQnE7LRyXGRZlGgf13Vmz9GpKiJgKxZ0/NuaSw1dds4NSPyp2X1//DAfbLX6LZTtFItlOqC4MPoXiejckbhs89apxaWDxQuVT6ioEKhRX/gazAuMb4hhHLIXikIs/iReK4zk61DJpoW9xLxT3c7nqc637dZa7foy09Lz0zF3iheIU32IpEP+Gvw4ZRUJZh/ypoN7Oe8Omd7kVYJznP7psRPitzmIE9bqoVGKAepHKlfiDenIXfWi6p7ebRSbGTSsqoguWRyYcqNcJFAgVH7qtXPl/C+oVrPu+YvjcO2apdskvfz5QFXxAnORAvRxlLINFSsZgkgD1Nter3Nd3vmW2cdDlvY+MI2bgCuop0fI1kzYUUY50cHA70XPGRxxGmhOm4aZIyHDtAuqljup34/PwrgZJBvau55hDBSuwtTeox/N4qKAeMICgaXc0CWXa/QNBPbXFmftf0FmWBW+n9XF3LZJGu2WcQD13+UoMUG+MfOW/G9SrCu/zwCCVa1GalD/j5qbh8niCetVTZCOe5He3Opbb+dmhapMVOIB6TqC1UEE9wFriAfXOp8Y+u0qayEhUzjkeP9DEUJKgHk8CVFAPkADyCWPQfAKBQL20PHXqeuYu42TT4d9XmKQ7i/9hl0hLSg7Uy+xaKUZQz9mkoCL7cNfKPwLUG4vWVQmT+3tvyEybVdJf6OvqtdeX9tO1xol6QfZ/HJJ/rbtVYiT/6nfju4dxhNccOX3gpPmsNbfWW2ssMwgfpiN14uYgDg6aZ8phaR4tx9d8PJrmRAf1jhyU83nCbDDZ88CqQCFv+/d2BfX+4TICDdQDK1LVKlaKBvUSaPkVP64qVv4W1JuAZso/DhrbdfbY4BuDOVbhumULpTmLV0kAGnshU4kBjeXICEW+iAGNFepoj1HqE0zbcdi3y9AjNycg4tRtg8b6bq5zOLKnmrF5GPUvQ8bERBygsUegzKjQGCCzBKGxtINyf81aMMIiS6Eymtbvs+DzNyULjfFkQ4XGANkglzARzSUQZkZFTn34EExI0+EwofrIYk2odrJ8yScRXvLnieeiuEZ65sGyUTFms77PwEfyd5T+nU0TLphl33zqfzt5biYOklOksSQnS/Mln4wm+Z8CKL29POoT+fNI6pH7+pmlgR5bMO4TP0BpAuhDUAGlOum2znCtAZTUpT5r3O6nZFC0fPvrwnR/BLXWJkAJ2dtxAJT0QeVQkRs5wbUBPLNDXIDSk9Uvv6bYcCxSN72PHB5exSUUoFQnjaVWvnS7Bu7/ZEAJufySMKDEGwWoVI4cYun2uwyE1gFKI06HKYx2szQ9NHHh/qOvXydLGFDidXFUKfKbJ6opJJSJiqCAkv/WUQ6dc/IY+x5O3nx/YQitnQClCT0rMQCluh4izj/+PwGlwGdWs7mRhy0O91Xl3mIeNsIBUML5gAREb/R7VmKgN3I9K8UMKDUO6VKYGTzT6sD8u4yC2uogHACljve2Pkgr7GFeMOLZGoOfY17goBLQrTFUyu/RqmOk1gFKyNN6iQNKvB6DCigBSkH+dCqaPyUyoJS0fsjyodu2UQN763jc2PLsphgApfhelRiAEqWXyLQt1NzA3wNKUx6fWG+scJORNfJ69NO5MhtxB5SQGRA4sDfRoEao7I1rL9RFfFsApQNTjLWu+NIYeaUJya96mjnhCiiRJ3zSntflg+lR76FylwaedMdBJAqmSGq9iJctxf8RF6D00c5RjfMmjVZmcfTQuyEf6wkBKPH6MiqSA/Rl8QBK+zLdK0ezCikll4b1TSrc70kQQImCqQbQaaHZYxoJZfYgNqA0RC5j7KcX9xgbTri9OTvqpqOYAaWtqpUYgJKyqsgwUdsBpSEql31XJcy3CHp1X3tMdX6iRACleQohtl3l3tL32Vopvf/61wYcIJdIUE5UjsJJlUBpjGIClD51Ojk2tJ8zdbNdB5M+f630FhOgVF5THGhvp0gtHptWU/NYio6D7aZg2k6ZQLYjUcQDKK2cPMJPReOT1bG4BTT36DUjCAQovVDBMs4pFQIZRxyAEnLxJ3FAiefoUPEca9XWrUlaACjdiJsbrK76kLJLhkoeFesXL3FASRlTgVoV/jpkOgllHdLqmocDmnuv+GseIikkWM1DZLo0rOYhMrsMVvMQmc8Ge8ogMigFe8ogMg0I9pRBZBYJ7CmDyFNn2FMGkedFsKcMIo/pYE8ZREZKgabOUBNyvw80dYGakEs5oKkrSfRxKtDUDWoy/LvajxlAM9s5t2Lrz0If8HGM3aGmjgPCRu/dZmcZqehTdSnb4x3QpAg1PXt0rrSXVJZRoJ4RPSWg4xCgSQlq2rNwPFn99A3GscsDGKOfD1oGNPWAmspedawy+njONLzruDtSlmazgaaeUNObze6sRikuJW7/gA0ptTtigSZlqEnRdqju1B1PjTeVSmcePB0zDGhSgZq6f/M++8ogzipl6KyFitMazIEmVahpSf3LHNm52+hry+wP3OxSNA9o6kUSvRATqoepRkKph7m8exw9YXwcJVSnNH/KvCN7caiHSUEbr4Q54Ud2HpzSFHEuXsV71nEnrCP++E58H0lF0/xPhTi/36hbemP+dIsN80y7rtZonC/6vnGBOCP1sSDOLvpigDhD7eXTQ7lcRkRo736rRilcJjbEGaSPhZbN1///hTijHlalucTXW+yPL+12oT9bEDWWHMQ5BtNgXSRjMElAnPMGzcnY/vaIed7kLqVblWozcIU4A3v92NBjQQVlV7ZfD5XQZ444jLRHI7AMVzyCOJs03CFO9st+3hWn5lJDS4/EFjm/DZQoxMnzeKgQJzCAoGnXgIQy7f6BEKfcDK2YuxtcLPb438yJOeleImaIk6SFBXFWaf7LIc6e3Tazzl+bTdt/Tbf6Wp8ixLMt2wZxzu194cA1p3LKlqW1R+7GTAnBAeJs1MSCOAFriQfiPL3K4ewGL2uTnWMU9js7HHguSYiTJwEqxAlIAPkEQzSfQCCIkxnUbeV6xnrGvu3vdNe9ffZF/BAn0pKSgzh9hooT4txrVFBB9x76Z0CcRmhdlTA79fgC7dAVd5NNE3sEBa8dmvMAp506sv/jsFNX1sXaqX8YyncPxoTXHDl94KT50hPl43rI083CE6ZPlT/v19YiuqDm0ZpYmns1u2QamuZEhzjHeq/zCyncYZap5xy3Q+ps+0Kc/3AZgQZxgk9bTB6OAnHeMM+vGLBr+O8hThM0U/5xECeFOef+/nRTy8OcTuafSG+3/P6GcYc43QdjQZxjBhMU4txrofEl4Yiy4cEXV4vjNvfcjivEuWXY9iG22XsNwuqvZ+suS/fGAeJ0GowFcQIySxDiPHTXKn5xp1m0DRZ+pi5DFgrmKEkW4uTJhgpxArJBLoGO5hIIM6Mipz58iEKk6XCYUL8NxppQbzdLbkp4ycO79Xxue3m0+b4biotcRr29gY/kb8ITs9PcDjB21xZzDqQsLMOjEMUgzEIUg/iSm6FJ/qdAnANDUnw1nYaYFJ1I3vs0a8bEdoE4czSwIM75Gu0JcZpNytXSmOBqmbJgi/XIyDTEqWObIE5kb8cB4jykgYUlBmm0O8RZGH7I1vLBIoPixyo1c5/cFsSyJQ1xzsdUa4zGfxBnCyFO5PJLwhAnbxSgkovAKBAjxDlUNmTq5ktUw0Pj62OTUhc8kTDEOR9TCqCLQxOVOQlloiIoxNl/Z69v/fdGWGQsdu7gqD17ENZt4QhxFuthQZxOev9BnJB9OsRXjZnZ8Nko50TY9cNvt3TDAeLE+YAExBNz9LDwxEg9cUOc7icYa3VtrOlbXow3LBivLVhO+p9BnBaaKoeZ78/Qoq/l3uq7+OFlHFRywlRpip4YIU7kab3EIU5ej0GFOAGlIH/KQPOnRIY4/7bTNC9nOVsVP2ZOfJbw0lj43toMcaqPxoI4T43CG+L0vxRcxXRayAgcVLpPi/VJFXeIE5kBgQOfqDwai098MUosEGe3S/v22ejcNUqIHPKtZ+eniMq7bYQ4d34/duf+ulfGhUvtduhenHQHB5GAroIhUtIo4mVL8X/EBXHOWFH33spnHWXP4pHj/MKp9wkBcfL6Miq2CPRl8UCcmX5Me5rLRvrmPrcC1ZWNBHuz5CBOXqdFVQPotNDsYUFCmT2IDXG+Xl6+JbM+3nDvOnOvqn2M0WKGONVGYUGc8SPFBHF6lt3su+SJg1WaVd2KzUHdciUCcX6Y+eV4SFigxdoez876Py3oiwMIqDgKizWrH0mgNEYxQZy2y+krOUozzYI0G8bpXzstmLeAH8TZgeHVi/nR2KDYRS9j5aU6kY6llbYrH4llu3gC2U5OTBCnqmv6psUhvmaHKyuuPdm7T9AzShbi9MI0Dp1AxhELxIlc/Ekc4uQ5OlSE8epI3CHOPvSgAbYqnqYbR7CWAvsqwSetSALijB+JpcD8kfx1iCUJZR3Saoizf3PvFT/EiaSQYBAnMl0aBnEis8tgECcynw0GcSKDUjCIE5kGBIM4kVkkMIgTeeoMgziR50UwiBN5TAeDOJGRUhjEidzvwyBO5FIOBnEij1NhEGfvbEWt0BeVhqFnpoSW3y3xhkGcM3udyxn8PcA4y2zRvN25d+fAIM7hOkUx0XcGUEoWS+VOH9njEAzi3P6mU+KVvz9YHh3wbqNtrJsyDOK011fNKXB9ZLVD0yHZLtKuBgZxRttnWVWM7mJVwn2wYouHQx8YxDn3tBTn7IxMRvbwQwuXLurvD4M4BztUKSZl1FP2V6nrX6/tFg2DOJGrLSFSE0Q6RQ79CV7L0s52PWMWV7Px1pLgDztwIDWt0AYlYY7xkT0Ep1xEnKv4gef4ZMxzfFLzOb41muZ/Kqn5sKv+dXuWr8nGW7nMR2P+0hAjqRnEwCI1OzHEQGrOzvq2MuzYS6Oy9186lSslvSQ2qbmSgcWP2TH+f0nN+qUe7wYPWkA7rLOhfP2V3hUEITWHYRqsk2QMJglSk6GcHF/Tr8AobN5F/7E6mw7hSmqOnvVwwZa5NwzjLIZHrp2om4XDSLttjmW4HHPi7MRwJzWly+Q+vw1lG5c1KCWoMUMHSpTU5Hk8VFITGEDQtDuDhDLt/oGk5naP+M9SKlbmccd7kM4u3bdHzKSmtgEWqfmG+i8nNS1uHi0ov7jaaPudn+vVn05APNy0baRm3tEhi6UZJ+k5Xb5kqlV9L8eB1CQbYJGagLXEQ2oezNH5UjdtjlX+8EFPKV5WVZIkNXkSoJKagASQT7BB8wkEIjWnm/ncq9/nTs2xCdpYd2TzUPGTmkhLSobUtC6oIB2giZPUjDcvqDi5l/ZnkJq2aF2VMDt1cscIxo+JWZRQr2vbnqs21OO0U0f2fxx26nQTrJ26tgnfPdgRXnPk9IGT5i8dI6fIF7hYlOzYbFXj+ekZDpp7UbE0t252yTPRNCc6qSk3OYTyOU2BmjBSeuqpVR3Gtiup+Q+XEVikZrUpCql53iy/Qvmc6e9JzVlopvzjSM0tnb0f3q9XMjwk6+x3bcAtcwmQmh+mY5GaxdMJSmr22am5REE7gxY1gWPZ555fAq6kpsNnzhHqYjtGyvd5Jg9cStuaxQuSmi+mY5GagMwSJDU1lZNcjlwJpARNlisfsnMEm0CkJk82VFITkA1yCbPRXAJhZlTk1IcPNog0HQ4T6koK1oQ6n8KX3J7wkl9zmra0m7aqZVHfsWOPDSnsgY/kP/KDQxcNnmiY0jkzzjDTZywe68ZpmOvGaXzJ56BJ/qeQmt2ypU/uiv9AS1E4oC/z18NN7UJqUqZjkZr109qT1DTR3/spo2632dFzgaWM6hzB57q1jdRE9nYcSM0J07HYQ8Xp7U5qatcpTWi8FmQeaZjQz/32BTdCkZr107DUKp/2H6nZQlITufySMKnJGwWoeKLidHGSmsGbTeYHN040iKzZOVRl/lZBEqf9SU1eF0eVorx5oppLQpmoCEpqLuLKbWIUbzHbOJOcei11BOZt4UhqfjDDIjWTzP4jNSH7BKyRJS3yqjA7vKt8yJMzWrtwIDVxPiABGcQXZlgM4ikzcZOagVtu6Q9fU2qZcqB6r2kiW/Bh1P+M1HzvtX1H3txcSua7y7N/vh40HAeVkjBV8jETI6mJPK2XOKnJ6zGopCagFORP56H5UyKTmvKlNgX95nsabWrMynrk4vtJDKSmnRUWqfnNEm9S89TKAPdte8IsY6V6ugwMP3gEd1ITmQGBA4TIsMKCEAdbiYXUdBnk1K3ny49mgbUrVT/dC1bEldTsq2l7cWX4ZXrGm6G3XjEsR+AgEtBVMES6akm8bCn+j7hIzfekfMMr118Zh/SlLS89+3Rom7s6Hmwiry+jsolAXxYPqTkhafF3g5QIs+J3pIr9nX5YEoTU5HVaVDWATgvNHvNJKLMHsUnNgs9RSaaLFOjbX9oa0G6f6C5mUtPaEovUrLYQE6n5jv3M0LLPCsqRzes67LkWMFAipKZ6pkNqmNlx6sY78tarYsv74UD70S2xgDKyhDxqe5KaP2STzfXCR9HT6XoJxlsnnBUTqalq0xD6alCBYZlZmfeIvS6bcLBdowWW7YChQBjbKYqJ1Lxi29GS4vnGOCixq9xorU99CERqHsA0TiCBjCMWUhO5+JM4qclzdKicYhdL3ElNE+9Zyk9unqOUhvSNdxk3YoHESc1qCywFtlrw1yELSCjrEEKTmkgKCUZqItOlYaQmMrsMRmoi89lgpCYyKAUjNZFpQDBSE5lFAiM1kafOMFITeV4EIzWRx3QwUhMZKYWRmsj9PozURC7lYKQm8jgVRmouCq5KnNKhn3HERymTB+cCrsBITa27KfXMggkWZXoXo+6+Gr8bRmr6nk2Mmhn41uLQkM5OqamyQTBSM73yvVZZ8DjGvoaUxSk1JvkwUvOO1JNCt+G3qGH+G5dvfT1uJIzUzMhInm5b7G62LkPB5GbRRxqM1LQpHE4dpnjWIqQ8SD3ar98DGKkZ/fN+z2fnGIbh967GnnlSYAwjNZGrrZaTmpkjx2m6f1lOz335gvvojvpZEQOltaTmQrRBSZhjfGQPwSkXEedSfeA5fvlUrHP85Kl8R7gITfM/ldREPhhXTKTmhMIKknYPQOMQUdu0+mxgcaQktE3DWhC2jNR0f2qVEpi7wDyRqnNr5cthp9pCarYVTAIUIIMKzDcUsQDMB/pgoxJRUMzwjGMqpEZSedTlgQpLfv4USffxl0P4oJjDbsnb9x3iSt/6OW1CwffgOQRAMUGDVSthGeyAZAwmMriYOV3wf4VRTCxj/RbF/PDJsbtHYKFBcYdlk08upT+V6MoVtEwgpmXsJWSZdmEtB654PoZVbG+cpnrcLVWm9ozEWMvQbMiliWQt9ZucOjRxLib9yybOQT8nbvuwK4de8vdF+Y1nvz0WY4mDYlesEgdTXMVQ4uDbiESZzuP8DXdsGX3VQmXyN2KXOMhxxQKvI12JMq+i/YhvXvWLVT2dWfDIJJ6qETfn4IPNBJhXQYM5YRpsimQMJokSB5nxpEuDl9KNYg+aqivOOaiLa4mDHX/fVO9XKGe6N9+BM2n4wLbmO4OGU8Y03AuXf/G0O3534+RN9jNoWQVV6Yn9Ho+W2LQLljjgeTzUEgfAAIKmXSYJZdr9A0sc3DfZmml7djwtXv/Rs9QpJ5zEXOJg8EKsEgcvFvzLSxxUbY75NEmuxii4LtrA4tn4IXiWONjR9dZF3z3PTdMeliw7vElLG4cSB+oLsUocANYST4mDxWeGaWrtczOIfqZrF3HLylmSJQ54EqCWOAAkgHyCA5pPIFCJg6o4o8EfFTpQso+eNl7/fK2e+EscIC0puRIHex3EWeKg1LSg4nyKw59R4sARrasSJsSdMXHszUMhW61iCl2lNmqvHoZTiBvZ/3EIcS92xApxUxz57sGJ8Jojpw+cNC98W3ZtyUEuNWOIte+IEI9VOGieswBL863NLpmFpjnRSxxIv1EZqH8qwiCUdHV4cI/gPqj3J44SB/9wGdF8NRElDs6xUEocfKDnVww4w/p9iQNnNFP+cSUOigxG1SpN5Rqk9Y7zPF0lpyWBEgdv5mGVOMifR9ASB+uCZ33o3r+KnvywPvPCo75KiEyXtpU48PwZv1fjirbZZv9KyriUmraCHWCJg/p5WCUOAJklWOJA42Gf0YdW29GT5+g3hp7dOI1AJQ54sqGWOABkg1yCC5pLIMyMipz68OHtkabDYUL1n481odrP50vuSnjJTYt0kgdHjTfcvaXr8VdBzDx8JP+romaW1fK7jFSqtq5X3ewtOEhuNBdL8sFz+ZKz0ST/U0oc+G4fazH5JtU0caFB3MHgNTPbpcTBlHlYJQ4ezW3PEgd11GXyCspxxodTFO39ikcZ4VjiANnbcShxMGYeFrTfZV67lzjolXi3omhUkmHGh8lxOwtm1hCqxMGjuVhqFc/9r8RBC0scIJdfEi5xwBsFqFx/l3niLHFQvHC+CpfZm7GpbnX0+OnTEIWR2r3EAa+Lo0pR3DxRuZFQJiqCljgYtfqcsfWNOnoON8sgurH3hnYqcVDrjFXiIND5vxIHkH0O3DFd96LmJT1ISu1VbHGXzjiUOMD5gASE96udseD9A87iLnEQqTGpFzkyy3RPUd+a7nb1M3AocWC0Zv2zsB9+ximFtU43erGccFApEFMle2cxljhAntZLvMQBr8egljgAlIL86RI0f0rkEgcpuRfNg6p0TQsnbYlWuPhwpRhKHNCXYJU4eOOGd4kDm9Dg5bUrfQ2OFU3spx2ksxD3EgfIDAgc6H3KEix6X22JWEocUEwzSoeZGFltMYmZlFLk54FriYO/jPtqj86cSMsf4pPtyQiPxEEkoKtgiFTlRrxsKf6PuEocTFo3Zxqd5EjL6Nyw3jlKM40QJQ54fRkV6gf6snhKHAwYNrCy/8x02ja7Q/PPPZdRJ0iJA16nRVUD6LTQ7OFOQpk9iF3iIGrnoRVLHluaxOS+Jx88vtFbzCUOGG5YJQ7OscVU4mAsPW24bkmCeYFNbXjCWOUsiZQ4CDDVvmAdtMlqw4VuLpQP8pk4YPJGblgktrqEPGp7ljjwV33TcMPAwTh3zJ0+uvfTU8VU4iAlRXHKR/l+1CMyPS/37b7yOg62+8DGsh0wFAhjO2UxlTiIVXm23Gd2Jm1b7VeV/nSFBgKVONiLaZyVBDKOWEocIBd/Ei9xwHN0qIC/nBvuJQ4WTPS2+HTiDKVM81FArxccfYmXODjHxlIgms1fh3iQUNYhrS5xoN7ce8Vf4gBJIcFKHCDTpWElDpDZZbASB8h8NliJA2RQClbiAJkGBCtxgMwigZU4QJ46w0ocIM+LYCUOkMd0sBIHyEgprMQBcr8PK3GAXMrBShwgj1NhJQ5MXpjrBO2cRN3iq7Ns08Kj52ElDoafte3nsTvLqGiqY//v2warwUocLGAfsbRSmmiVYn8yLXVgZTisxMHJ+6rpDl9CTEpKgsxnOS5cACtxoCFvK6fbP4Keff2qCqsHyRRW4sCatPCR1a65FmmWShfH7XJQhJU4QK6bhIoVgAUPRA5ibm+yf/TrEeZBO2endTyjPACHYgUctOFFmAN5pK1xyirEuVoteCJfPAfrRD5pDt+leaJp/qcylzmnTqhOe/3RJCv5YOMp2xd9xchcGqzDYi47rBMDc3nR1ksnT4NtGWlh0Es17IEDsZnLaeuwSLCh6/5/mcuid/ZJsxZLm6zdv+9yVPxeKYIwl6qYBusgGYNJgrl8s4d1/mL5W9NsasfFV75K++LKXMoabZK90ehjnBi9olL5x2ItHEbaq7VYhru5ljh7KtyZy9MvXYa9dZtncET1m8aMhl7pEmUueR4PlbkEBhA07XqRUKbdP5C53EMe2nihINtqy9dbat8fzAwUM3MZuRyLubRb/i9nLreuPrH2NHMcNbeSkkAuNv6BJ3M5MbmmWH1pB6P45MQhO3couuHAXAYtx2IuAWuJh7mUuf26wep9lsH+ZzIzHizYM1+SzCVPAlTmEpAA8glL0XwCgZhLg3tX2JHZd4zXjZfP1XnTgyviVnBmLpGWlBxzWbxanMxlhWlBxfyi1X8Gc8lF66qE2al3yXs1a0pHa8PYHrbDpm8YFIvTTh3Z//F4IuMazCcyruG7B2/Ca46cPnDSPFfq8pUUzi3q2lGdTWTlZTg4aF4dgKV5ZgBfcx80zYnOXK4fu6hTmGWCVYjfuthLYeqG7cpc/sNlBBZz+S4Qhbn8m55fYfM28PfMpS+aKf845nIle/qENR6FtE0v7rEfdXxm+Psbxp257OKPxVxeXUZQ5tLl0KGR5mdZ5iXJhX6JDzKycWUuf4z1st+V9IOxaUJcffinhzdxYC47+WMxl4DMEmQuc+2tel3doEfZc2tqb4MLDvkEYi55sqEyl4BskEvwQ3MJhJlRkVMfPgAg0nQ4TKhb/bEmVB9/vuTLCC+5xoQR2epVYcalbtMotn3St+Ej+Y0ea20HzthtUvrtdDElaao/HrU6/DBrdfjxJfdHk/xPYS63ZTccP9fV2yD+4MHw/BkPemDcJ37Mpf0yLOaS1OYZrjXMZdWkh42r/DNMEvJlB3/MGog4am0Tc4ns7Tgwl9bLsChC7WXtzlzafQ7f9q3ku1la6ufMfHaGYIFvSTOXJEy1av3+Yy5byFwil18SZi55owAVNNReJk7mknNr3rTcHq8tto0Y+Gltv4YrEmYuSZhS1DZPVAEklImKoMxlYKNXybVOjYYlb2YlPzx4uQfWbeHIXHLXYjGXtLX/MZeQfSYVXDfuF5ditnZdIMO4SMoPB+YS5wMSkCbkrMWiCeeuFTdzeWVmyPWPE3XMouW+6NPHvRMM2v0z5lKm4USOwYhTRolm9uaU5WvwUImGqdKotWJkLpGn9RJnLnk9BpW5BJSC/OlyNH9KaObSfHvsiEXyhkly0VP1R699JnxvbWYu89ZjMZfh6/FmLt2vPh7YLeQVJezrhUyT/FkHcGcukRkQOOCE2euxcMKd68XCXGp57uDGOO0xOrr5oNJX6uNRuDKXm/06T7YatN4oUY9hvMrD6DEOIoVjiuS3nnjZUvwfcTGXatlvCyIcgmkFa59/8v6xt3ObuzoelCGvL6NShkBfFg9zKTu39kb3rsctDyQd2usuU/Q3QZjLcEw1gE4LzR4rSCizB7GZy8Y5mp2ddFzNgkvMWVNnTnVAuzucmMsx67GYyw/CKcD4MJf6AdS3UUvUDNavodE7+VyslQhzaarFtewm35eaGdfVxS3oyQEcuD399ZjMpYQ8ansyl5p/fXWLOvEXNZJUb92wyfOtmJhL1+crx8540tMy/5Tb+ogHygk42E4O03YfJJQ7LMp2amJiLlN0SFWrn36hbN9vRZl5INacQMxl3TpMIJZAxhELc4lc/EmcueQ5OlTisEcr1yQtYC6nFRg2DHpSRts3LrRvwPmCaokzlx/WYSlwrTlTeiUJZR1C6MdKIykkGHOJTJeGMZfI7DIYc4nMZ4Mxl8igFIy5RKYBwZhLZBYJjLlEnjrDmEvkeRGMuUQe08GYS2SkFM5cIvb7MOYSuZSDMZfI41QYc0kburJmQ42N8dYj9kFuC0/PgzGXSt6htW7XJ5mXvVMZua/D9UMw5vK95eaIs0OH0NZ2Tn90Kv7FNRhzWXJ/36oP0evMSidqZsy3UngPYy4PDRp/tLvmd6OssIhc3RAtJRhzadZT8YRV3EzLfWvoR5c923Udxlz6qfWXZx17aRlpEnzt7crOarDHSl86efnA+fGBlCP9dsguf6f2N+yx0sjVVssfK31QevHqjy7+psVqnQ4vi90dhwOpuQptUBLmGB/ZQ3DKRcS56B54jl/ri3WOn+/Ld4Sr0TT/U0lNP0eplMw9uy3SHrnSqGsfVIu+b1xITddoLFJTO1oMpKbZyMap1xo20rdGxb8q7f66ktikplM0Fj9mHf3/S2rqV4xa7NQ1y3zH2iXUg669JxKE1JyCaTBtyRhMEqRmWfqiF9uvahrkHBtXsc9dZ0PbFraIkXZ3y5CacZVWjKw7IZMCFxcMxOPpmJiGI0nIcO1Cal4xVhnhnLzHfG1C6gC1wXerJEpq8jweKqkJDCBo2l1DQpl2/0BSUzPjgcnE6Q1GhaxxW5RUpaaImdTUjsAiNbtE/MtJzYAJOzKcz3c0KrkbUBB6uMcxPElNxV3k514hAdTioTdNZxRVDsOB1BwcgUVqAtYSD6mpZj/8maOvoXnJfWWHd5r35CVJavIkQCU1AQkgnxCI5hMIRGpOmz6hp9zQDPNDo7tldr+bc0zEreBMaiItKTlS0zVKnKRmBL2g4rxL1J9Baq5F66qE2an3t6tJdDkSRM17pbQsbdisBTjt1JH9Hw9qMAprp14exXcP6wivOXL6wEnz8lPKPxLHxZnm5a3QCFuzZDcOmv8VjqV5YThf8/VomhOd1OzwWsvwyv33JkGhJd+ORJ2ntSup+Q+XEWikJh1YKHzbiEJqHjfJr/D7uvH3pGYQmin/OFLz0jlvHdOjTrS9+w/n1f9Q8fv9DeNOaqqFY5Ga38IISmpyfBaN+Dnph2GoXqacXz53DK6kZoDsTdnETxomW69Q+jAuHbPAgdRUDsciNQGZJUhqqt1/qf515BeTrMqCbjNji+kEIjV5sqGSmoBskEvYgOYSCDOjIqc+fLBBpOlwmFDnY06ojOYJNZjwkhe53BzocOQRdXuYfM8t1Znb8ZH8w/W9m6Mf7Kfn7f8eXO32Oh4HyQ3CsCQf1dzLQ9Ak/1NIzcj+Ofdkv983y1vq+mrbpR+J7UJqloZhkZqb2zzDtYbUVDIa+5Q1dKt5cu3x17NvnxIMZrSN1ET2dhxIzcIwLPZwX1i7k5qO1okKN44PM9l9i3z6p9dWwfoMkiY1N2OqtTrsP1KzhaQmcvklYVKTNwpQ8cR9YeIkNeVGnwvdnFxrnDe+hxXr+W1XCZOamzGlWN08UYWSUCYqgpKahhcbtTzPzLXaPvacg5Lmhw7tRGqu24RFas7a9B+pCdmnMlMtMfb+epOkgfdWm+QqCz6V7p+RmjgfkIAM4upNWAyi2yZxk5o6dhpONgbeRnF3vEoXLKUIlrT7Z6TmzV2jjLWNPSgHNOwezq386YODSrMwVTLYJEZSE3laL3FSk9djUElNQCnIn4ah+VMik5o/cialvVp5nJa1dGP3tddKqWIgNatisEjNpBi8SU3zZXbdhmstt8hOKh4+I/68YIICHqQmMgMCBwjxVAwWhJgZIxZSc3fKbNvX56+Y77BaTasOqRZMJGgrqTkoNpb1sSbQNLkXyfHxjaGXcBApCVOk0BjiZUvxf8RFam4YXmTd287NJD3bW6u0+iSnzV0dDzaR15dR2USgL4uH1DyvopJc4HuDuunbNrcxiz4JelnJkZpJmGoAnRaaPcJJKLMHsUnN3OStFn5B+2kp13d2mxG695uYSU1aDBapKSM8l+BDana+F1FxZ9pR85jo8q1q0+4MlQipudx90GE/N23jUoXjV+cs+qKOA+1nEIMFlOlJyKO2J6l5y2gT5fkJPfNt70Y46L2O6iMmUjO2Zlv0M9Jro7KIeysLzXc34GC7Ppi2kyGQ7dTFRGoGdiy6lXFwFyUu7ucz0rhqwRCUZEnNd9FYxrlLoPxgsZCayMWfxElNnqND5RQHt3JN0gJSc1Qoc2eHnbtMw94HzDt/pEO8xElNGUwF6pszpSNIKOsQQpOaSAoJRmoi06VhpCYyuwxGaiLz2WCkJjIoBSM1kWlAMFITmUUCIzWRp84wUhN5XgQjNZHHdDBSExkphZGayP0+jNRELuVgpCbyOBVGat64w/V+HTfB6IDbV2ppacc4GKk52uHsg/y8owbbGoZdHD1j9EEYqXnMKrmLwxmaUebCffuefslTh5GarqmDUqr93Kyi5wbMe7/b8SGM1EwffbdIUZvCiKNq+u9X7JIGIzVHrbjCuXIuhVI2PK4heUmdBozUrN7f1SzNfz1jS/qXLnox56xhpOakbrUTw966msYdMjr9gGoxAkZqIldbLSc1owqjU3cdHWmYZPzwYo3julgRA6W1pGYk2qAkzDE+sofglIuIc6k+8Bz/RyjWOf6rUL4jjELTXN42zm+fr5tRxstG1njywXcCX7U7tLeyAP7gspnuwrsyWRSp+/B3ZRyylReLY8Ige0DXaNlOLG/PMdebvRiUZNecrjILdD0xb0vIFsg3tFBQe2CtE19aAUwiwJ6sWuiABBC0sbgCuSfDWv31a5oZQI/v49qUvufrzSI7ujI5HJbo4/pk4+qulurnTIN6WA5eVfakn8AXlzVquoLQF25uwHuyBdMnQ0FJDoha/jUCPXBCaYUkln/SjoC0zXPu58+ff7aGtyQLGsbbi+Xo687kkl3ZLq7uYAK+SNsM9ZpnXW6VQD34Y2H3jXZHBbN75GyhiwgHqJpbxGGd+hIs68SXEMA6wAzwszWbpgHGHmxvbzCD0FHATHwXIvoo6tKSVz9e7LFIvae6p/rQ+dmCxmm6oogI8K8WcRiHjmkcwJtI3jigfeDG6fgb44yneoC/kmcTMNYIfJTFcQwga+vr6ZOnkj29mEt9WcPII3n/+vUO0SNq0+yrdznnPGh5Dy8d0f1qnSeYXWMHu75wdo1AqziMd6AYy3j2kjGeyG1v3XS4BTv9xoJTf1nQ25XNCeAASyfAfIC5OJ4c0HTA39w9l/EawX/qg00eTP+mF0SXuNP7vLfPPUOr+D4poZYbgooQlQVcRXG00MvisJwcpuXyiyRtOfBDYF5Dq4IVPZpOhdkcF2xHaKNmxNRfsZG+9UtQYRffeYsFHSHqmulXC+7HzjnQGgJcp1YJLatyeI4QWqduJKGsU3t3WmF7ouiDVZlcxmOtcSsE8aBuhk0oojWX5cdmLRPGm9EQiyFUMOPfG4YzspfDjqnIXk0X9O5uynF093VimXJsWBxo+4++eD00PKvCZY4XJWnIkYbiHuf2Yd2rcG6PYHu3WcAfXp5cHxrb3afpF4vaYqFi5ccAdcsA7eNFHVlPAJa09DKhJS1/WyVyD8U/bQNzKCF5WrSin7RG13Ht0W60nCFRk+oG2D1t++keYnel/U6/nybrulW8un3J4OlZV9q4u1IDlKsHlRN5RmsPrq0ElftdGF/FDraEIXv6sbhctpNod/rkLPVz9SeSabR81JDRbt6ktg9hhFZIH4GDVnRMrRrbd5fAJ3FloS0X+CZwsXMn+c5PORa04uO/aKBv8FOaN7chZ1U5/saA/1bwf7vAlz2Cn2gOcWxCc2Otjjs2Q3/tEHdEbrphcUekSxMKIIHfVmRf1nu5NSx8W5j5tp89vnQffGERDgGkaDR1CRrMYOyQVfPvw7I6eIJ1o+KT2pR2C2Y0fsYKZth/EncwY1qXqbIG/ka0vHEFztPlBw0jQDCj/jPmdvkzAXZkb968aYdgxknVj7m3dL0t90d9bXiUSmUSIphBx7RO4ycCWKddghkdxjlX7tpz1rTI6u27ExoLgwkRzDjwCXM/TATjkCQZzLgY8bhkkkWG4Ya6DdZfDuykESqYIYdpvPyPkt4SEyiYsUDGfK7C7AyD1HuvnoZtHhEn4WCG60csy6lJ3HJiDWb4VibmVa4eYbiH4rtnhvL8e4QIZvDWEKjBDMARQuvUGNK/IJjxMHXc20FP+lNTuDvsX8qWLZdwMKP+C1YwY8KX9glmrDfUzZ36KsMyPLk/yX1l9y64BzPIfzu+fz9a17TE7UlpzJPBx3HYoNd+wdqgh34RVzDjy9CGmd5qNYY7PQOZw+YXDMA9mIH0EThoNQFTq/rG/6tgxmY0N0boYAZy0w0LZiBdWsuDGZbr3w00jS0yLYixmK1wRvUTDsGMLWjqEjSY0XFA2Oi92+wsIxV9qi5le2DfFp7BjMDelRjBjEw1oWx5nIMZj1WStvaoG2+87tQd+fc/L40nQDDDH5QEdWlo3VsiibmCO7L6+vp2CGZEr7GjfarvTonwHFQRo9kzmBDBDG1M65CIYJ12CWZUz/M9WzGsI+OA+/JcxuUjdoQIZtSqYRkH8CaSNw5JksGMLUcn96OSKBYH7Toft3HXf0KoYEYopvEWS8Z4xAxmrEqO5OyYfcg4auKqZdfPnvwu4WDGBEzLKUrccmINZmyuuDW81jCNnnb472/5P/RohAhm8NYQqMEMwBFC69StpH9BMOPZo3OlvaSyjAL1jOgpAR2HSDiYsbJPJUYwY3Af1DphuAYzbl7zePFqu4bBfm6fxvefB37EPZjx0c5RjfMmjVZmcfTQuyEf63HYoPv0QaPnwQ06o0+rSgy0IphhrZDxXjZ5ukGBashpCz1bW9yDGUgfgYNWgzG1+ta+61BJBzNi0dwYoYMZyE03LJiBdGktD2bsWTierH76BuPY5QGM0c8HLcMhmLENTV2CBjN6Zytqhb6oNAw9MyW0/G6Jd7sFM7qMxQpmTBkj7mDGVPOqbV0XTGDsGBwfPuze8o8ECGZ0Gou1NLw9hgA7srq6unYIZsz7rPGx5Hw+LebkPd1dciOjCBHMyBmDZZ1IIlinXYIZQwYelpk6Nsc0bK/PiBEdejEIEcxwwjTOFCIYhyTJYMaJQaPYFTUDKPn7vBX7FyV1IVQwQxnTeC9GS3pLTKBgRm3VxJePrtSbhL68adUl4ruahIMZp0ZjWS5J4pYTazDj76Oci5uHcSxSl4ZnUVIijhEimMFbQ6AGMwBHCK1T40j/gmDGzF7ncgZ/DzDOMls0b3fu3TkSDmZ0GYcVzMgZ2z7BDOMshw0+35wMj07cKP/qrUbb6yUiN+gzVtS9t/JZR9mzeOQ4v3DqfRw26J3GYW3Qb48VVzDjajlzy8Gh7yziSga+fvGUcR73YAbSR+CgVc5YLK0ix/5fBTPi0dwYoYMZyE03LJiBdGktD2YM1ymKib4zgFKyWCp3+sgeh3AIZmxHU5egwYxFwVWJUzr0M474KGXy4FzAlXYLZkyYgRXMcLUWdzDjVDeDLmlsdaM9RzrK5XO2mhEgmKE/A2tpKDeDADuyGzdutEMwQy1n94JzH5XMiycFPl+xxSmBEMGMOmss6+RbE8A67RLMKCp3e1G04qFR/gq/OfPsI9IJEcyIxjSOKxGMQ5JkMOOxQXnFNvdvhlunvFjct6OOEqGCGRRM46lJxnjEDGaYBebStZPl6NvDFLvH1Ax5L+FgxhsrLMtVWUnacmINZhhOH3Bcy3gnpUjhskpUWX9iYCa8NQRqMANwhNA6NYH0LwhmaN1NqWcWTLAo07sYdffV+N0SDmbo22AFM2pntE8w4/GlW6teyrkwtsVfYI3u+n4I7sGM96R8wyvXXxmH9KUtLz37dCgOG3RtG6wNOslGXMGMfvPv5ew9uNskaIqfpvL1VfjXzED6CDyQnBlYWmW27y5B0sGMRDQ3RuhgBnLTDQtmIF1ay4MZvmcTo2YGvrU4NKSzU2qqbBAOwYwkNHUJGszIS9K6PTLVxnD9retnlzj1cW23YMYUD6xghru7uIMZdg4POtpu6kjNntLNcXSQ9WICBDPGeGAtDbt4EGBHdunSpXYIZqTFTVyjGNPLKHL7fl/bYukcQgQzHrljWafYnQDWaZdgxgTn2dwFhw0okU/+2iE3KpFLiGDGVkzjuBPBOCRJBjPkhjZMlZtOMo+YPCLCsKfOHUIFM4wwjacuGeMRM5gxqn/0ErdRYyjbpVZWXVV5ESXhYMaHJViWO7dE0pYTazBjxPHXVxZL9TQO3V5Ot8vSO0WIYAZvDYEazAAcIbRO3UH6FwQzwgy+PWUP7GB21MV+i8GImOMSDmaM4WAFM257tE8wY23MrRfraU+tSpOW6BSv9TqNezBj0ro50+gkR1pG54b1zlGaaThs0IdxsDbonTjiCmZMKf57wuN5/la7lS5Mz7CvZeEezED6CBy0uu2BpVVO++4SJB3M2InmxggdzEBuumHBDKRLa3kww+SFuU7QzknULb46yzYtPHoeh2DGLjR1CRrMoA1dWbOhxsZ46xH7ILeFp+e1WzDjSBBWMIMWJO5gRj+T5/M73bRhrL909lBR3J6bBAhmpAVhLQ23BRFgR3bmzJl2CGYwlzqOvtPN2/Solt4D5sYiGiGCGeswrcMhgnXaJZiReYsh62T6zDR7vm3Rrfl5HQgRzJiLaRwaEYxD+l97ZwIPVffG8UEJlVe7SpokKdL6SrsZ22BmyBattgllJ2mnEKUiQmUnhJAtSyFFSqv20r5JG61S6n/vmJG5M/fG25259/V/+7zv51P3mOve3/Oc5zznOd9zBstihm8WRfvEvRD13JBhopuGDSnAVTFjGqLxZLExHj6LGU7bxoj4Su7R3uE4O8t6zE4njIsZEoiW+7wNa8vxtZhhEpAo31wwWO+AUmnwojH35uKimMHMIWCLGUAgZOWp8YQeUMwY4BF4a9XN2frl74dMTRG+mYlxMUPZH6mYQfAXTDFjEGH97dVvzAwyr+yX/9ttoxbqxQzp3ObindYB2sW+rz57/EjuiwaZ4Y80QR/sz69iRgB5RsO8WeU0n9dPpto35m1FvZgBjREoaEVA1Oq1YEdLrIsZCXBhDNfFDOiku1MxAxrSul7M+EDfu7N24nht374ZT09Hvb6BQjEjEU5dnBYzoN+RLLBihmgYUjEjdi+/ixlnTh5kyBsIU8J9a6yT/nrhi4NihnAYUmr4di8OZmSVlZUCKGYYDzx39dncREpI4MUnosMtxXBRzLizF8k61XiwjkCKGdPmjm6Z8/C9VuCJN0LKWy9MxkUxIxfROLF4MA4By2LGRvEFXu+19uiWjBkkeXLv2QO4KmbsQDSeFzbGw2cxo8/fWdcnqjbTw2MozQFkyb8xLmZYI1qOjrnl+FrMmFi4ccFlQ4Jmsrjqz9uaISG4KGYwcwjYYgYQCFl5ahKhBxQzplvXPi4qzCNHNCpfmr5w+mGMixlbw5CKGWZhgilmnPAJVRg1UNog33yURIv1/GjUixn+k0oNh5us0snI9VAou3zKGYUJ+uYwpAn6qjB+FTPUhx+8r+t6VzfwsCpjZ+uLr6gXM6AxAgWtzBC1Iof9XxUzkuHCGK6LGdBJd6diBjSkdb2Yccwgvp/1WW3NnOUpKS++FsqgUMw4BKfu2YNW1LZZw3S2psj2aRy7oYyz31ABTYnGmlTuKkZvmC5LZlcxiI7gZz0Ydk6A9xJtGSuBf9oSrdcRgfd19yS6ujg4eyoTgXe3A9utnG2JjgxnO097lU1dio3bdS0sFwWUae94dM42M21Pf97Pzd3f2S1d7KY5QGoUHwt00wkaBIIPdDAIBAZiy1iuwQAppEkxH6CTBjzfzqZ5q/jE2CNahYe1fma+C54DSQ7BT/NIDpmXf3vos1/boHd0S/qBvaEOFA/tb38Yx+IBgaJBgd7yimOnwW+wisUkd5TQcAG6v4Mz4Izgz00nwP/pThlEmmk/ttsq2jq4A70LaJ/A+8vV629UqZjdMoi/+r5KqsE6m8OO4prsD3PZslMT2qklaDBPRINZYmMwUS/gjdsn2dzGalrAy1jCv+lsfZnGao8rPO2TmGe2xHHEcc3MyQoj8k2yOM9sEKUyP8hlHPb13/U0iwFZ5C375OmRywsjZq12lUChp1ERDaeGkeF4za+bFnRrptaP2mm04GmqBd+V+4bbDNPPd35meMnyCCeu2IvKa7rcfhXtDqSYz4p4OSQCwRU6JFzOY3Yg1rCbQoAZdiMaPsVMMg2mFp8zOKnzM16O420ktLyBaQIz4eKel8H5+lAtLyvHNawFBEbHDTrdi/2TA7QNjGgkE0W5DVNmG22SUzaY0KURV1T4xwq60Q7trAVNw+ONzsTCPTKXGTq1dVHiy4Crr98PSKwKjLoPoa7+EJiCLd9f3d8Q9C8GkL6zPb0XSx4JXTA4cHlyH+ZlXVt2/4xq8ylJCDXXLUw9TFd/pnS3rwHTVbk+J9Z+/dcHLWxrdguVi2uWvB1G66806HL772M+DoEVkWDngr+0IHpZARMPa0fe8xnrb3taPG3itY99TDJ89WMt55czSZixPko04FJbyIDL44UggWnOpsFpGVFaBqk3V45df6xG9Q8DUwVgLS/QWlOADlEBtVZ4EdNaLHE7REIKBoPbyzZg9v3LkXmq1P/LJcb60H4avi0viioWuiznjN/tt+FWiIh6TLDMY0lQoc5DAkoeUwJWTEiFiwkHih5abH/aoltSVFBydPUjziOsextaOTMcuSc6cOFAkUR0BT/RqU5DdHYBXoOZansyvD2JYLxgePA+d4Uid3iGeI1O7qiBp3ZWu57i8SjcMxBeqtq4uzg6GlkB16HDA8QnoZaE80kxUw+Guwnw+OxfO07TZQ3YE2wcgecBKywMWwdP1rvbAGoB48ljnxSIHdmTXa5KaHEVoeQgYEczDYLPdg0JmpW7nYMzlbGSwyn6tl82Ale9Ol8Xb79u4uLa+SqnM0zVKa7yKT5Y/RdTREN3F2Be6enQ/lR92E/Fa5bqbrVW19nWwab9R5ndWhy8CA7PnS7RwHqnI2ti3h7MwbU0BytHDRfbX58FchVPYKLm1PHvXovcrVx/BYx2V02Dc1Wi3djCwF1B5LBTmdT9X4s3cPqHEcPRah2nq7LrY6IkG+ANPNj6wHnvIBJxLZABE93BO7Gm3Twd1fHO5tslssbUsMcDCog31aV4PEiX+j/0TBGI//9hhIwCkjNiNKuc68NVYAfGM6lodng4jHvNocMHSprH3tSRkswPpwSNyO5zLu3iMBQ0H7EfSXOJjpCcDqe5W7mDkgM9XeNYmYHji6dL3nG8at+Fa8CQowN0HHuYChSn8nDjnbymg4crKLoVkAEzh711k9qDM9EK+I9oB/4GnqaIup737NvC05RE210SUp/st8A+H5dBOBq5TCNu7OLuadC5esbDYP8wjei4G49VKHoMYLChGuD/nAaz1S6qmkCLqe5vzHAEDMawBWIhw5vjdu2mzIAzJfnasHteM/PUjyxZLr3T7ATn6DoY9FpPcPkcpEIYYJ2S4cFd9IJbE5ms4eIEJDftfYd5G9tft2GOwGA5zINpWlsgWe1Svm2oISIvk3yIFvPXg0qPzXEKv39gLiPz/Kku9p+aY1UE+yjAHA1kHjm4IfhtXlGwyyBddHwStZMo4NgNjobgFAbIjhXbZ5UeREA9ZqGM+bf2GgHQKcBFKIYt76rL2Pf72y7a2ensaYr9UDvZvzdnVmjG7Fncs3rW9d+FKftTNl/UpRZQCvVWfPl7innTH4apIkBmW1DmXmQemeOMY0yZuabSfbqn87hO5idaMzzXMhjOYHLkwbBZw3QPB2BKzzsT3JgdF3GiJJW298psq93j1qpxRphf97XljjCdG9FOuJsKWLIt5SXb4AKmbKyQkAkXEnAzokKHvq6MqDzSbYinQk2HwoCaGYU0oEZ3SH4E95Jbn5ZhEEyi1f1iyK6zm823oCP51vjLn6SlQ9RjrW5TwkNPvkVB8r2RSJJvjWRLngUnea3k2A9TVV1oAe/f6atc3cKJxPc3YgCZhw2DSF/j6MhjxINb5pnE/pwz+DkwMjs4AymLg217KF/r4GlPdPG0Z7h3fbxbPjuuunGCOT2btOhOdMUNUYTn5LIMZ3MX1SUCCYck6NB9NXgs9CsC6j6O/NMRbihYLPUAhzbgYTyZqQCoGE8BxIUXKpuJZdN9jKTW3KDnl3C6JPNG3Is+7Zd/55dQb/9Dv5QCdz+ByiXyKkWfB3c/RcIu9HdRuZEdyrlzuBroWjzlk9ycSHfZKUdJ/2x6RVehMYUTjGM5CFhe5laRsxXtsQpU63EkkloXIwVauGc/qJjJOldGZx3GdlrsVtFnuDszHFXAn/FQ0aGs0HX2ZNgx3CFMFvjnT9OTocw0EDQscAuilfO6dlPztDI0/fqTTvKHdq3JZ/WCJhIPuxrmM3sBhzbsxUU4IaTpTG3BjJiZkbFd35anFG+ezMyyqhxNjTE4n5q23MiLUwrmW3FL0X6ZH1IwXRxWiosdA1U2AWagoh/TvniWcFrDZ/HwOQ6NepyLcZLMwparo4MNWEx05h6p4DKCkTSgGzCcgE/ZWDkSnTju0qVxqbXO/EvoFCI1rp7gdvOgwmakx+JG0zjbuxoxgLT/MjgVDuaFoFGAiJEcw2P9gz1F5bH+wVwphax/QJcx2O1CMO2CWB8Zpe3gDsQC0PuZgyWnvXjaZ0zyaINvksp6vnWEwWYv7O9y2EeIxF2KIgl6gYQAmPN8DGuBhKt3XAO/2iKmupNIQr8RSdaYAUzebLulUtZ28YjwvO8Gh+6ILX7Xr3Aep0pkbpXIv1Vp2ZTir0RZO/XwVfm0QEsNMRRUSkZUKSSmW8tI0r+WkbogEHS1vktLSezrqPO/BSyPaSGByT9EC8cCplKseJoDF08vjXr18vNeGs0vK0JukuWn1Zwr5jQXL0bX8/2JzK0DjmBtRtEJ+OQEcJW5fXpFtHJ0cbYjWrFqM13brBb7aqW7hoyZRqrcsv0r5jbacT8b92o+eLWr5QHAl6TjAf2+8wqgBHCraBxPbAvOl/qTrTwYHZAz763H9gv2XehnQzqxZuFud8mD/n9M60L7G5SA+MP+9hDQaHA8HIFKBDfbxneL1h3I9hHm4jbTGXgK5Ubd5Vb+TpUc7yVePv25bhpnT6O58BxI2dd/N9OpWrR+hFndWHJSffCisyIzNVEQCXAVBJFuxeGPlmL/kVfvFoQzqKOT2yK7+p0tIWPyH6drFbTetL0dPGH1H7v6H0NtBSxfpvAy0618pi93KxVv1wIYXJ3a/RksY/DeueBfskdL3JQeGGwgY5K0BoL4ddyFG/H71cQPNZhOC6sG4LSs0eMoAWb0yFApNhtz5YtG+FXHW033Gm9BABSm9xHNLRZzjyGiMJIqdKDB7b5LXOnu4kTc4L1u/SaijYuTq4szOP3u2vgRKsX4WS8+nxq761rzaYPGm3BPxw0j/Wrropo+wPQ9AlSTyAsBJoD7QbjHEjECfJwczHqEDd6d3pvnW37PvmfhfrGPfukgRZdz10drDgTn4O6Ap3BDXcKTzDlL8+a/7s1dmu/c+LuIertlzVWxAg26/9hBZsqDb/7pd5G4AnLuBeU8zcs504CheTNGEZUnxljenRGww7LrfmfZaUOO7NoRZaWeImxsMcH9AufZG30tkGxn0Q3bGUopzqCoZWoGUZMGxLWKxqFgu1WItjPDke2I6t3ZQd1hu/W/s93o0yXHV0/z1omSs9TTv+f9ltN2i5FstxjJdn8Y9UHjkBGNo4Ij43RzJ6cUyzrgoqWn+xqYRR1o8gdZ+GXegsfCb/t11EfhfFagEyODdTGIPaSBVs+47uUk/VkiIADtY5bmiMh+mENLWPVQTHn5N7M/A9pRUMAMUQG1jjwklwCTh3R7+5dsh/fyf/sXdBdSp+1fUFwaaBIm8KbLgCYRVhOUZwOaehF4F6WApt6sJigGBDSJspqgFAnQ1IfAG7gCmsQIvNeLgCZxVhN0mQ5okmA1QSulQFNf9u+CzPeBpn6sJmgqBzT1J/BeTgWaJFlN46XIX9YqTtA8nFfU8HbO+ytA01+sppqYxzfylHI0ojQumEUPZbQATVKspgcfrgy5PFBfJ2qoYVLk7S/1QNMAVtPKGKPBQYeHU/bMj/64eHNRPNA0kNWklre59ilhnca2hLqaMbkNh4CmQaymu/fnTsu/d18zc/TNZn2D1eeBpsGsJqur+jYWjCEauyQeyu6XHisNNA1hNe25cG7aM+n7tAPH6ZGF28q+A01DCbyzLa5dg8MIMLsG9e7cOrb4y0iDgNnzcq8++pTIo6N0d9dgHlynxM0yPtRDUGIRpeKIr1y3ryMdn3hHd2FptTIK6/h0xHX8+R3LI/lwmuP02CloRxTYsVNmCUjHTr2N5/exUxMGzHdpCVDRjDL3i16dPpaTV8Dm2CmjBKRDPOYn4ODsnJKSEgEcOzXpJGP3u4FESlyJsXzEQVHOpUSsjp2aiGidoXiwjkCOnSq+HTrf+uh6/cARU168db/PWf/F6tgpYUTjANEEe+MQsDx2Sm1KjeqZhlEGkboLdOnn9TkPWMT62Kk78YgHumFjPHweOzXsvETKk/rRGnm54nOj5YUgWaLAj53KRbRcLOaWAz/Et2OnLt8tXaI+qVjneA7BK3ujHmdGh9WxU8wcAvbYKSAQsvLUAgJMnvpvOnYKOlXE+NipugSkY6dSEgRz7NQkfYKPEGkYPbxR1s1rhsJl1I+dgi4fonCU0sUEpKOUShL4dezUt6mPexttV9cLmvNgw4qbBbdRP3YKGiNQ0CoFUau9gs1DsT52qhAujOH62Cke1S923REa0rp+7BS0OIZCAekYnLpmo4VXhx+VIhcnOL6bs0mMwlk16DjKor0w3fViRrHQr1MwgGHCHZiYWHmCf2W4gzcgrrRiFtDbiSUHTw/2mVOsX8Rq9yDaWDkTrYHZ5hpXV0cH8NgqF6AR+Hz7Ldc4gx8F99E7g3yAI3MkYl5UIWrYg0cDMSdBS+jLiK5sRpO5BcDFzs6R0bEBC/wZz7UuRCdwY3bXii0bXi5snhqsoJlGmP62d8n2AETZuIstkB/oYswwBPI06VNVQFzktQCeBoxM0pVV3YGpBmgwZQT36rMeiPd+iPwfc9+MqdUIADxHbrkq5xFfvZn34ME3My//Lqoqvp8yahzjpkGUjPkJ+QVHr/5hVFUHFBIDFdrNK6rKAzG3iFOh31U95Dj8kZX0gJqxBIODGGVOh7gGJyXoZAlPzdx65Jkapss/oCr2lUiqAH6Dm5lZ04LuFD5m6K4kmriD02ewF3Nay8Gjc1xgzrY3g7Ns3ptVw8XUCqcfHEbPmmNHUJIjc07IJOgdN+ImWTq18cN0NSeRTOd9EhPT9bF2cXFkWHUKk92ZmI0yBDcSg0MCu5bosBIM7wgLqteHTO6tH5OtFRT8+e6tnaOKICehgPfjDkLtl1GfLxewogxPrMsnnxllurWgrGDCOseOBWR1R5jEvChGhH8q/dCr0YNj3WmcJ/v3Yd2Yu/zNbuCHOMxgAyuONEQc4d+IM759lPo1gndHnQFpZ+NDp53QSmg8GyX2tx8nTS7esXODmwr81cQPhZh9GlYhoE+z8rYiAkzepkWaqPRz3jVS2n3Zw3Wx76Zzsi9MPM3VBSRIuXM2MRid//61AOXw6/O2rAHP0x7IO+3siR1HY7SfBdC1dElKNvVssf5Hkv/DrPS56+tnwD4tN6nTqbGL+noXAwpWA/paaYAlLYi+UoC+ilVcaVI3t5MO/vVYIJTargXPV88+6zo/ru0QZZ/o3/lCY1o4v+pczAw8dIjXiRG/Wn6XQkED4x+mUPaAevageqM1eHjna2BiKl3drRSqX3v3tWXYuTN455cGgUktpQVmpJgHU0evpoYkcSZLmswPcidLrOto907w/WuqkN7fuwrrZKnDM7uRKIGP7OBi62DT3p95fxFZNMNv8+pC/YPDje5+8qzR4fRV9g24fbWjhR/GUEQ0xq3TuEh/CN1ZD1LRd3bxBIYvKxuwMq04ZR4wZQX5c2Xi1Hk29i7utsrEafM83Nw9mf/gna3qHlhoVJZVTPJ5c+2O3DV/zs2Q4uAvMPZc58jdbTo18cNYgaeRjKWGjbEgPYdZd+lOtjrk1zKC8xp3aw+EHnT+kUmohWqb5iG/QY+ubpld+ydT5T80R04eK5BLA2nGZS7oL6/KtK2qe1kqK5IjZFsSDS+/XT8zXGeb7pMv18ONEjGd9oICRFWxBLjFQwAwtHQrE2UPZS5OQELF+2upr5JCI1+LayUbbbVU9PIohgxlzA/yGMrar/NDgIrTCAKkG51mJ5rFhH8X7aQaYqq+fcA7gxjxbDerOcWjBEY7TTlXhUA7hdRwZZYo004Og9VqNjn000298zacNvPnABzQTkRQEti148tnMQn6nMjG/fv3BUA7OZR81WlYkkFLlqDMKf3mbIoL2snnLJJ1puDBOgKhnR7J7un1+cB+cuJtt7CWxdPf4oJ2eliDZBwgmmBvHAKWtJPPzbaTWWo3qYF6oXfU6rfMwhXtpI5ovKYzWCe7OKKd3s0RbU6IXWMQfSPDfYHbhkaMaaf4M0iWM8Tccnylnc6m3XprllVPLR1WPlrdeXYDLmgnZg4BSzsBgZCVp5YQegDtpCkjnz1GspdWyWnrsLy3G15hTDsRz1ch0E6utbDFUlRppxSLTaP2zlKh+D4fJ3R8wHND1Gkn6NwcBYJHClQOluCpqOUqlKJEO8k+Ut1uJJSmmWkqp/5++qto1GknaIxAQSvAjxC0ItYKNOZiTTuVwoUxXNNO0El3J9oJGtK6Tjtdyb4eFHbiAvVgpIxInHXdTxRop+Nw6v5HO/0j2ulgSdvjw/sPkQudRHcfSH+vIjDayec7Eu3k840ftJOXWN81r8+M1sovGOm1aMCWOBRpJ2KrzYcP05V0T6x6Xhb6XP4kCrST63ckOIT4XSC0Uy9p4YynblRaysAKlz4id6oxp50uf0NSBfAb3MzMsKKdlj56Nb+tqEU/KyNVNN3GAT+00xRE0z1sxcVyH99pJ6NWTZqfjht9Z9MbyonXhx9gTDsxowwsrgJEGYHRTtfE1o+YrLGafmD0hGJK5Z1QHNBOzGADKw4QbARHOz3dIPLauzhFM9Ts9sMfw5tFcUI7TUFUCOjTrLztBKFH0E7T6xjUeQvFdfwKDwWO2zgilu+0U8VPJNrJ9YfgaCfPV71cVzaPUU+v1MyhOGyJR512ggZGFGinnJ9IzILlT5Rpp5t/HVoouVONnvR4upJpaWIW5rSTFOL7V/zAOlniF+3UN92z9chYAjn0fujmD0Zy+3FBOwGdFcEYRGyMgTntVHGmXut4frV6iZr1+3PXbiXghHa63IZkLJ82PPQcftJOY186qa+s2kwKLz0wdDxBHvrFB4KmnZiBHJZ20vqJNu1kubcxoX65jH5Kv7FL++rPPoo57fTwBxLtBIQWlGmnQC0DxaCxV+hhkXMGWj3Xm4A57SSGJED6gTZ2ollG+HfRTu63I9NKBs4yOPTx5DeLSUeeCox2Oi+EdLbTdwK/z3Zqbp2wx6dtqa5PqZ2iW9nwNzignU4LIZ2UES2EgwNqbty4IQDaybbp+YBcg4PkcEuzO9fmFYnjgnbyRLQOFQ/WEQjttG7Sum1DTJNJvlWm3nNrNlBxQTvJIxoHiCbYG4eAJe20ZxG5VZ9Qq5O4VHLYtAkJl3BFO10jIBkvExvj4ZN2cqzTEJ30MsbgYHSs21MvEaxpJz9Eyy3F3HJ8pZ3sl3waMlk/RKcsdHmTvVLOW1zQTswcApZ2AgIhK08tJ/QA2mmxr3Oh8s6D9Ciy9YHcn+/7YEw7nRZGOtvJUVgwZzt5kD3XtSarUA7PG/rtcf6F46jTTtC5OQoEz3FhpPOKwoX5dbaTwz1jvRnD/EglISJXouslRVCnnaAxAgWtHBG10hT+vzrbqQIujOGadoJOujvRTtCQ1nXaSdN1nFGhhLHevou3GvzpsxRRoJ1Owqn7H+30j2in8rciNZqfzuvu6K96T4iut0hgtNP5kdUItBN1ZLe+KK+LtJNOFXmyTeh7UvGk4nIZ0v4zKNJOn0xspJ2b0rXLaXmZ78d/+lOGFIRDToMKwcIh0SO5RiB+0E7m305dfP7EixwZ+TI/79CwNsxpJ09EVQC/wc3MDCvaye2B+oCT0tr6udOt73vHnUrCDe0kj2i67yMwMZ3AaadCn6GjWupH6m7duP8Sadu0DIxpJ2aUgcVVgCgjMNrJco/Yx4iNClqxoxcHFT1SnIkD2skTURwqRBy+0k73DlaemFnziBronXOr3I6sjBPaSR5RIaBPs/K2SkKPoJ2a9joyWoTc1SNTR/sn3IrZx3fayXFUNQLtdFoGdgKPOu3UdE0lsW6ClHboZ4/cC8NoU1GnnaCBEQXayRZUD5ZZmDuqWynU72mn1au+ziyptVLf90burHLU5kOY006DEd//tQzWyRK/aKc1CusqvN5fJQV8NPYUkfjbGRe0E9BZEYwRjY0xMKedzExnUJXuRmseVshV2khrWYUT2skT0VhUXPQcftJO/cxvbeu1XEH94NnkLT/K+g/BmHZiBnI42ilDZVT3stTf005npg+QEvVIVs81WeHpP+NLFOa003eZagTaCQgtKNNOVUEtqx3bjMi5qW+URCefWos57RSCJICZhQw70TxF+HfRTlLGE5XmxbzQ2lPWO+fwmVBlgdFO5qORaKdAWX7TTsOOUk/UKL6jpZ6R270+6OpnHNBOhqOR1o4VR+MA2bh06ZIAaKc1J2sjkhdZ0DKzLn8Z4b0CH7QTAdE6t2RxYB2B0E7nv15re1s8Sj9N5Msp9+fmdbignXJkkYwTiAfjELCknY4WkJ9e0/TUDF0tMn+D5SIKrmgnS0TjqWFjPHzSTuYBrX2TtmrRj5aSxVscn7RgTDtJIVquYRTWluMr7dTPfuD41fXbNGPGVF7QVVpwABe0EzOHgKWdgEDIylNPE3oA7fTXd4/at+RIg4SJZsul5jfqY0w7GRKRaKeW0YKhncYsFz7hPlRe49iPfoHa19ZWok47QefmKBA8FCISwUMk8ot2opb2XzTSUkQv43Owb3he1CPUaSdojEBBq5bRSFpdFuwsAWvaqQoujOGadoJOujvRTtCQ1nXaaXXDm/w+iyMovuXmaXf6lS5BgXaqhlP3P9rpH9FO+5t6Hbza+pGeN/r9buN9qwYLjHYyn4lEO91S5QftdPiZl2PsZ5pGpv+hl/maz5ejSDst3PDwg4HnVvUky6mqXjtIj1CgnQxnIsEhijMFQjtNrTo1oa/sUI3gwCmWD9dJ/8CcdiIgqgL4DW5mZljRTpP7X/L9+3USKbBmV2LYFwc53NBOOapIpgvExnQCp50kMrOzVGe0GQQ82PYyz7jXUoxpJ2aUgcVVgCgjMNopp85XexzjpdaRvNb+d+5kR+KAdiIgigMEG8HRTs191OyD9d9plc7Wv+wUZX4BJ7QTs0/DKgT0aVbedobQI2gn8ylD84vtnxrEjLOONwk2uc532qlFDYl2MlQTHO00XazOzLXRn5ZxQCj1ad/aBtRpJ2hgRIF2alJDYhZq1FCmnUzvLpI+VCWvF2MYczhnyZbrmNNO8Yjv762GdbLEL9rJuFW/WnFOHSV+NWNGX4fQKlzQToaIxlDExhiY006vLMbdfXIpnL7D2dO/14Qn03FCOxEQjXVrJh56Dj9pJ/2FYvfks8ZQci5NkHzu9E4FY9qJGchhaacSNbRpp1Dv9NyBhkn6pc1T/ioJaHbCnHYKZAvAk3YyVEObdiqp2HBlG11CN2hFVJum8rWhmNNOMkgCmD2byU40awj/LtopxPyoQdX0fgYn3B9vCHOyHiEw2unpbCTaafBsftNOxH1q2qWhm0j50bEGOac3/cAB7VQ/G2ntOH82DpCNM2fOCIB2qt71pGXg0skGOZTnn9T2vqDggnYKRrSOLR6sIxDaKfWKqZKp9hatmN7B1UuV+9fjgnaai2icwXgwDgFL2mnLAa1qj0GRBmESD/IavuZuxhXt9HoWkvFOz8I62cUR7WR//uX4l35hOlsXLvJ6NcbZGGPaKRrRcp6YW46vtFPizScfMxecoBzWz5ooOnjyXVzQTswcApZ2AgIhK089S+gBtNPiM0LOtQtzqLmTMpe7rZD1xph2qp+DRDv5zREM7XSCmtZPvNdDg12Sb4Yef2QxDXXaCTo3R4HguTYHieDJnMMv2mmTqEONb5/JetnxpMkqZxZbok47QWMEClr5IWq1dM7/Fe10Di6M4Zp2gk66O5/tBAlpXaed5K1rpKKzG9RTa2Sm3LwlGYIC7VQLp+5/tNM/op0yqj8olAeoUlMaEywTrusUCYx2cjVGop2ajPhBO5kl/5VxKTWZni3uNrx/H2cSirTTB0KRxtWbb7W2j9ReX1b7YiIKtJO9MRIcom4sENqp7Nsu8Rz/PtqlKX0Wxz7yeIk57SSNqArgN7iZmWFFO7luXL+h2C1Y56Bj6sG/P+cH4YZ2qjFCMl08NqYTOO002Tvyoke0EeXEu5OaESk0eYxpJ2aUgcVVgCgjMNrp3ctBscuXOpMPxDXIThw4SA8HtJM0ojhAsBEc7SR6vHd+bNYE/WM+kYWVj/WO4IR2YvZpWIWAPs3K284TegTtdE/oecmqSXdJQd6714e/U53Kd9pJyhSJdrI3ERztFNRHaYTfjkTNCBXFgO1r5MxQp52ggREF2knMFIlZeGiCMu20xvb9iTk2tZTdlblrs1vk3DGnnYpMkN4/xATrZIlftJPl65fLXSZn62SNnxG8/OgjL1zQTvaIxlDHxhiY005KkweWLE2yJcVEN6xX6e2cihPaSRrRWE3GeOg5/KSdbqTJi5XdrKVky4WdtPrRSMeYdmIGcljaqc4Ebdoprne/vmrnU9QPjW4J3j/6/HHMaad4EyTayd4EbdppYesGQnLdJkqEyr1Fspc/pWJOO81AEsCszZidaF4g/Ltop+zs+AXGxx31tmZL6Nwp/aQtMNrpuxkS7aRsxm/aydl2/9z5U86SUyc+3pibMHE1Dminj2ZIa8fnzXCAbJSXlwuAdpIavSRt0/h6WkTsCjn1owFbcUE7JSNaZyMerCMQ2umH0PMqjept+nt2rusz9btRDC5oJxNE4yjjwTgELGknG0LcKN0RsZS0JepXVx6wkMQV7dQL0Xj1plgnuziindbHFlnF1P7QKaw+F/8lcfJ3jGmnfFMkywVjbjm+0k6E284T67LtyYGvspQGBig54IJ2YuYQsLQTEAhZeepFQg+gnYxKJpGUpWpp2yv8ZEK8Rj3GmHb6uAiJdopeJBjaaWiY6IJ7MpMMwhRq+hBCsk1Rp52gc3MUCJ7Xi5AIntOL+EU7KRqZ7x2Tn0rLc79Qs1h4lCvqtBM0RqCgVTSiVp6L/q9op0twYQzXtBN00t2JdoKGtK7TTiE/Hw16eZ6qsePBtX1nnxdroUA7XUZN3X4CVHejwwK1LU4l2nteP3B4KvJSo5O6BUJ1VxOc75J8p/XV6SMu6gw0CbOaxqpNzpWpCdIqWzVf3XhERgTQJMJqishtPHm+vwc56vDhHUULHw8Emnqxmm4P9DUeszBRp+z7mePq0fO44bTecObaOvG0cqLUI62tG09Jqa5Mf46Cua7Ames/OO0fwWmTao1HOSUe1SydZyPbFiEvLTA4zc8FCU7r5cIPOM3tWX/LeYfc9CLzqR9XbbJ6hSKcNnurxXwKwUY7u2/jtpW7xqWjAKdtdEFieUxcBAKnrRhqLLuhMYpcKBabmfmYWoo5nKaMqArgN7iZSGMFp5Xq5OSVNobTYmeqLVi1u60ZN3BavTOS6fKdcbE6y3c47V5U87orG+brxGbQNlm9f78XYziNGWVg6SIgyggMTrsYIn5XTMSGvM+IpE/WKOJM7rCB05QRxenlIkA4bZar+O68PZXqe3xWXqufrWKBEziN2adhFQL6NCtvqyP0CDhtmUMW3WDALIME81Pph8ZU7+A7nKbshgSn+bkKDk67muNROTgoVCPNx+L4Aal8zmQeDTgNGhhRgNPk3ZAQk++uKMNptZr9ZOQWh+jn5+/K9vZ6NQxzOO2aK9L7Z7pinSzxC047MNVi3bOjOvrBNikFSRXLOb97GSs4zQ/RGEuxMQbmcFqBweXUDN8Enez4aXPPxPdVwwmcNgPRWP1w0XP4CafVp/xYlnqgTT1+etrE7CX5qX8yVUYBTWIGclg47a0r2nDa64KyyyI5byjR+ZNrk3yLUjCH0467IsFpfq5ow2lTN0mdn7iljBQguSCJXKMGmfdjAKcZIglgNtyVnWheJfy74LRTj4ZmWH/drnPihJ++mc3yZQKD06Q9kOA0iju/4bTNCsuyg7/fIe1wulj4uWjBRhzAaVIeSEv9De44IGyKiooEAKdtvfHGMu3VWVpYn8+ZryTjOb9eCys4rcIdyTpReLCOQOA0XRXjsPUiKpqBqhXyanSNU7iA01wRjUPBg3EIWMJpX66tLPe+1qARNGP/p97Lv3zAFZxGRDReixvWyS6O4LR7oqtJNy7GGiQ8oacTJYo5z44RPJx22Q3JcmmYW46vcNqLpRPE0qxEyVEPx6Sqiu5O+XOyBQU4jZlDwMJpQCBk5anXCD0AThsrbiymJLuTknvz2hDGQIIuxnCalCcSnFbkIRg4jfzE7dEitUz90pKPMfZLrXNRh9Ogc3MUgCsxTyTg6qEHv+C0vhP7kXQO3tIqEMmptFePu486nAaNEShoVeSBpFWIx/8VnHYdLozhGk6DTro74VPQkNZ1OM2QsPypQdxiWjp9wCXVOGspFGinG3Dq/kc7/SPa6cSjlE0fQ7bqlc0al73UQOKDwGina/5ItFO4Pz9op6oRLzaLi5jSEtbemb9WXGEiirSTdG5z8U7rAO1i31efPX4k90WBdrrsjwSHHPcXCO1UOVTS9XBZL2rgx2k/hkv6D8GcdkpDVAXwG9zMzLCinSYKX/yxrLWYXPhkbpnisXV1uKGdfBBN54iN6QROO+W4uXvFXBej5n6I7Hv/gx4NY9qJGWVgcRUgygiMdvpRHvls4bK7BoWl/o0bT/SJxQHtlIYoTri/AGmnN4xV3ptNC8iB3l9JaX2+bsAJ7eSDqBDQp1l5201Cj6CdMuVm5v01rk3zaNDOAqXtCgP4TjulBSDRTiYBgqOdErWnWAe98aPEkcMO1d7UVkKddoIGRhRop+QAxKOoAlCmnba81t9y+4QaJe3VkuLDztOxP4prI+L72wdgnSzxi3bS/fh6puixZXrHFqs7a6aL38MF7WSCaAx1bIyBOe202WmQZe2FJp2MDHPVkcv++oIT2kkZ0VjSuOg5/KSd7k9v2DqzOEGvUJdeWxwzzA9j2okZyOFoJ9OgALRpJ8ZVpZtZwmupSb17HxLxyBXGnHZyZQvAk3YyCUCbdrpmsXRBxapzOscMBxtZiz1Vwpx2mo0kQLpsADvRvEX4d9FOeoOkKg0iTekpWyh5a1/G3RQY7RS7HYl2Ut3Ob9ppsZHkKY2Y4eSQ3O0KjPd5CTignQ5sR1o7DtiOA2QjJydHALSTjJ/sLVkfM2qcl3lsW2VUFS5oJ3dE6yzHg3UEQjvFOV3v88HGST9JdoLtUSedclzQTnqIxlHFg3EIWNJOu+Y370ieZa0duLO67kzbyGhc0U5yiMaTxMZ4+KSdxjYlNXtWG5H3zVGurRA//h5j2qk1AMlyz3ExTeEb7eS4xNnggZmJVurDKRPr149rxAXtxMwhYGknIBCy8tTbhB5AO3lJy4ozjr2hB+sE3Gje2FcaY9ppRCAS7fSWO6XlC+3kUH72x/ZXa2hluwf6vkqXeYo67QSdm6NA8AwNRCJ4hAP5RTudJyqXHznzWmNv2JsEyhtFedRpJ2iMQEGrt9uRtLoj2NESa9rpDlwYwzXtBJ10d6KdoCGt67TTlVN1aRdm+qhnjYrps/69dCsKtNNdOHX/o53+Ee1kf0gu4bLXKoOQxeuWfEi0eSIw2kkhHIl2eh7GD9qp/6m7+14HF9FjDRIzQg5tDEGRdvKfVGo43GSVTkauh0LZ5VPOKNBOcuFIcIhkuEBop7hzvbd5vV5Ij4nu1XzUWc4Lc9qpNQxJFcBvcDMzw4p2GjFcf0HMXhOdg8veXjIKOumIG9qpDtF0ZdiYTuC002Lh8Jq/DgjTD7wL2Bym00zFmHZiRhlYXAWIMgKjnXYFDehHWa+gFxgVrUdPPPcFB7QTM9jAigMEG8HRTuf+ev1ZoqqYVFiS7jd9/JZsnNBOdYgKAX2albfVE3oE7ZQx/X6plKI6NZI0zjtVql8632mn1nAk2iklXHC0E2n/zgfFUXtJ+/q2MqZOmlCJOu0EDYwo0E6fw5GYhcfdS6F+Tzs9oV537Zt2nhae8HmL2NJ3szGnnS4ivn9JONbJEr9opxMnSQTpnY80dix+PDzuZO45XNBOKYjG2IuNMTCnnRzUqAn7/n6jE1Q1+8vbWYmrcEI7bUY01ipc9Bx+0k7W4rTNSxXvUUOmVdwt11rgizHtxAzksLTT3W5mqb+nnU6WHhKamiqhf9R3DOmHWLkO5rRTJVsAnrRTSjjatJPpqwVngu7b6pbvW7NIfUx5Cea0UzCSAOmu4exE8x7h30U7Tdtw1fnq+QT18kmRjfGrH44VGO3UtA+Jdgrcx2/aSfmJzZjE+F66CUe3tv5cpaOJA9rp9T6kteNb+3CAbKSlpQmAdtq/W7lJe6aR+h6F3V6k+WEncEE7nUa0Tg4erCMQ2qnPQdoY5dgZun4ucl9tdi9ZjwvaKRrROIF4MA4BS9qpvnJJ2s/tdvTEDSEvNp+Rf4Ur2skT0XiW2BgPn7TT49i4I5Zqb9Tjj12PkIzUcceYdqIiWk4Nc8vxlXb63lrhMFYzRCtWsv8kk0ElZ3BBOzFzCFjaCQiErDz1PqEH0E6XU/vrpXtvo4ZlfO2nEnreEGPayTECiXZSjxAM7eQ+Tu6YaYqPXmJI2SzxCb7PUKedoHNzFAge+wgkgsckgl+005w55zdt6dWoHXZkvFub0H031GknaIxAQSt1RK2UI/6vaKcHcGEM17QTdNLdiXaChrSu006zJW/NCmq2143M1DzzmESbjALt9BBO3f9op39EO62MMRocdHg4Zc/86I+LNxfFC4x2Wp+IRDvNTuQH7aQW8fCzAWkybUfQ0aKlYkeNUaSd7mwJGZP/OF2roPWm7e3gCatRoJ28EpHgEOtEgdBOTQGrxPz2fdHIcyzfeKnCYRzmtBMdURXAb3AzM8OKdtKccPlW9qYZlHyX5F3uW9euxg3tpIBouoHYmE7gtNO82cuJVrILdMPWrFiYNJ2xD2PaiRllYHEVIMoIjHaaOO76yKUDhXTKyNKFlaPJX3FAO9ERxZmdKEDayepg5sWSMfOpR/z0xn1pqCPihHZSQFQI6NOsvO0RoUfQTmp5m2ufEtZpbEuoqxmT23CI77QTPQmJdmrlTpP4RjvV7c7wX7LambYvvLVo6V5dKdRpJ2hgRIF20ktCYhZUk1CmnQIt9pAGqKymHcwNH/Uo7KsQ5rSTHOL7SyZhnSzxi3b6PLmSuElGk5rUYNL87MEzP1zQTq2JSMZ4jo/0R+C0k8GP5U8pu/7SyjCg+B6zOLQBJ7RTHaKxyjCfZvCbdjq9O9dYbpg6LVF0qLHH62EOGNNOzEAOSztNTkKbdlqkaBIrElSqdbSh8rG3+xJ/zGmnoWwBeNJOrd3MRH9PO8W8qO9jZpFOifiQ7zyJdGM85rTTw0Qk2ul0R6L5mPDvop3u3p87Lf/efc3M0Teb9Q1WnxcY7aSZjEQ71Sfxm3bKX31R9njFQY3I78VTFkc0r8cB7aSejLR2rJyMA2QjISFBALQTVUHs1ifNpfohcoN6vTkQWYoL2kka0Tq98GAdgdBOlXWS77QuaepEr1z+IKnkiScuaKemJCTj1GMz08AR7eTdQI+59/i65i61/BXLwgdQcUU71SAaLx/zaSKOaCf/G3nVdNl63dR5AbqGvmaJGNNO8YiWC8bccnylncil6yrOqDzT2W0T5tUUNTcbF7QTM4eApZ2AQMjKU58QegDtZHVV38aCMURjl8RD2f3SY7E+26kiGYl2Ck8WDO208kd2ybIF10jbHo9+mnl861TUaSfo3BwFgud4MhLBk5bML9pJ4/wnHc2mBNo286b6YyPH90addoLGCBS0CkfUykeweSjWtNNTuDCGa9oJOunuRDtBQ1rXaac9F85NeyZ9n3bgOD2ycFvZdxRop2dw6hLtxhYG7goih53KpO7/WsxZNe1txHC0WsepLsyyEFwXHkQirnVwZxDdwTuxBOS9B76lzVl60QSt2BvBz6e4D5Xj8SDcL/37CHf28r6wgDz9A2/dcm55pI78w14bBX6Rxbuq9nHZhytTAsYGxXdVLMmf417yJRLbjfuLNVNSjA0GfPh2zh+3klOHVCNIrjyEnQq9wL3kH02/ntwe5EPzHfiy1vtF8UjcSn5+CpLkmVPYkjfgXnKZHOtDQXonSbvviRtu2lcxCreSi9GQJG+gsiV/iXvJ1+kqXjT022Pgf1HSTv2jeA5uJf9ujyR5vT1b8kbcS66r4E6XFB9Jyonsb7fK73kabiUP3ook+catbMlf4V7y9Y5yR7xWKWqVSZy8ZrHiqwxuJU8OQZI8PIQt+WvcS367Zc1VsQINuv/YQWbKg29OxK3kTbFIkj+MZUv+Bk7y6fl08mwlC0pZtg9tR1P2TUhBBBDb3cWRyKQ5PbjXGHvDCK2q5Q1MxWzaaUHWyj3rVu3AFnPrwGpnF+BvwNyHtVGha+uPruoLC3btrdBMLZO/cLSiqRnpiXmUcDjau6i0DzCJzjEH0vHTZB74PxHcum5WxQf833pe/uKZcq+0Ip4bJ9isYKSgiP+/9rH7Ypl+iHJM9KGmvWio0B/6oiugUAioUBMJ+AdUoZZ2hbhqqmyJuoj+jdHg9CHW2hMd9K9JIMajwlPF1TpRhS5SQ7VO1EiSbl8s1+IkA2AchX0d7YprRQFLKCKvegwRaG1aVMXFhnRTqBGLGOBKKVMhzn7HW6Gl71c0Gy8x1U5+5L4uMy6gjHNlm3Uz7pVtdgM/NDJchKQR1JmE/4FGTBSMRX0DOv3Oi1qvPi7Rv9pKjtrwfHJZbfVPzr4I3oxbIdZlfugjZYakj6spuzrwFi7wT2gbJp1FFNEqIDd9Y8jacQb+vlQHD0/YrWdwJftRNIaVxxr39q1f7axSe3R3BO7WteCuMmD4u6TysdQCZdLsMtul52CfihtX7tTYVVwZ3Am6BNCxEtDxIVRHV/DchMVcYb2buLI42cqDwRSA5/se05/wcf/pUzo7GfNl7g0X5fxKvl7gK3G9aPvV38V3aND7UzYZkIoIShUFxPcKqFQyx5hSwcZ3nhw3nbnmBjqIgyfDyQPcW0jlqZFb5dpnU6sUyGFxvRmqYhZ+A5kEOPDuWt6u7oyOejGz0mw+iXP1QtDkm1QhSydwhwGXToEFTJ1YXfMdqytxdc1eUz+SJM9cpiSpqt4Ryh57SoTqYM1uS2iIkVkx1YyaLbrH4UeDBCeExKLk2vnsrvdbog6jPVNrJ8WJYErC6HZe5qchUpQx1oWUcVVL5srJBCn4J+MGBjq3diPjiDcGlD7Oq/OCdqgw6lZORuzIyex4y8H7pIBrbqQ2sofW/hgXwxvUOX90yB5/UzRLQDAfY1aKxuWaDe2CdWvZe7gmxF9A0eAJ3WkXVz6qoAXpRkqbpBkXqjhjutkgp4ClhhSvjgqOoYAarI7aRIAZQyMaPsVMMg2mFp8zOKnzM55zLUHiV3jiXvWGm6EO/bV525nI6LiBBHeo602aRFaa2qWeqawwQ/oMTVo7nlG51Oka6TjcY3Lvr/zV1kVZ08BxYgUg6y1ei9oU0MmWVfXv2OHFXm1kRycJXbCncq1e9WFe1rVl94yoNp+ShFBz3cLUw3T1Z0p32e1CMO19DZj+zNVzxNqv/7qxhW3NbqFycc2St8No/ZUGXW5/Hubj/i58DPqlFdAh3B2srB15d4PW5vs79YyqdGNqVLNmPfDgjOASZqyPEklc1hAicfUCIUjIgA6Vf1phAKxJAK05hcQj0XQER/3lVZ00EkJLo2Fqb/3H90vQ3y2yo5fI56QcGI3I3BqRf6sRNAyhoBHg0wgaEZdVsRyww5GQourgdpgIjKe/AgDvgHo9YvBkrXHU/Xr+YjkmeZxH/Im234Y7oLKuox1QDQtYvtJCAicmEB2u5TNVYgXUZriAOvTxLs2Bsy9pJPz9pDy7Zi3ngZJCZN7r7wPasRweUhIk2ps4ynQsioerfMdzgd6YAcyfbZkZKpNEcgIxL1dHBxv4AwhCclOjfIbuoYbeUPd5NvHOHsg7dMVlu2qLDn4NYgtiSRVBOrUKrMSAgxtL9ff/SPX2ZEXgyo9n/UIPMAl1cXQEnh+MGkCnsGMAT8HeTMd75+dVM1UHYkay1uEDwYfSvmaqCmAvEJwpKkDChgY1xYd/ZIq+FoAUTq4uzgxnT4EbZLBZe6lkw7pNv56Cp/rm99ato3kHkzNIow8I1c5ZAvsO3HP4zo1oW0KstIowpQiwRFlnS3zsyaHo6O294WP9/MnJ8qf21W/ZqYpRKCI0Qv3/U0/2/wvHZlyx/qakd1joR1XizW0vceT/rs1Q///ck/1f5EH44/SSgfrFk19uIf+c8Roj/28YWA3x/y892f8rrh/3MTeRIh3/O/369WdCFBz5v+bQaoj/t/Rk/6eNG3LE6sNZ7ZAbBXdHWj6pw8j/HVWg/v+1J/u/MNV1mNUnLfJxO5XsjVceEnDk/zVTof7f2pP9/4Pr/pjCxQXqOe/rFv18JzcJI/9P1oP6/7ee7P9DjRoD38oVa5TrlXtMTrbbgyP/J9Ch/v+9J/u/5pZtL4N+eGkllNyyvT2MYYuR/weuhPp/W0/2/4QEqbmfxEeRskQH1Y38a+NNHPn/dweo///oyf4v2liZT558WvOgnrm++votqzDyfz1fqP//7Mn+b/9q498Lnw+iF51etW3n48EHcOT//bZB/R+Urcf6/524aVqKWk7qaWNNniyu/umJkf8v3gP1f6F/pPq/xP/3XY8IeUl4p1m+88HGEv3ERhz5v2wo1P+Fe7L/L5tS/JUoa6ceviqfFmipIYaR/6fFQP1fpCf7v6GU4gyKWqZmEDVpQFyraByO/N85Dur/vf6RJdo3PAvcBgN/MXMeDDsnBtzJpyvyqL0p/i80fCcolc8eMK+Ox7PzWP9iXkZbdZArirfpqP//Dw==
                    
- 
                      iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvgAADr4B6kKxwAAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC
                    
- 7a79adc7-72ae-46b0-89d1-0d7c27485b7f
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- true
- 20
- 14679402-b72a-4ad2-9f68-a6c0cd5198db
- 1ad300f9-25cc-4f0d-9df5-1a184f55ee87
- 1afb9ce7-bab4-4278-8768-18616caf7412
- 225817fa-31b3-46fc-af73-ad1cf4cf3a29
- 4b3c853f-0e70-4511-bcfb-fa488944f91a
- 57014ce6-0b16-4557-a459-363b68df79b0
- 5dbed678-e1f0-47b2-ab5b-7d564e67d149
- 60b6e664-6dfe-4c05-a8f3-8e5d2d331a70
- 7dcdbf99-9851-46d1-bb6a-5efdfe64857f
- 8b025cb0-35f8-4d07-b162-2a8dcf56f30e
- 94294c1e-d8bc-4f8e-ad38-88bd70aa7022
- a096998a-6360-464a-8fc9-30ca988b5c46
- a3b8dfd6-6830-44ea-aacc-1b070cbc6d44
- b1777aa9-7d12-4a17-b1ef-e0f649917e24
- bfaecc51-7527-45a3-aa3a-ce297d97da26
- c0ad88f5-83d4-41b4-a330-b847a1378401
- c9a38c70-c330-4159-a2bf-918d499eef91
- d4be6a2a-28d0-485a-a4a1-5a281e3dd78b
- f5a21887-cfc3-4a0b-b524-44283d4f606e
- f6ed359e-c452-4fd9-acd6-48313360e55b
- 45329fda-4528-406d-a823-54e35ac6ff74
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 34281050-3848-44ac-894c-a3119ffa069f
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
- f9b9305d-1e20-4067-946a-b44d88604308
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- e9837f44-fe89-4576-a1ba-d864d9176564
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 
                          1852
                          5038
                          110
                          404
                        
- 
                          1948
                          5240
                        
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 60b6e664-6dfe-4c05-a8f3-8e5d2d331a70
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5040
                                  82
                                  20
                                
- 
                                  1895
                                  5050
                                
- 1
- 1
- {0}
- 8
- Second item for multiplication
- c0ad88f5-83d4-41b4-a330-b847a1378401
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5060
                                  82
                                  20
                                
- 
                                  1895
                                  5070
                                
- Vector {y} component
- 4b3c853f-0e70-4511-bcfb-fa488944f91a
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5080
                                  82
                                  20
                                
- 
                                  1895
                                  5090
                                
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 14679402-b72a-4ad2-9f68-a6c0cd5198db
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5100
                                  82
                                  20
                                
- 
                                  1895
                                  5110
                                
- Vector {y} component
- 1ad300f9-25cc-4f0d-9df5-1a184f55ee87
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5120
                                  82
                                  20
                                
- 
                                  1895
                                  5130
                                
- 1
- 1
- {0}
- 6
- Second item for multiplication
- b1777aa9-7d12-4a17-b1ef-e0f649917e24
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5140
                                  82
                                  20
                                
- 
                                  1895
                                  5150
                                
- Vector {y} component
- 1afb9ce7-bab4-4278-8768-18616caf7412
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5160
                                  82
                                  20
                                
- 
                                  1895
                                  5170
                                
- 1
- 1
- {0}
- 5
- Second item for multiplication
- f5a21887-cfc3-4a0b-b524-44283d4f606e
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5180
                                  82
                                  20
                                
- 
                                  1895
                                  5190
                                
- Vector {y} component
- 225817fa-31b3-46fc-af73-ad1cf4cf3a29
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5200
                                  82
                                  20
                                
- 
                                  1895
                                  5210
                                
- 1
- 1
- {0}
- 4
- Second item for multiplication
- a3b8dfd6-6830-44ea-aacc-1b070cbc6d44
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5220
                                  82
                                  20
                                
- 
                                  1895
                                  5230
                                
- Vector {y} component
- 57014ce6-0b16-4557-a459-363b68df79b0
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5240
                                  82
                                  20
                                
- 
                                  1895
                                  5250
                                
- 1
- 1
- {0}
- 3
- Second item for multiplication
- bfaecc51-7527-45a3-aa3a-ce297d97da26
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5260
                                  82
                                  20
                                
- 
                                  1895
                                  5270
                                
- Vector {y} component
- d4be6a2a-28d0-485a-a4a1-5a281e3dd78b
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5280
                                  82
                                  20
                                
- 
                                  1895
                                  5290
                                
- 1
- 1
- {0}
- 2
- Second item for multiplication
- 5dbed678-e1f0-47b2-ab5b-7d564e67d149
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5300
                                  82
                                  20
                                
- 
                                  1895
                                  5310
                                
- Vector {y} component
- 94294c1e-d8bc-4f8e-ad38-88bd70aa7022
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5320
                                  82
                                  20
                                
- 
                                  1895
                                  5330
                                
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 7dcdbf99-9851-46d1-bb6a-5efdfe64857f
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5340
                                  82
                                  20
                                
- 
                                  1895
                                  5350
                                
- Vector {y} component
- c9a38c70-c330-4159-a2bf-918d499eef91
- Y component
- Y component
- true
- 0
- 
                                  1854
                                  5360
                                  82
                                  20
                                
- 
                                  1895
                                  5370
                                
- 1
- 1
- {0}
- 0
- Second item for multiplication
- a096998a-6360-464a-8fc9-30ca988b5c46
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
- 
                                  1854
                                  5380
                                  82
                                  20
                                
- 
                                  1895
                                  5390
                                
- Number of segments
- 8b025cb0-35f8-4d07-b162-2a8dcf56f30e
- Count
- Count
- true
- 1e4870d3-d88b-4e3b-a627-be71345d40a9
- 1
- 
                                  1854
                                  5400
                                  82
                                  20
                                
- 
                                  1895
                                  5410
                                
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- f6ed359e-c452-4fd9-acd6-48313360e55b
- Curve
- Curve
- true
- 0e0d5017-4f0f-4bab-986c-96ea91bffc65
- 1
- 
                                  1854
                                  5420
                                  82
                                  20
                                
- 
                                  1895
                                  5430
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0e0d5017-4f0f-4bab-986c-96ea91bffc65
- Relay
- false
- e2bd9108-6f13-4773-8437-12590f64999f
- 1
- 
                          1544
                          5455
                          40
                          16
                        
- 
                          1564
                          5463
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 72713788-9a21-48b2-80ba-d8d582f5c87b
- Relay
- false
- 53dfe8d4-944d-46bf-8495-cdb43c7556b1
- 1
- 
                          1505
                          5336
                          40
                          16
                        
- 
                          1525
                          5344
                        
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 778435a9-4a09-40c9-a8d3-b6ca4d0b2811
- Panel
- false
- 0
- 0
- 0.0003845696719497810789
- 
                          -143
                          5173
                          160
                          84
                        
- 0
- 0
- 0
- 
                          -142.4984
                          5173.155
                        
- 2
- 
                          255;255;255;255
                        
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2bd646c3-138b-4490-8085-395d24c3f8e8
- Relay
- false
- 44bc53b6-00e2-489b-a5dc-407425442819
- 1
- 
                          -183
                          4935
                          40
                          16
                        
- 
                          -163
                          4943
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a09d3489-b53b-4397-8222-838de26f6b45
- Relay
- false
- 1bd4238d-59e3-4478-af43-8dbfe4dda340
- 1
- 
                          -185
                          5037
                          40
                          16
                        
- 
                          -165
                          5045
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 83ed3584-92a2-46a9-a2f5-4ea9d7c017a4
- Relay
- false
- 2f6a5a53-3d55-41a3-aff0-e99afa30befd
- 1
- 
                          -187
                          5087
                          40
                          16
                        
- 
                          -167
                          5095
                        
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 12c4a8f8-eb0e-4c23-9e31-db676262a272
- Format
- Format
- 
                          -129
                          4899
                          130
                          64
                        
- 
                          -37
                          4931
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 28fb2c13-7520-4ab7-b732-ed1139ded84b
- Format
- Format
- false
- 0
- 
                                  -127
                                  4901
                                  78
                                  20
                                
- 
                                  -88
                                  4911
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 72db5d47-eb7d-4255-990d-0ec64b4e2aef
- Culture
- Culture
- false
- 0
- 
                                  -127
                                  4921
                                  78
                                  20
                                
- 
                                  -88
                                  4931
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 9a1df9df-53e0-43bd-843c-1ab2324510d4
- false
- Data 0
- 0
- true
- 2bd646c3-138b-4490-8085-395d24c3f8e8
- 1
- 
                                  -127
                                  4941
                                  78
                                  20
                                
- 
                                  -88
                                  4951
                                
- Formatted text
- 68c4ecd4-8214-404d-ae51-7077c9a01211
- Text
- Text
- false
- 0
- 
                                  -25
                                  4901
                                  24
                                  60
                                
- 
                                  -13
                                  4931
                                
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 65270bbe-3414-4860-81af-770ba43c1cdb
- Format
- Format
- 
                          -129
                          4983
                          130
                          64
                        
- 
                          -37
                          5015
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 718156d1-1bc7-48c4-8ab1-cad81a3cf9d0
- Format
- Format
- false
- 0
- 
                                  -127
                                  4985
                                  78
                                  20
                                
- 
                                  -88
                                  4995
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c59d5187-58ba-4eb8-ba3a-cce2b9be8998
- Culture
- Culture
- false
- 0
- 
                                  -127
                                  5005
                                  78
                                  20
                                
- 
                                  -88
                                  5015
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- ffd3ed7e-91bb-4d86-92d0-9c2bceabeec0
- false
- Data 0
- 0
- true
- a09d3489-b53b-4397-8222-838de26f6b45
- 1
- 
                                  -127
                                  5025
                                  78
                                  20
                                
- 
                                  -88
                                  5035
                                
- Formatted text
- d2feb401-36df-4805-af94-8e108f24e9dd
- Text
- Text
- false
- 0
- 
                                  -25
                                  4985
                                  24
                                  60
                                
- 
                                  -13
                                  5015
                                
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 7cafc645-fb57-44e8-bd89-b177fc3b564f
- Format
- Format
- 
                          -128
                          5066
                          130
                          64
                        
- 
                          -36
                          5098
                        
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- b2d99be3-9d7e-4eb9-af2f-d4ea50055fa9
- Format
- Format
- false
- 0
- 
                                  -126
                                  5068
                                  78
                                  20
                                
- 
                                  -87
                                  5078
                                
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 33a32ff1-3d1c-45ec-a3b6-0c24d1d51fbc
- Culture
- Culture
- false
- 0
- 
                                  -126
                                  5088
                                  78
                                  20
                                
- 
                                  -87
                                  5098
                                
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- ed7c0f88-8e16-4415-9bae-ced65f520a3c
- false
- Data 0
- 0
- true
- 83ed3584-92a2-46a9-a2f5-4ea9d7c017a4
- 1
- 
                                  -126
                                  5108
                                  78
                                  20
                                
- 
                                  -87
                                  5118
                                
- Formatted text
- f2e126e1-a59b-4fae-8f48-32341df4b306
- Text
- Text
- false
- 0
- 
                                  -24
                                  5068
                                  24
                                  60
                                
- 
                                  -12
                                  5098
                                
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- afcc5191-a0bd-476c-9768-591ad0f7378c
- Relay
- false
- c2429a84-5049-49fc-9a38-42778a26f71d
- 1
- 
                          259
                          5107
                          40
                          16
                        
- 
                          279
                          5115
                        
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- a0c1250a-0597-4569-9f33-9ab63d5b8065
- Scale NU
- Scale NU
- 
                          459
                          4864
                          226
                          121
                        
- 
                          621
                          4925
                        
- Base geometry
- 654843b6-c012-4edc-a2a7-f285f6f8d025
- Geometry
- Geometry
- true
- ddf12dcc-4532-4f5f-9017-ca2181ae4120
- 1
- 
                              461
                              4866
                              148
                              20
                            
- 
                              543
                              4876
                            
- Base plane
- 9fc4cd47-7135-4ba4-9fca-12bb61107c40
- Plane
- Plane
- false
- 0
- 
                              461
                              4886
                              148
                              37
                            
- 
                              543
                              4904.5
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                      1
                                      0
                                      0
                                      0
                                      1
                                      0
                                    
- Scaling factor in {x} direction
- 01caad73-e8c3-480c-94d8-6aaf2d86dde3
- 1/X
- Scale X
- Scale X
- false
- 44bc53b6-00e2-489b-a5dc-407425442819
- 1
- 
                              461
                              4923
                              148
                              20
                            
- 
                              543
                              4933
                            
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- fd670a22-a3e0-4288-8e39-88c566557d2c
- 1/X
- Scale Y
- Scale Y
- false
- 2f6a5a53-3d55-41a3-aff0-e99afa30befd
- 1
- 
                              461
                              4943
                              148
                              20
                            
- 
                              543
                              4953
                            
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- de6449f5-cc7d-4dab-97b7-f94c56833cef
- Scale Z
- Scale Z
- false
- 0
- 
                              461
                              4963
                              148
                              20
                            
- 
                              543
                              4973
                            
- 1
- 1
- {0}
- 1
- Scaled geometry
- 065f686a-4028-4e05-b353-3c9ef8ca5da0
- Geometry
- Geometry
- false
- 0
- 
                              633
                              4866
                              50
                              58
                            
- 
                              658
                              4895.25
                            
- Transformation data
- e6c37588-8d61-476f-98b4-879bcbd8ff43
- Transform
- Transform
- false
- 0
- 
                              633
                              4924
                              50
                              59
                            
- 
                              658
                              4953.75
                            
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- 9458f1e4-5dcf-4329-ae9a-248ba54fda4d
- GraphMapper+
- GraphMapper+
- true
- 
                          958
                          4652
                          114
                          104
                        
- 
                          1019
                          4704
                        
- External curve as a graph
- b2c57c52-3939-4f33-b9ab-436fd1ebbfe1
- Curve
- Curve
- false
- 22dbbbf7-d064-42aa-b6ff-7919cb335e9d
- 1
- 
                              960
                              4654
                              47
                              20
                            
- 
                              983.5
                              4664
                            
- Optional Rectangle boundary. If omitted the curve's would be landed
- 68babcf3-de1b-4aad-a440-d0902f9dc7bb
- Boundary
- Boundary
- true
- 88860703-c3a2-44da-9f68-b7f61777e56c
- 1
- 
                              960
                              4674
                              47
                              20
                            
- 
                              983.5
                              4684
                            
- 1
- List of input numbers
- 271151c2-8cab-443c-b33d-53f4e3b46f96
- Numbers
- Numbers
- false
- d082c31a-7d28-4f27-855d-7007967854d7
- 1
- 
                              960
                              4694
                              47
                              20
                            
- 
                              983.5
                              4704
                            
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain 
if omitted, it would be 0-1 in "Normalize" mode  by default
 or be the interval of the input list in case of selecting "AutoDomain"  mode
- d9999967-c06b-46f5-9548-ee85878e5e3f
- Input
- Input
- true
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- 1
- 
                              960
                              4714
                              47
                              20
                            
- 
                              983.5
                              4724
                            
- (Optional) Output Domain 
 if omitted, it would be 0-1 in "Normalize" mode by default
 or be the interval of the input list in case of selecting "AutoDomain"  mode
- e29e445c-b82b-418d-86e8-57ff247ac464
- Output
- Output
- true
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- 1
- 
                              960
                              4734
                              47
                              20
                            
- 
                              983.5
                              4744
                            
- 1
- Output Numbers
- 89bcc9ed-3adc-47f4-a7f5-021fdf009bd8
- Number
- Number
- false
- 0
- 
                              1031
                              4654
                              39
                              100
                            
- 
                              1050.5
                              4704
                            
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- cdd22be9-92c3-4cbe-8b1a-39742554035d
- End Points
- End Points
- 
                          402
                          4551
                          84
                          44
                        
- 
                          446
                          4573
                        
- Curve to evaluate
- a4b435ea-afbf-41ff-852e-938e38fc482f
- Curve
- Curve
- false
- 22dbbbf7-d064-42aa-b6ff-7919cb335e9d
- 1
- 
                              404
                              4553
                              30
                              40
                            
- 
                              419
                              4573
                            
- Curve start point
- 99e1eab1-8fcb-4ec6-a7d6-8461b6db7ba3
- Start
- Start
- false
- 0
- 
                              458
                              4553
                              26
                              20
                            
- 
                              471
                              4563
                            
- Curve end point
- 9cf4e70c-1977-4c9c-8d41-3c777e6c6336
- End
- End
- false
- 0
- 
                              458
                              4573
                              26
                              20
                            
- 
                              471
                              4583
                            
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- d4b63f37-7307-406f-b3f5-3121871ed53b
- Rectangle 2Pt
- Rectangle 2Pt
- 
                          537
                          4560
                          198
                          101
                        
- 
                          673
                          4611
                        
- Rectangle base plane
- 5a79d744-c4d6-4c77-8e96-8f4b499eb7a2
- Plane
- Plane
- false
- 0
- 
                              539
                              4562
                              122
                              37
                            
- 
                              600
                              4580.5
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                      1
                                      0
                                      0
                                      0
                                      1
                                      0
                                    
- First corner point.
- 8fd6a73b-4768-42e9-a050-4db35290ee9a
- Point A
- Point A
- false
- 99e1eab1-8fcb-4ec6-a7d6-8461b6db7ba3
- 1
- 
                              539
                              4599
                              122
                              20
                            
- 
                              600
                              4609
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Second corner point.
- b0023087-1c11-47ca-8da1-b9733170a79e
- Point B
- Point B
- false
- 9cf4e70c-1977-4c9c-8d41-3c777e6c6336
- 1
- 
                              539
                              4619
                              122
                              20
                            
- 
                              600
                              4629
                            
- 1
- 1
- {0}
- 
                                      10
                                      5
                                      0
                                    
- Rectangle corner fillet radius
- 01c6a537-4c1a-425a-9fce-5c2d4c05aeee
- Radius
- Radius
- false
- 0
- 
                              539
                              4639
                              122
                              20
                            
- 
                              600
                              4649
                            
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 88860703-c3a2-44da-9f68-b7f61777e56c
- Rectangle
- Rectangle
- false
- 0
- 
                              685
                              4562
                              48
                              48
                            
- 
                              709
                              4586.25
                            
- Length of rectangle curve
- 6f9007af-2f2d-4473-9abb-f5d7287847b0
- Length
- Length
- false
- 0
- 
                              685
                              4610
                              48
                              49
                            
- 
                              709
                              4634.75
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1709c4d6-73a6-453f-8c4e-ef2b381b40e1
- Relay
- false
- 277e686f-fcb5-4411-b782-b0d4e125e2c1
- 1
- 
                          958
                          5178
                          40
                          16
                        
- 
                          978
                          5186
                        
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7eca8f17-b48d-4b73-ada0-90a22d3fe212
- Relay
- false
- 1709c4d6-73a6-453f-8c4e-ef2b381b40e1
- 1
- 
                          1051
                          5172
                          40
                          16
                        
- 
                          1071
                          5180
                        
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 0e4926b2-68c5-4fb5-9406-5ed5323d25c5
- Bounds
- Bounds
- 
                          788
                          4797
                          110
                          28
                        
- 
                          846
                          4811
                        
- 1
- Numbers to include in Bounds
- f8364432-34aa-4b91-b0e1-9fb5df31bd3e
- Numbers
- Numbers
- false
- d082c31a-7d28-4f27-855d-7007967854d7
- 1
- 
                              790
                              4799
                              44
                              24
                            
- 
                              812
                              4811
                            
- Numeric Domain between the lowest and highest numbers in {N}
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- Domain
- Domain
- false
- 0
- 
                              858
                              4799
                              38
                              24
                            
- 
                              877
                              4811
                            
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 481d2e17-3a5e-4c66-b2f6-96c2454e0f20
- Multiplication
- Multiplication
- 
                          606
                          4698
                          65
                          44
                        
- 
                          626
                          4720
                        
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- e3fe9b62-e6d7-4e08-a179-1752afe14e7c
- A
- true
- 164341d6-6366-4ed5-ba8e-d0916606237a
- 1
- 
                                  608
                                  4700
                                  6
                                  20
                                
- 
                                  611
                                  4710
                                
- Second item for multiplication
- 6621c64a-0d85-41a5-9157-bf80f968c97b
- B
- true
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                                  608
                                  4720
                                  6
                                  20
                                
- 
                                  611
                                  4730
                                
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- Result of multiplication
- 9c3c1611-96aa-4d1e-a87a-e922ccd0280c
- Result
- Result
- false
- 0
- 
                                  638
                                  4700
                                  31
                                  40
                                
- 
                                  653.5
                                  4720
                                
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- b9b2cd39-0a19-48b3-96da-98d6516509a6
- Division
- Division
- 
                          1128
                          4735
                          40
                          44
                        
- 
                          1148
                          4757
                        
- Item to divide (dividend)
- b6fa3e91-d883-437e-9e09-353a29b328bb
- A
- false
- 89bcc9ed-3adc-47f4-a7f5-021fdf009bd8
- 1
- 
                              1130
                              4737
                              6
                              20
                            
- 
                              1133
                              4747
                            
- Item to divide with (divisor)
- 6c5f1a49-f196-4546-b9e5-a31f4d8ee704
- B
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                              1130
                              4757
                              6
                              20
                            
- 
                              1133
                              4767
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- The result of the Division
- 8f5ab813-3691-4499-bab5-66b32b35b891
- Result
- false
- 0
- 
                              1160
                              4737
                              6
                              40
                            
- 
                              1163
                              4757
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d082c31a-7d28-4f27-855d-7007967854d7
- Relay
- false
- 9c3c1611-96aa-4d1e-a87a-e922ccd0280c
- 1
- 
                          708
                          4712
                          40
                          16
                        
- 
                          728
                          4720
                        
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- 1b15e5d7-b70d-40c0-bfb7-a3c51df6fc06
- true
- Curve Graph Mapper
- Curve Graph Mapper
- 
                          918
                          4306
                          181
                          224
                        
- 
                          1013
                          4418
                        
- 1
- One or multiple graph curves to graph map values with
- 47d711a0-7060-4d1b-bad2-c959a00717d5
- true
- Curves
- Curves
- false
- 22dbbbf7-d064-42aa-b6ff-7919cb335e9d
- 1
- 
                              920
                              4308
                              81
                              27
                            
- 
                              960.5
                              4321.75
                            
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 6263c084-69a7-485e-b3a1-322d0d30d4bd
- true
- Rectangle
- Rectangle
- false
- 88860703-c3a2-44da-9f68-b7f61777e56c
- 1
- 
                              920
                              4335
                              81
                              28
                            
- 
                              960.5
                              4349.25
                            
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- b246c3b1-0383-40df-a21c-b9274e81e7c9
- true
- Values
- Values
- false
- d082c31a-7d28-4f27-855d-7007967854d7
- 1
- 
                              920
                              4363
                              81
                              27
                            
- 
                              960.5
                              4376.75
                            
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- 32dc76c2-1d1d-490b-9dee-886be569c4e3
- true
- X Axis
- X Axis
- true
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- 1
- 
                              920
                              4390
                              81
                              28
                            
- 
                              960.5
                              4404.25
                            
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- fb3d9ec5-c5dd-4452-b9ed-63bf580c10b8
- true
- Y Axis
- Y Axis
- true
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- 1
- 
                              920
                              4418
                              81
                              27
                            
- 
                              960.5
                              4431.75
                            
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- 1cf007db-993a-4878-a634-f7a46e41c0e8
- true
- Flip
- Flip
- false
- 0
- 
                              920
                              4445
                              81
                              28
                            
- 
                              960.5
                              4459.25
                            
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- 8eddb96d-8ebc-47f7-83f3-f3158c04cd9a
- true
- Snap
- Snap
- false
- 0
- 
                              920
                              4473
                              81
                              27
                            
- 
                              960.5
                              4486.75
                            
- 1
- 1
- {0}
- false
- Size of the graph labels
- 377f3048-7eac-459f-ab33-2cf99fd856ef
- true
- Text Size
- Text Size
- false
- 0
- 
                              920
                              4500
                              81
                              28
                            
- 
                              960.5
                              4514.25
                            
- 1
- 1
- {0}
- 0.0625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- 4d507023-5f74-4ea9-90d5-c49f4efde4c4
- true
- Mapped
- Mapped
- false
- 0
- 
                              1025
                              4308
                              72
                              20
                            
- 
                              1061
                              4318
                            
- 1
- The graph curves inside the boundary of the graph
- 69566f84-31c7-4b60-a265-958649cc95b8
- true
- Graph Curves
- Graph Curves
- false
- 0
- 
                              1025
                              4328
                              72
                              20
                            
- 
                              1061
                              4338
                            
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- 7e15eda7-e3db-46d6-b32c-07f93d04e5e0
- true
- Graph Points
- Graph Points
- false
- 0
- 
                              1025
                              4348
                              72
                              20
                            
- 
                              1061
                              4358
                            
- 1
- The lines from the X Axis input values to the graph curves
- true
- 2d35311d-b2fc-4e4a-89b9-f8415c329480
- true
- Value Lines
- Value Lines
- false
- 0
- 
                              1025
                              4368
                              72
                              20
                            
- 
                              1061
                              4378
                            
- 1
- The points plotted on the X Axis which represent the input values
- true
- 3dcf8fc7-f872-4db6-964c-02491ea708e8
- true
- Value Points
- Value Points
- false
- 0
- 
                              1025
                              4388
                              72
                              20
                            
- 
                              1061
                              4398
                            
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- a619b0f9-cb90-4576-a02e-d14af52404e7
- true
- Mapped Lines
- Mapped Lines
- false
- 0
- 
                              1025
                              4408
                              72
                              20
                            
- 
                              1061
                              4418
                            
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- 1bed34b2-cb00-432f-81b2-6a7dbf48a2e2
- true
- Mapped Points
- Mapped Points
- false
- 0
- 
                              1025
                              4428
                              72
                              20
                            
- 
                              1061
                              4438
                            
- The graph boundary background as a surface
- c2408f6a-8cd8-4da3-bab3-ad2d2fa5fd12
- true
- Boundary
- Boundary
- false
- 0
- 
                              1025
                              4448
                              72
                              20
                            
- 
                              1061
                              4458
                            
- 1
- The graph labels as curve outlines
- a4312d00-9ac4-4615-b68d-4a4a0e2fdfc1
- true
- Labels
- Labels
- false
- 0
- 
                              1025
                              4468
                              72
                              20
                            
- 
                              1061
                              4478
                            
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 22d0b470-534d-45c7-88b1-74c65784c17e
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
- 
                              1025
                              4488
                              72
                              20
                            
- 
                              1061
                              4498
                            
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- 016fc1ef-f251-44ce-b2ef-78713b34bdb8
- true
- Intersected
- Intersected
- false
- 0
- 
                              1025
                              4508
                              72
                              20
                            
- 
                              1061
                              4518
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 22dbbbf7-d064-42aa-b6ff-7919cb335e9d
- Relay
- false
- bea7057d-410e-465d-a4c2-343e236993d1
- 1
- 
                          446
                          4420
                          40
                          16
                        
- 
                          466
                          4428
                        
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- d966a5ed-ebea-462a-a91a-ca140d1f1cc4
- Scale
- Scale
- 
                          192
                          4373
                          201
                          64
                        
- 
                          329
                          4405
                        
- Base geometry
- 5de50612-e493-4e3d-b481-d84f1f959b89
- Geometry
- Geometry
- true
- f95021e8-3298-4a32-aa51-3b43667757bd
- 1
- 
                              194
                              4375
                              123
                              20
                            
- 
                              255.5
                              4385
                            
- Center of scaling
- e329f2e2-8288-48fb-a898-3564a1c888b0
- Center
- Center
- false
- 0
- 
                              194
                              4395
                              123
                              20
                            
- 
                              255.5
                              4405
                            
- 1
- 1
- {0}
- 
                                      0
                                      0
                                      0
                                    
- Scaling factor
- 632b3e96-d6eb-4512-8ce4-83fe43ac13a4
- Factor
- Factor
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
- 
                              194
                              4415
                              123
                              20
                            
- 
                              255.5
                              4425
                            
- 1
- 1
- {0}
- 65536
- Scaled geometry
- bea7057d-410e-465d-a4c2-343e236993d1
- Geometry
- Geometry
- false
- 0
- 
                              341
                              4375
                              50
                              30
                            
- 
                              366
                              4390
                            
- Transformation data
- 6849d363-c208-438c-a436-54d8075fb9a3
- Transform
- Transform
- false
- 0
- 
                              341
                              4405
                              50
                              30
                            
- 
                              366
                              4420
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f95021e8-3298-4a32-aa51-3b43667757bd
- Relay
- false
- 650d961c-ef6f-4573-ade0-97f698f6a536
- 1
- 
                          55
                          4392
                          40
                          16
                        
- 
                          75
                          4400
                        
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 35f29d0e-4815-42cf-ab22-85354efcb3ea
- Division
- Division
- 
                          1499
                          5262
                          85
                          44
                        
- 
                          1539
                          5284
                        
- Item to divide (dividend)
- 282f9873-f0b4-4058-ae02-3fa37ecbeb08
- A
- A
- false
- 72713788-9a21-48b2-80ba-d8d582f5c87b
- 1
- 
                              1501
                              5264
                              26
                              20
                            
- 
                              1514
                              5274
                            
- Item to divide with (divisor)
- d96e021c-87ee-46bb-84de-cb2a4be07b14
- B
- B
- false
- 0
- 
                              1501
                              5284
                              26
                              20
                            
- 
                              1514
                              5294
                            
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- The result of the Division
- 7e4e6adc-a4d1-47ab-a4c6-c48fb8239b6b
- Result
- Result
- false
- 0
- 
                              1551
                              5264
                              31
                              40
                            
- 
                              1566.5
                              5284
                            
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- true
- 0ed99bc6-d082-4d7e-bde6-4f2c00d9058f
- Stream Filter
- Stream Filter
- 
                          1503
                          5556
                          77
                          104
                        
- 
                          1542
                          5608
                        
- 5
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- e26840dc-1a24-4155-abc9-09f76d94d0e2
- Gate
- Gate
- false
- 260f423e-0647-408e-b12e-bd215b96451f
- 1
- 
                                  1505
                                  5558
                                  25
                                  20
                                
- 
                                  1517.5
                                  5568
                                
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- 7b4d6bcb-9029-417e-b075-523527cc84e6
- false
- Stream 0
- 0
- true
- ee4ecbe2-4fbf-4854-bfd4-5d67e8d925cb
- 1
- 
                                  1505
                                  5578
                                  25
                                  20
                                
- 
                                  1517.5
                                  5588
                                
- 2
- Input stream at index 1
- b5c3a3c9-9d7f-42f8-b75b-c86c05a7e23b
- false
- Stream 1
- 1
- true
- fd4f2049-66dc-451d-986e-db1e735564bd
- 1
- 
                                  1505
                                  5598
                                  25
                                  20
                                
- 
                                  1517.5
                                  5608
                                
- 2
- Input stream at index 2
- 72eee393-69a1-4dc3-953e-434e786f7f78
- false
- Stream 2
- 2
- true
- ab0c2868-9e78-4275-96bc-66b04365341d
- 1
- 
                                  1505
                                  5618
                                  25
                                  20
                                
- 
                                  1517.5
                                  5628
                                
- 2
- Input stream at index 3
- 0ffc7e3c-042a-4fc8-895a-7674dcc73f84
- false
- Stream 3
- 3
- true
- b458474d-c32e-4320-ad51-5c1da52b9f36
- 1
- 
                                  1505
                                  5638
                                  25
                                  20
                                
- 
                                  1517.5
                                  5648
                                
- 2
- Filtered stream
- e2bd9108-6f13-4773-8437-12590f64999f
- false
- Stream
- S(0)
- false
- 0
- 
                                  1554
                                  5558
                                  24
                                  100
                                
- 
                                  1566
                                  5608
                                
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 260f423e-0647-408e-b12e-bd215b96451f
- Digit Scroller
-  
- false
- 0
- 12
-  
- 11
- 0.0
- 
                          1347
                          5508
                          250
                          20
                        
- 
                          1347.551
                          5508.053
                        
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- b458474d-c32e-4320-ad51-5c1da52b9f36
- Curve
- XHG..⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀..GHX
- false
- 0
- 
                          1368
                          5909
                          50
                          24
                        
- 
                          1393.313
                          5921.028
                        
- 1
- 1
- {0;0;0;0;0;0;0;0;0;0;0;0}
- -1
- 
                                  7dh5PJXb/yhwkZSUeR4yzzNbUfqsDiWKdBCNKiSRqchQiJToNFGRkgolGUs5yBApUuZ52uZ5bKBMt57T91n9vufev+794/6xP3949n57rGetz9qvZX8+dEvo6OgWf8TP689gof/xw/LPow7OLnoux4+7OCuK7rJzP+Hg4qy7VllNQ1ldTUNz3Y8XqqpqiqJ6Hk4nPdztdJ3tPE66H3JSFDX1OOzkYLPNztvcxdHOWZdCUVdfp2anvdZmLYVC0VBl/PkUPmJwZQM7l+N2J929lU1dnLz1PNw97Zb++CWT5z8PYz7kbnPUwdNOw/b4ChdXO2dnD/fDJ5baHjp56OdNy5cvp/85TzYZOjr1H9fwuZUsKxh+vGD9+eOZOB0d/Xd/erpH4v+saXaRno7r1/qotQ0mBoM17Pm9dGxBS8QnnnyRD5n78XuXX/ey0dP9d0zAv+gfz/9vYfjtddV6/yMxsdLon6sW+jmhebZ/T4ifPfXAzpW17PkL/0zISMCb9+eE3vy6l+0/g/5MT9D/xeSC//c3ElFOTPIF/HMtgSanjnLPmcpf7+uhgHkNXcnWVmgmnArm5qlRoeXd8JH4fR9sldihkXFyEAqJ+0Zg/dRYeZPQ+K/7J+DWQYNnAYenfv3dJ2DfyhsQofXl199/hTCV/u2PmWd+jfMNGHlf8ue2f/813hz4LZzvq8iY/zXuIsy5JzW56dGhf8anQ1lHOAt8k5egm8Rz6NHJPb4JwbwM6E/ieQxI1aT70pWzS9Fq4rmMaGTTthNRw4yojHj+MvSY8mz3QwsmdJ6Yx3JkKyeIkvOXIz1iPiuQmHCQ9Es5ZrTI83NezKiNbZilMHwlyiXmx4JuLzX7VDbPgryIea5Cu2aym2rtVyNNYr6siGNEvKC9ihXNEPNmQ/0um80+32VD9cT82dAbB+8t3/5kR8+JdbCjhzbJ2gtMHOg6sR4OdHZ/pyLDKw7kSqyLE1lbcosud+dEJsT6OJHuTkPOVTJcSJFYJxcS3HZmGUcrF2Im1suNvumnf+O5xo0GiHVzo4aNvSOCW3hQCbF+HpS5jp8qOsuD4og88KJwdeMaqTReFEjkgw+5KZ4tkbfjQweJvPChHdKZf6sI8KONRH74kZLo4FPNCn4kRORJAK0UEI7VPieAvhP5EkCDnDvDN2oLokYib4Lo7arg83pjgugFkT8hFM/0t/fWh0IogsijEApaMupkbCWM3Il8CqNDs6IH/1wlgkyJvIog+GJuZvlaBCkT+V2DhMdDtuw7tQaxEHleg/xOtt9R5RFFX4l8iyJnNy+eZ66iqJfIuyja78xxlfJeFNUR+RdFxo5PV2RJif3aBzGke3RLkE6AGMok9kMMKdlR53KbxVAcsS/iSOiwjydQxFE4sT/iaKU110ThFXEUROyTOJrdm+KgPySOThD7JYGGrbZ2l+hLIBti3yRQi0XXPsN7EsiM2D8J9P7P0/Xvv0kgPWIfJVHODh5TE3NJpEHspyRK2p5WWpkiiSSIfZVE0YZGemYrpBAnsb9SKHRLT26djRSi3/xzn6WQj56fllWeFJoi9lsKHUN8ac180qiT2HdptFs3Q27/if8cTv++/vuc+e1g+2T5jv7UQVj51sXt2InJjf/xtXynLxpmeMFhzmWtCR+5yXPpifaqDXlpISC8lPdqbIg66QUHjIRmAq/DQkH5IBOnHuk7T+ZepCZFQvCjOA4nDlPS8zt1V8dUx0CdhoA5zwYr0t9o0cns9X0AwtKu1UX0h0gvNWFpbwiLB8nsVonSF0dI9wl6Vhxy+zFoc4wZO2ofJz37yMYBtUdJ8NmkpHJC3510IcXrjbfSU0Dxcbd1vJkn6eYcHK35rWkQ7vXGZtc7H9KPcybFW1pnQBkaLvZ54E+6WdR8kCf1GQw+uZyW5xpIur+BAwfdwUxwnFxy48AfwaT/rX3OvLHtBajZf3tQsjmEdHnU9qp7dxbkijtF3fYJI90zrVCbqfZvqC6M8vCiXiZ9zSCThuz2HDjjhvROr79G+vYt1GjF17lgqhBbUC8STvrz9SlfvlPy4J6p4jYOgRuk/5E0bOXzKB+2BHUUTSneIj3W5tJGw7ACWMbfbK1tGUW6uMt+6o1NhfC0TO55XGQ06cXHX0Te+loIrFv7Cicm7pJuRUdvpPfkNeQU7Tg7rBJLek6LndblfUUgZn5J54L7fdLfHRtlcF5VDPzJMnVSBQ9I59F+XdCYWwxnzh91iOWLI/3hgHt/8bE38H67Wt9H33jSVT9utZHjLYGCT/R8IYMJpOt1JUXMF5aA9UFK2v1Dj0nfXxBuoe34FmRyXLZPdCeSfs2HYaGW4x14HjjuZ+CaRHrct0tHS7PegYmcSK33smTSndc2fGXdXwqn1mlSrRJScB5YxG4+WCyF05NR95tl0ki3cMwq8o0tA2WWK3tUlqSTfjdh77Wb8B4CLg8wcXRgP3L1VOJY63t4sFs02aEwg3Tdl2pmAV7lcHt415DQ42ekIys5z60cHyB9xXIGjvDnpD+2qrmr/+QDhLh59SoHZpIemm88544+wrQto8Zujxc4P45BTtW1H8HX9bShp9NL0qM03U4ctq+A/pOPjB3ts0g/9dcBJDFTARadCmuFj/xNenDvZF2oXiUEry9qcz2aTbrbcM1t4dBKeDmXxrTNOYd0ruZjdO8rKqEmWs376qlc0m/7pttHcFVBp7nvUulzr0i/paDg52tVBaKB1VET4XmkU7nidQKjq+DgNnXLuoR80u1dnzU9aauCusIr7/cdKCCdlYGxeVqkGjR0lPwLh7CHDj+YcbSuhtnoNcVhXoWkaxWqKDHfqwbj0JZ3KUyv8X7laCXUtVXDrU0Wk8KR2HdfjnpTJVgDox1fm8vlikhvLpITpt9dA4P9tdapudgNBL0cj92ogZB4qai/TYtJr43ujlxdVQP3XZZ0dvRiD40YeT61shY22XvV8Jx+g8/Dra2fBLbUgkfgNxMzzhJ8Pg/feRrmXwvlA4YnQ5Owc3BYWxpm1cKN9J3x6fpvSZ+JOhNiNVELbE2FIXnt2EOaRMdfydSB2ju35Y+835HeLitj5negDtrT0kwPcZeSrmjTcz0mog7qTDIqutOxv2W8EitRVgfV540oUjvKSF/60tafY7EOnjV0uwuNYlevC0KuGvVQ5pmaUxD2nvR1n04vbrKvhyrl5cErFMrxeS4T237p9o/vwHeXXBgrw34kjIVh14d6WFgm9Mre8QPp6xNDrz5YrIeddZz2x1k+4v87lrrxp9QaINDu9YqZZOztw2stmg83gF0IgyudaQXpV71WJVSEN0BY6JUk/ynsAvEnQvcVNwDnSFPoS6NK0rXFBNuDPzfAJ5F+Gds72FM3dR8ylWyEPe4v7v8xhv3ZjdCsArNGaDaaZzNFVaRnsn62aQlsBCfGL+kXr2NnVFhZFJfeCFU8ad0jPdjlv+qxiVEb4Vq+psyptdWkT3kkHjRf3QSpKfYi0qHYHcWOPPxjQxNMC9SETrdiX4hLvT/u0ARPvu/aPqhSQ/qm7fSLB241gbprufW3QOxvpKK0I4qb4NTx+DapeuztFZxJ1yebQFLwyoyTXC3p4+wbL+4XaYaoOMG58tPYRXPH+6aNmmEs2XObfiV2K7b557anmiEuV/pglUQd6Sm71IoSHjaDjlTbO/dT2K9YmhQWVDTD8/MWsjLvsfccZkGZs82w5uRmzVGRetLPm/NmnJdpgfTIfc+L3LFHljEeX2vWArcsLc4mlmD/y3jrk1K/FsjP5j53V6CB9D0Zq0PgSQskWlGfxzhjv5Ygzhxd1wIfYyMEnr7GHnjthUA7XSuMzcyXFvM04s/VGdkwZsVWSBtS7e0/hj1vMYtL3LIVOG9+uc2Vjz1zo9Zu6cBW6I/dKG3E2YS/J5yK7uZLbgX7kqQPF+yx394fLzvb0AquBrzd5TnYz/TsvfCRvg32OikV8bE14/Oh7ZphhFIbWNutqjtmi91sek+csVUbtDVNXXydhZ3tvlfWbGAbNPj171uzqoV0O0re9XvJbZAme7o64BB2um9OijqNbbCQH+LVl4n9hm6IYzl9O1yMm+rdwdxK+lF2cQlLpXZIW+qdnXsAu3pTLGeLZTtsyz4fo/gMewrrwpBVYDtI/rlC7x5TG+le/gv6VU/bIbB1+yGufdjtJGyT9BvaYUqnNTssDfvR1QI3ny3pgJ1hdvyMjO34+3DObkcRxQ54XfzAJGA39tmFcv/gXR2waUhfcz4ZO6/8fZ7BgA5oTe9L8qXvIH1y/4tDhkkdEObxKWZ2F/Y5oW1nE+o64Nr3dwunk7CX3uc61zXZAVkBXxRru7H/E1T4n9cfaZ4VuLToTx/wn/f/XzRC/k+Fj6HO9ocdH6RRIVEQS6N1a/uEDsvKoDSiMJZBspoBN3sCZVAsUSDLID41ATb7Nhl0hSiUZRGT8vOLg2tlkT9RMMuiaXkTBqfrssiFKJxlUb/MwOmxEVlkTRTQcqhBMvCrq4Ec2kEU0nLorZiQ66f7cgiIgloOvRR5MegxJ4dUiMJaHj0SNLWZ2SWP1hAFtjy6xTfU6pMuj1iJhok8Os99btf8SgW0QBTcCsiDQ6TS/4gCGiUKbwVkx5plSF+ogNqIAlwBWbD8WXROUBF9IApxRbR5xcgGJk9F9IooyBWR5rLzLy5WKqKnRGGuiCQZRFVZFJTQHaJAV0JcdNmJl4OVUBhRqCsh+nkzCXaqEvIhCnZlNPVt9E64jjJyIAp3ZUT9eoGH54YysiIKeGVU+UnsauS4MjIgCnkVlDeRs0LQSAVpEQW9CkoZtQi6G6eCpIjCXgXdGRqfW7OogkKJAl8VlXzSX1+lqIroT/ws9FWR7hS7F8ceVeRNFPyqKHOi/bnZBVU0QRT+qkhxPGky4rkqOko0AFRR3KiXcn2nKqISjQBVJDiy2ZGXVQ1ZEg0BNRQ+xPHYaoMa+kg0BtQQ82BHT5SDGtpCNAjUUGD/U7GWm2ooj2gUqKFvvd4HhIrVEIVoGKght54t0fsn1dBTonGgjga6OBtjRNSRJNFAUEcHO6lc1G3q6A7RSFBHDR3JO8W81REn0VBQRzvafS4fTlBHoURjQR2VtBq8f1ijjuj3/WwwqKONLVzLe+k0kA/RaNBAmU2d+tLKGmiSaDhoIKXGlLP2ezWQA9F40EBx9b55j0M0EJVoQGggobqts4OZGsiKaERooIga7nUK3RqogmhIaKCV1V0nndg0kQHRmNBEgZWp6cm6miiPaFBoou8fT4+NHdNEWkSjQhO5fzBUUI3URMlEw0ITDb7nOer2RhNJEY0LTXSorDsuY0oT3SEaGBTU+C6t89MaCuIiGhkUZPr2jAjFmIIuEQ0NCnr3xmivpw8FMRCNDQqCYt7Il48oyJdocFDQy9c9tTO1FPSJaHRQkHJhOrsOvdavhocWSsj3M/FV0UJdRONDC4nkbQvL3af1qwGihW7k8r2bv6hFdmn/+4rPmX8fbIKpX16tZqJCHAQPcq/GHui2J1+RmwpZgdEBm+SxM1VJ7tj74/36zedVA82xfz6WejIMqMDxiEX+td9v4wTwo1c/7qOGttktScQuKm5WNuFAhXt3UxqhBnv5zJSmtD8VrHSMT5yZx248ZvxkfwQVLnRdE8+W6SRdvyBg/60f4+Zf213xZSd2uZmA0Jo8Kozt8j2gehq7fbiKJ0ctFVoe5KY5JGDfPu3sbD5Ihcdnih7cr8RO6VxfFrVAhdzkZasav2MPCCod7OLshCWxOUUsUl14nr2xWqpynZA4XHgTdmD3Si2SCNzYCTfQpZ2u3th3natWajLrBI7wZTkxD7FvYF/bQnHohJ3G3jfKPmAvXPVnbqRfJ9QYOsR8msausTPZkT6iEwz3nbzML95NurW++uUTiZ3wQUief8N27PFU25qRvE74K5U6sscTu1jAwy/OtZ0wrRmc4RGL/UShY/b3wU54HGq/6lIZdngZN3V1sRNCGZZE3/2M/eXTMR917i6ISs2cShTpIb0mYWY9Vb4LntZciU/bil27qUU+GnXBffEvuunu2J8JnDG03dUFFHMLSLqDPdfic8IGpy54/KxKKqYE++WP36ylArtgcnOb3cUJ7Otqre6tieyChA11jk4CvaQnmtvHKKZ0gc3xa9Fb9LHXnjobb1zcBSn3R3bwOmOfEAthOdfcBSsS9ZvbbmFfPn1wfdVEFzxXmjobVYidnc/ziRZTNzi7ZwUZDmMXPq7RnSncDZsNldhHufpI72jyCzDV7Ib+t/ymQRuxn1WSVVm+rRueBtbuXnkUu9H49pT2Q90Q7H5T59w17EybkyrqvLohUbZ8YiQb+/DS9lPjV7phXaydk34P9jPHfGKUHnVD5GeZyxdX9ZMuNcNocj2vG7adYZTJ0cIunZn9cE19N0TsOTvdYI1d1np1RcNoN9SWSKa2h2C3cZlie8XYAxdcWUY+pGM/oVSSXSXcA9MrwnXimrFn6X1T5NPqgQPCQtwHGQZwPplt666b9EC/8GL3ogJ2PfNDSvr2PRB75Mr8WXPsNknZL5UDeiCJeX1Cz2nsxtneC+ZRPYAWstik47EbjaRe/TujB65GwgH9D9htz2+isy7vge2fX8XofsF+hDuvw6CvB0zEuapYhQdJ94szLvCk6wVOZoPuLH3sQmeyVMZ+fP62H0jO0HLC7vDxrxdplF7Y5sTJciEc+zVHp/oC014oralJepSNfUO4y3Ixp174/Fe37s1O7Es1CnNqLvRC7sWK/abLh0if9jQ1b3nYC9HhSTdrlLFbhqbL6RT0wsfg0cPCFtgftrCfn2rtBZt7mxQVfLHnZF6MX/a9F9T6xLZ9j8XOo375mRdvH/DF5TOFlGDfN6VXZkTpg5ibL6KqhrFzijhO+pn1AVMJs2wt2zA+H9ZpCPO698GyrX+UXqJgN37Qo8j94/N9O/VJ0Mxu7HZrjg76pPWBs3CpMZcf9vWhKQxGlX2whH9mddt97F5+8xznJvrgRLpm7I432MsNpMPl2fshlFXow9EB7Fc9krs2qvdDxAt+C6mVI6RrHhtCr8364VXqm5GzStg1/pApz/ToB9sbruC7A/vX62X+ApH9cL68aWKVG3YD5pvqk9n9cIy64p7Wdey6q5hu6LT3w5VIg57JDOwP9g2oTC8ZgPoggd0barA3ZUjYyEgPgC37tpscn7DLSnXYvjcagEm3Si03jlF8/lwdQd0uA3DY7F6TuRr2ermwRucbA1A5aSqRvQP7RKJH1/GcAXi/EJN/9zh21esawx2dA3BZPPPwXCj2PsEHFsXLB+HD571l1Y+wW/Ek7hVQHQS1Mfp84WLs8r3srJ2Wg+ArksLV3IF9MPfUHt6AQaguLE9aOotdUt2IPvfxIHjnzrnd5h4j/WZha/yHqkFwFM47HKmCfa+Yf4HR7CDwy/OHzG7FPsAa/URNaghMlmrPFhzC7sJUdztgxxB8T5zr6fXGfrJc6RHFZwjeVPr72V/D3rBZosQkfgg0hu+w6z3Gnu1WUVFaOQRRpxy+eeRhN4lf6h83NwQqwckP5muws1884t4qOwz5OpaXGgawD/r7K7lYDMMbhmGDJfPYr9hW8+8JHIbCDxPeXmzjpGvFDVy4nToMSekHmnUksPP270tTahsGbZUllC0U7JGhXc/Zfny++xg6HSK3YA9ZZ3QfaY+A792E4yqWv40/HeSUbT8CCQvfDVfYY2+jv/fN5+YIeMz1Ckt6Yp8ofcvn/2YEvkfKifidwz5rqR9S9HkEPHfcvsF9HXupl8sXfclRsBE42TsQg52tIWN+0WwU1s8kBX99gr1+e4DKZNAoWLzRZdR9gf36XaOV3M9HIUDOkzmnAPuLV2eWHu0ZBVaPdWYuZdg3tnkG9nGNQdo6lGlVgz2C/3Tnpc1jcPjEARHPlt/m+fb5CUvPMRhjz4go6cLOuX5N4B+PxmCLRKuW4eBv48xdMTZqHIOWK0ob5sewT7JdZnVcMQ79U3WfOz9h3y+UMRurMw7JyV9Lv05jZ04WhgHHcai8xLhx/Sx2/vesTLp3x0F0fnQ4ZR57JdOoU/THH/evKQ3duYh95eO18yHj4yAurMDf9pv/2jX4n1c6Ole6lXd/b4RwxFQt//39Sjpa0IIWtKAFLWhBC1rQgha0oAUtaEELWtCCFrSgBS1oQQta0IIWtKAFLWhBC1rQghb/L+J/AQ==
                                
- 00000000-0000-0000-0000-000000000000
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- ab0c2868-9e78-4275-96bc-66b04365341d
- Curve
- XHG.⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀.GHX
- false
- 0
- 
                          1368
                          5832
                          50
                          24
                        
- 
                          1393.624
                          5844.288
                        
- 1
- 1
- {0;0;0;0;0;0;0;0;0;0;0}
- -1
- 
                                  7dZ7OJRpH8DxJ2dRiTbRHnTUUSJpt8OPlBIJFRFZlUROS2ORNNJW5BCdpBJTLQqTiqSDSTZUlENO5WwcBx3eEpE369d977Xte13vdb3/vH/M74/5zv25n2vmmcdzmWFGMAwz+HmGOjSyIp8fLMx2Orq66bm5uLi5zlExt/fwdHRzXaqtNl9TTWO+5oJFn5+oq8+fo6LHct7N8rBf6mrP2u1h5zxHxYS11dlxm6G9zwa3XfauS7W0NDQWzbf/UXubtpaWlqa6+NC7TPjzxdVW2bu52O/28FEzcXP20WN5eNmLfd6U9Bp+s5F2Htt2OnrZa253kXZzt3d1ZXls9RTbbrfbbuggKSkpkaHzlFNlGI3PPdYvIyst+vnJmKEHT3mGEenbJ8I4yA9/po+DIsw4/Hx1peXGq9pKxmbxGbnAEZNfXX4363D/5/15eKycCPP3eQVf0bBn/V1E/w7s8zrD5eoMnVC11NcnpDSWu8VUpnRs1qfhE1qj7KM4dEKX8Fi5Ly86dHmW/w8nt+KfD/xzBv8c0BnuOqwF1ha7DeuA3YV1G/6QjAd2N9YL6431xfph/bFsbAB2PzYQewD7G/Yg9hD2MDYIG4w9gg3BhmLDsOHYo8NlY5kIXGOZSFxjmWO4xjLHcY1lTuAay5zENZY5hWssE4VrLHMa11gmGtdY5gyuscxZXGOZc7jGMjG4xjJfbsqv+/X9RcesSX/s2zr3r+63TO7kT+vWBcHVo2JTzBcsIvv5Ye4tCgan4Z5Nb9fcZDPis5W7Exe84kDutwni2lu2EdeKnj63dUEizJ7ZaqNvQN/n/WDa4hR3LlhuMYiJOuxNvDbffrDw2TWosvXzVNUIID7zwEwlQUMaqH5nrugvOEhcIs7b4o/ODHj+znziTvdQ4gvSFQa8X90GB4mSO7tsIombuPC5c9vvgaTsj8Uzt58kLnPtXKZ0Jw9klygnHHoUTXztv3KtrtlmgxXrm6meYeeJT00Ij7v+5AH0Rmv4VphziE9IW3w9XfMPsAiaNqJb/hLxtzum+Ow6/hC2dxlGLeqLJ36kqX1eUFcuyB56H7pF5gpxPW3LvkLdfLA1iOv7sCKFeF2xlrdY2COY6MTU5hZfJV61bpdtX/FjeP/J7lHBiWvE1wdXKxyRKwDuSJfEB043iI86f1/7jH4h3Iw6mlhhkk5c30liljLrKTw92B69cFUG8SjfdvURxs/gl+350qJrM4k/0TyYl1T9DF7bcC/9bHeH3kdXAxdHORbBsnZd5pfAe8THWMaqFb0uArFodf3Zljzi1u2yM5y8iiFwUovpGa/7xPkqskq+PcXQGnwy6dzpbOKyARr1E1kl0CLru+fR/QfED1/XLnXpLoF3r6vC73blEDe7cMIwYkcp7E8NzRmv8pB4oXe53uWqUuA43J7vuzGX+F3j7B9qDZ/DyYhBlaNhecRnKDh2WmQ+h/M+9yPEH+cTX/jSTnXZ9DK4em6pTMjIx8QVY1TN7oSXgfbatFOVRk+IO4RVBQ+8L4PWEFZuQkQB8ZyAeWJzrcvht+t5WRkVhcSnKUf/ysoqh7nWfvHNcs+IN9baRjCTKiAwVYltkU5dwtl/23t2BTweJ37shHUR8UHHgNd+tRVgMvVFc5BoMXHJ2MLGm0sqIf7khPwfrlA/oluyLS+qElaeskpcsb6EeJpcqmLB20rwjVkvaPlIXfynZI2GtVUQPqHndt/FUuLHs/UjJsVXwWWTogo34+fEx3cMVnEGq6AgO9Z18Qfqa1Olf99j8QIqHaZ1mnHKiB9bbRKdlfICHJ/s4ycZldO/7xHrSLb4S7DqUhLo9FCP7Jh+q3DzS3B1qvGX5FQQN1obfjEj9SVYsyy6e40q6d/FzsvZULIaWkpWmsh/oD5/0Z17kdbVIDdLa4fhhSp6fQxtX0WlVkNkTHx0rPEL4q1+c2UdJGpgirvj61F91MOmVteIba6B1jdtg+GXXhIXSG8Q8eHWQMyBFP4U02r6/1M2pSFPtBbyXoivzu2nPs2+uuiDRS2Y7h+12juhhnj1jHnVMkm1kKO8/pjWhlriiWapfRJNtaBwYGDp7YfUh7/rv6zriKdaejwc3CfC/rL+//mh8w9fcMMbscPVwbKxPCwTh/tYNpaHZTi4j2VjeVjmAu5j2VgelrmI+1g2lodlLuE+lo3lYZnfcR/LxvKwTDzuY9lYHpZJwH0sG8vDMom4j2VjeVjmMu5j2VgelrmC+1g2lodlknAfy8bysEwy7mPZWB6WScF9LBvLwzJc3Meyv+7Q/fWfbugk8/j9/aPqoGfpCDvOt9Qjdu0c2zezDmI8zBfyN1J3WTv2lOiGOihf1vviwRXq/N6EsIn+dfCd/MDmsyPq6Q+Ij8/99RLqIPXujFGuFtRvuUQc3VtcByESMsyiZOohum0+T/rroHuVoWSvSAPxn6yeHdJUrYcM9aRr3E3UWxrjYtNN6+GDE9/IKoW60dMcAyu/ehg1vrr8vWgjcSvLjOQp8fVgtnKDVKAlde1g5wsTiuvh0aOjOv0p1DdlFqXDQD2USL0NshVrIp7+olwjdkYDPFHSCU20pG6l+nHO8g0NMM7IJagshTprJDtSjd0A0THc1Q2ifPo6MdbabkkNcNnilELeJuoDWxObR1c2wC1PMc7+ZOq//6q6W0miER6ol0nLijTT62M7vvCMZiNsuWF2xcac+gB3wuiLdo2QfMNzovtl6iMM4ZDu0UaocImUXfzpL8fn6xQeyGqEaNbehWmmLcRHy5nc3NfdCKD6FkovUu96o7FipUoTtBfpJoX0UP8eWve2mTaBSsmoZ0UGrcQLMiJ/CjjQBLlnJxeeOEP9nbqgbFJGE1xLko/OF1Dnj10nqBM0wYko9QHrpW3Enb0MpUsn8yEqLvzMslDqnIrv3eWs+BA9kdez+SX103rjai5H8kFxeoRn3Kx24hZqWlY3n/Ah9thL475fqS+Z3vSNgVQzBOpJnzXJoe6btWOMx8pmyPWbZBc6poN4aLfP2+UHmmGlTdXxKEvqxcG9HY9ymiFW++BsSw517xLuTkXJFthX6amW1kadmbGsQdOwBTKze2oj5gmIKzffOTMzogWWj1vTUeJJ/UZ2sMNgRQt4lDyMsU2n7mrvz7o1uRVUuZw5Sj3Ul0SN0bB0bYU2QUF7k1YnvZ7npBZX326FK1uKg+M9qEvPmbZTV6YNJvGu6+snUzc48qbe37oN7r75QSyeT13tmqNuCLcNnDo2ul+d2EW8Rl/8ho1YO4SfUlFcs4663vSbk/hW7aCsu8fLmk09U37+evnr7eAU3zmmKIV6zzdnFUtkO8C0zNo7soq6QMTYUWFnB2zcULsjRLSb+N5jmyLu5nSAilpW9pWZ1C3MRNdkThbAeW3X1Boj6j8G2dS9ChBAgYMSZ5wL9doOuY2rGgQw62Kk7bJg6nueVvlx9DohNJ4jaXyR+gN9BZXmS50QMFpjq/Zt6kzsim/fSXXBCpcHhV2F1G1Ozt2b6twFKfNWeLrUUt8y2i6t/1kXNFn05cUJqAfvyfn5plY3mAVKOSa+p67DkuRlR3eD2/nFrN5+6os8qpWW1XxZ098Xw98LX3tn/Sv46w+d6pHpI/+6lmGEIxzhCEc4whGOcIQjHOEIRzjCEY5whCMc4fw3828=
                                
- 00000000-0000-0000-0000-000000000000
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
- 
                      255;255;255;255
                    
- A group of Grasshopper objects
- b458474d-c32e-4320-ad51-5c1da52b9f36
- 1
- d285a8e0-c870-4af1-b21c-2d8dfa72a6bc
- Group
- XHG..⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀..GHX
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
- 
                      255;255;255;255
                    
- A group of Grasshopper objects
- ab0c2868-9e78-4275-96bc-66b04365341d
- 1
- 9d0a89d6-8bb6-492d-a109-c81b095422c1
- Group
- XHG.⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀.GHX
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- fd4f2049-66dc-451d-986e-db1e735564bd
- Curve
- XHG.⠀ⵙᔓᔕⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙ∷ⵙ◯ⵙᔓᔕⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙᗝⵙᗱᗴⵙᗯⵙꖴⵙᴥⵙᗱᗴⵙᗝⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᴥⵙᗩⵙᗱᗴⵙИNⵙꖴⵙᙁⵙ⠀◯⠀ⵙ⠀◯⠀ⵙᙁⵙꖴⵙИNⵙᗱᗴⵙᗩⵙᴥⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙᗝⵙᗱᗴⵙᴥⵙꖴⵙᗯⵙᗱᗴⵙᗝⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙᔓᔕⵙ◯ⵙ∷ⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙᔓᔕⵙ⠀.GHX
- false
- 0
- 
                          1370
                          5750
                          50
                          24
                        
- 
                          1395.726
                          5762.778
                        
- 1
- 1
- {0;0;0;0;0;0;0;0;0;0;0;0;0}
- -1
- 
                                  7dp3PNXv//jxYxRJZSWKrAaFTlS0PGlRyUiDSlZCZnbKrKQkWlaDQklmQ5KkSEZ07M2xZ4iGEn7e357vc3X7fG6/f75/ff84zz+669Hpdb3O4VyubqGwUCiUqen5x3+Gm3X6l4N7La3s7Lfa29ra28mKHzB3dLKyt9usJL9aUV5hteIa5ekPqNTVsuJbXWycXRzNN9uZuzg7mtjIiuu4mNpYme02P7XP3trcbvPatQoKyqvN1yuZKa1du1aROuOfVYT+5+Ly6ub2tubOjqfkdextTm11cXQ1Z5/+Qw7XP4txmTiaWVq5mises51l72BuZ+fiaOrEfszE2eSfB3FycrL+c588yykUhWmv/57NPYtt+oN5//zydAuFwvrLm5XycMuf5zQ+xUoRwOdHr6zRUu+t4H3TSeE5yyI5nPBtRcDv6T+3x8fysFL+c4bhv9Kf/uY/CxvjIwfVP/qgAar/3NCE+H/fkDBvylHd2ZW8byb/3NCuhacW/HND7/GxPP9e9J+Xh+3fT9P/4uZmMP7uvzf3H/Kg4igVVUV1UGPUAfVBQ9BoNBXNQWkoHR3+d/2TuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4ojro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRilOuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4ozro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRikuuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4orro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRiluuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4o7ro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRimncH1UHKWiqqgOaow6oD5oCBqNpqI5KA2lo8MoxQPXR8VRKqqK6qDGqAPqg4ag0WgqmoPSUDo6jFJO4/qoOEpFVVEd1Bh1QH3QEDQaTUVzUBpKR4dRyhlcHxVHqagqqoMaow6oDxqCRqOpaA5KQ+noMErxxPVRcZSKqqI6qDHqgPqgIWg0mormoDSUjg6jFC9cHxVHqagqqoMaow6oDxqCRqOpaA5KQ+noMErxxvVRcZSKqqI6qDHqgPqgIWg0mormoDSUjg6jjEMK8Z9zBp8O9dH8b2Gb/nhhEwXHjr9/neMXbfjPnhIjILXomwW8FJdWcbVoVfm3T4j4WrR+dYNdM9o+2gxyMM4rrFpS7KY/fGFr1O8l4hoijK75W7FvYvQCvMrd03QvWIbRHawEBKSHg0BKSJuPRWwNow+cauZq+3YVitmkWo8t2Mzor6xnFB0avQHtl2pEjtZuZfTsmDxRh+EwaPDrUTH8tpPRl/y408b/ORIup72IVTupw+j5eyrHlXrvgMG5ypel2vsYXeGa8goLx2hoMRgxXB+qz+gn3vE7dAzdA1sPtW8m2wwZnW2BeCm3bQwUe2t18smZMDp3pJpGXW8sFNs8DkjpN2N06mLeni3HH8DV3JtOI03HGX1SRff1lraH4Dkq//g92wlGByOz5jLDR6DHPfGY19CW0VXuZVn21iaA9VTw82ZnB0Zvrj7k66eXCHPmlKys2efI6PZ26/eHliSBfUuV3DEtZ3K+NMgXXqyeAjXzJIZcTVwZ/aXbY/9ZxqnAbripbSrIndH1rEo3KomkgWR86MvBCg9Gl7OYUyVQmwbpy/UsFRQ9yevcqEmJuv4EtP2XSr187M3o3cmlDuVaT0HS+xY1Y7Evo/9IsWl5POsZXJt7yU7S2Y/RKxZWcEnnPQO2yLJdvNVnGX0jz6sXW72eQ1HYVQuPbecZPVF0adq4UjrwGAtz6b3xJ/dTfL1A80s6dFXaLwrZEcDoC5V2VCsmvAD+GS3Sy+ovMrpJuuPLJNMMmPv87LFZHoGMHnzFV//FwpfglUOPk1sWxOgzX6rf21P+Elaudj3h33yF0Z2y1C7aXsyER1Ny1md1Qxhd7HbpHAHVVyC02qGetv4qo7fST6xR+f4KVD7eyFoifY1c/3U/V+/jLJh/2VbMXeQ6o2dqZz7kNXkNFHajzlzBG4x+jWveiufzs+HB6fT3lAU3GX14o1wmrTAbQg1Z9iwXDWV09Xd3L5p4vgER+eNNq2TCGD3q2wsrBaEceDRzKplvYzij/8pZO2h9MgfiLqylfdgbwegJFx7/PFyUA1vUxJepO0Qy+pr4MGUWqbdw5lKrTcD1W4zu5/jkyKHTb2F5Hofy2azbjJ58m1v0eMVb6Jw5NCLff4fR71bLrZNa+Q5WblvS6icWxeixnoonQvzewY/OY/NeyUYz+lL7IZ/EunfQ/syL5v2RdB0WDg1Xai6oV4stmm1/j9E/cfJdH/DPhe3s9lv1Be6T+9+euXFuUy6wz0m6ZJpF+vD3Ool6hTwIlTspttQihlyf4/ZK7YA8WLStXvSWQCyjH7O7td2mKQ9+HSgIfpNHOusLVjOqwnuQqRa0DXKLY3Sp1Meekf7vIUGh5taU7APyuo2rhD6qfw+8UleGeTpJ/y6979kR+XxItrOTz4p6yOjxvVe7nvjmA6XlBsfvI/GMvketZMvjynyAOk3RYpFHZH9wlOnatvwDvB7VoSxpIb2YQ/mb16kPcJmfezVLbAKjO/4Wuq1f/AEyDBrEDK0fM7oQR8TcMpECKOcwlFNYm8joI157A7ptC+CaRUqCB0sSo1d+L9S8lV0ADg3FdVQa6QLpwQ/75xaCsVHuZ617yYy+L/zwQM3RQuC9v3j2J+cU8j5aJ+dmlFwI25N5Y/cvTSXvOyGrRN+JQjgjHVptd5V0bq/Rsc2aRaAieWFh6iTpN7m1y69HFoFzzZPjgrZpjC4sk5Hu11ME7P6nH99tJL1MAeS41hXDFUmuiu17njD65sct72XOFsOxMwFvOd+Qvk00Urj1UzFIRu3d37H6KaNrm1wuWiXyEUTzVlpUxZGu9HDmufmWH+FcoEdR7cJnjJ6VdOfX1acfQejdpT39IaSvjNkwEDv5EZr7y1/O4nzO6HymsuJaO0vgB+uaSqoP6XmH11kEXS+Bbx2bDA1/kj6gGHnLtKkE4tTdeS87pTO6stCieyXLSiF/T/6jl4Okv9WfYV5qXwp6tvENbSdekPfjFdnmYxmloCwfZcDeQ/oD0VHuq5RP8Mb6ZMXC4xmMLjI0Z3yvxiegUKe+S3aSnu2yMSsh+BMILeKyFzZ/yejprhbW4dWfgF/sRu+vTtLFdTwXXplLA6P6dax5FpmMfjV3asGt1TT4eWDqxsk+0h33HXBz2kcDxTy9wCnbV4xeO6defoEbDXTG8rdaj5Du7Zxr6h9BA80Na6zS3LIYPdq62OrtKxqULX/+uWSCdHt/MbWCJhqE5wduzz73mtHvXKCuvDVFg6DT8xu9uLMZ/aSC6e4NEmVwM+HLY+6bpL/8Zi3wYEsZTCxtCDRb/IbRy428ApvNymCFgAGfbzzpyTsLWDvOlUFhlXpTqnAO2d8skp+lx5XB6ltSSr5GpL+c8ZrtYH4ZPHZYVZgSR3q3QujG911lsD/p7K8NA6SbeWzLZ+EoBxnVmewSim8Z3eh2ZBb38nKQSMjNNPYgPdeI/1zXjnIYF1NwGHtL+hbRKofg4+VwW3XF3a5Z7xjd1WqslcO/HO6dc30qs5f0ZpcyOZ24cjjIo78uJ5L0cv/BCsu86esbXbGLbyd9Ib1/3d72cqjY6dtMl81l9G8/u95zs1bAdV3HcQtX0v1OHusNF68AH8WYPZtySFfy71v6Q6UClsoHKh3hymN080r92OWGFRAwUJWRv4903nlq3StOV8DeM23bPKJID0sUOcISUQHOC/afcukjPV9ezP1xegVEjB4bTF/7ntHHfmo+lamsgBhvBdjsS/oN6PU686UCvnsrCHGUkL5IeKdD7NxKoO+jfuMTzidfz6cVWe+vrAT251p+Ruakl6e6ZrhoVMKgkcex/jTSfbVOCombV0JrzLLtzydJn5EzP+aebyW8zntS/2r3B3JOuMH79dedSkic35I5EU46D1v/LtnMSjjSY8Dp0UW6gEu46rrqSjChjlmsWlPA6Ds4lfSFRyphm1tJrIgf6UU880Sq51TBzM8K51VppK+e5yRkK1MF0Q6e5RGLC8l5VaO1vHlbFahbzjVfbku6VfqGkZXGVXCEW2eg+xXp41zn2PefrgI1M1HVeq4icp5vz793KLQKynM/rZowID1IuvbQ5rQqcKN8jNB+RPqCXoGGieIqeNDJoUIbIz2e18jxdlcV/FRYdcRLo5icEw7syxdmqYa1axvz9MNJ5xBJNnddVA1KuttsjvaQvjluWe+TtdVwuoq++YryR3J+gIGGT9rVYDCmurE7gPSbmbpjJVbVYJOlImdZR7oZy+dPSWer4fAovyDPihJGnxKZscjhTjXwXP5U1ORB+t1ZbUvmv6gGD7cdKbRi0rVNym7doVXDzPrIxG6RUkbf8Pv71Ky+apAKmt8nYUe6z5WfSw+z1UB64GIZrzekB4atOnZVpAb6Og98HOf5RPbtoEvHktbWwOm5tmURpqTnuTyLTdGqAcEP7A4Hn5EeH188Hm5RA2HqzZnCbDRGNyhIzbLyqYFgTrsEQVnSrzibuUtG1IDKDv5FkvtJd7ZVnspNq4GS8fYzG71IH/q8+rZW0fT9g9FV04ekv7PpH3zXVgPF7E49oTTSgc3XS2K8BvjMuCVrf5LuU5dYfYK/FgY7zzculSoj55bVLd5RK2tB/PGhl96apAvsVmPJ2VoLW260He50Ib0nXZD+8XAtXP8VY3UgivSvZyqi8p1qAZqUL5UXkB4bxfouKbAWNDh0LQxGSD9sp5LvF1MLMb2PEvsWlZPnJSi9YserWrA/yMHpv51002BDq7HyWlgYICez0p70ugLHiYi+WuC/Ufe2Lpz00Z2DhitZ62CLUcb5q+9Ir+FXpyQJ14GOvOGKvQOkz1JuPSi2ug6kDq23WCRYQb4vZM6u9tOoA9MH178NAOm8cpS+GqM6mDPlFZJvRXqDdQdFzK0OGsxpXx9eJz3xeMl5/St14JIg0BrymvSgB29az8XVQf7bC/N9u0kP7Uo7HZs1fX3t2fvceSsZXdI0JONFRR0Mi4sau24k/XzYlvHsvjqwSfw46WFO+pvBpNhMlnq4fu3J9/PBpJfwZvI/FqqHpRe654W9JD08+mBcyKp6UFT5xZ/cTjpF7+wz6x31cCW8u6Roel/8N7+6tydyk2E9iMXwcH1WIr3gcHMSm3M9tAsohgqYks7x5vS2t5fq4aiMsZraZdIvGQanudyrh3ODXxsc00m/75+4QyKjHnZTrik9opOucTdUL6+0HsIC+Zd3cFUzer+++jKjzun7uXXRS2ot6U4aX7lGxuthxi8qv4UR6XK68zU9+RpAkmb9Kvki6Vo81gosMg2wySNT69dT0nfksM/wggbwqHsWt7OZdB+VHbO+7m8A0Ry2yNucNeT5dn/2M7NpAO37h2aOKpD+Wnfhs49+DcDjdzJf05B0syadplURDbAgfDL90QXSabF+m4NSGmDOeOrzWU9I19fi4+t83wBLfq64Z9NI+h6XulClxgaIL/6tXz6zltGXc8jPPD/SAMlOUa83rCZd91R3eAlnI+z6aJ8ad5j07c1m/rxijRBV8oif35907+rL7LprpzvlWJFfKuniRxvVL+9uhB2SgRlf60nf52pyNtekEVq+Nr2znFFH9oeEvJ7vbo0go9Jb2rzqr+6oGb/sSiMofmHLPXCIdDv71uG9sY3g47fbn3aOdAl/vuHTmY2w0TyaoplCemu1UPk9WiPIpt5fWFhH+purDW/zuhpBqjf5tTp7PaNvezTa0/G7Ed59q6/4IE/6a7MUe1b+JlhKHVXfaUD6+eL5nqIyTWB+123Gx7Ok8031rlsHTdC2O2JMO5l0O5Pkt5r7m6DmndLcqlrSLz9+qGpi3QQBcc2Kh9kayP7T0lLl5NsE4ea5B9vkSN8pKnP/XFgTFAvlWp7QJ/3KYfH315Oa4KeV8YFRP9L9WamG93KbYG/cWx7PJNLTrK9dSKprAtGW5ACOWtJHt+8zzhhqAppiSMo11kZynmw+wPpuRjPUi9u4LZYjXVBn74WiRc2w4ltnecJB0jnDajjKVzfDU/1Nz5X8SD8atPdWrXozrOlT53ufSPqsktn6zYbNcGzkVPPemr/WPbVCr92pGbpXNsxtZWki54cvz6O7LzaDaRRXhL0s6RdOhOn1RzXD92ubnCYPkP7b7pbn4PNmOHt5/Y0gX9IltZxWfSluBsXjhqMiiaT326a7j7Y2Q5hzaEBiNemGF9stvv1ohorXxzQ3sTST822NCdePOS3golan9HEl6Y6L/WzGpFpglc7NbUcOkC7x2Dvi5/oWsBwttBnwIX32Rt9bv7Rbps+HSo/PPCZ97oeI0+PmLXA8SHacu5p0g12Far9Pt4DKfX/9O5QWRn+6fuLr76stEFKS+kZuJel1Wby3Jh62wIWgGLns/aSbJn9SnnzdAjLpnVFaPqRbwPeyyYoWcHa8INCSQPrl90JWU70tcGRI8ZJ9FelZ2Y7uCWMtMMM2tfbTF9L//HgBHQb5/vl5EtJfaOknTnmz+vz7+/9DPwjx3//x8T9wojyoECqOSqNUVBlVRTVQHVQfNUYtUQfUHfVBA9AQNByNRuPRVDQDzUELUBpai9LRHnQYHfv3+fv+kRPlQYVQcVQapaLKqCqqgeqg+qgxaok6oO6oDxqAhqDhaDQaj6aiGWgOWoDS0FqUjvagw+gYSvH7IyfKgwqh4qg0SkWVUVVUA9VB9VFj1BJ1QN1RHzQADUHD0Wg0Hk1FM9ActAClobUoHe1Bh9ExlHL2j5woDyqEiqPSKBVVRlVRDVQH1UeNUUvUAXVHfdAANAQNR6PReDQVzUBz0AKUhtaidLQHHUbHUMq5P3KiPKgQKo5Ko1RUGVVFNVAdVB81Ri1RB9Qd9UED0BA0HI1G49FUNAPNQQtQGlqL0tEedBgdQynn/8iJ8qBCqDgqjVJRZVQV1UB1UH3UGLVEHVB31AcNQEPQcDQajUdT0Qw0By1AaWgtSkd70GF0DKX4/5ET5UGFUHFUGqWiyqgqqoHqoPqoMWqJOqDuqA8agIag4Wg0Go+mohloDlqA0tBalI72oMPoGEq58EdOlAcVQsVRaZSKKqOqqAaqg+qjxqgl6oC6oz5oABqChqPRaDyaimagOWgBSkNrUTragw6jYygl4L/855zx/zvYxEbn5yaw0cGm8QG/EAed0TfdcdpNmU0HtUWdGzTmk65FZw+jCNLhmcErl5AVpJdJh7dTJOhQr8Q9/c8t0m9KuCmwyNJhpaZcr/h+0mXMfM+zKNFhWeIycasTpFcfWtTCsoUOtLev9NK8ST8toriFdQ8dNn609Pt5g/QzpvCEVZ8OWiZmCWoJpJ9coarIZkaHDcKRhRffkF44nF3IZkeHmhPPmsoqSRcW+OTBfooOaxz5OoT7SNfbOFdzxjk6zHj2sc5kinTuwtitM4PpEFP79NUjgVZG/6K/w5Ijkg5VRjr+X2RIP6eh8JYzjg5Jmm1r1wPp2bvWHOBKpYNzoXG+zz7SWTniVnG/osPm3FOKBVakr8s9cWBuPh3Gz1x1n+dNupfwrwqeMjq8Fn4XcuAG6XovDzzhb6RDpWiD651Hfz1+jcBvwW463OwyXtqRTfqPmgNZC0foYCB0OXRFJekvQionF0/QwZd1Z55DL+mcTVWfpDhbYebPdfHpk6SvKFq3SYa/FYxjHm78zd9G/mE7aaG7anEr7FC966YmQ/rGcnvRddOv10hT6T5/FdKPnuxP3rymFS763yku0iNdnYdn/o7p11HSWLRyrhXpm1YkGmnvaoWVOfOO7/Uiffcn6SiD/a1wdnW7+83rpJ+iBHYcM26FSZsnbLXxpMNCF7WT1q2QtXXrhHA26VJa0gVerq3Q6DHjyOEK0o1X+gcG+bbCnHBewds9pEsq8UXdudwKhneXSzROkH71xqhgSlgr1GUmOS7ib2f0kazvHO/ut4IuPXnKQJr03RrBF6qTWiFFty4rbDPpqfl1jwcyWmH/Qs+7lXv/6gl3AtnzWqHe6VI4jyXptdu0VRZ/agVvoZC7uz3/WpfG27i+vhWKfV/GnL9G+rsbLz0PdrZCFF9JZPZD0lt4Sje5DbeCmOwK1+9ZpBtsvawYMd4KRbIflsuVk273u+fM65ltsMBg1T3TbtIPb7++poO3DRYl+VSE/ia9uva76xzRNjgSapVSyNvB6JFJKibrpdvA8uaypePLSNe9epDXUrEN2vO9l6zcRLpUzUhcxPTXU5du/m0DXdK9uC+qlO5sgw9vy874Hyf9Hf3I+Iz9bdCiMPEk7TTpLVGeE6rGbaDwYIlcQwjpDW5Fx72t24BWda+W9QHp1ge/Gbx1bYOmFTvvS78ivaDh/K+Zfm3Qf/O4qyaN9CC9RhudoDYw2p6patdJenPqmuo74W0gtcdlIOgX6WlZj44MxbRBId+6Y4/ndTL6Zl3l5dtT2iDxFvu1/CWke4m/M4zKbAPVSS2jlvWkLy7nkZl83wZnAjqffdMifcmquicmZdP38/a7x6xjpPsdyF5a1NgG8TtmRyw8RXr6qn1JStNf95WjLN+lr5C+6Ieka8Lo9OdRe7b7mhjS73M+SpKcaoO4wjj2zRmkqz476hfN1Q4ZWeE+W0pI/1L6QmqJYDu4+g1/2tZG+gvu5e+SJNrBwvpn1dYfpGfJigdvlmuH2QobXYC7i9ETNYVfVyi3w7PXzsFKEqQLFAV5O2xrBxZ66AzZdaR79E5xCei0g+X1Ny9EdpP+QfLXjezD7ZANa8/PMiZ9wmzePgeLdmgyN9UccSZd0LXRW8apHfJP0/qqL5LO2cCp2+fVDnvaJTe/uEv6zVs7WJ5eaodODT6x609J11XWLT4b2g5tWpbWJwpIv/e1v+/I/XZQshgf39REemUB/bZKcjuILk54xDVCOjV1crFMZjvsCj6gWTGzm9ED1ARTRfLbQSu2LTN0EelXYr8GC0+/n2PnyxXvo5LufshoSqy5HUoL5uyds510RwseVWpfOxx9rSuVY0D6luuPbuz63g4/xLJ4be1IN/N6o2rP2gHmrWOD/GdJv7fzUsDduR1wMeR94LMw0rlmdafVLuwAASftF1qJpGsUmlEWL+8AzvlBam05pL/aXpprp9gBn+xdRuyqSK++9VCiGDrg4dyChK+9pCevXOinqNkBkkPBkk6TpIu/j5OL1+8AmdYJqT6+Hkbf8DJzj4x5B2h/igk0WE76pjU9e16c7ABng17utxtJf6fMZrvXa/r97PDCRVyH9E5fdsr4pQ6ISzl13u0Y6Ye0FyikhXWA7ZFagXx30hXHr9i6xHYAj4tc5ewg0v1Oeo6op3VA36rdQRr3SNfxniUkk90BCwQ9fp1+TnqGZA2bcHEHVJilfI0rJN2BPotPqLYDaivlV+c3kW6WZBO4bHqfCm7yd2j8QvrkF+mSbSMdED35+VjPjF5Gp1VWiThNdcD9GQWlvcKky7vR8tO4O4G6Y9SSLke6a6ALH8vCTjgv7DlcrEb6q/7re02Wd0IZ32XhxP2kn7giklK+phN+Scx+5mNF+rlfrz33b+kEscwf9js9SS+JbZvZp90JNfP62WdeJb3/cHBoiGEnNLm/WpYeS7qVe77TTutOyE83CjTIIP2O29gXgel9MOngk+ahYtJbTnfojfp3wuLnxdXuLaS7v3/a0nGjE6pnsiz7OkK6h9el+t770/cT3uNpMrOP0c+v/XGeNa0Tzu1Rv5ojTPqUmIv8qjed8MZk7yxeOdLf6n8YtZ/eN79bPU/eq0p6xMM8qfcNnTDqQV92Xo90wS1dk/J90/dvbi0Wf5x0F6eGD0ljnZA+8WTLq1OkKxsH5qhxdMEXx5H12ZdJn3nWYFn//C6Y6aSQmhpFepTl8NaEJV3AWW2+7doT0l88+qLrrdgFvCWP7pm+J/2Uu9HlE1u6ps8t+XYStaR/ulkhZ6PbBR/DCnVL+0jvyuKyPTe9/5qri4xYTpCu9mFP4FP7Lpi7I3RgeF4/o3Oc5b7z06sLLnlJshyXJP3bvEsdB650wamcowUf1pAekcUZWnynC4Y9DnfMVyedf/uC3oNJXVA712pE24B09WK2eb+zuuDDSYnrLtakm5y8qZ7xcbr7Oev7e5IuofP99eXG6etfGmn3DSa9Iu3JvVMDXXBcWqvM4h7pZe+aRLx/d0GH30S20lPSr3StMb3D3Q0Ry4+qfckjfZmnhFelSDfkrXs650Y16ZYf4+OWyHWDpOy6J2I9pK9suDUZtLkbzogmFVz/SbowTTWTR6sbrIafNg1xDTD60hlF3xKPdoN88tkriiKkF3Vp1Zvad8OtJp8TR+VIV8yyOKHgM319szNLHFT+evwmh5ZFV7thUeQeJUtt0hV2Ldwtdr8bvtlqbNlhTPq77XdLNz3thtjA2vJZJ0kX/HnN0jmvGzoU/cOe+JJeWLVvW/70vm8ZeWOu6jXSNyymOCt0d8M8aaOStPukfzn4diRjrBvuK2V4czwlfZ/ksk4Drh7gDv54XzWX9GuSX3Tmi/RA4CfR8iMVf13/3Ca1frkeGJQVu3e4nfRw5dysBugBt86QuE2jpLs3Ohd06fbAcrli5ynWz+Tz/ij7OPf094NtMy7FxvCRPrr+ZZimaw+s3ZlfJC1J+kwnYYOHAT3waxbN88pq0nmsFB6I3OoBbdeD+ypVSffs/uqWmNQDIdfcO39qk77u4Je8Azk94Pg8r2DyKOnXbuj7LqrogceZe0LbbElXPDB591dnD3i+TemKPUN6UveROV/HeuBEpLDe9kDSU90jXnJw9wLXm30uuRGkK8wPuLJWrBdM2Uq7F8eTvkcx1dlToRdul97ZfjCd9KxvuntbtveC/P3gFTZ5pDdtspl92GB6n82QVjQsJ91LPNd32KYXHsgn/5ahk/7zZeeNKJ9eaNkju7T8M+k7n6yRtLzRC0ubzuzeP076gHAv+674XiiV3jPvKecgo5/hExHcntULPxslefvnk67pVyJrQOsFpf2mI78lSd9u3C/q39ELLiL79vesIn1ztkFW8VgvnNwi05S4ifTOnJ+1MnP6QM+QRX7XTtLnTqZtiZbog+e6gwNv9pPuG+OSL7+uD56y/Xozx5T05BTNVVW7+uDQ9hVainakh50/vOO6UR9M5p0Hqgfped/6yi2d+4BdVmgzuz/pEmoOkfsv9sFr6vfh5Kukj/HfNDa42wd5UWozqXdIV9sL3U5P+yAwTk7mQjzplksiBmML+sA7iJXj2VPS5SaF1g409UGSnYRWevZfr5vfRbedo30wn8KZHFRI+jM73pNZnP2weMu+mvWVpJd6bmzYtrgfEiQLTmc2k54Ek7Ztiv1waf4erXm9pCsvyWu5sbMf7i3/wao8Snq4uFPnYaN+CM7j1F4zQfqhS84KSi79UDL8rYeNY4jRa2qz3JcF9sOLSIuABzykm5hVWMpM7++llSpdixaS/nV+fRq86IfImeFZZlKkL1h8k8WqpB86eUrzPWVJzw12ZI9r74e0455vrdaSHsF6zXx0eh9/ufDCieUqpGcs/1iqxzMAnq38vuk7SD+rn9nzftkAsHCGvRfUJj1lcfahnZsHgM+o7Kf6QdK50jmLm/QGoHRhJX2nEemmAfeb/U4MQNADNhCxIL0zxnG98vS+fNlmYX22Hemesju8JsIGwPzqylOrXUl3KqjRKk8egC/34zqcPEmnc9bsTn8/ADIb9nedP0f6qtIhgUeNAzAQbLHTIpD0tY/KNBKm99lF7Lb1C66RLrZe6fxLrs9QH3rYIiyc9Ev+n49XS3yGW3pX33TeJV3zSMNFyvrPYJdU/ZQ1jvTxO5wXlXQ+Q8hHY8HBBNIf3o6b9LD4DP4fKzIfppLOeoLvXJHXZ3jWt811VTrpS1Z0pS0N/QwjsZvEzr8i3erYd7HLSZ+h9UNGUHwO6SJ6R80npve7KBv5WxHvSa9V8Bc61TjdOwMl9YtIn311xafJ0c+wJnIDpaOUdMdIs8VXZg9CKU2cb3PFX9e3SoxcJjUIqyxilMxqSL+xt6/mw4ZBqHR/qHuggfTBtc5WJ/cOwvDI9S2CLaTPKxJukzwxCG3z9Qbvt5HON7CissF3EMbb9Tb87iR98aBX2a2IQVjhGThHsvev90vXaWvTtEHws3DVERgg/eqkqOKq6fe/XZ7w5/JB0htyJzNYWgdhtSP7J8MvpLe4HgmqGxuEt8I67c9G/3pehhKq6dPvz0Tp+0K130jX4Ok3DpMeAsEXskYffpDeUc/rfUZ1CEr0U+L9fpIeU5kiY64/BNxNbj2zxklX4H40pOMwBFcGTfkNf5N+JDnFCAKGYHZho9iZCdJ5qQc5qdFDwKfSOsNikvRixyE3yYwhmNU/kS06RfqHCepmQdoQHG/ZvSP6r360v7GDq2cIPlQGhA/+1Tdvd4xhGxvC/xcg/c8M/1c/RJ2z5u8fhPB6Lcv+9+9nU5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzmMIc5zGEOc5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzmMIc5zGEOc5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzm/DP/Dw==
                                
- 00000000-0000-0000-0000-000000000000
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
- 
                      255;255;255;255
                    
- A group of Grasshopper objects
- fd4f2049-66dc-451d-986e-db1e735564bd
- 1
- 06de9dbf-d07f-4a85-a765-83ad8b6484b1
- Group
- XHG.⠀ⵙᔓᔕⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙ∷ⵙ◯ⵙᔓᔕⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙᗝⵙᗱᗴⵙᗯⵙꖴⵙᴥⵙᗱᗴⵙᗝⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᴥⵙᗩⵙᗱᗴⵙИNⵙꖴⵙᙁⵙ⠀◯⠀ⵙ⠀◯⠀ⵙᙁⵙꖴⵙИNⵙᗱᗴⵙᗩⵙᴥⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙᗝⵙᗱᗴⵙᴥⵙꖴⵙᗯⵙᗱᗴⵙᗝⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙᔓᔕⵙ◯ⵙ∷ⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙᔓᔕⵙ⠀.GHX
- ad013215-63f3-46da-8b16-ce3bf593a0c0
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Edit Points
- Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through.
- true
- 1606297d-c3a7-4bc0-95e2-acd8e3cc0489
- Curve Edit Points
- Curve Edit Points
- 
                          1641
                          5475
                          123
                          64
                        
- 
                          1695
                          5507
                        
- Curve to get the edit points of
- c2631487-b875-473d-a3b0-c180fad25644
- Curve
- Curve
- false
- 0e0d5017-4f0f-4bab-986c-96ea91bffc65
- 1
- 
                              1643
                              5477
                              40
                              30
                            
- 
                              1663
                              5492
                            
- If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through)
If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command)
- ffda07ea-46a6-4262-9f81-b21190e6784c
- Knots
- Knots
- false
- 0
- 
                              1643
                              5507
                              40
                              30
                            
- 
                              1663
                              5522
                            
- 1
- 1
- {0}
- true
- 1
- Edit points on the curve
- d0b35ace-2c61-468c-b741-4314b71498c3
- Points
- Points
- false
- 0
- 
                              1707
                              5477
                              55
                              20
                            
- 
                              1734.5
                              5487
                            
- 1
- Tangent vectors at edit points
- f6957ee7-4abe-433d-8de1-f9298145bca2
- Tangents
- Tangents
- false
- 0
- 
                              1707
                              5497
                              55
                              20
                            
- 
                              1734.5
                              5507
                            
- 1
- Parameter values at edit points
- f31e48a4-7cbe-4990-89d5-e4c79512edb4
- Parameters
- Parameters
- false
- 0
- 
                              1707
                              5517
                              55
                              20
                            
- 
                              1734.5
                              5527
                            
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- 4b2f821b-45e3-4410-9aa9-a29a26c362df
- List Length
- List Length
- 
                          1809
                          5483
                          97
                          28
                        
- 
                          1842
                          5497
                        
- 1
- Base list
- aab63b11-16ab-4f4e-8cf2-b7fa556e1009
- List
- List
- false
- d0b35ace-2c61-468c-b741-4314b71498c3
- 1
- 
                              1811
                              5485
                              19
                              24
                            
- 
                              1820.5
                              5497
                            
- Number of items in L
- 1e4870d3-d88b-4e3b-a627-be71345d40a9
- (X-1)/1
- Length
- Length
- false
- 0
- 
                              1854
                              5485
                              50
                              24
                            
- 
                              1871
                              5497
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 734d95fb-156d-4c55-9bb3-56f2a3e61067
- Relay
- false
- 7428efec-7c04-44c5-9681-0bb0a240649a
- 1
- 
                          1256
                          388
                          40
                          16
                        
- 
                          1276
                          396
                        
- ad013215-63f3-46da-8b16-ce3bf593a0c0
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Edit Points
- Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through.
- true
- ee2f1e04-63b6-4a7d-90ab-1493b63269f8
- Curve Edit Points
- Curve Edit Points
- 
                          1353
                          408
                          123
                          64
                        
- 
                          1407
                          440
                        
- Curve to get the edit points of
- 4ac4708e-5ce1-4a3f-b2cc-101c03484058
- Curve
- Curve
- false
- 734d95fb-156d-4c55-9bb3-56f2a3e61067
- 1
- 
                              1355
                              410
                              40
                              30
                            
- 
                              1375
                              425
                            
- If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through)
If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command)
- b5a6be64-c92f-4d78-9254-7fb33ec1220d
- Knots
- Knots
- false
- 0
- 
                              1355
                              440
                              40
                              30
                            
- 
                              1375
                              455
                            
- 1
- 1
- {0}
- true
- 1
- Edit points on the curve
- 7f0117b0-1715-4a9a-abcf-b275a2b53ae8
- Points
- Points
- false
- 0
- 
                              1419
                              410
                              55
                              20
                            
- 
                              1446.5
                              420
                            
- 1
- Tangent vectors at edit points
- 5aecc1ce-e736-4bbe-bf47-27c8e3ac96f2
- Tangents
- Tangents
- false
- 0
- 
                              1419
                              430
                              55
                              20
                            
- 
                              1446.5
                              440
                            
- 1
- Parameter values at edit points
- 03e32f79-d91b-4d6a-bd13-e38bd1e7653d
- Parameters
- Parameters
- false
- 0
- 
                              1419
                              450
                              55
                              20
                            
- 
                              1446.5
                              460
                            
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- f11517b1-0ac6-4c19-9d0a-cbffdc540953
- List Length
- List Length
- 
                          1521
                          416
                          97
                          28
                        
- 
                          1554
                          430
                        
- 1
- Base list
- 501041b5-ac04-4879-946e-be9687ce97d0
- List
- List
- false
- 7f0117b0-1715-4a9a-abcf-b275a2b53ae8
- 1
- 
                              1523
                              418
                              19
                              24
                            
- 
                              1532.5
                              430
                            
- Number of items in L
- 3537ed18-f4f1-428c-82e7-541bd20996ee
- X-1
- Length
- Length
- false
- 0
- 
                              1566
                              418
                              50
                              24
                            
- 
                              1583
                              430
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b8b25b3a-afa6-4a89-bc77-3b6f4bc1d314
- Relay
- false
- 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba
- 1
- 
                          1369
                          1953
                          40
                          16
                        
- 
                          1389
                          1961
                        
- ad013215-63f3-46da-8b16-ce3bf593a0c0
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Edit Points
- Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through.
- true
- 9dd9669c-222d-464b-80ab-97d0a15ba656
- Curve Edit Points
- Curve Edit Points
- 
                          1466
                          1973
                          123
                          64
                        
- 
                          1520
                          2005
                        
- Curve to get the edit points of
- 4565e9e0-d985-4764-b9b1-4e627262d8e8
- Curve
- Curve
- false
- b8b25b3a-afa6-4a89-bc77-3b6f4bc1d314
- 1
- 
                              1468
                              1975
                              40
                              30
                            
- 
                              1488
                              1990
                            
- If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through)
If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command)
- cc45a48d-00a5-4365-9b57-8e081cf8c566
- Knots
- Knots
- false
- 0
- 
                              1468
                              2005
                              40
                              30
                            
- 
                              1488
                              2020
                            
- 1
- 1
- {0}
- true
- 1
- Edit points on the curve
- bb25bce5-71c5-460f-afe7-35859f892cbd
- Points
- Points
- false
- 0
- 
                              1532
                              1975
                              55
                              20
                            
- 
                              1559.5
                              1985
                            
- 1
- Tangent vectors at edit points
- 9cd3f046-aab3-4757-9511-931498a692a1
- Tangents
- Tangents
- false
- 0
- 
                              1532
                              1995
                              55
                              20
                            
- 
                              1559.5
                              2005
                            
- 1
- Parameter values at edit points
- ef5cdbb3-8eb5-427c-822b-1c864c28a266
- Parameters
- Parameters
- false
- 0
- 
                              1532
                              2015
                              55
                              20
                            
- 
                              1559.5
                              2025
                            
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- 13ba5673-2c2b-4e63-94ea-3e66f469d924
- List Length
- List Length
- 
                          1634
                          1981
                          97
                          28
                        
- 
                          1667
                          1995
                        
- 1
- Base list
- 05b2419a-f560-4e1e-98dd-cc61d83a5189
- List
- List
- false
- bb25bce5-71c5-460f-afe7-35859f892cbd
- 1
- 
                              1636
                              1983
                              19
                              24
                            
- 
                              1645.5
                              1995
                            
- Number of items in L
- 88cf909b-1dfc-4acd-9ac8-315b06ce095d
- X-1
- Length
- Length
- false
- 0
- 
                              1679
                              1983
                              50
                              24
                            
- 
                              1696
                              1995
                            
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- d24e8fab-8966-4b74-90f5-895ca7cc37b8
- Reverse List
- Reverse List
- 
                          1048
                          1235
                          66
                          28
                        
- 
                          1081
                          1249
                        
- 1
- Base list
- 8d7911d4-3eee-45bc-beda-b487d521c118
- List
- List
- false
- 2e337179-3366-41e1-91ce-b34ea88fe906
- 1
- 
                              1050
                              1237
                              19
                              24
                            
- 
                              1059.5
                              1249
                            
- 1
- Reversed list
- f90883e5-3fb0-4e4e-927c-2fdab122cf8c
- List
- List
- false
- 0
- 
                              1093
                              1237
                              19
                              24
                            
- 
                              1102.5
                              1249
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 46440956-1415-4acb-9dea-f43095dd43e0
- Relay
- false
- f8f66c7a-48a1-42fb-8fb5-b9e101750e10
- 1
- 
                          743
                          3152
                          40
                          16
                        
- 
                          763
                          3160
                        
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 105c0504-25b5-46dc-be74-dc84e2543378
- Reverse List
- Reverse List
- 
                          1205
                          2927
                          66
                          28
                        
- 
                          1238
                          2941
                        
- 1
- Base list
- a2a61519-984e-4a60-a4b3-e0561a3af6ad
- List
- List
- false
- 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3
- 1
- 
                              1207
                              2929
                              19
                              24
                            
- 
                              1216.5
                              2941
                            
- 1
- Reversed list
- 68234acb-2189-4140-ae0c-7c1dcad9f4b8
- List
- List
- false
- 0
- 
                              1250
                              2929
                              19
                              24
                            
- 
                              1259.5
                              2941
                            
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 164341d6-6366-4ed5-ba8e-d0916606237a
- Relay
- false
- 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065
- 1
- 
                          737
                          4913
                          40
                          16
                        
- 
                          757
                          4921
                        
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 5fc63833-a7f3-4fb5-b173-f827a32962ca
- Reverse List
- Reverse List
- 
                          1246
                          4795
                          66
                          28
                        
- 
                          1279
                          4809
                        
- 1
- Base list
- b621ef7f-c5f2-410b-8d37-9d8ee2c9b929
- List
- List
- false
- 8f5ab813-3691-4499-bab5-66b32b35b891
- 1
- 
                              1248
                              4797
                              19
                              24
                            
- 
                              1257.5
                              4809
                            
- 1
- Reversed list
- 3aa110d1-bf16-4618-8fb9-18875ca9621d
- List
- List
- false
- 0
- 
                              1291
                              4797
                              19
                              24
                            
- 
                              1300.5
                              4809
                            
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- b22f5df6-1f13-43b9-950c-1163b6c19fef
- Mirror
- Mirror
- 
                          121
                          4469
                          210
                          61
                        
- 
                          267
                          4500
                        
- Base geometry
- 483af9d5-b555-4d4b-b9b2-6cf0ef6b7bb7
- Geometry
- Geometry
- true
- f95021e8-3298-4a32-aa51-3b43667757bd
- 1
- 
                              123
                              4471
                              132
                              20
                            
- 
                              189
                              4481
                            
- Mirror plane
- f07b085e-18a6-4571-9855-90524b249013
- Plane
- Plane
- false
- 0
- 
                              123
                              4491
                              132
                              37
                            
- 
                              189
                              4509.5
                            
- 1
- 1
- {0}
- 
                                      0
                                      0.5
                                      0
                                      0
                                      0
                                      1
                                      1
                                      0
                                      0
                                    
- Mirrored geometry
- e3a02c1b-9eb1-42f0-8746-b270098a9942
- Geometry
- Geometry
- false
- 0
- 
                              279
                              4471
                              50
                              28
                            
- 
                              304
                              4485.25
                            
- Transformation data
- cf68bf38-eff0-4518-9271-a0bbd5fa8831
- Transform
- Transform
- false
- 0
- 
                              279
                              4499
                              50
                              29
                            
- 
                              304
                              4513.75
                            
- 
          iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABvGSURBVHhe7d1bdxXHlQfwfJL5CrPWzPOsmfd5nc8x82JIyPJLEhsTCMbEDAjsYGDMLeYiMBeJmzESSIBAAiEMxo4JvttcDAbjSzDzU++maPfp0+ojZc2cA/4/1Kqqrq7atf9779p1Wti/+BlPAh7+jJ7FYwqvXr166dKly5cvv/vuu1euXHnvvffef//9v2T4IMNf//pXj3QqPb127Vo0P/nkE+96RY/6l19+uWfPnt/85jcPHjyINeD777+fmJi4d+9e3m7BN998Y4bbt2/fuHHjzp07xn/88cf79+9XEsAqlvjoo480lfWIMYSJVwYHB1966aWiMO0wNTVFhrxRBYKZNlukW0CqxxR++OGHKEEhJAohKFTSiIox6kFevGIk5uzNW8Z8+umnBmzZsuX+/fvZxnP8+OOPea0KKGRAFy5cuHjx4vj4uIW+/vrrefPmmdOEJg8i9VsUSQ25ZE9DQ0Mvv/xyEwoxVGNk0O0U2jAdtXNE3KiHKj1SllgMncYjSkfA3/72t2zjHQDNwAW/++47ZrFp0yZThawxf4gBQkLqrAHxPvvsM+L98MMP+RpzwFdffdXtFNJLkcJQFoQXeqpOKUpKCY9UN5HBYAbQY/Dw8PC3336bbXwa6PRiR3rkl3woBE0wv5IklgjBwinjaSuCQmATZKiPBGDAO++8cz4Dtkrj796929UURhcmKr0wsaikl3gULOqJF9VVrl+/fuDAgYULFxZjFw2ePHmSa+btBkDhF198UUnPtKV8/DExCBAShmZbB3/++edjY2Nr164VIY1kQ9zaMBuBOCyjbhJNWzhy5Mjx48f37dunLFohdLsXatsbpXDEIoWhI/1gk1G2sujdYJGOHGlr1qxBW7bxaTBnR2ONE1Ax06EjFuDI8S55BNJ23ASiPwggTFBSHGy2gYGBP/zhD7EEq+KRkXOp2II6mpUG6zSPw/jWrVv2NTk5WToau/0sjC7coCFgh2BXAQpS2gNlKSkunhZZ1IOJ0IsjLdt4I/A5LxbTGVFLOiNLDKMhWw2RQCQjw6rUozOejo6ONozh3E4IZYtAmNIWeoNCG6YF2oxtoEQzeFKiTTNc0GCdlSyCE6XohczfhaFJWshTKQ7Ywa5du5hCLGTdeiIhHhkWMpOWqLyN6pvnVoQUMCpjRg8EUqAFO293HAIFKe1Ev8H6VeKRV5QOsGPHjoldRcNn3Vyho7OQElM6YyFkxFoNiSRhyMyZtm3b1sQLjfdu3qgC+XuAwgDyihSC7YVGaFDFTqZJ++ADe44B0fSW10dGRpYuXVrUGtN2Z28YzQJFCgNFItlZ9MSjSnjqLNy5c+fvf//7fNJakN9beaMKzsjeoNDObSZiaRYUHzti4k+PkUmVKhAOikUDSoF0RqRfZyidsQukpt2zZ08E0iJKRGpC/qwFojGR9u7d25H1tEMveSEdlbwQ6CKxSHdKIw1QBqkQ/UCtJa1hJa9VofjrzMTEhLXo65lnntFMt/sizN+ESGO8LjNqcgwHyOns9EqrwCysZyikDqopshjE0GwQGVQpgzzjUasCXj979uyqVauKlyoe6X5W//MVyCDA4Ehntm7dGgthopIhncl6VFrHxICjR48yCA4tqSGVEI0hUNEklYrSGNGe67sR7t+//9SpUyUr7I10JmDndJdiaegoKAzmNKk1XDA6I2Sp6Dl06FDpak8XnhZJnRHx60xIYjmvh2DT8v0UwVNIWCISJaLo4sWLkaefGGQO07S7c+fOxa9Rwr4AoJ/TOzuZIINzt0FtLk2GXgqkAfssUQgpkNJpKI5qlHpUPAoi33rrrY4Ia0VQSIygxLRWKTGUoBOCbKunYaKoe96GDRvSpQKLwNf18Dx1pgaaOlGOOeYI4jkZ4q1Az6QzASqgNYaZKAQ9AcoKTUXTeMP4pYphntJF0loT0Ka1RCq0KdFvqj//+c/pICRPWIx1oxn9ReiERGTI417YkTDIi7xM4EVq3puh97yQCoLCYJFSAnHshUINC/I0VUKzotMbb7xRjELONsGqxi/Zu4A2NTVlGD+wCn3Nnz+fAHSaiTMN88fqylirFdGfiNScnJzkbflK7SFbqT+te+ksDNg8LaRYmtGXx8mwU2pSxqFocDxi8oODg7/73e+KZyEKW39yrATDp27j+d+OHTtMC7lAGTStaCEiqZSeJkS/SQYGBpYtW1YUph0YkI3kjSr0UkYaoAUkFWPpNIc/veAr6TGa3MUYr2hu3769lAt0Cq/HL9GWa+VJT4QBT6MZ/SUIyydOnFixYkWTQCpHLR1+JfTGb6StoMSgcJq9DOFtEanwp6TBIE/FYG9RR0dnYStQGOmM5WKhEk/R9NSKsXT0F+EtdkDaOQoT6LF0JkAvdCSWUmIgI3E6kIJH4XNgMFUaH87x9ttvF08+GjSg5kASY52gdPTFF1+kdGb37t0IMKdV2vGkJ8yIVK00B4XCgwkjEc3XawMDZLBivvPYpno+nQkQunQcgu0pgy1jlJRFxTqdhQcPHnz++eeLx4/bev0nXxFMxHYaIdJ1zTwGz5s3L9KZIk+WqySSSIRUqqcBssrTp0//6U9/YiJex6JHpjKM/SltQQlmDmPduHHj0NCQq70IXMq/etILAzYfFEJsVWnb4YXK0C/tKI3HRKeffIug6NC1SwUfChlAj0VJQo+JpIToIRgZ0oD4E4L45MtKWJUJ5Tj6sWsk++D34ak67cW93ut25LJfyr969SwMxaVYSkdgq2G5tqS04egx3sjQS+tvjB2B+kwLRbbUrZi8Le8tIAaQkzzRBI7YUBhuhznzA0MsvdWrFAI92lLiDyhIGZEzVGaYMUqdMOtPvgkpIzUbGjJBphF168aixUeB6CGhAZjmc0/XJ99KUAqNJBaDP9pRASqOMriURs7iky+fw7pzVHy7efOmoGfdzZs3c+hgokSVps5WghN0sjxjpCdbt24tCtMONuXFvFEFaXYPU0j0SkcM2sJNjdRD6TKXTj/54swMFy9evHz58sTEhHmKv85Mr5fpt4ggyeokybtawBp27dq1aNGifJlahDXkjSr0sBcGKCtAm8FfOKIyEKrEhNiFiWIg7QiCHrJNIi2MdIZmTW7pqE9LU0A8Kp2agXjRPE28cEb06qUiQBdIKjpikKcSjmhM6FEncxYPS7lAp9mN00hOFKsDAUxLAMuVqNLU6ZGlS4/IwxQEwObHMMtDFbQK3Hs/sJUQ0bJIoTKcj3KVwSXyzpw509fXV/RCdWlhKUevh9BqRciXL1DVev5FMwRLzagY/NZbb6GEYPzbqQwkAVaibiEVJabdKw4fPmw8x3UclHy35ymkDjzRIDWpBIqOSN3qrJ4KFi5cWEwC1amSvvJ2CyjUQUiDIqcDjE4tt23bNvObtkiJ0lqWTp0JeowveqoDeM+ePUuWLCGAHpR46nx180mffDVlUq4QKmQ4ePAg8ljhk/DJtwQqiFA2beoZ6FGpU2lvSsMMMHJ4eLi0/3oYjBiqDM2amb6kM1QckwclCTpjuRIMQ3nimEG4573++uvJnoRHRLowKNmNUowFA3SifHJykhWapOc/+bYDxVGQko4CyRGj1AQEFL2wI3gRJKI7duzAAW0WHSugbpVw/RK7AYLFUzNQfXNh8McowUmcdz1Cz3shJMUlCjUTf2H+VM+ZXMWKYZPti1StgXT68twm0eCX6Q8vgkVqLbGop5XdQHrqXW5dOtUq8QR+8q1E8IQwCBYhEanO6g8cOPDb3/62+OsGCgW0Yly68cEHkzt2TJ0+fXhg4Orw8I8tRNImPwhulO1YjH4CFPsDeswgMXnxxRebZKSMzFR5I8unbCpvZOj5dCZALzZW6Yg6DYj+7du31yQvcPvTT89u2XJhYGDPwMD5nTvv3Lz5zqVLpV9n1q9fz6eDmygtUWIr9Vu02B9A4cjIyKpVq5oE0tInXzv679WvPrx/6+F7ww8/mdRz5wkIpEBNXCFUllgEnUFk1PlQvda+u3v3/PbtI9u2berr++jUKUkFD5AQxscmkzh45s2bJ7nAYr52hkq2NK0eNlQEHxUVyNP8LEz47vvvx8bPPTy5+uHlww8/m9LzhATSAH0FaFOZ+AslKo8cOVL0Qhr0tHhZ/vzy5ZHVq0cHB3euW/fJ2Fjem8FgkFbI72O2bM0c2GrHIgeNwy89CgpVCONuOuPXLvGW0chFXSompt49ueXFh5+eyp89GelMIJQVesScugogUkllVP/cc88Vjx/qO3XqFBXkbWfh1asX9+795No196+rQ0P3b9/OHzyCdCbOwlgrXzuDzmnzyf46Le/KoEnFWFTGI2HZuq+88oqoYBJJjc6QE8yQ6t7SFAMc5G73tvD2seFdq58/MXLi9OnTQrGnwuwTQiGwbhqxK5un4tCFHv2a4uGrr75aOgvrnaD1UTEjtYrJi4RVdoImGfBBDPXr168jQzpjQvKwKmYRx63JzcDgjNGpotMuxsbGlCaR3dy6c+/27TugB3/d/qWC0B0BbUGhkr5APYzaU3ppkscn3L13j8ri1xlJDf7IJycSTlUqCUudefsRYox+gqk4SkXFhsKws8hLr1y5whDF8/xBhm7PSNkm9TWEwXiiJkoE/NGX7enRr+kKQR3ZxqfB/N2vazL74q8z8S+bmPwzzzwTH5vIGoRZpcSitYLFYn/AeI+8TvUlMioRkUBJ8qLwCd2eznQKcSnOj2kOMxZBhd8MDQ0tWbKkaPgGj46OYiVv14K6vUv1vJBbJ25ULNfKojEkydsFeMSexsfHN2/e3MQLTWJ83qhCt6cz58+fr/GSVkgvQ6FBIT2q2yHIIJYtW1bUmpmdNE1cISHOwliiIYsIKPaDRXfv3v3CCy/MmIuC19lf3qhCt/9GyuqL0UMaFrmZ6wFttrJrsIjK8yg0/E8ZRJqaQitjUXOkX2cEQzMnblQsYbkiW+qU28qiuncHBgaK95lZo9v//KmEFStWPPvss+Lh8PAw26RHp5SKjINzaDoY1q1bpzP4o9bkiHqMLGmtXolirOMTZyzJ/Jrk27BhgyYaLGfyxI1KDYvK1B+OxRqaBxiZp605PksZNXR7OgO0zLFoTbYii1u5cuWCBQuWL1+uUwyhRwhXU3IyHJ84cYKaKDSIDLXGu0XODK7/5MvRvRtf74R0szl4fvnLX6Z0psSNSiWLhDEy8a1Ud6/gQLgUyS0U1wNQ0YwK2azIhg4dOnT06NHKT77dns5QlnxazKEFdyNRdO3atS7F8+fPt7FsCz8BkxwcHEyqpPRwQfNSgeOnePKpU2WrXVfCucVpaJw2WY8JEzfK4CY6mVQ9i/HJd/HixSZkCijxyE6jPHfunCji/sB04i7hIiHqqE//OjMxgeBcpgzdns5I6CcnJ4mobv82pqQjPZVpCCcT8aiJEhOCSEocGRlpSFg7UB/TMVXIaiGSBIvRE6hkUWkkYVgAPjZu3Ji2oBJ1JedTspgwGp2CjWgRk/TeJ1+wbcx5IBGfkQAUhjbtKhwR5SpK9Y7++rYS1MdEMjlzUKvJCZm3HyHCe5HFQLCLRQGwuTDGm82LVs+7HqHbvRAltKYXMfHbip4aOEJiP3QXFAa8zqE3bdpUNALjnXCluFSE2cQAZ7DZ6M7JZObiP9QOeEq/uCkRVsmipn6s8ycC5Cu1BydDUt6oQrenM+FSbJCUIaieemST5GpFXrigIyc++RaTQBp0zJTiUhH4NomTqZjOpH/ZFAsFLBdrlQjjnVYvdbLF+OQrVOYrtQcJTZI3qtDtFOZ9GSIEldRRA3TSKb1D6Le/v3/WZyF1i3uYe/PNNyOdKYFg4fczssitJZYNP/mysJo4Ad1+L8z7MoSOoCGLhlEo/rxCiSoi4RzPQtosnYUlVAbPEotsixEo5yhMoNvTmbzvETpl0d4MRiQNUq6rWNGinazU3eRASmAEcTTmC1ShMngWOxOFhHE3nTGckvPChQsi+alTp+yi9INAt6czeV8BtIASO8nbtTAYhXgSAPFX+i9eUJ+blpwlb7fAo/TrjAMMfyZct26dEvI1fgr9uEGYMo1JncEiIxgdHV2zZo0JbQRDxqDBvoDAhkXdU6ULYtwLHeet96Juv9pHly0lEJcWYnvxtAZG4s9gL1LB2rVrS/unvhon4CWhwWI686tf/ao1nSnCooQMFvOuAosesQb2tGzZMkuQh1WxEn7pyq9iRXVj1KW+N2/e1ONapUdFhoz4EC/Q7WehbZOPoSXEV+zEjUr+XhuYIRzRW97FWbbxjkHRyKbco0ePKvPZ24BUlkNY3s5QZBE3LhUNhRHqMcdu4pNv6a1up5Dc9pyJmoMq3fAiwjSh0IBEIU8qeqGpGH4xtM4IfikMFt2rHaxrUXIWJQwWMaHCHJukMylIYK6ScvN0NYWMDouZqDloXEh0V0NJ/sZMiB0eO3as9ZOvo6X+4lyCFF98i2lnBJ4YGQMqsSgInz179vXXX6+kpIQIyHmjCunXjO4BqR5TyJCpgJQJbrKsmNBFvcwI413F/vjHPxbzT9ZQ7wqWS7/OKDVNtWXLltKvMzXwIvlL0YLru1wuWrRoxlwU8Ge5vFGFbvfC2DmHS5iFuCahRC/SZkeffIVNNsTjuYIgbJJ2v87UwOrCqXkSiyo2Ir3s6D7TDr10tZ8L2HIosag1TiCWNnEFMIzXYm7v3r0zpjOtwCLagsVwLIll82PYYLkYtP4c+LRQKAyOjY2tWLGi6IX4c1kWHvN2A/DLL7/8Egf5vJ0gclEsAoceHBzk02xCJMcQOCPwoZNIUVGKk4Tv7+8/fPgw63F4l3y32wNp3jdn0HvlJ1+POgqtlMsFw5k6glcQH7lJ8ZOv2SQ1fNQBH2V88jVSKZsT/JXukSL5+Ph46/dCTD8VFAJ7Hx0dLV4qZgTCKC7CJlegLEysXbt22o9mxSJd44Yk7kXSopSR4jKCqrI1tvMzzMXp23uffPO+OYPtU4FI1Zp/0qMB9GtMiWBN2om76YULF5ymWFywYAFfCYV2Cqs4Ec3mLKwUph0YEEmAB+ddj/C0eCGN0/umTZuYMEooQmoQMc21YevWrW6Nu3btMiZTSwV4BvBII2eRziRg0UEIZ86caZKRktCJmDeq0EvfC+eC+Fly4cKFfI4T8KdLly45Whw/btmujJr8rPQzQiua/zpTA8Ls27dv6dKlpYBZCQchIfNGFZ4WCiOC7d69GwfZxqfjZ8QxdFKT0vnU6oUlLXf060w7MAKZcF9fX5NAasX68/vpSmekJ5E1FIEkwSpQ0intyA+9GEdppDMbN26c3UGYYLYIxSmdmQuelnQmcOjQIWFHHKM79zDWzcZropkB1M01ZfYpnWn9nxx0iqDQbO0oJFXRmOrj7dPihe6F+Fu0aJFAasOyCcQ4FN0ZUmidEVSJOVfyuaQzIJC6oa9cubIykMpxsMvd2U2kryjPn1XhabnaS+Kx9dprr7nIB/ABlKjMVNEI+HYW0mk+76wgDBw4cKBdOqMTKxJmC4GwAfmzKnj6tARSekdkkwyiBiis//OnJuBh/MylYo7CBJ6W30jj+HGLkNGEUYf/VfpBgvNyamoKZ97lOo4oU6V/qD0XCMjCaTsKO4oNT0s6g4bh4WGxy+HvgLFnKYn7Vv1Z6JExLhuXC/8ZveI/1G4OnpfAAiRHMtvKdEbOzOBYDI6ZjoXE1fxZFZ6KdIbW6OL48ePLly+nNXsWfByHEs7Ka0YlDOMcFNrf31+TzgRJgejBBxWzG8GTEUhSTLJz587FixfnU/8U/A9/xhhvIWkX+8ufVeHJ90KqpER5nTr1zfErK9bjLAySAtk6FVQBJ46KHv0RAAxWOXz48N/lLHzCvZB+bQ9/ylC36BSZXhNgC1QioEFMCE2oQmoSIyH1mFkMEKvBKRuVWYB41oppuwR/NwqpiTbjXpV0F75Sgs4iorNIkkmcf/EHpdhSRsUY42PmaX4KiM56xEJmMFXIGT0dIQnQPeiAQtIXkfdmoETap5qoRydk6s0RPV6kiCZeFePBK3rSYJXgsjhtR/BWzDO717sNTSmkMqmdwJgQnZka8w86UU/jW6lK0JOoMjJeidcD0ZOQOo33ohmCdfMEncUxTWCkGUzV/JWuRSMKbVVYK/2ET3fyN+qLuKQ5d6qaIL3Yjs4YADG+BiF2k5HdDFzUUUhNFOQocqVzMci4y0Fr7lueusap0wX8HalqgjT57LzTACx6t92AngAu2lJoY6ELm3Tjlk+757kngIpH9m+Mp6G1eCXe/b+HpWP1dnTGAIjxoG5wpDZ5Vw9iBgptnhZi2/ZZQhoGtEYX/+9EBkIklXZ0pjEQLGbv9STqKAzYfGKrBnShpCPjaS20o4eC7mX/3JfjzgLxA2b6DVMAuH79usSqnUiWK2La0DKohzkSL758qSRGVXTmU/QaqKWOQjTYXlCSd9XCMBoJTdGOpjs1JjL9dwy3e7q+kf0H19Hmyv/gwYPt27efO3dO3eSQL/wIRsbvAwH12zfufnXzTtQTYkKvK83/VfYXwHaaz9JToKg6CoH94qNVWTUw2FuIhB07dtAOjX/zzTc3b968ffu2kjNlHM0AmqVuLLIGZiRv4pQrV65cv369OfWEn8WiyDBz/uYjcONLN4fev34ub1chvheGf5swZush2MIMFOIDhbPYGy2Pjo4+++yzyONPaEAGjU9NTcmMMu11DBF1z549ciuzkcqEwFCIJz3ev3///ew/qJb9ac70n4C6Bi0Y+9flI/+prl9Iv3XrFjO6c+cOCY3hefv27TPnxYsXjx49evz4cdYW8vcKbG1mCtm7rXbkiBDjt23bRmsCYDrPElB74sSJq9c+/Mvk+TdeWTN0YiR/0B4m8VbSchxyxBMn16xZ89prr3lKVHRyz3vXPjy3YdP8tf/wX8v+5f79B+wG66hC/8TEhGsSx9VcvHjxr3/96/Hx8d27dy9dujTY7SFQywwUAk3ZfN7oBFgUCUsXygSxi0fu27//peeee3Pzpnffy/+Ak5d4ERnAq7gO6MQBUzhy5EgpsKsjFSv9/f3xlSrm+Xhn///80z+u+vd/nvcf/3Zy4rye9Ch99rK1devWrV69miRmHhkZETzyeXsEdvGYwjhaWksQrBhv6vFmqigpUajMJizDsNLPOiVcmRgfXPJC3sgQf8qGElRxjpMnT6rIGGUxMqO+vr6tW7fy7HyBDMZHYpJP8Qjf/vDDrR++vXXv6zvt/yIGr8C/HYpMITbVQ7CFxxTaQKQe4lKxpJ1UGoAwcCBFCseiPXImKWPSInTWJC/vXLq0a/26vuXL371yhc/lvdkn38hjUYVR+gXzKDdv3jw2NkawfIGfgtPLSnLcuHELLc6+r26bJ+9sgUeA/nyKXgMtPabQMSBeBdSjmUrayPqmjwrHTxyQnINmudrChQvjC1/MG6DoM2fO0I4ZUIIYfBivot9B+PLLL+9b03fu/PmDBw9KOKfZqwUKqdu07XyFJLNGPkWvgVoeU/gzehQ5hT+jh/GLX/wvBa6X54jFBiUAAAAASUVORK5CYII=