mirror of
				https://code.rhodecode.com/u/OOOOOOOOOOOOOOOO/OOOOOOOOOOOOOOOO/0080-0-8-088-00-080-00-880-8-0-0800
				synced 2025-10-31 03:35:52 +00:00 
			
		
		
		
	
		
			
	
	
		
			1305 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			1305 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | # ##### BEGIN GPL LICENSE BLOCK ##### | ||
|  | # | ||
|  | #  This program is free software; you can redistribute it and/or | ||
|  | #  modify it under the terms of the GNU General Public License | ||
|  | #  as published by the Free Software Foundation; either version 2 | ||
|  | #  of the License, or (at your option) any later version. | ||
|  | # | ||
|  | #  This program is distributed in the hope that it will be useful, | ||
|  | #  but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  | #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  | #  GNU General Public License for more details. | ||
|  | # | ||
|  | #  You should have received a copy of the GNU General Public License | ||
|  | #  along with this program; if not, write to the Free Software Foundation, | ||
|  | #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
|  | # | ||
|  | # ##### END GPL LICENSE BLOCK ##### | ||
|  | 
 | ||
|  | import bpy | ||
|  | import io | ||
|  | import math | ||
|  | import os | ||
|  | import copy | ||
|  | from math import pi, cos, sin, tan, sqrt | ||
|  | from mathutils import Vector, Matrix | ||
|  | from copy import copy | ||
|  | 
 | ||
|  | # ----------------------------------------------------------------------------- | ||
|  | #                                                  Atom, stick and element data | ||
|  | 
 | ||
|  | 
 | ||
|  | # This is a list that contains some data of all possible elements. The structure | ||
|  | # is as follows: | ||
|  | # | ||
|  | # 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54   means | ||
|  | # | ||
|  | # No., name, short name, color, radius (used), radius (covalent), radius (atomic), | ||
|  | # | ||
|  | # charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all | ||
|  | # charge states for any atom are listed, if existing. | ||
|  | # The list is fixed and cannot be changed ... (see below) | ||
|  | 
 | ||
|  | ATOM_CLUSTER_ELEMENTS_DEFAULT = ( | ||
|  | ( 1,      "Hydrogen",        "H", (  1.0,   1.0,   1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ), | ||
|  | ( 2,        "Helium",       "He", ( 0.85,   1.0,   1.0, 1.0), 0.93, 0.93, 0.49 ), | ||
|  | ( 3,       "Lithium",       "Li", (  0.8,  0.50,   1.0, 1.0), 1.23, 1.23, 2.05 ,  1 , 0.68 ), | ||
|  | ( 4,     "Beryllium",       "Be", ( 0.76,   1.0,   0.0, 1.0), 0.90, 0.90, 1.40 ,  1 , 0.44 ,  2 , 0.35 ), | ||
|  | ( 5,         "Boron",        "B", (  1.0,  0.70,  0.70, 1.0), 0.82, 0.82, 1.17 ,  1 , 0.35 ,  3 , 0.23 ), | ||
|  | ( 6,        "Carbon",        "C", ( 0.56,  0.56,  0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 ,  4 , 0.16 ), | ||
|  | ( 7,      "Nitrogen",        "N", ( 0.18,  0.31,  0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 ,  1 , 0.25 ,  3 , 0.16 ,  5 , 0.13 ), | ||
|  | ( 8,        "Oxygen",        "O", (  1.0,  0.05,  0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 ,  1 , 0.22 ,  6 , 0.09 ), | ||
|  | ( 9,      "Fluorine",        "F", ( 0.56,  0.87,  0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 ,  7 , 0.08 ), | ||
|  | (10,          "Neon",       "Ne", ( 0.70,  0.89,  0.96, 1.0), 0.71, 0.71, 0.51 ,  1 , 1.12 ), | ||
|  | (11,        "Sodium",       "Na", ( 0.67,  0.36,  0.94, 1.0), 1.54, 1.54, 2.23 ,  1 , 0.97 ), | ||
|  | (12,     "Magnesium",       "Mg", ( 0.54,   1.0,   0.0, 1.0), 1.36, 1.36, 1.72 ,  1 , 0.82 ,  2 , 0.66 ), | ||
|  | (13,     "Aluminium",       "Al", ( 0.74,  0.65,  0.65, 1.0), 1.18, 1.18, 1.82 ,  3 , 0.51 ), | ||
|  | (14,       "Silicon",       "Si", ( 0.94,  0.78,  0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 ,  1 , 0.65 ,  4 , 0.42 ), | ||
|  | (15,    "Phosphorus",        "P", (  1.0,  0.50,   0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 ,  3 , 0.44 ,  5 , 0.35 ), | ||
|  | (16,        "Sulfur",        "S", (  1.0,   1.0,  0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 ,  2 , 2.19 ,  4 , 0.37 ,  6 , 0.30 ), | ||
|  | (17,      "Chlorine",       "Cl", ( 0.12,  0.94,  0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 ,  5 , 0.34 ,  7 , 0.27 ), | ||
|  | (18,         "Argon",       "Ar", ( 0.50,  0.81,  0.89, 1.0), 0.98, 0.98, 0.88 ,  1 , 1.54 ), | ||
|  | (19,     "Potassium",        "K", ( 0.56,  0.25,  0.83, 1.0), 2.03, 2.03, 2.77 ,  1 , 0.81 ), | ||
|  | (20,       "Calcium",       "Ca", ( 0.23,   1.0,   0.0, 1.0), 1.74, 1.74, 2.23 ,  1 , 1.18 ,  2 , 0.99 ), | ||
|  | (21,      "Scandium",       "Sc", ( 0.90,  0.90,  0.90, 1.0), 1.44, 1.44, 2.09 ,  3 , 0.73 ), | ||
|  | (22,      "Titanium",       "Ti", ( 0.74,  0.76,  0.78, 1.0), 1.32, 1.32, 2.00 ,  1 , 0.96 ,  2 , 0.94 ,  3 , 0.76 ,  4 , 0.68 ), | ||
|  | (23,      "Vanadium",        "V", ( 0.65,  0.65,  0.67, 1.0), 1.22, 1.22, 1.92 ,  2 , 0.88 ,  3 , 0.74 ,  4 , 0.63 ,  5 , 0.59 ), | ||
|  | (24,      "Chromium",       "Cr", ( 0.54,   0.6,  0.78, 1.0), 1.18, 1.18, 1.85 ,  1 , 0.81 ,  2 , 0.89 ,  3 , 0.63 ,  6 , 0.52 ), | ||
|  | (25,     "Manganese",       "Mn", ( 0.61,  0.47,  0.78, 1.0), 1.17, 1.17, 1.79 ,  2 , 0.80 ,  3 , 0.66 ,  4 , 0.60 ,  7 , 0.46 ), | ||
|  | (26,          "Iron",       "Fe", ( 0.87,   0.4,   0.2, 1.0), 1.17, 1.17, 1.72 ,  2 , 0.74 ,  3 , 0.64 ), | ||
|  | (27,        "Cobalt",       "Co", ( 0.94,  0.56,  0.62, 1.0), 1.16, 1.16, 1.67 ,  2 , 0.72 ,  3 , 0.63 ), | ||
|  | (28,        "Nickel",       "Ni", ( 0.31,  0.81,  0.31, 1.0), 1.15, 1.15, 1.62 ,  2 , 0.69 ), | ||
|  | (29,        "Copper",       "Cu", ( 0.78,  0.50,   0.2, 1.0), 1.17, 1.17, 1.57 ,  1 , 0.96 ,  2 , 0.72 ), | ||
|  | (30,          "Zinc",       "Zn", ( 0.49,  0.50,  0.69, 1.0), 1.25, 1.25, 1.53 ,  1 , 0.88 ,  2 , 0.74 ), | ||
|  | (31,       "Gallium",       "Ga", ( 0.76,  0.56,  0.56, 1.0), 1.26, 1.26, 1.81 ,  1 , 0.81 ,  3 , 0.62 ), | ||
|  | (32,     "Germanium",       "Ge", (  0.4,  0.56,  0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 ,  2 , 0.73 ,  4 , 0.53 ), | ||
|  | (33,       "Arsenic",       "As", ( 0.74,  0.50,  0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 ,  3 , 0.58 ,  5 , 0.46 ), | ||
|  | (34,      "Selenium",       "Se", (  1.0,  0.63,   0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 ,  1 , 0.66 ,  4 , 0.50 ,  6 , 0.42 ), | ||
|  | (35,       "Bromine",       "Br", ( 0.65,  0.16,  0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 ,  5 , 0.47 ,  7 , 0.39 ), | ||
|  | (36,       "Krypton",       "Kr", ( 0.36,  0.72,  0.81, 1.0), 1.31, 1.31, 1.24 ), | ||
|  | (37,      "Rubidium",       "Rb", ( 0.43,  0.18,  0.69, 1.0), 2.16, 2.16, 2.98 ,  1 , 1.47 ), | ||
|  | (38,     "Strontium",       "Sr", (  0.0,   1.0,   0.0, 1.0), 1.91, 1.91, 2.45 ,  2 , 1.12 ), | ||
|  | (39,       "Yttrium",        "Y", ( 0.58,   1.0,   1.0, 1.0), 1.62, 1.62, 2.27 ,  3 , 0.89 ), | ||
|  | (40,     "Zirconium",       "Zr", ( 0.58,  0.87,  0.87, 1.0), 1.45, 1.45, 2.16 ,  1 , 1.09 ,  4 , 0.79 ), | ||
|  | (41,       "Niobium",       "Nb", ( 0.45,  0.76,  0.78, 1.0), 1.34, 1.34, 2.08 ,  1 , 1.00 ,  4 , 0.74 ,  5 , 0.69 ), | ||
|  | (42,    "Molybdenum",       "Mo", ( 0.32,  0.70,  0.70, 1.0), 1.30, 1.30, 2.01 ,  1 , 0.93 ,  4 , 0.70 ,  6 , 0.62 ), | ||
|  | (43,    "Technetium",       "Tc", ( 0.23,  0.61,  0.61, 1.0), 1.27, 1.27, 1.95 ,  7 , 0.97 ), | ||
|  | (44,     "Ruthenium",       "Ru", ( 0.14,  0.56,  0.56, 1.0), 1.25, 1.25, 1.89 ,  4 , 0.67 ), | ||
|  | (45,       "Rhodium",       "Rh", ( 0.03,  0.49,  0.54, 1.0), 1.25, 1.25, 1.83 ,  3 , 0.68 ), | ||
|  | (46,     "Palladium",       "Pd", (  0.0,  0.41,  0.52, 1.0), 1.28, 1.28, 1.79 ,  2 , 0.80 ,  4 , 0.65 ), | ||
|  | (47,        "Silver",       "Ag", ( 0.75,  0.75,  0.75, 1.0), 1.34, 1.34, 1.75 ,  1 , 1.26 ,  2 , 0.89 ), | ||
|  | (48,       "Cadmium",       "Cd", (  1.0,  0.85,  0.56, 1.0), 1.48, 1.48, 1.71 ,  1 , 1.14 ,  2 , 0.97 ), | ||
|  | (49,        "Indium",       "In", ( 0.65,  0.45,  0.45, 1.0), 1.44, 1.44, 2.00 ,  3 , 0.81 ), | ||
|  | (50,           "Tin",       "Sn", (  0.4,  0.50,  0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 ,  2 , 0.93 ,  4 , 0.71 ), | ||
|  | (51,      "Antimony",       "Sb", ( 0.61,  0.38,  0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 ,  3 , 0.76 ,  5 , 0.62 ), | ||
|  | (52,     "Tellurium",       "Te", ( 0.83,  0.47,   0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 ,  1 , 0.82 ,  4 , 0.70 ,  6 , 0.56 ), | ||
|  | (53,        "Iodine",        "I", ( 0.58,   0.0,  0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 ,  5 , 0.62 ,  7 , 0.50 ), | ||
|  | (54,         "Xenon",       "Xe", ( 0.25,  0.61,  0.69, 1.0), 1.31, 1.31, 1.24 ), | ||
|  | (55,       "Caesium",       "Cs", ( 0.34,  0.09,  0.56, 1.0), 2.35, 2.35, 3.35 ,  1 , 1.67 ), | ||
|  | (56,        "Barium",       "Ba", (  0.0,  0.78,   0.0, 1.0), 1.98, 1.98, 2.78 ,  1 , 1.53 ,  2 , 1.34 ), | ||
|  | (57,     "Lanthanum",       "La", ( 0.43,  0.83,   1.0, 1.0), 1.69, 1.69, 2.74 ,  1 , 1.39 ,  3 , 1.06 ), | ||
|  | (58,        "Cerium",       "Ce", (  1.0,   1.0,  0.78, 1.0), 1.65, 1.65, 2.70 ,  1 , 1.27 ,  3 , 1.03 ,  4 , 0.92 ), | ||
|  | (59,  "Praseodymium",       "Pr", ( 0.85,   1.0,  0.78, 1.0), 1.65, 1.65, 2.67 ,  3 , 1.01 ,  4 , 0.90 ), | ||
|  | (60,     "Neodymium",       "Nd", ( 0.78,   1.0,  0.78, 1.0), 1.64, 1.64, 2.64 ,  3 , 0.99 ), | ||
|  | (61,    "Promethium",       "Pm", ( 0.63,   1.0,  0.78, 1.0), 1.63, 1.63, 2.62 ,  3 , 0.97 ), | ||
|  | (62,      "Samarium",       "Sm", ( 0.56,   1.0,  0.78, 1.0), 1.62, 1.62, 2.59 ,  3 , 0.96 ), | ||
|  | (63,      "Europium",       "Eu", ( 0.38,   1.0,  0.78, 1.0), 1.85, 1.85, 2.56 ,  2 , 1.09 ,  3 , 0.95 ), | ||
|  | (64,    "Gadolinium",       "Gd", ( 0.27,   1.0,  0.78, 1.0), 1.61, 1.61, 2.54 ,  3 , 0.93 ), | ||
|  | (65,       "Terbium",       "Tb", ( 0.18,   1.0,  0.78, 1.0), 1.59, 1.59, 2.51 ,  3 , 0.92 ,  4 , 0.84 ), | ||
|  | (66,    "Dysprosium",       "Dy", ( 0.12,   1.0,  0.78, 1.0), 1.59, 1.59, 2.49 ,  3 , 0.90 ), | ||
|  | (67,       "Holmium",       "Ho", (  0.0,   1.0,  0.61, 1.0), 1.58, 1.58, 2.47 ,  3 , 0.89 ), | ||
|  | (68,        "Erbium",       "Er", (  0.0,  0.90,  0.45, 1.0), 1.57, 1.57, 2.45 ,  3 , 0.88 ), | ||
|  | (69,       "Thulium",       "Tm", (  0.0,  0.83,  0.32, 1.0), 1.56, 1.56, 2.42 ,  3 , 0.87 ), | ||
|  | (70,     "Ytterbium",       "Yb", (  0.0,  0.74,  0.21, 1.0), 1.74, 1.74, 2.40 ,  2 , 0.93 ,  3 , 0.85 ), | ||
|  | (71,      "Lutetium",       "Lu", (  0.0,  0.67,  0.14, 1.0), 1.56, 1.56, 2.25 ,  3 , 0.85 ), | ||
|  | (72,       "Hafnium",       "Hf", ( 0.30,  0.76,   1.0, 1.0), 1.44, 1.44, 2.16 ,  4 , 0.78 ), | ||
|  | (73,      "Tantalum",       "Ta", ( 0.30,  0.65,   1.0, 1.0), 1.34, 1.34, 2.09 ,  5 , 0.68 ), | ||
|  | (74,      "Tungsten",        "W", ( 0.12,  0.58,  0.83, 1.0), 1.30, 1.30, 2.02 ,  4 , 0.70 ,  6 , 0.62 ), | ||
|  | (75,       "Rhenium",       "Re", ( 0.14,  0.49,  0.67, 1.0), 1.28, 1.28, 1.97 ,  4 , 0.72 ,  7 , 0.56 ), | ||
|  | (76,        "Osmium",       "Os", ( 0.14,   0.4,  0.58, 1.0), 1.26, 1.26, 1.92 ,  4 , 0.88 ,  6 , 0.69 ), | ||
|  | (77,       "Iridium",       "Ir", ( 0.09,  0.32,  0.52, 1.0), 1.27, 1.27, 1.87 ,  4 , 0.68 ), | ||
|  | (78,      "Platinum",       "Pt", ( 0.81,  0.81,  0.87, 1.0), 1.30, 1.30, 1.83 ,  2 , 0.80 ,  4 , 0.65 ), | ||
|  | (79,          "Gold",       "Au", (  1.0,  0.81,  0.13, 1.0), 1.34, 1.34, 1.79 ,  1 , 1.37 ,  3 , 0.85 ), | ||
|  | (80,       "Mercury",       "Hg", ( 0.72,  0.72,  0.81, 1.0), 1.49, 1.49, 1.76 ,  1 , 1.27 ,  2 , 1.10 ), | ||
|  | (81,      "Thallium",       "Tl", ( 0.65,  0.32,  0.30, 1.0), 1.48, 1.48, 2.08 ,  1 , 1.47 ,  3 , 0.95 ), | ||
|  | (82,          "Lead",       "Pb", ( 0.34,  0.34,  0.38, 1.0), 1.47, 1.47, 1.81 ,  2 , 1.20 ,  4 , 0.84 ), | ||
|  | (83,       "Bismuth",       "Bi", ( 0.61,  0.30,  0.70, 1.0), 1.46, 1.46, 1.63 ,  1 , 0.98 ,  3 , 0.96 ,  5 , 0.74 ), | ||
|  | (84,      "Polonium",       "Po", ( 0.67,  0.36,   0.0, 1.0), 1.46, 1.46, 1.53 ,  6 , 0.67 ), | ||
|  | (85,      "Astatine",       "At", ( 0.45,  0.30,  0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 ,  3 , 0.85 ,  5 , 0.46 ), | ||
|  | (86,         "Radon",       "Rn", ( 0.25,  0.50,  0.58, 1.0), 1.00, 1.00, 1.34 ), | ||
|  | (87,      "Francium",       "Fr", ( 0.25,   0.0,   0.4, 1.0), 1.00, 1.00, 1.00 ,  1 , 1.80 ), | ||
|  | (88,        "Radium",       "Ra", (  0.0,  0.49,   0.0, 1.0), 1.00, 1.00, 1.00 ,  2 , 1.43 ), | ||
|  | (89,      "Actinium",       "Ac", ( 0.43,  0.67,  0.98, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.18 ), | ||
|  | (90,       "Thorium",       "Th", (  0.0,  0.72,   1.0, 1.0), 1.65, 1.65, 1.00 ,  4 , 1.02 ), | ||
|  | (91,  "Protactinium",       "Pa", (  0.0,  0.63,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.13 ,  4 , 0.98 ,  5 , 0.89 ), | ||
|  | (92,       "Uranium",        "U", (  0.0,  0.56,   1.0, 1.0), 1.42, 1.42, 1.00 ,  4 , 0.97 ,  6 , 0.80 ), | ||
|  | (93,     "Neptunium",       "Np", (  0.0,  0.50,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.10 ,  4 , 0.95 ,  7 , 0.71 ), | ||
|  | (94,     "Plutonium",       "Pu", (  0.0,  0.41,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.08 ,  4 , 0.93 ), | ||
|  | (95,     "Americium",       "Am", ( 0.32,  0.36,  0.94, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.07 ,  4 , 0.92 ), | ||
|  | (96,        "Curium",       "Cm", ( 0.47,  0.36,  0.89, 1.0), 1.00, 1.00, 1.00 ), | ||
|  | (97,     "Berkelium",       "Bk", ( 0.54,  0.30,  0.89, 1.0), 1.00, 1.00, 1.00 ), | ||
|  | (98,   "Californium",       "Cf", ( 0.63,  0.21,  0.83, 1.0), 1.00, 1.00, 1.00 ), | ||
|  | (99,   "Einsteinium",       "Es", ( 0.70,  0.12,  0.83, 1.0), 1.00, 1.00, 1.00 ), | ||
|  | (100,       "Fermium",       "Fm", ( 0.70,  0.12, 0.72, 1.0), 1.00, 1.00, 1.00 ), | ||
|  | (101,   "Mendelevium",       "Md", ( 0.70,  0.05, 0.65, 1.0), 1.00, 1.00, 1.00 ), | ||
|  | (102,      "Nobelium",       "No", ( 0.74,  0.05, 0.52, 1.0), 1.00, 1.00, 1.00 ), | ||
|  | (103,    "Lawrencium",       "Lr", ( 0.78,   0.0,  0.4, 1.0), 1.00, 1.00, 1.00 ), | ||
|  | (104,       "Vacancy",      "Vac", (  0.5,   0.5,  0.5, 1.0), 1.00, 1.00, 1.00), | ||
|  | (105,       "Default",  "Default", (  1.0,   1.0,  1.0, 1.0), 1.00, 1.00, 1.00), | ||
|  | (106,         "Stick",    "Stick", (  0.5,   0.5,  0.5, 1.0), 1.00, 1.00, 1.00), | ||
|  | ) | ||
|  | 
 | ||
|  | # This list here contains all data of the elements and will be used during | ||
|  | # runtime. It is a list of classes. | ||
|  | # During executing Atomic Blender, the list will be initialized with the fixed | ||
|  | # data from above via the class structure below (CLASS_atom_pdb_Elements). We | ||
|  | # have then one fixed list (above), which will never be changed, and a list of | ||
|  | # classes with same data. The latter can be modified via loading a separate | ||
|  | # custom data file. | ||
|  | ATOM_CLUSTER_ELEMENTS = [] | ||
|  | ATOM_CLUSTER_ALL_ATOMS = [] | ||
|  | 
 | ||
|  | # This is the class, which stores the properties for one element. | ||
|  | class CLASS_atom_cluster_Elements(object): | ||
|  |     __slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic') | ||
|  |     def __init__(self, number, name, short_name, color, radii, radii_ionic): | ||
|  |         self.number = number | ||
|  |         self.name = name | ||
|  |         self.short_name = short_name | ||
|  |         self.color = color | ||
|  |         self.radii = radii | ||
|  |         self.radii_ionic = radii_ionic | ||
|  | 
 | ||
|  | # This is the class, which stores the properties of one atom. | ||
|  | class CLASS_atom_cluster_atom(object): | ||
|  |     __slots__ = ('location') | ||
|  |     def __init__(self, location): | ||
|  |         self.location = location | ||
|  | 
 | ||
|  | # ----------------------------------------------------------------------------- | ||
|  | #                                                                Read atom data | ||
|  | 
 | ||
|  | def DEF_atom_read_atom_data(): | ||
|  | 
 | ||
|  |     del ATOM_CLUSTER_ELEMENTS[:] | ||
|  | 
 | ||
|  |     for item in ATOM_CLUSTER_ELEMENTS_DEFAULT: | ||
|  | 
 | ||
|  |         # All three radii into a list | ||
|  |         radii = [item[4],item[5],item[6]] | ||
|  |         # The handling of the ionic radii will be done later. So far, it is an | ||
|  |         # empty list. | ||
|  |         radii_ionic = [] | ||
|  | 
 | ||
|  |         li = CLASS_atom_cluster_Elements(item[0],item[1],item[2],item[3], | ||
|  |                                          radii,radii_ionic) | ||
|  |         ATOM_CLUSTER_ELEMENTS.append(li) | ||
|  | 
 | ||
|  | 
 | ||
|  | # ----------------------------------------------------------------------------- | ||
|  | #                                                           Routines for shapes | ||
|  | 
 | ||
|  | def vec_in_sphere(atom_pos,size, skin): | ||
|  | 
 | ||
|  |     regular = True | ||
|  |     inner   = True | ||
|  | 
 | ||
|  |     if atom_pos.length > size/2.0: | ||
|  |         regular = False | ||
|  | 
 | ||
|  |     if atom_pos.length < (size/2.0)*(1-skin): | ||
|  |         inner = False | ||
|  | 
 | ||
|  |     return (regular, inner) | ||
|  | 
 | ||
|  | 
 | ||
|  | def vec_in_parabole(atom_pos, height, diameter): | ||
|  | 
 | ||
|  |     regular = True | ||
|  |     inner   = True | ||
|  | 
 | ||
|  |     px = atom_pos[0] | ||
|  |     py = atom_pos[1] | ||
|  |     pz = atom_pos[2] + height/2.0 | ||
|  | 
 | ||
|  |     a = diameter / sqrt(4 * height) | ||
|  | 
 | ||
|  | 
 | ||
|  |     if pz < 0.0: | ||
|  |         return (False, False) | ||
|  |     if px == 0.0 and py == 0.0: | ||
|  |         return (True, True) | ||
|  | 
 | ||
|  |     if py == 0.0: | ||
|  |         y = 0.0 | ||
|  |         x = a * a * pz / px | ||
|  |         z = x * x / (a * a) | ||
|  |     else: | ||
|  |         y = pz * py * a * a / (px*px + py*py) | ||
|  |         x = y * px / py | ||
|  |         z = (x*x + y*y) / (a * a) | ||
|  | 
 | ||
|  |     if( atom_pos.length > sqrt(x*x+y*y+z*z) ): | ||
|  |         regular = False | ||
|  | 
 | ||
|  |     return (regular, inner) | ||
|  | 
 | ||
|  | 
 | ||
|  | def vec_in_pyramide_square(atom_pos, size, skin): | ||
|  | 
 | ||
|  |     """ | ||
|  |     Please, if possible leave all this! The code documents the | ||
|  |     mathemetical way of cutting a pyramide with square base. | ||
|  | 
 | ||
|  |     P1 = Vector((-size/2, 0.0, -size/4)) | ||
|  |     P2 = Vector((0.0, -size/2, -size/4)) | ||
|  |     P4 = Vector((size/2, 0.0,  -size/4)) | ||
|  |     P5 = Vector((0.0, size/2,  -size/4)) | ||
|  |     P6 = Vector((0.0, 0.0,      size/4)) | ||
|  | 
 | ||
|  |     # First face | ||
|  |     v11 = P1 - P2 | ||
|  |     v12 = P1 - P6 | ||
|  |     n1 = v11.cross(v12) | ||
|  |     g1 = -n1 * P1 | ||
|  | 
 | ||
|  |     # Second face | ||
|  |     v21 = P6 - P4 | ||
|  |     v22 = P6 - P5 | ||
|  |     n2 = v21.cross(v22) | ||
|  |     g2 = -n2 * P6 | ||
|  | 
 | ||
|  |     # Third face | ||
|  |     v31 = P1 - P5 | ||
|  |     v32 = P1 - P6 | ||
|  |     n3 = v32.cross(v31) | ||
|  |     g3 = -n3 * P1 | ||
|  | 
 | ||
|  |     # Forth face | ||
|  |     v41 = P6 - P2 | ||
|  |     v42 = P2 - P4 | ||
|  |     n4 = v41.cross(v42) | ||
|  |     g4 = -n4 * P2 | ||
|  | 
 | ||
|  |     # Fith face, base | ||
|  |     v51 = P2 - P1 | ||
|  |     v52 = P2 - P4 | ||
|  |     n5 = v51.cross(v52) | ||
|  |     g5 = -n5 * P2 | ||
|  |     """ | ||
|  | 
 | ||
|  |     # A much faster way for calculation: | ||
|  |     size2 = size  * size | ||
|  |     size3 = size2 * size | ||
|  |     n1 = Vector((-1/4, -1/4,  1/4)) * size2 | ||
|  |     g1 = -1/16 * size3 | ||
|  |     n2 = Vector(( 1/4,  1/4,  1/4)) * size2 | ||
|  |     g2 = g1 | ||
|  |     n3 = Vector((-1/4,  1/4,  1/4)) * size2 | ||
|  |     g3 = g1 | ||
|  |     n4 = Vector(( 1/4, -1/4,  1/4)) * size2 | ||
|  |     g4 = g1 | ||
|  |     n5 = Vector(( 0.0,  0.0, -1/2)) * size2 | ||
|  |     g5 = -1/8 * size3 | ||
|  | 
 | ||
|  |     distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length) | ||
|  |     on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length | ||
|  |     distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length) | ||
|  |     on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length | ||
|  |     distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length) | ||
|  |     on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length | ||
|  |     distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length) | ||
|  |     on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length | ||
|  |     distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length) | ||
|  |     on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length | ||
|  | 
 | ||
|  |     regular = True | ||
|  |     inner   = True | ||
|  |     if(atom_pos.length > on_plane_1): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_2): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_3): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_4): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_5): | ||
|  |         regular = False | ||
|  | 
 | ||
|  |     if skin == 1.0: | ||
|  |         return (regular, inner) | ||
|  | 
 | ||
|  |     size = size * (1.0 - skin) | ||
|  | 
 | ||
|  |     size2 = size  * size | ||
|  |     size3 = size2 * size | ||
|  |     n1 = Vector((-1/4, -1/4,  1/4)) * size2 | ||
|  |     g1 = -1/16 * size3 | ||
|  |     n2 = Vector(( 1/4,  1/4,  1/4)) * size2 | ||
|  |     g2 = g1 | ||
|  |     n3 = Vector((-1/4,  1/4,  1/4)) * size2 | ||
|  |     g3 = g1 | ||
|  |     n4 = Vector(( 1/4, -1/4,  1/4)) * size2 | ||
|  |     g4 = g1 | ||
|  |     n5 = Vector(( 0.0,  0.0, -1/2)) * size2 | ||
|  |     g5 = -1/8 * size3 | ||
|  | 
 | ||
|  |     distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length) | ||
|  |     on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length | ||
|  |     distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length) | ||
|  |     on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length | ||
|  |     distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length) | ||
|  |     on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length | ||
|  |     distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length) | ||
|  |     on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length | ||
|  |     distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length) | ||
|  |     on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length | ||
|  | 
 | ||
|  |     inner = False | ||
|  |     if(atom_pos.length > on_plane_1): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_2): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_3): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_4): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_5): | ||
|  |         inner = True | ||
|  | 
 | ||
|  |     return (regular, inner) | ||
|  | 
 | ||
|  | 
 | ||
|  | def vec_in_pyramide_hex_abc(atom_pos, size, skin): | ||
|  | 
 | ||
|  |     a = size/2.0 | ||
|  |     #c = size/2.0*cos((30/360)*2.0*pi) | ||
|  |     c = size * 0.4330127020 | ||
|  |     #s = size/2.0*sin((30/360)*2.0*pi) | ||
|  |     s = size * 0.25 | ||
|  |     #h = 2.0 * (sqrt(6.0)/3.0) * c | ||
|  |     h = 1.632993162 * c | ||
|  | 
 | ||
|  |     """ | ||
|  |     Please, if possible leave all this! The code documents the | ||
|  |     mathemetical way of cutting a tetraeder. | ||
|  | 
 | ||
|  |     P1 = Vector((0.0,   a, 0.0)) | ||
|  |     P2 = Vector(( -c,  -s, 0.0)) | ||
|  |     P3 = Vector((  c,  -s, 0.0)) | ||
|  |     P4 = Vector((0.0, 0.0,  h)) | ||
|  |     C = (P1+P2+P3+P4)/4.0 | ||
|  |     P1 = P1 - C | ||
|  |     P2 = P2 - C | ||
|  |     P3 = P3 - C | ||
|  |     P4 = P4 - C | ||
|  | 
 | ||
|  |     # First face | ||
|  |     v11 = P1 - P2 | ||
|  |     v12 = P1 - P4 | ||
|  |     n1 = v11.cross(v12) | ||
|  |     g1 = -n1 * P1 | ||
|  | 
 | ||
|  |     # Second face | ||
|  |     v21 = P2 - P3 | ||
|  |     v22 = P2 - P4 | ||
|  |     n2 = v21.cross(v22) | ||
|  |     g2 = -n2 * P2 | ||
|  | 
 | ||
|  |     # Third face | ||
|  |     v31 = P3 - P1 | ||
|  |     v32 = P3 - P4 | ||
|  |     n3 = v31.cross(v32) | ||
|  |     g3 = -n3 * P3 | ||
|  | 
 | ||
|  |     # Forth face | ||
|  |     v41 = P2 - P1 | ||
|  |     v42 = P2 - P3 | ||
|  |     n4 = v41.cross(v42) | ||
|  |     g4 = -n4 * P1 | ||
|  |     """ | ||
|  | 
 | ||
|  |     n1 = Vector(( -h*(a+s),    c*h,    c*a     )) | ||
|  |     g1 = -1/2*c*(a*h+s*h) | ||
|  |     n2 = Vector((        0, -2*c*h,  2*c*s     )) | ||
|  |     g2 = -1/2*c*(a*h+s*h) | ||
|  |     n3 = Vector((  h*(a+s),    c*h,    a*c     )) | ||
|  |     g3 = -1/2*c*(a*h+s*h) | ||
|  |     n4 = Vector((        0,      0, -2*c*(s+a) )) | ||
|  |     g4 = -1/2*h*c*(s+a) | ||
|  | 
 | ||
|  |     distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length) | ||
|  |     on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length | ||
|  |     distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length) | ||
|  |     on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length | ||
|  |     distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length) | ||
|  |     on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length | ||
|  |     distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length) | ||
|  |     on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length | ||
|  | 
 | ||
|  |     regular = True | ||
|  |     inner   = True | ||
|  |     if(atom_pos.length > on_plane_1): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_2): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_3): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_4): | ||
|  |         regular = False | ||
|  | 
 | ||
|  |     if skin == 1.0: | ||
|  |         return (regular, inner) | ||
|  | 
 | ||
|  |     size = size * (1.0 - skin) | ||
|  | 
 | ||
|  |     a = size/2.0 | ||
|  |     #c = size/2.0*cos((30/360)*2.0*pi) | ||
|  |     c= size * 0.4330127020 | ||
|  |     #s = size/2.0*sin((30/360)*2.0*pi) | ||
|  |     s = size * 0.25 | ||
|  |     #h = 2.0 * (sqrt(6.0)/3.0) * c | ||
|  |     h = 1.632993162 * c | ||
|  | 
 | ||
|  |     n1 = Vector(( -h*(a+s),    c*h,    c*a     )) | ||
|  |     g1 = -1/2*c*(a*h+s*h) | ||
|  |     n2 = Vector((        0, -2*c*h,  2*c*s     )) | ||
|  |     g2 = -1/2*c*(a*h+s*h) | ||
|  |     n3 = Vector((  h*(a+s),    c*h,    a*c     )) | ||
|  |     g3 = -1/2*c*(a*h+s*h) | ||
|  |     n4 = Vector((        0,      0, -2*c*(s+a) )) | ||
|  |     g4 = -1/2*h*c*(s+a) | ||
|  | 
 | ||
|  |     distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length) | ||
|  |     on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length | ||
|  |     distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length) | ||
|  |     on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length | ||
|  |     distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length) | ||
|  |     on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length | ||
|  |     distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length) | ||
|  |     on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length | ||
|  | 
 | ||
|  |     inner = False | ||
|  |     if(atom_pos.length > on_plane_1): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_2): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_3): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_4): | ||
|  |         inner = True | ||
|  | 
 | ||
|  |     return (regular, inner) | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | def vec_in_octahedron(atom_pos,size, skin): | ||
|  | 
 | ||
|  |     regular = True | ||
|  |     inner   = True | ||
|  | 
 | ||
|  |     """ | ||
|  |     Please, if possible leave all this! The code documents the | ||
|  |     mathemetical way of cutting an octahedron. | ||
|  | 
 | ||
|  |     P1 = Vector((-size/2, 0.0, 0.0)) | ||
|  |     P2 = Vector((0.0, -size/2, 0.0)) | ||
|  |     P3 = Vector((0.0, 0.0, -size/2)) | ||
|  |     P4 = Vector((size/2, 0.0, 0.0)) | ||
|  |     P5 = Vector((0.0, size/2, 0.0)) | ||
|  |     P6 = Vector((0.0, 0.0, size/2)) | ||
|  | 
 | ||
|  |     # First face | ||
|  |     v11 = P2 - P1 | ||
|  |     v12 = P2 - P3 | ||
|  |     n1 = v11.cross(v12) | ||
|  |     g1 = -n1 * P2 | ||
|  | 
 | ||
|  |     # Second face | ||
|  |     v21 = P1 - P5 | ||
|  |     v22 = P1 - P3 | ||
|  |     n2 = v21.cross(v22) | ||
|  |     g2 = -n2 * P1 | ||
|  | 
 | ||
|  |     # Third face | ||
|  |     v31 = P1 - P2 | ||
|  |     v32 = P1 - P6 | ||
|  |     n3 = v31.cross(v32) | ||
|  |     g3 = -n3 * P1 | ||
|  | 
 | ||
|  |     # Forth face | ||
|  |     v41 = P6 - P2 | ||
|  |     v42 = P2 - P4 | ||
|  |     n4 = v41.cross(v42) | ||
|  |     g4 = -n4 * P2 | ||
|  | 
 | ||
|  |     # Fith face | ||
|  |     v51 = P2 - P3 | ||
|  |     v52 = P2 - P4 | ||
|  |     n5 = v51.cross(v52) | ||
|  |     g5 = -n5 * P2 | ||
|  | 
 | ||
|  |     # Six face | ||
|  |     v61 = P6 - P4 | ||
|  |     v62 = P6 - P5 | ||
|  |     n6 = v61.cross(v62) | ||
|  |     g6 = -n6 * P6 | ||
|  | 
 | ||
|  |     # Seventh face | ||
|  |     v71 = P5 - P4 | ||
|  |     v72 = P5 - P3 | ||
|  |     n7 = v71.cross(v72) | ||
|  |     g7 = -n7 * P5 | ||
|  | 
 | ||
|  |     # Eigth face | ||
|  |     v81 = P1 - P5 | ||
|  |     v82 = P1 - P6 | ||
|  |     n8 = v82.cross(v81) | ||
|  |     g8 = -n8 * P1 | ||
|  |     """ | ||
|  | 
 | ||
|  |     # A much faster way for calculation: | ||
|  |     size2 = size  * size | ||
|  |     size3 = size2 * size | ||
|  |     n1 = Vector((-1/4, -1/4, -1/4)) * size2 | ||
|  |     g1 = -1/8 * size3 | ||
|  |     n2 = Vector((-1/4,  1/4, -1/4)) * size2 | ||
|  |     g2 = g1 | ||
|  |     n3 = Vector((-1/4, -1/4,  1/4)) * size2 | ||
|  |     g3 = g1 | ||
|  |     n4 = Vector(( 1/4, -1/4,  1/4)) * size2 | ||
|  |     g4 = g1 | ||
|  |     n5 = Vector(( 1/4, -1/4, -1/4)) * size2 | ||
|  |     g5 = g1 | ||
|  |     n6 = Vector(( 1/4,  1/4,  1/4)) * size2 | ||
|  |     g6 = g1 | ||
|  |     n7 = Vector(( 1/4,  1/4, -1/4)) * size2 | ||
|  |     g7 = g1 | ||
|  |     n8 = Vector((-1/4,  1/4,  1/4)) * size2 | ||
|  |     g8 = g1 | ||
|  | 
 | ||
|  |     distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length) | ||
|  |     on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length | ||
|  |     distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length) | ||
|  |     on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length | ||
|  |     distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length) | ||
|  |     on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length | ||
|  |     distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length) | ||
|  |     on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length | ||
|  |     distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length) | ||
|  |     on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length | ||
|  |     distance_plane_6 = abs((n6 @ atom_pos - g6)/n6.length) | ||
|  |     on_plane_6 = (atom_pos - n6 * (distance_plane_6/n6.length)).length | ||
|  |     distance_plane_7 = abs((n7 @ atom_pos - g7)/n7.length) | ||
|  |     on_plane_7 = (atom_pos - n7 * (distance_plane_7/n7.length)).length | ||
|  |     distance_plane_8 = abs((n8 @ atom_pos - g8)/n8.length) | ||
|  |     on_plane_8 = (atom_pos - n8 * (distance_plane_8/n8.length)).length | ||
|  | 
 | ||
|  |     if(atom_pos.length > on_plane_1): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_2): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_3): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_4): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_5): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_6): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_7): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_8): | ||
|  |         regular = False | ||
|  | 
 | ||
|  |     if skin == 1.0: | ||
|  |         return (regular, inner) | ||
|  | 
 | ||
|  |     size = size * (1.0 - skin) | ||
|  | 
 | ||
|  |     size2 = size  * size | ||
|  |     size3 = size2 * size | ||
|  |     n1 = Vector((-1/4, -1/4, -1/4)) * size2 | ||
|  |     g1 = -1/8 * size3 | ||
|  |     n2 = Vector((-1/4,  1/4, -1/4)) * size2 | ||
|  |     g2 = g1 | ||
|  |     n3 = Vector((-1/4, -1/4,  1/4)) * size2 | ||
|  |     g3 = g1 | ||
|  |     n4 = Vector(( 1/4, -1/4,  1/4)) * size2 | ||
|  |     g4 = g1 | ||
|  |     n5 = Vector(( 1/4, -1/4, -1/4)) * size2 | ||
|  |     g5 = g1 | ||
|  |     n6 = Vector(( 1/4,  1/4,  1/4)) * size2 | ||
|  |     g6 = g1 | ||
|  |     n7 = Vector(( 1/4,  1/4, -1/4)) * size2 | ||
|  |     g7 = g1 | ||
|  |     n8 = Vector((-1/4,  1/4,  1/4)) * size2 | ||
|  |     g8 = g1 | ||
|  | 
 | ||
|  |     distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length) | ||
|  |     on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length | ||
|  |     distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length) | ||
|  |     on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length | ||
|  |     distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length) | ||
|  |     on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length | ||
|  |     distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length) | ||
|  |     on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length | ||
|  |     distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length) | ||
|  |     on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length | ||
|  |     distance_plane_6 = abs((n6 @ atom_pos - g6)/n6.length) | ||
|  |     on_plane_6 = (atom_pos - n6 * (distance_plane_6/n6.length)).length | ||
|  |     distance_plane_7 = abs((n7 @ atom_pos - g7)/n7.length) | ||
|  |     on_plane_7 = (atom_pos - n7 * (distance_plane_7/n7.length)).length | ||
|  |     distance_plane_8 = abs((n8 @ atom_pos - g8)/n8.length) | ||
|  |     on_plane_8 = (atom_pos - n8 * (distance_plane_8/n8.length)).length | ||
|  | 
 | ||
|  |     inner = False | ||
|  |     if(atom_pos.length > on_plane_1): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_2): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_3): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_4): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_5): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_6): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_7): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_8): | ||
|  |         inner = True | ||
|  | 
 | ||
|  |     return (regular, inner) | ||
|  | 
 | ||
|  | 
 | ||
|  | def vec_in_truncated_octahedron(atom_pos,size, skin): | ||
|  | 
 | ||
|  |     regular = True | ||
|  |     inner   = True | ||
|  | 
 | ||
|  |     # The normal octahedron | ||
|  |     size2 = size  * size | ||
|  |     size3 = size2 * size | ||
|  |     n1 = Vector((-1/4, -1/4, -1/4)) * size2 | ||
|  |     g1 = -1/8 * size3 | ||
|  |     n2 = Vector((-1/4,  1/4, -1/4)) * size2 | ||
|  |     g2 = g1 | ||
|  |     n3 = Vector((-1/4, -1/4,  1/4)) * size2 | ||
|  |     g3 = g1 | ||
|  |     n4 = Vector(( 1/4, -1/4,  1/4)) * size2 | ||
|  |     g4 = g1 | ||
|  |     n5 = Vector(( 1/4, -1/4, -1/4)) * size2 | ||
|  |     g5 = g1 | ||
|  |     n6 = Vector(( 1/4,  1/4,  1/4)) * size2 | ||
|  |     g6 = g1 | ||
|  |     n7 = Vector(( 1/4,  1/4, -1/4)) * size2 | ||
|  |     g7 = g1 | ||
|  |     n8 = Vector((-1/4,  1/4,  1/4)) * size2 | ||
|  |     g8 = g1 | ||
|  | 
 | ||
|  |     distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length) | ||
|  |     on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length | ||
|  |     distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length) | ||
|  |     on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length | ||
|  |     distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length) | ||
|  |     on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length | ||
|  |     distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length) | ||
|  |     on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length | ||
|  |     distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length) | ||
|  |     on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length | ||
|  |     distance_plane_6 = abs((n6 @ atom_pos - g6)/n6.length) | ||
|  |     on_plane_6 = (atom_pos - n6 * (distance_plane_6/n6.length)).length | ||
|  |     distance_plane_7 = abs((n7 @ atom_pos - g7)/n7.length) | ||
|  |     on_plane_7 = (atom_pos - n7 * (distance_plane_7/n7.length)).length | ||
|  |     distance_plane_8 = abs((n8 @ atom_pos - g8)/n8.length) | ||
|  |     on_plane_8 = (atom_pos - n8 * (distance_plane_8/n8.length)).length | ||
|  | 
 | ||
|  |     # Here are the 6 additional faces | ||
|  |     # pp = (size/2.0) - (sqrt(2.0)/2.0) * ((size/sqrt(2.0))/3.0) | ||
|  |     pp = size / 3.0 | ||
|  | 
 | ||
|  |     n_1 = Vector((1.0,0.0,0.0)) | ||
|  |     n_2 = Vector((-1.0,0.0,0.0)) | ||
|  |     n_3 = Vector((0.0,1.0,0.0)) | ||
|  |     n_4 = Vector((0.0,-1.0,0.0)) | ||
|  |     n_5 = Vector((0.0,0.0,1.0)) | ||
|  |     n_6 = Vector((0.0,0.0,-1.0)) | ||
|  | 
 | ||
|  |     distance_plane_1b = abs((n_1 @ atom_pos + pp)/n_1.length) | ||
|  |     on_plane_1b = (atom_pos - n_1 * (distance_plane_1b/n_1.length)).length | ||
|  |     distance_plane_2b = abs((n_2 @ atom_pos + pp)/n_2.length) | ||
|  |     on_plane_2b = (atom_pos - n_2 * (distance_plane_2b/n_2.length)).length | ||
|  |     distance_plane_3b = abs((n_3 @ atom_pos + pp)/n_3.length) | ||
|  |     on_plane_3b = (atom_pos - n_3 * (distance_plane_3b/n_3.length)).length | ||
|  |     distance_plane_4b = abs((n_4 @ atom_pos + pp)/n_4.length) | ||
|  |     on_plane_4b = (atom_pos - n_4 * (distance_plane_4b/n_4.length)).length | ||
|  |     distance_plane_5b = abs((n_5 @ atom_pos + pp)/n_5.length) | ||
|  |     on_plane_5b = (atom_pos - n_5 * (distance_plane_5b/n_5.length)).length | ||
|  |     distance_plane_6b = abs((n_6 @ atom_pos + pp)/n_6.length) | ||
|  |     on_plane_6b = (atom_pos - n_6 * (distance_plane_6b/n_6.length)).length | ||
|  | 
 | ||
|  |     if(atom_pos.length > on_plane_1): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_2): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_3): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_4): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_5): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_6): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_7): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_8): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_1b): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_2b): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_3b): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_4b): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_5b): | ||
|  |         regular = False | ||
|  |     if(atom_pos.length > on_plane_6b): | ||
|  |         regular = False | ||
|  | 
 | ||
|  |     if skin == 1.0: | ||
|  |         return (regular, inner) | ||
|  | 
 | ||
|  |     size = size * (1.0 - skin) | ||
|  | 
 | ||
|  |     # The normal octahedron | ||
|  |     size2 = size  * size | ||
|  |     size3 = size2 * size | ||
|  |     n1 = Vector((-1/4, -1/4, -1/4)) * size2 | ||
|  |     g1 = -1/8 * size3 | ||
|  |     n2 = Vector((-1/4,  1/4, -1/4)) * size2 | ||
|  |     g2 = g1 | ||
|  |     n3 = Vector((-1/4, -1/4,  1/4)) * size2 | ||
|  |     g3 = g1 | ||
|  |     n4 = Vector(( 1/4, -1/4,  1/4)) * size2 | ||
|  |     g4 = g1 | ||
|  |     n5 = Vector(( 1/4, -1/4, -1/4)) * size2 | ||
|  |     g5 = g1 | ||
|  |     n6 = Vector(( 1/4,  1/4,  1/4)) * size2 | ||
|  |     g6 = g1 | ||
|  |     n7 = Vector(( 1/4,  1/4, -1/4)) * size2 | ||
|  |     g7 = g1 | ||
|  |     n8 = Vector((-1/4,  1/4,  1/4)) * size2 | ||
|  |     g8 = g1 | ||
|  | 
 | ||
|  |     distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length) | ||
|  |     on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length | ||
|  |     distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length) | ||
|  |     on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length | ||
|  |     distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length) | ||
|  |     on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length | ||
|  |     distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length) | ||
|  |     on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length | ||
|  |     distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length) | ||
|  |     on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length | ||
|  |     distance_plane_6 = abs((n6 @ atom_pos - g6)/n6.length) | ||
|  |     on_plane_6 = (atom_pos - n6 * (distance_plane_6/n6.length)).length | ||
|  |     distance_plane_7 = abs((n7 @ atom_pos - g7)/n7.length) | ||
|  |     on_plane_7 = (atom_pos - n7 * (distance_plane_7/n7.length)).length | ||
|  |     distance_plane_8 = abs((n8 @ atom_pos - g8)/n8.length) | ||
|  |     on_plane_8 = (atom_pos - n8 * (distance_plane_8/n8.length)).length | ||
|  | 
 | ||
|  |     # Here are the 6 additional faces | ||
|  |     # pp = (size/2.0) - (sqrt(2.0)/2.0) * ((size/sqrt(2.0))/3.0) | ||
|  |     pp = size / 3.0 | ||
|  | 
 | ||
|  |     n_1 = Vector((1.0,0.0,0.0)) | ||
|  |     n_2 = Vector((-1.0,0.0,0.0)) | ||
|  |     n_3 = Vector((0.0,1.0,0.0)) | ||
|  |     n_4 = Vector((0.0,-1.0,0.0)) | ||
|  |     n_5 = Vector((0.0,0.0,1.0)) | ||
|  |     n_6 = Vector((0.0,0.0,-1.0)) | ||
|  | 
 | ||
|  |     distance_plane_1b = abs((n_1 @ atom_pos + pp)/n_1.length) | ||
|  |     on_plane_1b = (atom_pos - n_1 * (distance_plane_1b/n_1.length)).length | ||
|  |     distance_plane_2b = abs((n_2 @ atom_pos + pp)/n_2.length) | ||
|  |     on_plane_2b = (atom_pos - n_2 * (distance_plane_2b/n_2.length)).length | ||
|  |     distance_plane_3b = abs((n_3 @ atom_pos + pp)/n_3.length) | ||
|  |     on_plane_3b = (atom_pos - n_3 * (distance_plane_3b/n_3.length)).length | ||
|  |     distance_plane_4b = abs((n_4 @ atom_pos + pp)/n_4.length) | ||
|  |     on_plane_4b = (atom_pos - n_4 * (distance_plane_4b/n_4.length)).length | ||
|  |     distance_plane_5b = abs((n_5 @ atom_pos + pp)/n_5.length) | ||
|  |     on_plane_5b = (atom_pos - n_5 * (distance_plane_5b/n_5.length)).length | ||
|  |     distance_plane_6b = abs((n_6 @ atom_pos + pp)/n_6.length) | ||
|  |     on_plane_6b = (atom_pos - n_6 * (distance_plane_6b/n_6.length)).length | ||
|  | 
 | ||
|  |     inner = False | ||
|  | 
 | ||
|  |     if(atom_pos.length > on_plane_1): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_2): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_3): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_4): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_5): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_6): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_7): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_8): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_1b): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_2b): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_3b): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_4b): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_5b): | ||
|  |         inner = True | ||
|  |     if(atom_pos.length > on_plane_6b): | ||
|  |         inner = True | ||
|  | 
 | ||
|  |     return (regular, inner) | ||
|  | 
 | ||
|  | # ----------------------------------------------------------------------------- | ||
|  | #                                                         Routines for lattices | ||
|  | 
 | ||
|  | def create_hexagonal_abcabc_lattice(ctype, size, skin, lattice): | ||
|  | 
 | ||
|  |     atom_number_total = 0 | ||
|  |     atom_number_drawn = 0 | ||
|  |     y_displ = 0 | ||
|  |     z_displ = 0 | ||
|  | 
 | ||
|  |     """ | ||
|  |     e = (1/sqrt(2.0)) * lattice | ||
|  |     f = sqrt(3.0/4.0) * e | ||
|  |     df1 = (e/2.0) * tan((30.0/360.0)*2.0*pi) | ||
|  |     df2 = (e/2.0) / cos((30.0/360.0)*2.0*pi) | ||
|  |     g = sqrt(2.0/3.0) * e | ||
|  |     """ | ||
|  | 
 | ||
|  |     e = 0.7071067810 * lattice | ||
|  |     f = 0.8660254038 * e | ||
|  |     df1 = 0.2886751348 * e | ||
|  |     df2 = 0.5773502690 * e | ||
|  |     g = 0.8164965810 * e | ||
|  | 
 | ||
|  |     if ctype == "parabolid_abc": | ||
|  |         # size = height, skin = diameter | ||
|  |         number_x = int(skin/(2*e))+4 | ||
|  |         number_y = int(skin/(2*f))+4 | ||
|  |         number_z = int(size/(2*g)) | ||
|  |     else: | ||
|  |         number_x = int(size/(2*e))+4 | ||
|  |         number_y = int(size/(2*f))+4 | ||
|  |         number_z = int(size/(2*g))+1+4 | ||
|  | 
 | ||
|  | 
 | ||
|  |     for k in range(-number_z,number_z+1): | ||
|  |         for j in range(-number_y,number_y+1): | ||
|  |             for i in range(-number_x,number_x+1): | ||
|  |                 atom = Vector((float(i)*e,float(j)*f,float(k)*g)) | ||
|  | 
 | ||
|  |                 if y_displ == 1: | ||
|  |                     if z_displ == 1: | ||
|  |                         atom[0] += e/2.0 | ||
|  |                     else: | ||
|  |                         atom[0] -= e/2.0 | ||
|  |                 if z_displ == 1: | ||
|  |                     atom[0] -= e/2.0 | ||
|  |                     atom[1] += df1 | ||
|  |                 if z_displ == 2: | ||
|  |                     atom[0] += 0.0 | ||
|  |                     atom[1] += df2 | ||
|  | 
 | ||
|  |                 if ctype == "sphere_hex_abc": | ||
|  |                     message = vec_in_sphere(atom, size, skin) | ||
|  |                 elif ctype == "pyramide_hex_abc": | ||
|  |                     # size = height, skin = diameter | ||
|  |                     message = vec_in_pyramide_hex_abc(atom, size, skin) | ||
|  |                 elif ctype == "parabolid_abc": | ||
|  |                     message = vec_in_parabole(atom, size, skin) | ||
|  | 
 | ||
|  |                 if message[0] == True and message[1] == True: | ||
|  |                     atom_add = CLASS_atom_cluster_atom(atom) | ||
|  |                     ATOM_CLUSTER_ALL_ATOMS.append(atom_add) | ||
|  |                     atom_number_total += 1 | ||
|  |                     atom_number_drawn += 1 | ||
|  |                 if message[0] == True and message[1] == False: | ||
|  |                     atom_number_total += 1 | ||
|  | 
 | ||
|  |             if y_displ == 1: | ||
|  |                 y_displ = 0 | ||
|  |             else: | ||
|  |                 y_displ = 1 | ||
|  | 
 | ||
|  |         y_displ = 0 | ||
|  |         if z_displ == 0: | ||
|  |            z_displ = 1 | ||
|  |         elif z_displ == 1: | ||
|  |            z_displ = 2 | ||
|  |         else: | ||
|  |            z_displ = 0 | ||
|  | 
 | ||
|  |     print("Atom positions calculated") | ||
|  | 
 | ||
|  |     return (atom_number_total, atom_number_drawn) | ||
|  | 
 | ||
|  | 
 | ||
|  | def create_hexagonal_abab_lattice(ctype, size, skin, lattice): | ||
|  | 
 | ||
|  |     atom_number_total = 0 | ||
|  |     atom_number_drawn = 0 | ||
|  |     y_displ = "even" | ||
|  |     z_displ = "even" | ||
|  | 
 | ||
|  |     """ | ||
|  |     e = (1/sqrt(2.0)) * lattice | ||
|  |     f = sqrt(3.0/4.0) * e | ||
|  |     df = (e/2.0) * tan((30.0/360.0)*2*pi) | ||
|  |     g = sqrt(2.0/3.0) * e | ||
|  |     """ | ||
|  | 
 | ||
|  |     e = 0.7071067814 * lattice | ||
|  |     f = 0.8660254038 * e | ||
|  |     df = 0.2886751348 * e | ||
|  |     g = 0.8164965810 * e | ||
|  | 
 | ||
|  | 
 | ||
|  |     if ctype == "parabolid_ab": | ||
|  |         # size = height, skin = diameter | ||
|  |         number_x = int(skin/(2*e))+4 | ||
|  |         number_y = int(skin/(2*f))+4 | ||
|  |         number_z = int(size/(2*g)) | ||
|  |     else: | ||
|  |         number_x = int(size/(2*e))+4 | ||
|  |         number_y = int(size/(2*f))+4 | ||
|  |         number_z = int(size/(2*g))+1+4 | ||
|  | 
 | ||
|  | 
 | ||
|  |     for k in range(-number_z,number_z+1): | ||
|  |         for j in range(-number_y,number_y+1): | ||
|  |             for i in range(-number_x,number_x+1): | ||
|  | 
 | ||
|  |                 atom = Vector((float(i)*e,float(j)*f,float(k)*g)) | ||
|  | 
 | ||
|  |                 if "odd" in y_displ: | ||
|  |                     if "odd" in z_displ: | ||
|  |                         atom[0] += e/2.0 | ||
|  |                     else: | ||
|  |                         atom[0] -= e/2.0 | ||
|  |                 if "odd" in z_displ: | ||
|  |                     atom[0] -= e/2.0 | ||
|  |                     atom[1] += df | ||
|  | 
 | ||
|  |                 if ctype == "sphere_hex_ab": | ||
|  |                     message = vec_in_sphere(atom, size, skin) | ||
|  |                 elif ctype == "parabolid_ab": | ||
|  |                     # size = height, skin = diameter | ||
|  |                     message = vec_in_parabole(atom, size, skin) | ||
|  | 
 | ||
|  |                 if message[0] == True and message[1] == True: | ||
|  |                     atom_add = CLASS_atom_cluster_atom(atom) | ||
|  |                     ATOM_CLUSTER_ALL_ATOMS.append(atom_add) | ||
|  |                     atom_number_total += 1 | ||
|  |                     atom_number_drawn += 1 | ||
|  |                 if message[0] == True and message[1] == False: | ||
|  |                     atom_number_total += 1 | ||
|  | 
 | ||
|  |             if "even" in y_displ: | ||
|  |                 y_displ = "odd" | ||
|  |             else: | ||
|  |                 y_displ = "even" | ||
|  | 
 | ||
|  |         y_displ = "even" | ||
|  |         if "even" in z_displ: | ||
|  |             z_displ = "odd" | ||
|  |         else: | ||
|  |             z_displ = "even" | ||
|  | 
 | ||
|  |     print("Atom positions calculated") | ||
|  | 
 | ||
|  |     return (atom_number_total, atom_number_drawn) | ||
|  | 
 | ||
|  | 
 | ||
|  | def create_square_lattice(ctype, size, skin, lattice): | ||
|  | 
 | ||
|  |     atom_number_total = 0 | ||
|  |     atom_number_drawn = 0 | ||
|  | 
 | ||
|  |     if ctype == "parabolid_square": | ||
|  |         # size = height, skin = diameter | ||
|  |         number_k = int(size/(2.0*lattice)) | ||
|  |         number_j = int(skin/(2.0*lattice)) + 5 | ||
|  |         number_i = int(skin/(2.0*lattice)) + 5 | ||
|  |     else: | ||
|  |         number_k = int(size/(2.0*lattice)) | ||
|  |         number_j = int(size/(2.0*lattice)) | ||
|  |         number_i = int(size/(2.0*lattice)) | ||
|  | 
 | ||
|  | 
 | ||
|  |     for k in range(-number_k,number_k+1): | ||
|  |         for j in range(-number_j,number_j+1): | ||
|  |             for i in range(-number_i,number_i+1): | ||
|  | 
 | ||
|  |                 atom = Vector((float(i),float(j),float(k))) * lattice | ||
|  | 
 | ||
|  |                 if ctype == "sphere_square": | ||
|  |                     message = vec_in_sphere(atom, size, skin) | ||
|  |                 elif ctype == "pyramide_square": | ||
|  |                     message = vec_in_pyramide_square(atom, size, skin) | ||
|  |                 elif ctype == "parabolid_square": | ||
|  |                     # size = height, skin = diameter | ||
|  |                     message = vec_in_parabole(atom, size, skin) | ||
|  |                 elif ctype == "octahedron": | ||
|  |                     message = vec_in_octahedron(atom, size, skin) | ||
|  |                 elif ctype == "truncated_octahedron": | ||
|  |                     message = vec_in_truncated_octahedron(atom,size, skin) | ||
|  | 
 | ||
|  |                 if message[0] == True and message[1] == True: | ||
|  |                     atom_add = CLASS_atom_cluster_atom(atom) | ||
|  |                     ATOM_CLUSTER_ALL_ATOMS.append(atom_add) | ||
|  |                     atom_number_total += 1 | ||
|  |                     atom_number_drawn += 1 | ||
|  |                 if message[0] == True and message[1] == False: | ||
|  |                     atom_number_total += 1 | ||
|  | 
 | ||
|  |     print("Atom positions calculated") | ||
|  | 
 | ||
|  |     return (atom_number_total, atom_number_drawn) | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | # ----------------------------------------------------------------------------- | ||
|  | #                                                   Routine for the icosahedron | ||
|  | 
 | ||
|  | 
 | ||
|  | # Note that the icosahedron needs a special treatment since it requires a | ||
|  | # non-common crystal lattice. The faces are (111) facets and the geometry | ||
|  | # is five-fold. So far, a max size of 8217 atoms can be chosen. | ||
|  | # More details about icosahedron shaped clusters can be found in: | ||
|  | # | ||
|  | # 1. C. Mottet, G. Tréglia, B. Legrand, Surface Science 383 (1997) L719-L727 | ||
|  | # 2. C. R. Henry, Surface Science Reports 31 (1998) 231-325 | ||
|  | 
 | ||
|  | # The following code is a translation from an existing Fortran code into Python. | ||
|  | # The Fortran code has been created by Christine Mottet and translated by me | ||
|  | # (Clemens Barth). | ||
|  | 
 | ||
|  | # Although a couple of code lines are non-typical for Python, it is best to | ||
|  | # leave the code as is. | ||
|  | # | ||
|  | # To do: | ||
|  | # | ||
|  | # 1. Unlimited cluster size | ||
|  | # 2. Skin effect | ||
|  | 
 | ||
|  | def create_icosahedron(size, lattice): | ||
|  | 
 | ||
|  |     natot = int(1 + (10*size*size+15*size+11)*size/3) | ||
|  | 
 | ||
|  |     x = list(range(natot+1)) | ||
|  |     y = list(range(natot+1)) | ||
|  |     z = list(range(natot+1)) | ||
|  | 
 | ||
|  |     xs = list(range(12+1)) | ||
|  |     ys = list(range(12+1)) | ||
|  |     zs = list(range(12+1)) | ||
|  | 
 | ||
|  |     xa = [[[ [] for i in range(12+1)] for j in range(12+1)] for k in range(20+1)] | ||
|  |     ya = [[[ [] for i in range(12+1)] for j in range(12+1)] for k in range(20+1)] | ||
|  |     za = [[[ [] for i in range(12+1)] for j in range(12+1)] for k in range(20+1)] | ||
|  | 
 | ||
|  |     naret  = [[ [] for i in range(12+1)] for j in range(12+1)] | ||
|  |     nfacet = [[[ [] for i in range(12+1)] for j in range(12+1)] for k in range(12+1)] | ||
|  | 
 | ||
|  |     rac2 = sqrt(2.0) | ||
|  |     rac5 = sqrt(5.0) | ||
|  |     tdef = (rac5+1.0)/2.0 | ||
|  | 
 | ||
|  |     rapp  = sqrt(2.0*(1.0-tdef/(tdef*tdef+1.0))) | ||
|  |     nats  = 2 * (5*size*size+1) | ||
|  |     nat   = 13 | ||
|  |     epsi  = 0.01 | ||
|  | 
 | ||
|  |     x[1] = 0.0 | ||
|  |     y[1] = 0.0 | ||
|  |     z[1] = 0.0 | ||
|  | 
 | ||
|  |     for i in range(2, 5+1): | ||
|  |         z[i]   = 0.0 | ||
|  |         y[i+4] = 0.0 | ||
|  |         x[i+8] = 0.0 | ||
|  | 
 | ||
|  |     for i in range(2, 3+1): | ||
|  |         x[i]    =  tdef | ||
|  |         x[i+2]  = -tdef | ||
|  |         x[i+4]  =  1.0 | ||
|  |         x[i+6]  = -1.0 | ||
|  |         y[i+8]  =  tdef | ||
|  |         y[i+10] = -tdef | ||
|  | 
 | ||
|  |     for i in range(2, 4+1, 2): | ||
|  |         y[i]   =  1.0 | ||
|  |         y[i+1] = -1.0 | ||
|  |         z[i+4] =  tdef | ||
|  |         z[i+5] = -tdef | ||
|  |         z[i+8] =  1.0 | ||
|  |         z[i+9] = -1.0 | ||
|  | 
 | ||
|  |     xdef = rac2 / sqrt(tdef * tdef + 1) | ||
|  | 
 | ||
|  |     for i in range(2, 13+1): | ||
|  |         x[i] = x[i] * xdef / 2.0 | ||
|  |         y[i] = y[i] * xdef / 2.0 | ||
|  |         z[i] = z[i] * xdef / 2.0 | ||
|  | 
 | ||
|  |     if size > 1: | ||
|  | 
 | ||
|  |         for n in range (2, size+1): | ||
|  |             ifacet = 0 | ||
|  |             iaret  = 0 | ||
|  |             inatf  = 0 | ||
|  |             for i in range(1, 12+1): | ||
|  |                 for j in range(1, 12+1): | ||
|  |                     naret[i][j] = 0 | ||
|  |                     for k in range (1, 12+1): | ||
|  |                         nfacet[i][j][k] = 0 | ||
|  | 
 | ||
|  |             nl1 = 6 | ||
|  |             nl2 = 8 | ||
|  |             nl3 = 9 | ||
|  |             k1  = 0 | ||
|  |             k2  = 0 | ||
|  |             k3  = 0 | ||
|  |             k12 = 0 | ||
|  |             for i in range(1, 12+1): | ||
|  |                 nat += 1 | ||
|  |                 xs[i] = n * x[i+1] | ||
|  |                 ys[i] = n * y[i+1] | ||
|  |                 zs[i] = n * z[i+1] | ||
|  |                 x[nat] = xs[i] | ||
|  |                 y[nat] = ys[i] | ||
|  |                 z[nat] = zs[i] | ||
|  |                 k1 += 1 | ||
|  | 
 | ||
|  |             for i in range(1, 12+1): | ||
|  |                 for j in range(2, 12+1): | ||
|  |                     if j <= i: | ||
|  |                         continue | ||
|  | 
 | ||
|  |                     xij = xs[j] - xs[i] | ||
|  |                     yij = ys[j] - ys[i] | ||
|  |                     zij = zs[j] - zs[i] | ||
|  |                     xij2 = xij * xij | ||
|  |                     yij2 = yij * yij | ||
|  |                     zij2 = zij * zij | ||
|  |                     dij2 = xij2 + yij2 + zij2 | ||
|  |                     dssn = n * rapp / rac2 | ||
|  |                     dssn2 = dssn * dssn | ||
|  |                     diffij = abs(dij2-dssn2) | ||
|  |                     if diffij >= epsi: | ||
|  |                         continue | ||
|  | 
 | ||
|  |                     for k in range(3, 12+1): | ||
|  |                         if k <= j: | ||
|  |                             continue | ||
|  | 
 | ||
|  |                         xjk = xs[k] - xs[j] | ||
|  |                         yjk = ys[k] - ys[j] | ||
|  |                         zjk = zs[k] - zs[j] | ||
|  |                         xjk2 = xjk * xjk | ||
|  |                         yjk2 = yjk * yjk | ||
|  |                         zjk2 = zjk * zjk | ||
|  |                         djk2 = xjk2 + yjk2 + zjk2 | ||
|  |                         diffjk = abs(djk2-dssn2) | ||
|  |                         if diffjk >= epsi: | ||
|  |                             continue | ||
|  | 
 | ||
|  |                         xik = xs[k] - xs[i] | ||
|  |                         yik = ys[k] - ys[i] | ||
|  |                         zik = zs[k] - zs[i] | ||
|  |                         xik2 = xik * xik | ||
|  |                         yik2 = yik * yik | ||
|  |                         zik2 = zik * zik | ||
|  |                         dik2 = xik2 + yik2 + zik2 | ||
|  |                         diffik = abs(dik2-dssn2) | ||
|  |                         if diffik >= epsi: | ||
|  |                             continue | ||
|  | 
 | ||
|  |                         if nfacet[i][j][k] != 0: | ||
|  |                             continue | ||
|  | 
 | ||
|  |                         ifacet += 1 | ||
|  |                         nfacet[i][j][k] = ifacet | ||
|  | 
 | ||
|  |                         if naret[i][j] == 0: | ||
|  |                             iaret += 1 | ||
|  |                             naret[i][j] = iaret | ||
|  |                             for l in range(1,n-1+1): | ||
|  |                                 nat += 1 | ||
|  |                                 xa[i][j][l] = xs[i]+l*(xs[j]-xs[i]) / n | ||
|  |                                 ya[i][j][l] = ys[i]+l*(ys[j]-ys[i]) / n | ||
|  |                                 za[i][j][l] = zs[i]+l*(zs[j]-zs[i]) / n | ||
|  |                                 x[nat] = xa[i][j][l] | ||
|  |                                 y[nat] = ya[i][j][l] | ||
|  |                                 z[nat] = za[i][j][l] | ||
|  | 
 | ||
|  |                         if naret[i][k] == 0: | ||
|  |                             iaret += 1 | ||
|  |                             naret[i][k] = iaret | ||
|  |                             for l in range(1, n-1+1): | ||
|  |                                 nat += 1 | ||
|  |                                 xa[i][k][l] = xs[i]+l*(xs[k]-xs[i]) / n | ||
|  |                                 ya[i][k][l] = ys[i]+l*(ys[k]-ys[i]) / n | ||
|  |                                 za[i][k][l] = zs[i]+l*(zs[k]-zs[i]) / n | ||
|  |                                 x[nat] = xa[i][k][l] | ||
|  |                                 y[nat] = ya[i][k][l] | ||
|  |                                 z[nat] = za[i][k][l] | ||
|  | 
 | ||
|  |                         if naret[j][k] == 0: | ||
|  |                             iaret += 1 | ||
|  |                             naret[j][k] = iaret | ||
|  |                             for l in range(1, n-1+1): | ||
|  |                                 nat += 1 | ||
|  |                                 xa[j][k][l] = xs[j]+l*(xs[k]-xs[j]) / n | ||
|  |                                 ya[j][k][l] = ys[j]+l*(ys[k]-ys[j]) / n | ||
|  |                                 za[j][k][l] = zs[j]+l*(zs[k]-zs[j]) / n | ||
|  |                                 x[nat] = xa[j][k][l] | ||
|  |                                 y[nat] = ya[j][k][l] | ||
|  |                                 z[nat] = za[j][k][l] | ||
|  | 
 | ||
|  |                         for l in range(2, n-1+1): | ||
|  |                             for ll in range(1, l-1+1): | ||
|  |                                 xf = xa[i][j][l]+ll*(xa[i][k][l]-xa[i][j][l]) / l | ||
|  |                                 yf = ya[i][j][l]+ll*(ya[i][k][l]-ya[i][j][l]) / l | ||
|  |                                 zf = za[i][j][l]+ll*(za[i][k][l]-za[i][j][l]) / l | ||
|  |                                 nat += 1 | ||
|  |                                 inatf += 1 | ||
|  |                                 x[nat] = xf | ||
|  |                                 y[nat] = yf | ||
|  |                                 z[nat] = zf | ||
|  |                                 k3 += 1 | ||
|  | 
 | ||
|  |     atom_number_total = 0 | ||
|  |     atom_number_drawn = 0 | ||
|  | 
 | ||
|  |     for i in range (1,natot+1): | ||
|  | 
 | ||
|  |         atom = Vector((x[i],y[i],z[i])) * lattice | ||
|  | 
 | ||
|  |         atom_add = CLASS_atom_cluster_atom(atom) | ||
|  |         ATOM_CLUSTER_ALL_ATOMS.append(atom_add) | ||
|  |         atom_number_total += 1 | ||
|  |         atom_number_drawn += 1 | ||
|  | 
 | ||
|  |     return (atom_number_total, atom_number_drawn) |